INTERSIL CD4536BMS

CD4536BMS
CMOS Programmable Timer
December 1992
Features
Description
• High Voltage Type (20V Rating)
0
• 24 Flip-Flop Stage - Counts from 2 to 2
24
• Last 16 Stages Selectable by BCD Select Code
• Bypass Input Allows Bypassing First 8 Stages
• On-Chip RC Oscillator Provision
• Clock Inhibit Input
• Schmitt Trigger in clock Line Permits Operation with
Very Long Rise and Fall Times
• On-Chip Monostable Output Provision
• Typical fCL = 3MHz at VDD = 10V
• Test Mode Allows Fast Test Sequence
• Set and Reset Inputs
• Capable of Driving Two Low Power TTL Loads, One
Lower Power Schottky Load, or Two HTL Loads Over
the Rated Temperature Range
• 100% Tested for Quiescent Current at 20V
• 5V, 10V and 15V Parametric Ratings
• Standardized, Symmetrical Output Characteristics
• Meets All Requirements of JEDEC Tentative Standard
No. 13B, “Standard Specifications for Description of
‘B’ Series CMOS Devices”
CD4536BMS is a programmable timer consisting of 24 ripple
binary counter stages. The salient feature of this device is its
flexibility. The device can count from 1 to 224 or the first 8
stages can be bypassed to allow an output, selectable by a
4-bit code, from any one of the remaining 16 stages. It can
be driven by an external clock or an RC oscillator that can be
constructed using on-chip components. Input IN1 serves as
either the external clock input or the input to the on-chip RC
oscillator. OUT1 and OUT2 are connection terminals for the
external RC components. In addition, an on-chip monostable
circuit is provided to allow a variable pulse width output. Various timing functions can be achieved using combinations of
these capabilities.
A logic 1 on the 8-BYPASS input enables a bypass of the
first 8 stages and makes stage 9 the first counter stage of
the last 16 stages. Selection of 1 of 16 outputs is accomplished by the decoder and the BCD inputs A, B, C and D.
MONO IN is the timing input for the on-chip monostable
oscillator. Grounding of the MONO IN terminal through a
resistor of 10kΩ or higher, disables the one-shot circuit and
connects the decoder directly to the DECODE OUT terminal.
A resistor to VDD and a capacitor to ground from the MONO
IN terminal enables the one-shot circuit and controls its
pulse width.
A fast test mode is enabled by a logic 1 on 8-BYPASS, SET,
and RESET. This mode divides the 24-stage counter into
three 8-stage sections to facilitate a fast test sequence.
The CD4536BMS is supplied in these 16-lead outline packages:
Braze Seal DIP
Frit Seal DIP
Ceramic Flatpack
H4X
H1F
H6W
Functional Diagram
Pinout
CD4536BMS
TOP VIEW
SET
1
CLOCK
INHIBIT
OSC
INHIBIT
16 VDD
8-BYPASS
RESET
2
15 MONO IN
IN 1
3
14 OSC INHIBIT
OUT 1
4
13 DECODE OUT
6
A
5
12 D
8-BYPASS 6
11 C
7
10 B
OUT 2
CLOCK INHIBIT
VSS
8
IN 1
BINARY
SELECT
B
C
D
BINARY
SELECT
SET
RESET
9 A
MONO IN
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
7-1236
9
10
11
12
1
2
15
14
7
RS
3
4
OUT 1
RT
5
OUT 2
13 DECODE
OUT
VSS = 8
VDD = 16
File Number
3345
Specifications CD4536BMS
Absolute Maximum Ratings
Reliability Information
DC Supply Voltage Range, (VDD) . . . . . . . . . . . . . . . -0.5V to +20V
(Voltage Referenced to VSS Terminals)
Input Voltage Range, All Inputs . . . . . . . . . . . . .-0.5V to VDD +0.5V
DC Input Current, Any One Input . . . . . . . . . . . . . . . . . . . . . . . .±10mA
Operating Temperature Range . . . . . . . . . . . . . . . . -55oC to +125oC
Package Types D, F, K, H
Storage Temperature Range (TSTG) . . . . . . . . . . . -65oC to +150oC
Lead Temperature (During Soldering) . . . . . . . . . . . . . . . . . +265oC
At Distance 1/16 ± 1/32 Inch (1.59mm ± 0.79mm) from case for
10s Maximum
Thermal Resistance . . . . . . . . . . . . . . . .
θja
θjc
Ceramic DIP and FRIT Package . . . . . 80oC/W
20oC/W
Flatpack Package . . . . . . . . . . . . . . . . 70oC/W
20oC/W
Maximum Package Power Dissipation (PD) at +125oC
For TA = -55oC to +100oC (Package Type D, F, K) . . . . . . 500mW
For TA = +100oC to +125oC (Package Type D, F, K). . . . . . Derate
Linearity at 12mW/oC to 200mW
Device Dissipation per Output Transistor . . . . . . . . . . . . . . . 100mW
For TA = Full Package Temperature Range (All Package Types)
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
PARAMETER
Supply Current
SYMBOL
IDD
CONDITIONS (NOTE 1)
VDD = 20V, VIN = VDD or GND
VDD = 18V, VIN = VDD or GND
Input Leakage Current
IIL
VIN = VDD or GND
VDD = 20
VDD = 18V
Input Leakage Current
IIH
VIN = VDD or GND
VDD = 20
VDD = 18V
Output Voltage
Output Voltage
VOL15
VOH15
VDD = 15V, No Load
VDD = 15V, No Load (Note 3)
LIMITS
GROUP A
SUBGROUPS
TEMPERATURE
MIN
MAX
UNITS
1
+25oC
-
10
µA
2
+125oC
-
1000
µA
3
-55oC
-
10
µA
1
+25oC
-100
-
nA
2
+125oC
-1000
-
nA
3
-55oC
-100
-
nA
1
+25oC
-
100
nA
2
+125oC
-
1000
nA
3
-55oC
-
100
nA
1, 2, 3
+25oC,
+125oC,
-55oC
-
50
mV
1, 2, 3
+25oC,
+125oC,
-55oC
14.95
-
V
Output Current (Sink)
IOL5
VDD = 5V, VOUT = 0.4V
1
+25oC
0.53
-
mA
Output Current (Sink)
IOL10
VDD = 10V, VOUT = 0.5V
1
+25oC
1.4
-
mA
1
+25oC
3.5
-
mA
1
+25oC
-
-0.53
mA
Output Current (Sink)
Output Current (Source)
IOL15
IOH5A
VDD = 15V, VOUT = 1.5V
VDD = 5V, VOUT = 4.6V
Output Current (Source)
IOH5B
VDD = 5V, VOUT = 2.5V
1
+25oC
-
-1.8
mA
Output Current (Source)
IOH10
VDD = 10V, VOUT = 9.5V
1
+25oC
-
-1.4
mA
1
+25oC
-
-3.5
mA
1
+25oC
-2.8
-0.7
V
VSS = 0V, IDD = 10µA
1
+25oC
0.7
2.8
V
VDD = 2.8V, VIN = VDD or GND
7
+25oC
VDD = 20V, VIN = VDD or GND
7
+25oC
VDD = 18V, VIN = VDD or GND
8A
+125oC
VDD = 3V, VIN = VDD or GND
8B
-55oC
Output Current (Source)
N Threshold Voltage
P Threshold Voltage
Functional
IOH15
VNTH
VPTH
F
VDD = 15V, VOUT = 13.5V
VDD = 10V, ISS = -10µA
VOH > VOL <
VDD/2 VDD/2
V
Input Voltage Low
(Note 2)
VIL
VDD = 5V, VOH > 4.5V, VOL < 0.5V
1, 2, 3
+25oC, +125oC, -55oC
-
1.5
V
Input Voltage High
(Note 2)
VIH
VDD = 5V, VOH > 4.5V, VOL < 0.5V
1, 2, 3
+25oC, +125oC, -55oC
3.5
-
V
Input Voltage Low
(Note 2)
VIL
VDD = 15V, VOH > 13.5V,
VOL < 1.5V
1, 2, 3
+25oC, +125oC, -55oC
-
4
V
Input Voltage High
(Note 2)
VIH
VDD = 15V, VOH > 13.5V,
VOL < 1.5V
1, 2, 3
+25oC, +125oC, -55oC
11
-
V
NOTES: 1. All voltages referenced to device GND, 100% testing being
implemented.
2. Go/No Go test with limits applied to inputs.
7-1237
3. For accuracy, voltage is measured differentially to VDD. Limit
is 0.050V max.
Specifications CD4536BMS
TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS
PARAMETER
SYMBOL
CONDITIONS (NOTE 1, 2)
Propagation Delay
Clock to Q1 8-Bypass
High
TPHL1
TPLH1
VDD = 5V, VIN = VDD or GND
Propagation Delay
Clock to Q1 8-Bypass
Low
TPHL2
TPLH2
VDD = 5V, VIN = VDD or GND
Propagation Delay
Clock to Q16
TPHL3
TPLH3
VDD = 5V, VIN = VDD or GND
Propagation Delay
Reset to QN
TPHL4
VDD = 5V, VIN = VDD or GND
Transition Time
Maximum Clock Input
Frequency
TTHL
TTLH
GROUP A
SUBGROUPS TEMPERATURE
FCL
MAX
UNITS
9
+25oC
-
2000
ns
10, 11
+125oC, -55oC
-
2700
ns
9
+25oC
-
5000
ns
-
6750
ns
10, 11
VDD = 5V, VIN = VDD or GND
VDD = 5V, VIN = VDD or GND
LIMITS
MIN
+125oC,
-55oC
9
+25oC
-
8000
ns
10, 11
+125oC, -55oC
-
10800
ns
9
+25oC
-
6000
ns
10, 11
+125oC, -55oC
-
8100
ns
9
+25oC
-
200
ns
10, 11
+125oC, -55oC
-
270
ns
o
9
+25 C
.5
-
MHz
10, 11
+125oC, -55oC
.37
-
MHz
MAX
UNITS
NOTES:
1. VDD = 5V, CL = 50pF, RL = 200K, Input TR, TF < 20ns.
2. -55oC and +125oC limits guaranteed, 100% testing being implemented.
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS
LIMITS
PARAMETER
Supply Current
SYMBOL
IDD
CONDITIONS
NOTES
VDD = 5V, VIN = VDD or GND
VDD = 10V, VIN = VDD or GND
1, 2
1, 2
TEMPERATURE
-55 C, +25 C
-
5
µA
+125oC
-
150
µA
-
10
µA
o
o
o
o
-55 C, +25 C
+125 C
-
300
µA
-55oC, +25oC
-
10
µA
+125oC
-
600
µA
o
VDD = 15V, VIN = VDD or GND
1, 2
MIN
o
o
Output Voltage
VOL
VDD = 5V, No Load
1, 2
+25 C, +125 C, 55oC
-
50
mV
Output Voltage
VOL
VDD = 10V, No Load
1, 2
+25oC, +125oC, 55oC
-
50
mV
Output Voltage
VOH
VDD = 5V, No Load
1, 2
+25oC, +125oC, 55oC
4.95
-
V
Output Voltage
VOH
VDD = 10V, No Load
1, 2
+25oC, +125oC, 55oC
9.95
-
V
Output Current (Sink)
IOL5
VDD = 5V, VOUT = 0.4V
1, 2
+125oC
0.36
-
mA
-55oC
0.64
-
mA
+125oC
0.9
-
mA
-55oC
1.6
-
mA
Output Current (Sink)
Output Current (Sink)
Output Current (Source)
Output Current (Source)
Output Current (Source)
IOL10
IOL15
IOH5A
IOH5B
IOH10
VDD = 10V, VOUT = 0.5V
VDD = 15V, VOUT = 1.5V
VDD = 5V, VOUT = 4.6V
1, 2
1, 2
1, 2
VDD = 5V, VOUT = 2.5V
1, 2
VDD = 10V, VOUT = 9.5V
7-1238
1, 2
+125oC
2.4
-
mA
-55oC
4.2
-
mA
+125oC
-
-0.36
mA
-55oC
-
-0.64
mA
+125oC
-
-1.15
mA
-55oC
-
-2.0
mA
+125oC
-
-0.9
mA
-55oC
-
-1.6
mA
Specifications CD4536BMS
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)
LIMITS
PARAMETER
Output Current (Source)
SYMBOL
IOH15
CONDITIONS
NOTES
VDD =15V, VOUT = 13.5V
TEMPERATURE
MIN
MAX
UNITS
-
-2.4
mA
-55 C
-
-4.2
mA
+25oC, +125oC, -55oC
-
3
V
+7
-
V
o
1, 2
+125 C
o
Input Voltage Low
Input Voltage High
Propagation Delay
Clock to Q1 8-Bypass High
Propagation Delay
Clock to Q1 8-Bypass Low
VIL
VIH
TPHL1
TPLH1
TPHL2
TPLH2
Propagation Delay
Clock to Q16
TPHL3
TPLH3
Propagation Delay
Qn to Qn+1
TPHL
TPLH
Propagation Delay
Set to Qn
Propagation Delay
Reset to Qn
Transition Time
TPLH
TPHL4
TTHL
TTLH
Maximum Clock Input
Frequency. Unlimited Input Rise or Fall Time
FCL
Minimum Clock Pulse
Width
TW
Minimum Set Pulse Width
Minimum Reset Pulse
Width
Minimum Set Recovery
Time
TW
TW
TREM
VDD = 10V, VOH > 9V, VOL < 1V
VDD = 10V, VOH > 9V, VOL < 1V
TREM
CIN
o
o
+25 C, +125 C, -55 C
o
VDD = 10V
1, 2, 3
+25 C
-
1000
ns
1, 2, 3
+25oC
-
700
ns
o
VDD = 10V
1, 2, 3
+25 C
-
1600
ns
VDD = 15V
1, 2, 3
+25oC
-
1200
ns
o
-
3000
ns
o
ns
VDD = 10V
1, 2, 3
+25 C
VDD = 15V
1, 2, 3
+25 C
-
2000
VDD = 5V
1, 2, 3
+25oC
-
300
VDD = 10V
1, 2, 3
+25oC
-
150
o
VDD = 15V
1, 2, 3
+25 C
-
100
VDD = 5V
1, 2, 3
+25oC
-
600
o
VDD = 10V
1, 2, 3
+25 C
-
250
VDD = 15V
1, 2, 3
+25oC
-
160
o
-
2000
ns
o
VDD = 10V
1, 2, 3
+25 C
VDD = 15V
1, 2, 3
+25 C
-
1500
ns
VDD = 10V
1, 2, 3
+25oC
-
100
ns
o
-
80
ns
o
VDD = 15V
1, 2, 3
+25 C
VDD = 10V
1, 2, 3
+25 C
1.5
-
MHz
VDD = 15V
1, 2, 3
+25oC
2.5
-
MHz
VDD = 5V
1, 2, 3
+25oC
-
400
ns
o
VDD = 10V
1, 2, 3
+25 C
-
150
ns
VDD = 15V
1, 2, 3
+25oC
-
100
ns
o
-
400
ns
o
VDD = 5V
1, 2, 3
+25 C
VDD = 10V
1, 2, 3
+25 C
-
200
ns
VDD = 15V
1, 2, 3
+25oC
-
120
ns
1, 2, 3
+25oC
-
6
µs
VDD = 10V
1, 2, 3
+25oC
-
2
µs
VDD = 15V
1, 2, 3
+25oC
-
1.5
µs
VDD = 5V
1, 2, 3
+25oC
-
5
µs
VDD = 10V
1, 2, 3
+25oC
-
2
µs
1, 2, 3
+25oC
-
1.6
µs
VDD = 5V
1, 2, 3
+25oC
-
7
µs
VDD = 10V
1, 2, 3
+25oC
-
3
µs
1, 2, 3
+25oC
-
2
µs
1, 2
+25oC
-
7.5
pF
VDD = 5V
VDD = 15V
Input Capacitance
1, 2
o
VDD = 15V
VDD = 15V
Minimum Reset Recovery Time
1, 2
Any Input
NOTES:
1. All voltages referenced to device GND.
2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized
on initial design release and upon design changes which would affect these characteristics.
3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
7-1239
Specifications CD4536BMS
TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS
LIMITS
PARAMETER
SYMBOL
CONDITIONS
NOTES
TEMPERATURE
MIN
MAX
UNITS
IDD
VDD = 20V, VIN = VDD or GND
1, 4
+25oC
-
25
µA
1, 4
+25oC
-2.8
-0.2
V
VDD = 10V, ISS = -10µA
1, 4
+25oC
-
±1
V
VSS = 0V, IDD = 10µA
1, 4
+25oC
0.2
2.8
V
1, 4
+25oC
-
±1
V
1
+25oC
VOH >
VDD/2
VOL <
VDD/2
V
1, 2, 3, 4
+25oC
-
1.35 x
+25oC
Limit
ns
Supply Current
N Threshold Voltage
VNTH
N Threshold Voltage
Delta
∆VTN
P Threshold Voltage
VTP
P Threshold Voltage
Delta
∆VTP
Functional
F
VDD = 10V, ISS = -10µA
VSS = 0V, IDD = 10µA
VDD = 18V, VIN = VDD or GND
VDD = 3V, VIN = VDD or GND
Propagation Delay Time
TPHL
TPLH
VDD = 5V
3. See Table 2 for +25oC limit.
NOTES: 1. All voltages referenced to device GND.
2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
4. Read and Record
TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25oC
PARAMETER
SYMBOL
DELTA LIMIT
Supply Current - MSI-2
IDD
± 1.0µA
Output Current (Sink)
IOL5
± 20% x Pre-Test Reading
IOH5A
± 20% x Pre-Test Reading
Output Current (Source)
TABLE 6. APPLICABLE SUBGROUPS
MIL-STD-883
METHOD
GROUP A SUBGROUPS
Initial Test (Pre Burn-In)
100% 5004
1, 7, 9
IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)
100% 5004
1, 7, 9
IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)
100% 5004
1, 7, 9
IDD, IOL5, IOH5A
100% 5004
1, 7, 9, Deltas
CONFORMANCE GROUP
PDA (Note 1)
Interim Test 3 (Post Burn-In)
100% 5004
1, 7, 9
100% 5004
1, 7, 9, Deltas
100% 5004
2, 3, 8A, 8B, 10, 11
Sample 5005
1, 2, 3, 7, 8A, 8B, 9, 10, 11
Subgroup B-5
Sample 5005
1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas
Subgroup B-6
Sample 5005
1, 7, 9
Sample 5005
1, 2, 3, 8A, 8B, 9
PDA (Note 1)
Final Test
Group A
Group B
Group D
READ AND RECORD
IDD, IOL5, IOH5A
Subgroups 1, 2, 3, 9, 10, 11
Subgroups 1, 2 3
NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.
TABLE 7. TOTAL DOSE IRRADIATION
CONFORMANCE GROUPS
Group E Subgroup 2
TEST
READ AND RECORD
MIL-STD-883
METHOD
PRE-IRRAD
POST-IRRAD
PRE-IRRAD
POST-IRRAD
5005
1, 7, 9
Table 4
1, 9
Table 4
7-1240
Specifications CD4536BMS
TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS
OSCILLATOR
FUNCTION
OPEN
GROUND
VDD
Static Burn-In 1
Note 1
4, 5, 13
1-3, 6-12, 14, 15
16
Static Burn-In 2
Note 1
4, 5, 13
8
1-3, 6, 7, 9-12,
14-16
Dynamic BurnIn Note 1
-
1, 2, 6-8, 14, 15
9-12, 16
4, 5, 13
8
1-3, 6, 7, 9-12,
14-16
Irradiation
Note 2
9V ± -0.5V
50kHz
4, 5, 13
3
25kHz
NOTE:
1. Each pin except VDD and GND will have a series resistor of 10K ± 5%, VDD = 18V ± 0.5V
2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V
Logic Diagram
6*
8-BYPASS
VDD
RESET
*
SET
*
2
VSS
1
*INPUTS PROTECTED BY CMOS
PROTECTION NETWORK
S
CLOCK *
INH 7
Q
CLDIS
CL
R
p
n
A
B
FF25
p
n
C
D
E
F
R
Q
CLEN
CL Q
R
Q
φ
CL Q
φ
FF1
FF2
D
R
Q
φ
Q
φ
FF3
R
Q
Q
FF8
CL
OSC *
INH 14
RS
RT
IN 1 *
3
CT
OUT 1 *
4
OUT 2 *
5
NOTE: f ≈
1
3RT CT
, RS ≈ (5 → 10) x RT
G
FIGURE 1.
7-1241
CD4536BMS
Logic Diagram
(Continued)
A
p
n
B
p
n
C
D
E
F
R
R
R
Q
CLDIS
CL Q
Q
φ
CL Q
φ
FF9
FF10
FF11
D
Q
φ
Q
φ
R
Q
φ
Q
φ
FF16
R
Q
φ
Q
φ
FF17
R
Q
φ
Q
φ
FF18
R
Q
Q
FF24
1 OF 16 DECODER (TRANSMISSION-GATE TREE LOGIC)
VSS
N
P
DECODE
13 OUT
9
A
*
10
B
*
11
C
*
12 D
*
15 *
MONO IN
G
DETAIL FOR
DETAIL FOR
FF3-8, 11-16, 17-24
FF1, FF2, FF10, FF9, FF25
CLEN (CLDIS FOR FF9 AND FF25)
φ
φ
VDD
Q
Q
Q
Q
R
φ
p
e
n
p
P
P
Q
φ
φ
f
n
c
n
φ
n
φ
p
P
φ
N
P
φ
φ
N
P
φ
N
p n
CL
R
CLEN
φ
Q
CL
R
N
p
d
n
Q
FF1
φ
R
R
Q
φ
a
φ
φ
φ
N
N
φ
e
R
c
d
n
Q
N
R
φ
b
p
n
S
p
b
a
f
P
R
p
D
N
φ
D
Q
R
CLDIS Q
CL
Q
CL
FF2, 10
Q
R
CLDIS Q
CL S
FF9
Q
FF25
FF1: AS SHOWN EXCEPT Q NOT BROUGHT OUT
FF9: SAME AS FF1 EXCEPT Q IS BROUGHT OUT AND Q, Q GO TO TGf AND TGe RESP.
VSS
FF2, FF10: DELETE TGe, TGf, AND INVf; FEED Q TO D; DELETE CLEN, CLDIS
FF25:
INVa AND INVd BECOME 2-INPUT NAND GATES, WITH ADDED INPUTS S; FEED Q
TO TGf VSS TO TGe PREVIOUS Q INPUT; DELETE Q OUTPUT
FIGURE 1. (Continued)
7-1242
CD4536BMS
TRUTH TABLE
IN
SET
RESET
CLOCK INH
OSC INH
0
0
0
0
No Change
0
0
0
0
Advance to Next State
X
1
0
0
0
0
1
1
X
0
1
0
0
0
1
0
X
0
0
1
0
0
0
0
0
X
1
0
0
0
0 = Low Level 1 = High Level
OUT1
OUT2
DECODE OUT
No Change
0
1
No Change
Advance to Next State
X = Don’t Care
AMBIENT TEMPERATURE (TA) = +25oC
GATE-TO-SOURCE VOLTAGE (VGS) = 15V
25
20
15
10V
10
5
5V
0
5
10
15
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)
GATE-TO-SOURCE VOLTAGE (VGS) = -5V
0
10V
7.5
5.0
2.5
5V
5
10
15
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)
-15
-10
-5
0
-5
-15
-20
-25
-15V
10.0
FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT
CHARACTERISTICS
-10
-10V
GATE-TO-SOURCE VOLTAGE (VGS) = 15V
12.5
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)
-30
FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT
CHARACTERISTICS
AMBIENT TEMPERATURE (TA) = +25oC
OUTPUT HIGH (SOURCE) CURRENT (IOH) (mA)
AMBIENT TEMPERATURE (TA) = +25oC
15.0
0
FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT
CHARACTERISTICS
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)
-15
-10
-5
AMBIENT TEMPERATURE (TA) = +25oC
0
0
GATE-TO-SOURCE VOLTAGE (VGS) = -5V
-5
-10V
-15V
-10
-15
OUTPUT HIGH (SOURCE) CURRENT (IOH) (mA)
30
OUTPUT LOW (SINK) CURRENT (IOL) (mA)
OUTPUT LOW (SINK) CURRENT (IOL) (mA)
Typical Performance Characteristics
FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT
CHARACTERISTICS
7-1243
CD4536BMS
(Continued)
2
AMBIENT TEMPERATURE (TA) = +25oC
1.5
SUPPLY VOLTAGE (VDD) = 5V
1
10V
0.5
15V
0
0
20
40
60
80
4
PROPAGATION DELAY TIME (tPHL, tPLH) (µs)
PROPAGATION DELAY TIME (tPHL, tPLH) (µs)
Typical Performance Characteristics
AMBIENT TEMPERATURE (TA) = +25oC
3
SUPPLY VOLTAGE (VDD) = 5V
2
10V
1
15V
0
100
0
20
2
AMBIENT TEMPERATURE (TA) = +25oC
1.5
SUPPLY VOLTAGE (VDD) = 5V
1
10V
15V
0
0
20
40
60
80
SUPPLY VOLTAGE (VDD) = 5V
150
100
10V
15V
50
0
0
20
FREQUENCY DEVIATION (∆f) (%)
OSCILLATOR FREQUENCY (F) (KHz)
103 8
AMBIENT TEMPERATURE (TA) =
EXTERNAL RESISTANCE (RE) = 56kΩ
EXTERNAL CAPACITANCE (CX) = 1000pF
RS = 0, f = 7900Hz
20
10
RS = 120kΩ, f = 5900Hz
0
102 8
6
4
2
9
11
13
8
10
12
SUPPLY VOLTAGE (VDD) (V)
100
f vs Rtc
CT = 1000pF
RS = 2Rtc
10 8
6
4
2
f vs CT
Rtc = 56kΩ
RS = 120kΩ
08
6
4
2
10-1 8
6
4
2
102
7
80
AMBIENT TEMPERATURE (TA) = +25oC
SUPPLY VOLTAGE (VDD) = 10V
1
f=
3Rtc CT
6
4
2
10-2
-10
6
60
FIGURE 9. TYPICAL PROPAGATION DELAY TIME AS A
FUNCTION OF LOAD CAPACITANCE
(QN TO QN + 1)
40
-20
5
40
LOAD CAPACITANCE (CL) (pF)
+25oC
30
100
AMBIENT TEMPERATURE (TA) = +25oC
100
FIGURE 8. TYPICAL PROPAGATION DELAY TIME AS A
FUNCTION OF LOAD CAPACITANCE
(CLOCK TO Q16, 8-BYPASS HIGH)
50
80
200
LOAD CAPACITANCE (CL) (pF)
60
60
FIGURE 7. TYPICAL PROPAGATION DELAY TIME AS A
FUNCTION OF LOAD CAPACITANCE
(CLOCK TO Q1, 8-BYPASS LOW)
PROPAGATION DELAY TIME (tPHL, tPLH) (µs)
PROPAGATION DELAY TIME (tPHL, tPLH) (µs)
FIGURE 6. TYPICAL PROPAGATION DELAY TIME AS A
FUNCTION OF LOAD CAPACITANCE
(CLOCK TO Q1, 8-BYPASS HIGH)
0.5
40
LOAD CAPACITANCE (CL) (pF)
LOAD CAPACITANCE (CL) (pF)
14
FIGURE 10. TYPICAL RC OSCILLATOR FREQUENCY
DEVIATION AS A FUNCTION OF SUPPLY
VOLTAGE
15
1
2
4 68
2
4 68
2
4 68
2
103
104
105
EXTERNAL CAPACITANCE (CT) (pF)
103
10
102
EXTERNAL RESISTANCE (Rtc) (kΩ)
4 68
106
104
FIGURE 11. TYPICAL RC OSCILLATOR FREQUENCY
DEVIATION AS A FUNCTION OF TIME CONSTANT
RESISTANCE AND CAPACITANCE
7-1244
CD4536BMS
Typical Performance Characteristics
(Continued)
10.0
Rtc = 56kΩ
RS = 0
CX = 1000pF
7.5
5.0
FREQUENCY DEVIATION (∆f) (%)
FREQUENCY DEVIATION (∆f) (%)
10.0
SUPPLY VOLTAGE (VDD) = 5V
2.5
10V
15V
15V
0
10V
5V
-2.5
-5.0
-7.5
-10.0
0
-50
50
100
Rtc = 56kΩ
RE = 120kΩ
CX = 1000pF
7.5
5.0
SUPPLY VOLTAGE (VDD) = 5V
2.5
10V
15V
0
-2.5
5V
-5.0
-7.5
-10.0
150
-50
0
o
FIGURE 12. TYPICAL RC OSCILLATOR FREQUENCY
DEVIATION AS A FUNCTION OF AMBIENT
TEMPERATURE (RS = 0)
2
2
102 8
6
4
RX = 1mΩ
10 8
6
4
2
18
100K
50K
2
10K
6
4
0.1
2
2
4 68
2
4 68
2
4 68
2
4 68
105
PULSE WIDTH (µs)
6
4
2
10 8 RX = 1mΩ
6
4
2
100kΩ
50kΩ
2
4 68
2
4 68
2
4 68
2
4 68
10
102
103
104
EXTERNAL CAPACITANCE (CX) (pF)
2
4 68
105
200
150
SUPPLY VOLTAGE (VDD) = 5V
100
10V
15V
50
10kΩ
2
1
10kΩ
2
AMBIENT TEMPERATURE (TA) = +25oC
2
0.1
100kΩ
50kΩ
FIGURE 15. TYPICAL PULSE WIDTH AS A FUNCTION OF
EXTERNAL CAPACITANCE (VDD = 10V)
102 8
6
4
2
1
AMBIENT TEMPERATURE (TA) = +25oC
SUPPLY VOLTAGE (VDD) = 15V
18
6
4
0.1
TRANSITION TIME (tTHL, tTLH) (ns)
6
4
10 8 RX = 1mΩ
2
FIGURE 14. TYPICAL PULSE WIDTH AS A FUNCTION OF
EXTERNAL CAPACITANCE (VDD = 5V)
103 8
2
6
4
10
102
103
104
EXTERNAL CAPACITANCE (CX) (pF)
1
6
4
18
4 68
150
AMBIENT TEMPERATURE (TA) = +25oC
SUPPLY VOLTAGE (VDD) = 10V
6
4
PULSE WIDTH (µs)
PULSE WIDTH (µs)
103 8
102 8
2
100
FIGURE 13. TYPICAL RC OSCILLATOR FREQUENCY
DEVIATION AS A FUNCTION OF AMBIENT
TEMPERATURE (RS = 120kΩ)
AMBIENT TEMPERATURE (TA) = +25oC
SUPPLY VOLTAGE (VDD) = 5V
6
4
50
AMBIENT TEMPERATURE (TA) oC
AMBIENT TEMPERATURE (TA) C
103 8
15V
10V
4 68
2
4 68
2
4 68
2
4 68
10
102
103
104
EXTERNAL CAPACITANCE (CX) (pF)
2
0
0
4 68
FIGURE 16. TYPICAL PULSE WIDTH AS A FUNCTION OF
EXTERNAL CAPACITANCE (VDD = 15V)
105
20
40
60
80
100
LOAD CAPACITANCE (CL) (pF)
FIGURE 17. TYPICAL TRANSITION TIME AS A FUNCTION OF
LOAD CAPACITANCE
7-1245
CD4536BMS
Typical Performance Characteristics
105 8
POWER DISSIPATION (PD) (µW)
6
4
(Continued)
AMBIENT TEMPERATURE (TA) = +25oC
2
104 8
SUPPLY VOLTAGE (VDD) = 15V
6
4
2
10V
103 8
5V
6
4
2
102
8
6
4
CL = 50pF
CL = 15pF
2
10
2
4 6 8
2
4 6 8
2
4 6 8
1
10
102
PULSE INPUT FREQUENCY (kHz)
0.1
2
4 6 8
103
FIGURE 18. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF INPUT PULSE FREQUENCY
Applications
11
12
1
2
6
15
>10K
14
A
B
CX
OUT 1
4
C
5
D
SET
3
RESET
OUT 2
12
8-BYPASS
11
C INH
13
MONO IN
OSC INH DECODE
OUT
IN 1
8
VSS
1
RX
2
+TR
-TR
R
+TR
-TR
R
15 14
16
R
Q1
CD4098BMS
10
VDD
VDD
16
9
CL
CODE OUT
(CL ÷ 8)
Q1 OUTPUT
CD4098BMS
8
FIGURE 19. APPLICATION SHOWING USE OF CD4098BMS AND CD4536BMS TO GET DECODE PULSE 8 CLOCK PULSES AFTER
RESET PULSE
VDD
VDD
A
A
B
B
OUT 1
C
D
D
SET
SET
RESET
RESET
OUT 2
8-BYPASS
CLOCK
OUT 2
8-BYPASS
R
C INH
≥10kΩ
OUT 1
C
MONO IN
C INH
t
MONO IN
OSC INH DECODE
OUT
IN 1
CL
t
CLOCK
VSS
OSC INH DECODE
OUT
IN 1
VSS
FIGURE 20. TIME INTERVAL CONFIGURATION USING EXTERNAL CLOCK; SET AND CLOCK INHIBIT FUNCTIONS
FIGURE 21. TIME INTERVAL CONFIGURATION USING EXTERNAL CLOCK; RESET AND OUTPUT MONOSTABLE
TO ACHIEVE A PULSE OUTPUT
7-1246
CD4536BMS
Applications
(Continued)
VDD
A
C
B
RS
3µs MIN
R
OUT 1
C
Rtc
D
CLOCK
SET
RESET
START
DCBA
0000 (÷2)
0001 (÷4)
OUT 2
8-BYPASS
0010 (÷8)
C INH
MONO IN
OSC INH DECODE
OUT
IN 1
1
Rtc C
f≅
2.3
RS ≥ 2Rtc
f IN Hz,
R IN Ω,
C IN F
t
VSS
NOTE:
SHADED PULSE REPRESENTS DECODE OUTPUT
IN MONOSTABLE MODE. IF AN OUTPUT PULSE
IS REQUIRED 1 FULL COUNTDOWN AFTER
REMOVAL OF RESET PULSE, SEE FIGURE 19
FOR USE OF CD4098BMS
FIGURE 22. TIME INTERVAL CONFIGURATION USING ONCHIP RC OSCILLATOR AND RESET INPUT
TO INITIATE TIME INTERVAL
FIGURE 23. TIMING DIAGRAM
DECODE OUT SELECTION TABLE
NUMBER OF STAGES IN DIVIDER CHAIN
D
C
B
A
8-BYPASS = 0
8-BYPASS = 1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
9
10
11
12
1
2
3
4
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
13
14
15
16
5
6
7
8
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
17
18
19
20
9
10
11
12
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
21
22
23
24
13
14
15
16
0 = Low Level
1 = High Level
Functional Block Diagram
SET
RESET
OUT 1
OUT 2
6
2
OSC 14
INHIBIT
IN
8-BYPASS
1
3
OSC INHIBIT
LOGIC
CLOCK INHIBIT
LOGIC
STAGES
1-8
STAGES 9-24
8-BYPASS
LOGIC
Q9 - - - Q24
4
5
A
BINARY
SELECT
CLOCK 7
INHIBIT
B
C
D
VSS = 8
VDD = 16
MONO IN
FIGURE 24.
7-1247
9
13 DECODE
OUT
10
11
12
15
DECODER
CD4536BMS
FUNCTIONAL TEST SEQUENCE
INPUTS
OUTPUTS
COMMENTS
IN 1
SET
RESET
8-BYPASS
DECODE OUT
Q1 THRU 24
1
0
1
1
0
ALL 24 STEPS ARE IN RESET MODE
1
1
1
1
0
Counter is in three 8-stage section in parallel
mode
0
1
1
1
0
First “1” to “0” transition of clock
1
0
-
255 “1” to “0” transitions are clocked in the
counter
1
1
1
0
1
1
1
1
The 255 “1” to “0” transition
0
0
0
0
1
Counter converted back to 24 stages in series
mode.
Set and Reset must be connected together
and simultaneously go from “1” to “0”
1
0
0
0
1
In1 Switches to a “1”
0
0
0
0
0
Counter Ripples from an all “1” state to an all
“0” state
Functional Test Sequence
Test Function has been included for the reduction of test
time required to exercise all 24 counter stages. This test
function divides the counter into three 8-stage sections and
255 counts are loaded in each of the 8-stage sections in par-
allel. All flip-flops are now at a “1”. The counter is now
returned to the normal 24 steps in series configuration. One
more pulse is entered into In1 which will cause the counter
to ripple from an all “1” state to an all “0” state.
Chip Dimensions and Pad Layout
Dimensions in parenthesis are in millimeters and are derived from
the basic inch dimensions as indicated. Grid graduations are in mils
(10-3 inch).
L
SI
R
TE
METALLIZATION:
IN
PASSIVATION:
BOND PADS:
Thickness: 11kÅ − 14kÅ,
AL.
10.4kÅ - 15.6kÅ, Silane
0.004 inches X 0.004 inches MIN
DIE THICKNESS: 0.0198 inches - 0.0218 inches
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
1248