IFX1050G VIO Data Sheet (1.1 MB)

IFX1050GVIO
High Speed CAN-Transceiver
Data Sheet
Rev. 1.0, 2011-04-08
Standard Power
IFX1050GVIO
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Data Sheet
2
Rev. 1.0, 2011-04-08
High Speed CAN-Transceiver
1
IFX1050GVIO
Overview
Features
•
•
•
•
•
•
•
•
CAN data transmission rate up to 1 MBaud
Stand-by Mode
Suitable for 12 V and 24 V applications
Excellent EMC performance (very high immunity and very low
emission)
Bus pins are short circuit proof to ground and battery voltage
Versions for 5V and 3.3V microcontrollers
Overtemperature protection
Green Product (RoHS compliant)
PG-DSO-8
Description
The HS CAN-transceiver IFX1050GVIO is optimized for high speed differential mode data transmission in
industrial applications and is compatible to ISO/DIS 11898. It works as an interface between the CAN protocol
controller and the physical differential bus in both, 12 V and 24 V systems.
The IFX1050GVIO is designed to withstand the conditions of industrial applications and provides excellent EMC
performance.
IFX1050GVIO
3.3 V logic I/O version (logic I/O voltage adaptive to V33 pin within the range 3.3 V to 5 V):
RxD, TxD, INH. One control pin (INH) and two operation modes: Normal Mode and Standby Mode.
Type
Package
Marking
IFX1050GVIO
PG-DSO-8
1050IO
Data Sheet
3
Rev. 1.0, 2011-04-08
IFX1050GVIO
Pin Configuration
2
Pin Configuration
IFX1050GVIO
(PG-DSO-8)
TxD
1
8
INH
GND
2
7
CANH
VCC
3
6
CANL
RxD
4
5
V33V
Figure 1
Pin Configuration IFX1050GVIO (top view)
Table 1
Pin Definitions and Functions IFX1050GVIO
Pin No. Symbol
Function
1
TxD
CAN transmit data input; 20 kΩ pull-up, LOW in dominant state
2
GND
Ground
3
VCC
5 V Supply input
4
RxD
CAN receive data output; LOW in dominant state,
integrated pull-up
5
V33V
Logic supply input; 3.3V or 5V microcontroller logic supply can be connected here! The
digital I/Os of the IFX1050GVIO adopt to the connected microcontroller logic supply a V33V
6
CANL
Low line I/O; LOW in dominant state
7
CANH
High line I/O; HIGH in dominant state
8
INH
Inhibit Input; control input, 20 kΩ pull, set LOW for normal mode
Data Sheet
4
Rev. 1.0, 2011-04-08
IFX1050GVIO
Block Diagram
3
Block Diagram
IFX1050 GVIO
3
5
CANH
CANL
7
6
Driver
Output
Stage
1
TempProtection
Mode Control
8
VCC
V33
TxD
INH
=
Receiver
*
GND
Figure 2
Data Sheet
2
4
RxD
Block Diagram IFX1050GVIO
5
Rev. 1.0, 2011-04-08
IFX1050GVIO
Electrical Characteristics
4
Electrical Characteristics
Table 2
Absolute Maximum Ratings
Parameter
Symbol
Limit Values
Unit
Remarks
Min.
Max.
VCC
V33V
VCANH/L
VI
VESD
-0.3
6.5
V
–
-0.3
6.5
V
–
-40
40
V
–
-0.3
VCC
V
0 V < VCC < 5.5 V
-6
6
kV
human body model
(100 pF via 1.5 kΩ)
VESD
-2
2
kV
human body model
(100 pF via 1.5 kΩ)
Tj
-40
150
°C
–
Voltages
Supply voltage
3.3V supply
CAN input voltage (CANH, CANL)
Logic voltages at INH, RM, TxD, RxD
Electrostatic discharge voltage at CANH,
CANL
Electrostatic discharge voltage
Temperatures
Junction temperature
Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage
to the integrated circuit.
4.1
Operating Range
Table 3
Operating Range
Parameter
Supply voltage
3.3V supply voltage
Junction temperature
Symbol
Limit Values
Unit
Remarks
Min.
Max.
VCC
V33V
Tj
4.5
5.5
V
–
3.0
5.5
V
–
-40
125
°C
–
Rthj-a
–
185
K/W
–
TjsD
160
200
°C
10 °C hysteresis
Thermal Resistances
Junction ambient
Thermal Shutdown (junction temperature)
Thermal shutdown temperature
Data Sheet
6
Rev. 1.0, 2011-04-08
IFX1050GVIO
Electrical Characteristics
Table 4
Electrical Characteristics
4.5 V < VCC < 5.5 V; 3.0 V < V33V < 5.5 V RL = 60 Ω; VINH < VINH,ON; -40 °C < Tj < 125 °C; all voltages with respect
to ground; positive current flowing into pin; unless otherwise specified.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
ICC+33V
–
6
10
Current consumption
ICC+33V
–
Current consumption
I33V
–
ICC+33V,stb –
HIGH level output current
IRD,H
LOW level output current
Unit
Remarks
Current Consumption
Current consumption
mA
recessive state;
VTxD = V33V
45
70
mA
dominant state;
VTxD = 0 V
–
2
mA
–
1
10
μA
stand-by mode;
TxD = high
–
-2
-1
mA
IRD,L
1
2
–
mA
VRD = 0.8 × V33V,
Vdiff < 0.4 V1)
VRD = 0.2 × V33V,
Vdiff > 1 V1)
HIGH level input voltage threshold
VTD,H
–
0.55 × 0.7 ×
LOW level input voltage threshold
VTD,L
0.3 ×
0.45 × –
V33V
V33V
RTD
10
25
HIGH level input voltage threshold
VINH,H
–
0.55 × 0.7 ×
LOW level input voltage threshold
VINH,L
0.3 ×
0.45 × –
V33V
V33V
RINH
10
25
Current consumption
Receiver Output RxD
Transmission Input TxD
TxD pull-up resistance
V33V
V
recessive state
V
dominant state
kΩ
–
V
stand-by mode;
V
normal mode
kΩ
–
V33V
50
Inhibit Input (pin INH)
INH pull-up resistance
Data Sheet
V33V
7
V33V
50
Rev. 1.0, 2011-04-08
IFX1050GVIO
Electrical Characteristics
Table 4
Electrical Characteristics (cont’d)
4.5 V < VCC < 5.5 V; 3.0 V < V33V < 5.5 V RL = 60 Ω; VINH < VINH,ON; -40 °C < Tj < 125 °C; all voltages with respect
to ground; positive current flowing into pin; unless otherwise specified.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Remarks
Bus Receiver
Differential receiver threshold voltage,
recessive to dominant edge
Vdiff,d
–
0.75
0.90
V
-20 V < (VCANH, VCANL) <
25 V
Vdiff = VCANH - VCANL
Differential receiver threshold voltage
dominant to recessive edge
Vdiff,r
0.50
0.60
–
V
-20 V < (VCANH, VCANL) <
25 V
Vdiff = VCANH - VCANL
Common Mode Range
CMR
-20
–
25
V
VCC = 5 V
Differential receiver hysteresis
Vdiff,hys
Ri
Rdiff
–
150
–
mV
–
10
20
30
kΩ
recessive state
20
40
60
kΩ
recessive state
CANH, CANL input resistance
Differential input resistance
Data Sheet
8
Rev. 1.0, 2011-04-08
IFX1050GVIO
Electrical Characteristics
Table 4
Electrical Characteristics (cont’d)
4.5 V < VCC < 5.5 V; 3.0 V < V33V < 5.5 V RL = 60 Ω; VINH < VINH,ON; -40 °C < Tj < 125 °C; all voltages with respect
to ground; positive current flowing into pin; unless otherwise specified.
Parameter
Symbol
Limit Values
Unit
Remarks
V
VTxD = V33V
Min.
Typ.
Max.
VCANL/H
0.4 ×
–
0.6 ×
CANH, CANL recessive output voltage
difference
Vdiff = VCANH - VCANL, no load2)
Vdiff
-1
–
0.05
V
VTxD = V33V
CANL dominant output voltage
VCANL
–
–
2.0
V
CANH dominant output voltage
VCANH
2.8
–
–
V
CANH, CANL dominant output voltage
difference
Vdiff = VCANH - VCANL
Vdiff
1.5
–
3.0
V
VTxD = 0 V;
VCC = 5 V
VTxD = 0 V;
VCC = 5 V
VTxD = 0 V;
VCC = 5 V
CANL short circuit current
ICANLsc
50
120
200
mA
–
150
–
mA
-120
-50
mA
-120
–
mA
-300
-400
μA
-100
-150
μA
ICANH/L,lk 50
280
400
μA
50
100
150
μA
Bus Transmitter
CANL/CANH recessive output voltage
CANH short circuit current
CANH short circuit current
Output current
VCC
ICANHsc -200
ICANHsc –
ICANH/L,lk -50
-50
Output current
Data Sheet
9
VCC
VCANLshort = 18 V
VCANLshort = 36 V
VCANHshort = 0 V
VCANHshort = -5 V
VCC = 0 V,
VCANH = VCANL = -7 V
VCC = 0 V,
VCANH = VCANL = -2 V
VCC = 0 V,
VCANH = VCANL = 7 V
VCC = 0 V,
VCANH = VCANL = 2 V
Rev. 1.0, 2011-04-08
IFX1050GVIO
Electrical Characteristics
Table 4
Electrical Characteristics (cont’d)
4.5 V < VCC < 5.5 V; 3.0 V < V33V < 5.5 V RL = 60 Ω; VINH < VINH,ON; -40 °C < Tj < 125 °C; all voltages with respect
to ground; positive current flowing into pin; unless otherwise specified.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Remarks
CL = 47 pF;
RL = 60 Ω;
VCC = 5 V;
CRxD = 20 pF
CL = 47 pF;
RL = 60 Ω;
VCC = 5 V;
CRxD = 20 pF
CL = 47 pF;
RL = 60 Ω;
VCC = 5 V
CL = 47 pF;
RL = 60 Ω;
VCC = 5 V
CL = 47 pF;
RL = 60 Ω;
VCC = 5 V;
CRxD = 20 pF
CL = 47 pF;
RL = 60 Ω;
VCC = 5 V;
CRxD = 20 pF
Dynamic CAN-Transceiver Characteristics
Propagation delay TxD-to-RxD LOW
(recessive to dominant)
td(L),TR
–
150
280
ns
Propagation delay TxD-to-RxD HIGH
(dominant to recessive)
td(H),TR
–
150
280
ns
Propagation delay
TxD LOW to bus dominant
td(L),T
–
100
140
ns
Propagation delay
TxD HIGH to bus recessive
td(H),T
–
100
140
ns
Propagation delay bus dominant to RxD LOW td(L),R
–
50
140
ns
td(H),R
–
50
140
ns
Propagation delay bus recessive to RxD
HIGH
1) Vdiff = VCANH - VCANL
2) Deviation from ISO/DIS 11898
Data Sheet
10
Rev. 1.0, 2011-04-08
IFX1050GVIO
Diagrams
5
Diagrams
INH
7
CANH
TxD
RxD
8
1
4
20 pF
47 pF
60 Ω
V33 V
6
5
3.3 V
100 nF
CANL
GND
2
VCC
3
5V
100 nF
AEA03329.VSD
Figure 3
Data Sheet
Test Circuit for Dynamic Characteristics
11
Rev. 1.0, 2011-04-08
IFX1050GVIO
Diagrams
VTxD
VCC(33V)
GND
VDIFF
td(L), T
td(H), T
t
VDIFF(d)
VDIFF(r)
VRxD
td(L), R
t
td(H), R
VCC(33V)
0.7VCC(33V)
0.3VCC(33V)
GND
td(L), TR
td(H), TR
t
AET02926
Figure 4
Data Sheet
Timing Diagrams for Dynamic Characteristics
12
Rev. 1.0, 2011-04-08
IFX1050GVIO
Application Information
6
Application Information
Normal Mode
INH = 0
INH = 1
INH = 0
Stand-by
Mode
INH = 1
Figure 5
Mode State Diagram
The IFX1050GVIO offers two different operation modes (see Figure 5), controlled by the INH pin.
In the normal mode the device is able to receive and to transmit data from the TxD pin to the CAN bus. The standby mode is a low power mode that disables both, the receiver as well as the transmitter.
When the stand-by mode is not used the INH pin has to be connected to ground level in order to switch the
IFX1050GVIO into normal mode.
Application Information for the 3.3 V Version
The IFX1050GVIO can be used for both; 3.3 V and 5 V microcontroller logic supply, as shown in Figure 6. Don’t
apply any external resistors between the power supply and this pin. This may cause a voltage drop and reduce
the available voltage at this pin.
Data Sheet
13
Rev. 1.0, 2011-04-08
IFX1050GVIO
Application Information
Application
with
3.3V
I/O
IFX1050 GVIO
INH
7
6
RxD
CANH
TxD
CANL
V33 V
GND
2
22
µF
100
nF
4
1
µP
5
3.3 V
3
100
nF
100
nF
100
nF
GND
5V
VQ1
VI
+
VCC
8
3.3 V
VQ2
+
GND
22 µF
+
22 µF
Application with 5V I/O supply
IFX1050 GVIO
INH
7
6
CANH
CANL
GND
2
RxD
TxD
V33 V
VCC
8
4
1
5
µP
5V
3
100
nF
100
nF
GND
IFX24401
VI
+
Figure 6
Data Sheet
22
µF
100
nF
5V
VQ
+
GND
22 µF
Application Circuit IFX1050GVIO used for 3.3 and 5V Logic
14
Rev. 1.0, 2011-04-08
IFX1050GVIO
Application Information
IFX1050 GVIO
INH
7
6
RxD
CANH
TxD
CANL
V33 V
GND
VCC
8
4
1
5
µP
5V
3
100
nF
100
nF
2
GND
IFX24401
VI
+
22
µF
100
nF
VQ
5V +
GND
22 µF
IFX24401
VI
+
Figure 7
Data Sheet
22
µF
100
nF
VQ
5V
GND
+
Figure 4 (cont.) Application Circuit IFX1050GVIO used for 3.3 and 5V Logic
15
Rev. 1.0, 2011-04-08
IFX1050GVIO
Application Information
120 Ω
IFX1050 GVIO
VBat
CAN
Bus
RM
INH
7
6
CANH
RxD
CANL
TxD
VCC
GND
2
5
8
4
µP
1
3
100
nF
100
nF
GND
IFX24401
VI
+
22
µF
100
nF
5V
VQ
+
GND
22 µF
ECU 1
IFX1050 GVIO
INH
RxD
7
6
CANH
TxD
CANL
V33 V
GND
2
VQ1
VI
+
22
µF
100
nF
VCC
8
4
1
µP
5
3
100
nF
GND
3.3 V
22 µF
+
+
22 µF
ECU X
120 Ω
Figure 8
100
nF
5V
VQ2
GND
100
nF
Application Circuit IFX1050GVIO
Applications with separate 5V power supplies,
for applications with switchable transceiver
Data Sheet
16
Rev. 1.0, 2011-04-08
IFX1050GVIO
Package Outlines
7
Package Outlines
1.27
0.1
0.41 +0.1
-0.05
.01
0.2 +0.05
-0
C
0.64 ±0.25
0.2 M A C x8
8
5
Index
Marking 1
4
5 -0.21)
8˚ MAX.
4 -0.21)
1.75 MAX.
0.1 MIN.
(1.5)
0.33 ±0.08 x 45˚
6 ±0.2
A
Index Marking (Chamfer)
1)
Does not include plastic or metal protrusion of 0.15 max. per side
GPS09032
Figure 9
PG-DSO-8 (Plastic Dual Small Outline), lead free version
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
17
Rev. 1.0, 2011-04-08
IFX1050GVIO
Revision History
8
Revision History
Revision
Date
Changes
1.0
2011-04-08
Release Datasheet
Data Sheet
18
Rev. 1.0, 2011-04-08
Edition 2011-04-08
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems
and/or automotive, aviation and aerospace applications or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user
or other persons may be endangered.