MC74LCX245 D

MC74LCX245
Low-Voltage CMOS Octal
Transceiver
With 5 V−Tolerant Inputs and Outputs
(3−State, Non−Inverting)
The MC74LCX245 is a high performance, non−inverting octal
transceiver operating from a 2.0 to 5.5 V supply. High impedance TTL
compatible inputs significantly reduce current loading to input drivers
while TTL compatible outputs offer improved switching noise
performance. A VI specification of 5.5 V allows MC74LCX245 inputs
to be safely driven from 5 V devices if VCC is less than 5.0 V. The
MC74LCX245 is suitable for memory address driving and all TTL
level bus oriented transceiver applications.
Current drive capability is 24 mA at both A and B ports. The
Transmit/Receive (T/R) input determines the direction of data flow
through the bi−directional transceiver. Transmit (active−HIGH)
enables data from A ports to B ports; Receive (active−LOW) enables
data from B to A ports. The Output Enable input, when HIGH,
disables both A and B ports by placing them in a HIGH Z condition.
•
20
20
1
SOIC−20
DW SUFFIX
CASE 751D
LCX245
AWLYYWWG
1
20
20
TSSOP−20
DT SUFFIX
CASE 948E
1
Designed for 2.0 to 5.5 V VCC Operation
5 V Tolerant − Interface Capability With 5 V TTL Logic
LCX
245
ALYWG
G
1
Supports Live Insertion and Withdrawal
IOFF Specification Guarantees High Impedance When VCC = 0 V
QFN20
MN SUFFIX
CASE 485AA
LVTTL Compatible
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current in All Three Logic States (10 mA)
Substantially Reduces System Power Requirements
Latchup Performance Exceeds 500 mA
•
• ESD Performance:
•
MARKING
DIAGRAMS
1
Features
•
•
•
•
•
•
•
•
http://onsemi.com
Human Body Model >2000 V
Machine Model >200 V
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
A
L, WL
Y, YY
W, WW
G or G
LCX
245
ALYWG
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2012
October, 2012 − Rev. 11
1
Publication Order Number:
MC74LCX245/D
MC74LCX245
VCC
OE
B0
B1
B2
B3
B4
B5
B6
B7
20
19
18
17
16
15
14
13
12
11
OE 19
T/R 1
A0
2
18
1
2
3
4
5
6
7
T/R
A0
A1
A2
A3
A4
A5
19
8
9
10
A6
A7
GND
A1
3
17
12
A2
QFN
PIN #1
16
10
A3
2
15
A4
A5
PINS
FUNCTION
OE
T/R
A0−A7
B0−B7
Output Enable Input
Transmit/Receive Input
Side A 3−State Inputs or 3−State Outputs
Side B 3−State Inputs or 3−StateOutputs
INPUTS
OE
T/R
OPERATING MODE
Non−Inverting
L
L
B Data to A Bus
L
H
A Data to B Bus
H
X
Z
Figure 2. Logic Diagram
H = High Voltage Level
L = Low Voltage Level
Z = High Impedance State
X = High or Low Voltage Level and Transitions are Acceptable
For ICC reasons, Do Not Float Inputs
http://onsemi.com
2
B6
9
11
TRUTH TABLE
B5
8
12
A7
B4
7
13
A6
B3
6
14
PIN NAMES
B2
5
9
Figure 1. Pinout (Top View)
B1
4
11
20
B0
B7
MC74LCX245
MAXIMUM RATINGS
Symbol
Parameter
VCC
DC Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
Value
Condition
Unit
−0.5 to +7.0
V
−0.5 ≤ VI ≤ +7.0
V
−0.5 ≤ VO ≤ +7.0
Output in 3−State
V
−0.5 ≤ VO ≤ VCC + 0.5
Output in HIGH or LOW State (Note 1)
V
IIK
DC Input Diode Current
−50
VI< GND
mA
IOK
DC Output Diode Current
−50
VO < GND
mA
+50
VO > VCC
mA
IO
DC Output Source/Sink Current
±50
mA
ICC
DC Supply Current Per Supply Pin
±100
mA
IGND
DC Ground Current Per Ground Pin
±100
mA
TSTG
Storage Temperature Range
−65 to +150
°C
MSL
Moisture Sensitivity
Level 1
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. IO absolute maximum rating must be observed.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Operating
Data Retention Only
Min
Typ
Max
Unit
2.0
1.5
2.5, 3.3
2.5, 3.3
5.5
5.5
V
0
5.5
V
0
0
VCC
5.5
V
VCC
Supply Voltage
VI
Input Voltage
VO
Output Voltage
IOH
HIGH Level Output Current
VCC = 3.0 V − 3.6 V
VCC = 2.7 V − 3.0 V
VCC = 2.3 V − 2.7 V
− 24
− 12
−8
mA
IOL
LOW Level Output Current
VCC = 3.0 V − 3.6 V
VCC = 2.7 V − 3.0 V
VCC = 2.3 V − 2.7 V
+ 24
+ 12
+8
mA
TA
Operating Free−Air Temperature
−55
+125
°C
Dt/DV
Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V
0
10
ns/V
(HIGH or LOW State)
(3−State)
http://onsemi.com
3
MC74LCX245
DC ELECTRICAL CHARACTERISTICS
TA = −55°C to +125°C
Symbol
VIH
VIL
VOH
VOL
Characteristic
HIGH Level Input Voltage (Note 2)
LOW Level Input Voltage (Note 2)
HIGH Level Output Voltage
LOW Level Output Voltage
Condition
Min
2.3 V ≤ VCC ≤ 2.7 V
1.7
2.7 V ≤ VCC ≤ 3.6 V
2.0
Max
V
2.3 V ≤ VCC ≤ 2.7 V
0.7
2.7 V ≤ VCC ≤ 3.6 V
0.8
2.3 V ≤ VCC ≤ 3.6 V; IOL = 100 mA
VCC − 0.2
VCC = 2.3 V; IOH = −8 mA
1.8
VCC = 2.7 V; IOH = −12 mA
2.2
VCC = 3.0 V; IOH = −18 mA
2.4
VCC = 3.0 V; IOH = −24 mA
2.2
Unit
V
V
2.3 V ≤ VCC ≤ 3.6 V; IOL = 100 mA
0.2
VCC = 2.3 V; IOL= 8 mA
0.6
VCC = 2.7 V; IOL= 12 mA
0.4
VCC = 3.0 V; IOL = 16 mA
0.4
VCC = 3.0 V; IOL = 24 mA
0.55
VCC = 3.6 V, VIN = VIH or VIL,
VOUT = 0 to 5.5 V
±5
mA
VCC = 0, VIN = 5.5 V or VOUT = 5.5 V
10
mA
V
IOZ
3−State Output Current
IOFF
Power Off Leakage Current
IIN
Input Leakage Current
VCC = 3.6 V, VIN = 5.5 V or GND
±5
mA
ICC
Quiescent Supply Current
VCC = 3.6 V, VIN = 5.5 V or GND
10
mA
DICC
Increase in ICC per Input
2.3 ≤ VCC ≤ 3.6 V; VIH = VCC − 0.6 V
500
mA
2. These values of VI are used to test DC electrical characteristics only.
AC CHARACTERISTICS tR = tF = 2.5 ns; RL = 500 W
Limits
TA = −55°C to +125°C
Symbol
Parameter
VCC = 3.3 V ± 0.3V
VCC = 2.7 V
VCC = 2.5 V ± 0.2V
VCC = 5.0 V
CL = 50 pF
CL = 50 pF
CL = 30 pF
CL = 50 pF
Waveform
Min
Max
Min
Max
Min
Max
Min
Max
Unit
tPLH
tPHL
Propagation Delay
Input to Output
1
1.5
1.5
7.0
7.0
1.5
1.5
8.0
8.0
1.5
1.5
8.4
8.4
1.5
1.5
5.0
5.0
ns
tPZH
tPZL
Output Enable Time
to High and Low Level
2
1.5
1.5
8.5
8.5
1.5
1.5
9.5
9.5
1.5
1.5
10.5
10.5
1.5
1.5
7.0
7.0
ns
tPHZ
tPLZ
Output Disable Time From
High and Low Level
2
1.5
1.5
7.5
7.5
1.5
1.5
8.5
8.5
1.5
1.5
9.0
9.0
1.5
1.5
6.0
6.0
ns
tOSHL
tOSLH
Output−to−Output Skew
(Note 3)
1.0
1.0
ns
1.0
1.0
1.0
1.0
1.0
1.0
3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
http://onsemi.com
4
MC74LCX245
DYNAMIC SWITCHING CHARACTERISTICS
TA = +25°C
Symbol
Characteristic
Condition
Min
Typ
Max
Unit
VOLP
Dynamic LOW Peak Voltage (Note 4)
VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V
0.8
0.6
V
V
VOLV
Dynamic LOW Valley Voltage (Note 4)
VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V
−0.8
−0.6
V
V
4. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the LOW state.
CAPACITIVE CHARACTERISTICS
Symbol
Parameter
Condition
Typical
Unit
CIN
Input Capacitance
VCC = 3.3 V, VI = 0 V or VCC
7
pF
CI/O
Input/Output Capacitance
VCC = 3.3 V, VI = 0 V or VCC
8
pF
CPD
Power Dissipation Capacitance
10 MHz, VCC = 3.3 V, VI = 0 V or VCC
25
pF
VCC
OE, T/R
Vmi
VCC
An, Bn
Vmi
Vmi
tPLH
Bn, An
tPZH
0V
tPHL
Vmo
Vmi
An, Bn
Vmo
VOH
Vmo
tPHZ
tPZL
VOL
WAVEFORM 1 − PROPAGATION DELAYS
tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
VOH
VHZ
tPLZ
Vmo
An, Bn
0V
VLZ
VOL
WAVEFORM 2 − OUTPUT ENABLE AND DISABLE TIMES
tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
Figure 3. AC Waveforms
VCC
Symbol
3.3 V + 0.3 V
2.7 V
2.5 V + 0.2 V
5.0 V
Vmi
1.5 V
1.5 V
VCC/2
VCC/2
Vmo
1.5 V
1.5 V
VCC/2
VCC/2
VHZ
VOL + 0.3 V
VOL + 0.3 V
VOL + 0.15 V
VOL + 0.15 V
VLZ
VOH − 0.3 V
VOH − 0.3 V
VOH − 0.15 V
VOH − 0.15 V
http://onsemi.com
5
MC74LCX245
VCC
PULSE
GENERATOR
DUT
RT
CL
TEST
RL
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
6 V at VCC = 3.3 0.3 V
6 V at VCC = 2.5 0.2 V
Open Collector/Drain tPLH and tPHL
6V
tPZH, tPHZ
CL =
CL =
RL =
RT =
6V
OPEN
GND
R1
GND
50 pF at VCC = 3.3 0.3 V or equivalent (includes jig and probe capacitance)
30 pF at VCC = 2.5 0.2 V or equivalent (includes jig and probe capacitance)
R1 = 500 W or equivalent
ZOUT of pulse generator (typically 50 W)
Figure 4. Test Circuit
ORDERING INFORMATION
Package
Shipping†
MC74LCX245DWR2G
SOIC−20
(Pb−Free)
1000 Tape & Reel
MC74LCX245DWG
SOIC−20
(Pb−Free)
38 Units / Rail
MC74LCX245DTG
TSSOP−20
(Pb−Free)
75 Units / Rail
MC74LCX245DTR2G
TSSOP−20
(Pb−Free)
2500 Tape & Reel
NLV74LCX245DTR2G*
TSSOP−20
(Pb−Free)
2500 Tape & Reel
MC74LCX245MNTWG
QFN20
(Pb−Free)
3000 Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
http://onsemi.com
6
MC74LCX245
PACKAGE DIMENSIONS
SOIC−20
DW SUFFIX
CASE 751D−05
ISSUE G
A
20
11
X 45 _
E
h
1
10
20X
B
B
0.25
M
T A
S
B
S
A
L
H
M
10X
0.25
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
q
B
M
D
18X
e
A1
SEATING
PLANE
C
T
http://onsemi.com
7
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
12.65
12.95
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
MC74LCX245
PACKAGE DIMENSIONS
TSSOP−20
CASE 948E−02
ISSUE C
20X
0.15 (0.006) T U
2X
L
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
K
K1
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
S
J J1
11
B
−U−
PIN 1
IDENT
SECTION N−N
0.25 (0.010)
N
1
10
M
0.15 (0.006) T U
S
A
−V−
N
F
DETAIL E
C
G
D
H
DETAIL E
0.100 (0.004)
−T− SEATING
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
MILLIMETERS
INCHES
DIM MIN
MAX
MIN
MAX
A
6.40
6.60
0.252
0.260
B
4.30
4.50
0.169
0.177
C
--1.20
--0.047
D
0.05
0.15
0.002
0.006
F
0.50
0.75
0.020
0.030
G
0.65 BSC
0.026 BSC
−W−
H
0.27
0.37
0.011
0.015
J
0.09
0.20
0.004
0.008
J1
0.09
0.16
0.004
0.006
K
0.19
0.30
0.007
0.012
K1
0.19
0.25
0.007
0.010
L
6.40 BSC
0.252 BSC
M
0_
8_
0_
8_
PLANE
SOLDERING FOOTPRINT
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
http://onsemi.com
8
MC74LCX245
PACKAGE DIMENSIONS
QFN20, 2.5x4.5 MM
CASE 485AA
ISSUE B
D
PIN ONE REFERENCE
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
B
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
E
2X
0.15 C
2X
0.15 C
TOP VIEW
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.20
0.30
2.50 BSC
0.85
1.15
4.50 BSC
2.85
3.15
0.50 BSC
0.20
--0.35
0.45
0.10 C
A
20X
0.08 C
(A3)
A1
SIDE VIEW
C
SEATING
PLANE
D2
11
20X
L
e
9
12
e
E2
20X
b
0.10 C A B
0.05 C
NOTE 3
19
2
1
20
20X
K
BOTTOM VIEW
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
9
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MV74LCX245/D