AK1228

[AK1228]
AK1228
10~2000MHz Low Noise Mixer
1. General Description
AK1228 is a high linearity and low noise mixer. Signal input frequency range coverage is from 10 to
2000MHz and output coverage is from 10 to 1000MHz. AK1228 can be driven by a single ended signal input
and a low-power differential LO input that can be driven with a differential or single ended LO. The signal
output ports are differential open drain outputs. The analog circuit characteristics and power consumption
performances can be optimized by the resistance connected to the BIAS Pin.
2. Features








Input Frequency:
Output Frequency:
Operating Supply Current:
Analog Circuit Characteristics:
LO Input Level:
Operating Supply Voltage:
Package:
Operating Temperature:
10MHz to 2000MHz
10MHz to 1000MHz
4.5mA to 10.5mA
Current Consumption:10.5mA, IIP3:+12dBm, Gain:4dBm, NF:8.5dB
-10 to +5dBm
2.7 to 5.25V
16pin UQFN (0.5mm pitch, 3mm  3mm  0.60mm)
-40 to 85°C
3. Applications







Two-way Radios (PMR/LMR)
Radio Communications for disaster prevention
Marine Radios
Amateur Radios
Specified Low Power Radios
Telemeter, Telecontrol
Wireless Microphone
MS1535-E-02
2014/10
-1-
[AK1228]
4. Table of Contents
1. General Description ........................................................................................................................................................ 1
2. Features........................................................................................................................................................................... 1
3. Applications .................................................................................................................................................................... 1
4. Table of Contents............................................................................................................................................................ 2
5. Block Diagram and Pin Configurations .......................................................................................................................... 3
6. Pin Functions Description ............................................................................................................................................... 4
7.Absolute Maximum Ratings ............................................................................................................................................ 4
8.Reccomended Operating Conditions ............................................................................................................................... 4
9. Electrical Characteristics ................................................................................................................................................ 5
10. Typical Performance ..................................................................................................................................................... 6
11. Typical Evaluation Board Schematic .......................................................................................................................... 17
12. LSI Interface Schematic .............................................................................................................................................. 18
13. Application Information.............................................................................................................................................. 19
14. Outer Dimensions ....................................................................................................................................................... 28
15. Marking ...................................................................................................................................................................... 29
MS1535-E-02
2014/10
-2-
[AK1228]
5. Block Diagram and Pin Configurations
BIAS
SELECT
15
VSS
16
OUTN
VDD
VDD
9
TOP
VIEW
1
2
3
4
LOINN
14
10
VSS
POWER
DOWN
11
VSS
13
12
IN
VSS
OUTP
Figure 1. Block Diagram
8
VDD
7
BIAS2
6
BIAS1
5
LOINP
Figure 2. Package Pin Layout
MS1535-E-02
2014/10
-3-
[AK1228]
6. Pin Functions Description
Table 1. Pin Function
Pin Function
Remarks
IN
Signal input
Connecting a inductor between this pin and ground.
VSS
Ground pin
VSS
Ground pin
LOINN
LO Input Negative
LOINP
LO Input Positive
Resistance pin for current
6
BIAS1
AIO
Connecting a resistor between this pin and ground.
adjustment
Resistance pin for current
7
BIAS2
AIO
Connecting a resistor between this pin and ground.
adjustment
8
VDD
P
Power Supply
9
VDD
P
Power Supply
10
VDD
P
Power Supply
This pin is open drain output.
11
OUTN
AO Signal Output Negative
It needs power feeding via an inductor.
This pin is open drain output.
12
OUTP
AO Signal Output Positive
It needs power feeding via an inductor.
13
VSS
G
Ground pin
POWER
Power Down control pin
High : Power OFF
14
DI
DOWN
Low : Power ON
BIAS
Bias Resistance select pin High : BIAS2 pin is enabled
15
DI
SELECT
Low : BIAS1 pin is enabled
16
VSS
G
Ground pin
Note 1. The exposed pad at the center of the backside should be connected to ground.
Note 2. With the power supply voltage is not applied to VDD, do not apply a voltage to each input pin.
AI:Analog input pin
AO:Analog output pin
AIO:Analog I/O pin
P: Power supply pin
G: Ground pin
DI:Digital input pin
No.
1
2
3
4
5
Name
I/O
AI
G
G
AI
AI
7.Absolute Maximum Ratings
Table 2. Absolute Maximum Ratings
Parameter
Symbol
Min. Max.
Unit
Remarks
Supply Voltage
Vdd
-0.3
5.5
V
Signal Input Power
INPOW
12
dBm
LO Input Power
LOPOW
12
dBm
Storage Temperature
Tstg
-55
125
C
Exceeding these maximum ratings may result in damage to the AK1228. Normal operation is not guaranteed at these
extremes.
8.Reccomended Operating Conditions
Table 3. Recommended Operating Range
Parameter
Symbol Min.
Typ. Max.
Unit
Remarks
Operating Temperature
Ta
-40
85
C
Supply Voltage
Vdd
2.7
5
5.25
V
The specifications are applicable within the recommended operating range (supply voltage/operating temperature).
MS1535-E-02
2014/10
-4-
[AK1228]
9. Electrical Characteristics
1.Analog Circuit Characteristics
Unless otherwise noted Signal Output = 50MHz, Output Load Resistor (Rload) = 2.2k, Vdd = 2.7 to 5.25V,
Ta = -40 to 85°C, LO Input Level = -10dBm to +5dBm. Test circuit is shown in Figure 3.
Parameter
Signal Input Frequency
LO Input Frequency
Signal Output Frequency
LO Input Power
Current Adjustment Resistor (Rbias)
Table 4. Analog Circuit Characteristics
Min.
Typ.
Max.
Unit
10
2000
MHz
10
2000
MHz
10
1000
MHz
-10
0
+5
dBm
39
100
kΩ
IDD (Rbias = 39kΩ)
7.5
10.5
15
mA
IDD (Rbias = 100kΩ)
3
4.5
6.5
mA
1
10
uA
IDD (POWER DOWN = Vdd)
Remarks
The total current of VDD,
OUTP pin and OUTN pin.
IN = 600MHz, LOIN = 550MHz(0dBm), Rbias = 39k, Vdd = 3V
Conversion Gain
SSB Noise Figure (NF)
IP1dB
IIP3
1.5
4
6
dB
11
-5
8
8.5
-1
12
dB
dBm
dBm
Design guarantee value
Design guarantee value
2. Digital Circuit Characteristics
This table is for POWER DOWN pin and BIAS SELECT pin.
Parameter
High level input voltage
Low level input voltage
High level input current
Low level input current
Symbol
Vih
Vil
Iih
Iil
Table 5. Digital Circuit Characteristics
Conditions
Min.
Typ.
0.8Vdd
Vih = Vdd=5.25V
Vil = 0V, Vdd=5.25V
MS1535-E-02
-1
-1
Max.
0.2Vdd
1
1
Unit
V
V
A
A
Remarks
2014/10
-5-
[AK1228]
10. Typical Performance
Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta = 25C, LO Input Level = 0dBm, Current Adjustment
Resistor (Rbias) = 39k. Test circuit is shown in Figure 3.
Parameter
Conversion Gain
SSB Noise Figure
(NF)
IP1dB
IIP3
Table 6. Typical Performance
Frequency
IN = 160MHz, OUT = 70MHz , LOIN = 230MHz
IN = 400MHz, OUT = 70MHz , LOIN = 470MHz
IN = 800MHz, OUT = 11MHz , LOIN = 811MHz
IN = 1500MHz, OUT = 250MHz, LOIN = 1250MHz
IN = 50MHz, OUT = 450MHz, LOIN = 400MHz
IN = 160MHz, OUT = 70MHz, LOIN = 230MHz
IN = 400MHz, OUT = 70MHz, LOIN = 470MHz
IN = 800MHz, OUT = 11MHz, LOIN = 811MHz
IN = 1500MHz, OUT = 250MHz, LOIN = 1250MHz
IN = 50MHz, OUT = 450MHz, LOIN = 400MHz
IN = 160MHz, OUT = 70MHz, LOIN = 230MHz
IN = 400MHz, OUT = 70MHz, LOIN = 470MHz
IN = 800MHz, OUT = 11MHz, LOIN = 811MHz
IN = 1500MHz, OUT = 250MHz, LOIN = 1250MHz
IN = 50MHz, OUT = 450MHz, LOIN = 400MHz
IN = 160MHz, OUT = 70MHz, LOIN = 230MHz
IN = 400MHz, OUT = 70MHz, LOIN = 470MHz
IN = 800MHz, OUT = 11MHz, LOIN = 811MHz
IN = 1500MHz, OUT = 250MHz, LOIN = 1250MHz
IN = 50MHz, OUT = 450MHz, LOIN = 400MHz
MS1535-E-02
Min. Typ. Max.
3.7
3.7
3.3
2.8
2.7
8.5
8.5
9.6
10.3
9.9
2.0
3.1
1.6
1.5
1.5
14.0
13.7
12.0
10.1
13.4
Unit
dB
dB
dBm
dBm
2014/10
-6-
[AK1228]
1. Current Adjustment Resistor vs. IDD, IDD vs. Gain, NF, IIP3, IP1dB
The analog circuit characteristics and power consumption performances can be optimized by the resistance
connected to the BIAS Pin (Rbias). Signal Input = 600MHz, Signal Output = 50MHz, LO Input = 550MHz,
Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta = 25C, LO Input Level = 0dBm, Current Adjustment
Resistor (Rbias) = 39k.
MS1535-E-02
2014/10
-7-
[AK1228]
2. Temperature vs. Gain, NF, IIP3, IP1dB, IDD
Signal Input = 600MHz, Signal Output = 50MHz, LO Input = 550MHz,Output Load Resistor (Rload) = 2.2k,
Vdd = 3V, LO Input Level = 0dBm.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
-8-
[AK1228]
3. Supply voltage vs. Gain, NF, IIP3, IP1dB, IDD
Signal Input = 600MHz, Signal Output = 50MHz, LO Input = 550MHz, Output Load Resistor (Rload) =
2.2k, Ta = 25C, LO Input Level = 0dBm.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
-9-
[AK1228]
4. LO input power vs. Gain, NF, IIP3, IP1dB
Signal Input = 600MHz, Signal Output = 50MHz, LO Input = 550MHz, Output Load Resistor (Rload) =
2.2k, Vdd = 3V, Ta = 25C.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
- 10 -
[AK1228]
Signal Input = 2000MHz, Signal Output = 50MHz, LO Input = 1950MHz, Output Load Resistor (Rload) =
2.2k, Vdd = 3V, Ta = 25C.
For high signal input frequency usage, it is recommended to increase the current consumption and reduce the
LO input level.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
- 11 -
[AK1228]
5. Signal input frequency vs. Gain, NF, IIP3, IP1dB
Signal Input > 600MHz : LO Input frequency < Signal Input frequency (Lower LO)
Signal Input  600MHz : LO Input frequency > Signal Input frequency (Upper LO)
Signal Output = 50MHz, Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta = 25C, LO Input Level =
0dBm.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
- 12 -
[AK1228]
6. Signal output frequency vs. Gain, NF, IIP3, IP1dB
Signal Output  150MHz : LO Input frequency < Signal Input frequency (Lower LO)
Signal Output > 150MHz : LO Input frequency > Signal Input frequency (Upper LO)
Signal Input = 600MHz, Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta = 25C, LO Input Level =
0dBm.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
- 13 -
[AK1228]
Signal Input = 140MHz, LO Input frequency < Signal Output frequency (Lower LO), Output Load Resistor
(Rload) = 2.2k, Vdd = 3V, Ta = 25C, LO Input Level = 0dBm.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
- 14 -
[AK1228]
7. Output Load Resistor (Rload) vs. Gain, NF, IIP3, IP1dB
Signal output ports are differential open drain outputs. Gain can be optimized by the resistance connected to
the OUTP and OUTN Pins (Rload). Signal Input = 600MHz, Signal Output = 50MHz, LO Input = 550MHz,
Vdd = 3V, Ta = 25C, LO Input Level = 0dBm.
Resistance for current adjustment
39k (10.5mA)
56k (7.5mA)
100k (4.5mA)
MS1535-E-02
2014/10
- 15 -
[AK1228]
8. Half IF, 1/3 IF
IF Signal Output = 50MHz, LO Input = 550MHz, Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta =
25C, LO Input Level = 0dBm, Current Adjustment Resistor (Rbias) = 39k.
RF Signal Input Frequency
RF = 600MHz
LO + IF/2 = 575MHz
LO + IF/3 = 566.7MHz
IF Signal Output = 50MHz, LO Input = 1950MHz, Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta =
25C, LO Input Level = 0dBm, Current Adjustment Resistor (Rbias) = 39k.
RF Signal Input Frequency
RF = 2000MHz
LO + IF/2 = 1975MHz
LO + IF/3 = 1966.7MHz
9. Leakage
Signal Output = 50MHz, LO Input frequency < Signal Input frequency (Lower LO), Signal Input Level =
-20dBm, Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta = 25C, LO Input Level = 0dBm, Current
Adjustment Resistor (Rbias) = 39k.
Parameter
IN – LO Leakage
IN – OUT Leakage
LO – IN Leakage
LO – OUT Leakage
Table 7. Leakage
Signal Input Frequency
600MHz
2000MHz
600MHz
2000MHz
600MHz
2000MHz
600MHz
2000MHz
MS1535-E-02
Typ. [dBc]
-54
-54
-48
-48
-47
-40
-57
-71
2014/10
- 16 -
[AK1228]
11. Typical Evaluation Board Schematic
Figure 3. Typical Evaluation Board Schematic
Table 8. Typical Evaluation Board Component Values for Downconversion Applications
(Signal Input = 600MHz, Signal Output = 50MHz)
Ref.
T1
R1
Rload
Rbias
Rbias2
L1
L2
L3
L4
Value
4:1
51
2.2k
39k
100k
15nH
1000nH
1000nH
Size
1005
1005
1005
1005
1005
2012
2012
Part Number
Mini-Circuits ADT4-6T
KOA RK73K1ETP510
KOA RK73K1ETP222
KOA RK73K1ETP393
KOA RK73K1ETP104
Murata LQG15HS15NJ02
Not Mounted
Murata LQW21HN1R2J00
Murata LQW21HN1R2J00
Ref.
C1
C2
C3
C4
C5
C6
C7
C8
Value
8.2pF
10nF
10nF
3.3pF
10uF
10nF
100pF
Size
1005
1005
1005
1005
1608
1005
1005
Part Number
Murata GRM1552C1H8R2DZ01
Murata GRM155B31H103KA88
Murata GRM155B31H103KA88
Murata GRM1553C1H3R3CZ01
Not Mounted
Murata GRM188R60J106ME47
Murata GRM155B31H103KA88
Murata GRM1552C1H101JA01
Table 9. Typical Evaluation Board Component Values for Upconversion Applications
(Signal Input = 50MHz, Signal Output = 450MHz)
Ref.
T1
R1
Rload
Rbias
Rbias2
L1
L2
L3
L4
Value
4:1
51
2.2k
39k
100k
270nH
68nH
68nH
Size
1005
1005
1005
1005
1005
1608
1608
Part Number
Mini-Circuits JTX4-10T
KOA RK73K1ETP510
KOA RK73K1ETP222
KOA RK73K1ETP393
KOA RK73K1ETP104
Murata LQG15HSR27J02
Not Mounted
Murata LQW18AN68NG00
Murata LQW18AN68NG00
Ref.
C1
C2
C3
C4
C5
C6
C7
C8
MS1535-E-02
Value
120pF
10nF
10nF
2.7pF
10uF
10nF
100pF
Size
1005
1005
1005
1005
1608
1005
1005
Part Number
Murata GRM1552C1H121JA01
Murata GRM155B31H103KA88
Murata GRM155B31H103KA88
Not Mounted
Murata GRM1553C1H2R7CZ01
Murata GRM188R60J106ME47
Murata GRM155B31H103KA88
Murata GRM1552C1H101JA01
2014/10
- 17 -
[AK1228]
12. LSI Interface Schematic
No.
1
Name
IN
4
5
LOINN
LOINP
6
BIAS1
7
BIAS2
I/O
I Signal Input pin
I
Function
LO Input pins
I/O Analog I/O pins
300Ω
11
OUTN
12
OUTP
O
Signal Output pins
OUTP
OUTN
14
POWER DOWN
15
BIAS SELECT
I
Digital Input pins
300Ω
MS1535-E-02
2014/10
- 18 -
[AK1228]
13. Application Information
•Impedance matching network for Signal Input pin
Signal Input port with impedance matching network (highpass filter) is shown in Figure 4. Typical
evaluation board component values in 50 interface are shown in Table 10.
Figure 4. Signal Input port with impedance matching network
Table 10. Signal Input port with impedance matching network
Signal Input Frequency [MHz]
C1 [pF]
L1 [nH]
L2 [nH]
10
470
1500
160
27
82
300
15
47
400
10
22
600
8.2
15
800
5.6
9.1
1300
8.2
5.6
1500
5.6
3.3
2000
3.3
18
2.2
MS1535-E-02
2014/10
- 19 -
[AK1228]
•Impedance matching network for LO Input pin
LOIN port can be matched with resistive impedance matching network in 10MHz < LO Input < 2000MHz.
Typical evaluation board component values in 50 interface is shown in Figure 5.
Figure 5. LO input port with impedance matching network
•Impedance matching network for Signal Output pin
Signal output port with impedance matching network (lowpass filter and balun) is shown in Figure 6.
OUTP and OUTN pins need power feeding via center tap of balun.
Typical evaluation board component values in 50 interface are shown in Table 11.
Figure 6. Signal output port with impedance matching network
Table 11. Signal output port with impedance matching network
Signal Output Frequency [MHz]
C4 [pF]
Rload [k] L3/L4 [nH]
11
2.2
4700
18
20
2.2
2200
10
50
2.2
1000
3.3
70
2.2
680
2.2
100
2.2
470
1.2
150
2.2
330
0.4
250
2.2
180
800
2.2
22
-
MS1535-E-02
C5 [pF]
0.5
2.2
2014/10
- 20 -
[AK1228]
•Impedance matching network with LC
Figure 7. Impedance matching network with LC
Impedance matching network with LC is shown in Figure 7. AK1228 has open drain outputs, so RL1 + RL2
is output load resistance. C11and L11 compose lowpass filter. C12 and L12 are for highpass filter. C13 is
DC blocking capacitor and L13 is RF choke. OUTP and OUTN pins need power feeding via L11, L12 and
L13.
The differential voltage from OUTP/N can be converted to a single-ended by L11, L12, C11 and C12
properly.
The differential impedance (RL1 + RL2) is converted to single-ended output terminating impedance Ro.
L11, C11, L12 and C12 are calculated as below. fout is signal output frequency.
C11  C12 
L11  L12 
1
2π * f OUT * RL1  RL2 * RO
RL1  RL2 * RO
2π * f OUT
For example, in the case of Signal Output = 50MHz, Output Load Resistor (Rload) = 2.2k in 50
interface, L11, C11, L12 and C12 are calculated as below.
C11  C12 
1
 9.6pF
2π * 50 *10^6* 2.2 *10^3* 50
L11  L12 
2.2 *10^3* 50
 1056nH
2π * 50 *10^6
L13 and C13 should be large enough not to affect the impedance at signal output frequency. In some cases the
impedance matching can be optimized by L13 and C13.
MS1535-E-02
2014/10
- 21 -
[AK1228]
For example, in the case of Signal Output = 50MHz, Output Load Resistor (Rload) = 2.2k in 50
interface, it is recommended to choose 2200nH and 1000pF as L13 and C13. If any correction is needed, it
can be adjusted by reducing the value of L13 and C13.
These calculated values are approximation. In some cases, some correction is needed due to the effect of
parasitic capacitance of external parts or/and PCBs. The impedance matching network components should
be decided through enough evaluation on AK1228.
Typical Performance using impedance matching network with LC is below. Signal Input = 600MHz, Signal
Output = 50MHz, LO Input = 550MHz, Output Load Resistor (Rload) = 2.2k, Vdd = 3V, Ta = 25C, LO
Input Level = 0dBm,
Table 12. Typical Component Values using impedance matching with LC
Ref.
Value
Size
Part Number
RL1, RL2 1.1k
1005
KOA RK73K1ETP112
L11, L12
1000nH
2012
Murata LQW21HN1R0J00
C11, C12
10pF
1005
Murata GRM1552C1H100JA01
L13
2200nH
2012
Murata LQW21HN2R2J00
C13
150pF
1005
Murata GRM1552C1H151JA01
Table 13. Typical Performance using impedance matching with LC
Parameter
Rbias
Min. Typ. Max.
Rbias = 39k (10.5mA)
3.6
Conversion Gain
1.3
Rbias = 100k (4.5mA)
SSB Noise Figure
Rbias = 39k (10.5mA)
8.6
(NF)
8.5
Rbias = 100k (4.5mA)
Rbias = 39k (10.5mA)
2.1
IP1dB
3.6
Rbias = 100k (4.5mA)
Rbias = 39k (10.5mA)
15.5
IIP3
9.6
Rbias = 100k (4.5mA)
Unit
dB
dB
dBm
dBm
The phase and amplitude balance is achieved at IF Output frequency by using impedance matching network with
LC. The port-to-port leakage is improved with the phase and amplitude balance is achieved at RF, LO, and IF
frequency with wide band balun.
MS1535-E-02
2014/10
- 22 -
[AK1228]
•Output Load Resistor and Gain
Signal output ports are differential open drain outputs. Gain can be optimized by the resistance connected to
the OUTP and OUTN Pins (Rload). Signal Input = 60010MHz, Signal Output = 5010MHz, LO Input =
550MHz, Vdd = 3V, Ta = 25C, LO Input Level = 0dBm, Current Adjustment Resistor (Rbias) = 39k.
Test circuit is shown in Figure 3.
MS1535-E-02
2014/10
- 23 -
[AK1228]
•The Improvement of Analog circuit characteristics with a differential LO input
AK1228 is a high linearity and low noise mixer that can be driven by a single ended LO. However it is
possible to further improve the analog characteristics with a differential LO input. Gain, NF, HalfIF is
improved by reducing the second-order distortion in exchange for the chip components increases four
points. Test circuit is shown in Figure 8.
Figure 8. Example of Impedance matching network with a differential LO input
C21and L22 compose lowpass filter. C22 and L21 are for highpass filter. C2, C3 is DC blocking capacitor.
The impedance of LOINP/N is high impedance so R1 is differential input resistance.
The single-ended LO input voltage can be converted to differential voltage of LOINP/N by L21, C21, L22
and C22 properly. The output resistance Ro of the previous stage is converted to a differential input
resistance R1.
L21, C21, L22 and C22 are calculated as below. fLO is LO input frequency.
C21  C22 
1
2π * f LO * R1 * RIN
L21  L22 
R1 * RIN
2π * f LO
For example, in the case of LO signal input = 1250MHz, differential input resistance R1 = 51 in 50
interface, L21, C21, L22 and C22 are calculated as below.
C21  C22 
1
 2.5pF
2π * 1250 *10^6* 51* 50
L21  L22 
51* 50
 6.4nH
2π * 1250 *10^6
C2, C3 should be large enough not to affect the differential input impedance R1 at LO input frequency.
MS1535-E-02
2014/10
- 24 -
[AK1228]
These calculated values are approximation. In some cases, some correction is needed due to the effect of
parasitic capacitance of external parts or/and PCBs. The impedance matching network components should
be decided through enough evaluation on AK1228.
Typical Performance using impedance matching network with a differential LO input is below. Signal Input
= 1300MHz, Signal Output = 50MHz, LO Input = 1250MHz, Output Load Resistor (Rload) = 2.2kΩ, Vdd =
3V, Ta = 25C, LO Input Level = 0dBm.
Table 14. Typical Component Values using impedance matching with a differential LO input
Ref.
Value
Size
Part Number
R1
1005
KOA RK73K1ETP510
51
C2, C3
10nF
1005
Murata GRM155B31H103KA88
L21, L22
6.2nH
1005
Murata LQW15AN6N2C00
C21, C22
2.4pF
1005
Murata GJM1553C1H2R4CB01
Gain/NF performance
HalfIF performance (Signal input Frequency = LO + IF/2 = 1275MHz)
LO Input and Resistance for current adjustment
LO = Diff., Rbias = 39k (10.5mA)
LO = Single, Rbias = 39k (10.5mA)
LO = Diff., Rbias = 100k (4.5mA)
LO = Single, Rbias = 100k (4.5mA)
MS1535-E-02
2014/10
- 25 -
[AK1228]
•Evaluation Board
Figure 9. AK1224/AK1228 Evaluation Board (Balun)
Figure 10. AK1224/AK1228 Evaluation Board Schematic (Balun)
MS1535-E-02
2014/10
- 26 -
[AK1228]
Figure 11. AK1224/AK1228 Evaluation Board (matching network with LC)
Figure 12. AK1224/AK1228 Evaluation Board Schematic (matching network with LC)
MS1535-E-02
2014/10
- 27 -
[AK1228]
14. Outer Dimensions
1 pin marking
(Note 1)
1
4
16
5
13
8
12
9
Figure 13. Outer Dimensions
Note 1. 1 pin marking is only a reference for the 1 pin location on the top of package.
MS1535-E-02
2014/10
- 28 -
[AK1228]
15. Marking
(a) Style
(b) Number of Pins
(c) 1 pin marking
(d) Product number
(e) Date code
:
:
:
:
:
UQFN
16
○
1228
YWWL (4 digits)
Y:
Lower 1 digit of calendar year (Year 2013 → 3, 2014 → 4 …)
WW :
Week
L :
Lot identification, given to each product lot which is made in a week
 LOT ID is given in alphabetical order (A, B, C, …)
1228
YWWL
●
(d)
(e)
(c)
Figure 14. Marking
MS1535-E-02
2014/10
- 29 -
[AK1228]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information
contained in this document without notice. When you consider any use or application of AKM product
stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized
distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application
examples of AKM Products. AKM neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of AKM or any third party with respect to the information in
this document. You are fully responsible for use of such information contained in this document in your
product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY
YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR
PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily
high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human
life, bodily injury, serious property damage or serious public impact, including but not limited to,
equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment,
equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment,
equipment used to control combustions or explosions, safety devices, elevators and escalators, devices
related to electric power, and equipment used in finance-related fields. Do not use Product for the above
use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for
complying with safety standards and for providing adequate designs and safeguards for your hardware,
software and systems which minimize risk and avoid situations in which a malfunction or failure of the
Product could cause loss of human life, bodily injury or damage to property, including data loss or
corruption.
4. Do not use or otherwise make available the Product or related technology or any information contained in
this document for any military purposes, including without limitation, for the design, development, use,
stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products
(mass destruction weapons). When exporting the Products or related technology or any information
contained in this document, you should comply with the applicable export control laws and regulations and
follow the procedures required by such laws and regulations. The Products and related technology may not
be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with
applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth in this
document shall immediately void any warranty granted by AKM for the Product and shall not create or
extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
consent of AKM.
MS1535-E-02
2014/10
- 30 -
Related Parts
Part#
Discription
Mixer
AK1220
100MHz~900MHz High Linearity Down Conversion Mixer
AK1222
100MHz~900MHz Low Power Down Conversion Mixer
AK1224
100MHz~900MHz Low Noise, High Liniarity Down Conversion Mixer
AK1228
10MHz~2GHz Up/Down Conversion Mixer
AK1221
0.7GHz~3.5GHz High Linearity Down Conversion Mixer
AK1223
3GHz~8.5GHz High Linearity Down Conversion Mixer
PLL Synthesizer
AK1541
20MHz~600MHz Low Power Fractional-N Synthesizer
AK1542A 20MHz~600MHz Low Power Integer-N Synthesizer
AK1543
400MHz~1.3GHz Low Power Fractional-N Synthesizer
AK1544
400MHz~1.3GHz Low Power Integer-N Synthesizer
AK1590
60MHz~1GHz Fractional-N Synthesizer
AK1545
0.5GHz~3.5GHz Integer-N Synthesizer
AK1546
0.5GHz~3GHz Low Phase Noise Integer-N Synthesizer
AK1547
0.5GHz~4GHz Integer-N Synthesizer
AK1548
1GHz~8GHz Low Phase Noise Integer-N Synthesizer
IFVGA
AK1291
100~300MHz Analog Signal Control IF VGA w/ RSSI
integrated VCO
AK1572
690MHz~4GHz Down Conversion Mixer with Frac.-N PLL and VCO
AK1575
690MHz~4GHz Up Conversion Mixer with Frac.-N PLL and VCO
IF Reciever (2nd Mixer + IF BPF + FM Detector)
AK2364
Built-in programmable AGC+BPF, FM detector IC
AK2365A Built-in programmable AGC+BPF, IFIC
Analog BB for PMR/LMR
AK2345C CTCSS Filter, Encoder, Decoder
AK2360/
Inverted frequency(3.376kHz/3.020kHz) scrambler
AK2360A
AK2363
MSK Modem/DTMF Receiver
AK2346B 0.3-2.55/3.0kHz Analog audio filter,
AK2346A Emphasis, Compandor, scrambler, MSK Modem
AK2347B 0.3-2.55/3.0kHz Analog audio filter
AK2347A Emphasis, Compandor, scrambler, CTCSS filter
Function IC
AK2330
8-bit 8ch Electronic Volume
AK2331
8-bit 4ch Electronic Volume
Comments
IIP3:+22dBm
IDD:2.9mA
NF:8.5dB, IIP3:+18dBm
3V Supply, NF:8.5dB
IIP3:+25dBm
IIP3:+13dB, NF:15dB
IDD:4.6mA
IDD:2.2mA
IDD:5.1mA
IDD:2.8mA
IDD:2.5mA
16-TSSOP
Normalized C/N:-226dBc/Hz
5V Supply
Normalized C/N:-226dBc/Hz
Dynamic Range:30dB
IIP3:24dBm, [email protected]
IIP3:24dBm, [email protected]
IFBPF: :10kHz ~ 4.5kHz
IFBPF: :7.5kHz ~ 2kHz
24-VSOP
8-SON
24-QFN
24-VSOP
24-QFN
24-VSOP
24-QFN
VREF can be selected for each
channel
VREF can be selected for each
channel
Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without
notice. When you consider any use or application of AKM product stipulated in this document, please make inquiries the sales office of
AKM or authorized distributors as to current status of the Products.
2014/10
Similar pages