AK4637EN

[AK4637]
AK4637
24bit Mono CODEC with MIC/SPK-AMP
1. General Description
The AK4637 is a low power 24-bit Mono CODEC with a microphone and speaker amplifiers.
The AK4637 supports sampling frequency from 8kHz to 48kHz. It is suitable for a wide range of
application from speech signal processing for narrowband, wideband and super wideband to sound
signal processing for audio band.
The input circuits include a microphone amplifier and a high performance digital ALC (automatic level
control) circuit. In addition, the output circuits include a speaker amplifier with 1W output power. It is
suitable for various products as well as portable applications with recording/playback function.
The AK4637 are available in a small 20-pin QFN (3mm x 3mm, 0.4mm pitch: AK4637EN) package saving
mounting area on the board.
Application:
 IP Camera
 Digital Camera
 MFP(Multi Function Printer)
2. Features
1.
2.
3.
Recording Functions
 Analog Input
1 Monaural Single-ended input or Differential input
 Microphone Amplifier: +30dB ~ 0dB, 3dB Step
 Microphone Power Supply: 2.0V or 2.4V, Noise Level= 108dBV
 Digital ALC (Automatic Level Control)
- Setting Range: +36dB  52.5dB, 0.375dB Step & Mute
 ADC Performance: S/(N+D): 83dB, DR, S/N: 88dB (MIC-Amp=+18dB)
S/(N+D): 84dB, DR, S/N: 95dB (MIC-Amp=0dB)
 Wind Noise Reduction Filter
 5-Band Notch Filter: Include Dynamic Gain Control
 Digital Microphone Interface
Playback Functions
 Digital ALC (Automatic Level Control)
- Setting Range: +36dB ~ 52.5dB, 0.375dB Step & Mute
 Sidetone Mixer & Volume Control (0dB ~ 18dB, 6dB Step)
 Digital Volume Control
- +12dB ~ 89.5dB, 0.5dB Step & Mute
 Mono Speaker Amplifier (with Line Output Switch)
- Speaker Amplifier Porformance: S/(N+D): 75dB@250mW, S/N: 97 dB
- BTL Output
- Output Power: 400mW@8 (AVDD=3.3V), 1W@8 (AVDD=5V)
 Analog Mixing: BEEP Input
Power Management
015010680-E-00
2015/09
-1-
[AK4637]
4.
Master Clock:
(1) PLL Mode
Frequencies: 11.2896MHz, 12MHz, 12.288MHz, 13.5MHz, 24MHz, 27MHz
(MCKI pin), 16fs, 32fs, 64fs (BICK pin)
(2) External Clock Mode
Frequencies: 256fs, 384fs, 512fs or 1024fs (MCKI pin)
5. Sampling Frequencies
 PLL Master Mode:
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz
 PLL Slave Mode (BICK pin): 8kHz ~ 48kHz
 EXT Master/Slave Mode:
8kHz ~ 48kHz (256fs, 384fs, 512fs), 8kHz  24kHz (1024fs)
6. Master/Slave Mode
7. Audio Interface Format: MSB First, 2’s complement
 ADC: DSP Mode, 16/24bit MSB justified, 16/24bit I2S
 DAC: DSP Mode, 16/24bit MSB justified, 16bit LSB justified, 16/24bit I2S
8. P I/F: I2C Bus (Ver 1.0, 400kHz Fast-Mode)
9. Operating Temperature: Ta = 40  85C
10. Power Supply
 Analog Power Supply (AVDD): 2.8 ~ 5.5V
 Digital Power Supply (DVDD): 1.6 ~ 1.98V
 Digital I/O Power Supply (TVDD): 1.6 or (DVDD – 0.2) ~ 3.6V
11. Package:
 20-pin QFN (3 x 3 mm, 0.4mm pitch)
015010680-E-00
2015/09
-2-
[AK4637]
3. Table of Contents
1.
2.
3.
4.
5.
General Description ............................................................................................................................. 1
Features............................................................................................................................................... 1
Table of Contents ................................................................................................................................ 3
Block Diagram ..................................................................................................................................... 5
Pin Configurations and Functions ....................................................................................................... 6
■ Pin Layout .......................................................................................................................................... 6
■ Comparison Table of the AK4951EN................................................................................................. 7
■ PIN/FUNCTION.................................................................................................................................. 9
■ Handling of Unused Pin ..................................................................................................................... 9
6. Absolute Maximum Ratings............................................................................................................... 10
7. Recommended Operating Conditions ............................................................................................... 10
8. Electrical Characteristics ................................................................................................................... 11
■ Analog Characteristics ..................................................................................................................... 11
■ Power Consumption on Each Operation Mode ............................................................................... 13
■ Filter Characteristics ........................................................................................................................ 14
■ DC Characteristics ........................................................................................................................... 15
■ Switching Characteristics ................................................................................................................. 16
■ Timing Diagram ................................................................................................................................ 20
9. Functional Descriptions ..................................................................................................................... 27
■ System Clock ................................................................................................................................... 27
■ Master Mode/Slave Mode ................................................................................................................ 27
■ PLL Mode ......................................................................................................................................... 28
■ PLL Unlock State ............................................................................................................................. 28
■ PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”) .......................................................................... 29
■ PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”) ............................................................................ 31
■ EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) ........................................................................... 32
■ EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) ......................................................................... 33
■ System Reset ................................................................................................................................... 34
■ Audio Interface Format .................................................................................................................... 35
■ MIC/LINE Input Selector .................................................................................................................. 39
■ Microphone Gain Amplifier............................................................................................................... 39
■ Microphone Power ........................................................................................................................... 40
■ Digital Microphone ........................................................................................................................... 41
■ Digital Block ..................................................................................................................................... 43
■ Digital HPF1 ..................................................................................................................................... 45
■ Digital Programmable Filter Circuit .................................................................................................. 45
■ ALC Operation ................................................................................................................................. 50
■ Input Digital Volume (Manual Mode) ............................................................................................... 56
■ Sidetone Digital Volume ................................................................................................................... 57
■ DAC Input Selector .......................................................................................................................... 57
■ Output Digital Volume ...................................................................................................................... 57
■ Soft Mute .......................................................................................................................................... 58
■ BEEP Input ....................................................................................................................................... 59
■ Speaker Output (SPP/SPN pins, LOSEL bit = “0”) .......................................................................... 60
■ Thermal Shutdown Function ............................................................................................................ 61
■ Monaural Line Output (AOUT pin, LOSEL bit = “1”) ........................................................................ 62
■ Regulator Block ................................................................................................................................ 64
■ Serial Control Interface .................................................................................................................... 65
■ Register Map .................................................................................................................................... 68
■ Register Definitions .......................................................................................................................... 70
015010680-E-00
2015/09
-3-
[AK4637]
10. Recommended External Circuits....................................................................................................... 82
11. Control Sequence .............................................................................................................................. 84
■ Clock Set Up .................................................................................................................................... 84
■ Microphone Input Recording ............................................................................................................ 87
■ Digital Microphone Input .................................................................................................................. 88
■ Speaker Amplifier Output ................................................................................................................. 89
■ Beep Signal Output from Speaker Amplifier .................................................................................... 90
■ Lineout Output.................................................................................................................................. 91
■ Stop of Clock .................................................................................................................................... 92
■ Power Down ..................................................................................................................................... 93
12. Package ............................................................................................................................................. 94
■ Outline Dimensions .......................................................................................................................... 94
■ Material & Lead finish ...................................................................................................................... 94
■ Marking............................................................................................................................................. 94
13. Ordering Guide .................................................................................................................................. 95
14. Revision History................................................................................................................................. 95
IMPORTANT NOTICE.............................................................................................................................. 96
015010680-E-00
2015/09
-4-
[AK4637]
4. Block Diagram
VCOM
Analog Block
PMMP
MPWR
MIC Power
Supply
VSS1
AVDD
REGFIL
DVDD
LDO
2.3V
VSS2
PDN
Digital Core
MIC-Power
AVDD
TVDD
SPK-Amp
Control
Register
SDA
SCL
PMADC
Internal
MIC
ADC
AIN/IN+/DMDAT
HPF
PMPFIL
MIC-Amp
+30~0dB
HPF2
PMBP
BEEP/IN-/DMCLK
LPF
BICK
4-band EQ
BEEP
Audio
I/F
ALC
1 Band EQ
FCK
SDTO
PFVOL
PMSL
SDTI
PMDAC
SPP/AOUT
Mono
Speaker
SPN
DAC
DVOL
SMUTE
PMPLL
PLL
MCKI
Figure 1. Block Diagram
015010680-E-00
2015/09
-5-
[AK4637]
5. Pin Configurations and Functions
VSS1
16
VCOM
17
REGFIL
18
MPWR
BEEP/IN-/DMCLK
11 DVDD
12 VSS2
13 SPN/NC
14 SPP/AOUT
15 AVDD
■ Pin Layout
10
TVDD
9
MCKI
8
BICK
19
7
FCK
20
6
SDTO
AK4637
2
3
4
5
PDN
SCL
SDA
SDTI
AIN/IN+/DMDAT
1
Top View
Figure 2. Pin Layout
015010680-E-00
2015/09
-6-
[AK4637]
■ Comparison Table of the AK4951EN
1. Function
Function
Stereo/Mono
AVDD
SVDD
DVDD
TVDD
Differential Input
MIC Sensitivity
Correction
Automatic Wind Noise
Reduction
Stereo Separation
Emphasis Circuit
Headphone Amplifier
Audio I/F Format
Package
AK4951EN
Stereo
2.8V ~ 3.5V
1.8V  5.5V
1.6V ~ 1.98V
1.6V or (DVDD-0.2)V  3.5V
No
Yes
AK4637EN
Mono
2.8V ~ 5.5V
←
1.6V or (DVDD-0.2)V  3.6V
Yes
No
Yes
No
Yes
No
Yes
DSP Mode is Not Available
32-pin QFN
(4 x 4mm, 0.4mm pitch)
No
DSP Mode is Available
20-pin QFN
(3 x 3mm, 0.4mm pitch)
2. Register Map
Addr
Register Name
00H
01H
02H
03H
04H
05H
07H
08H
0EH
0FH
10H
Power Management 1
Power Management 2
Signal Select 1
Signal Select 2
Signal Select 3
Mode Control 1
Mode Control 3
Digital MIC
ALC Volume
BEEP Control
Digital Volume Control
EQ Common Gain
Select
EQ2 Gain Setting
EQ3 Gain Setting
EQ4 Gain Setting
EQ5 Gain Setting
Digital Filter Select 1
Digital Filter Select 2
Digital Filter Mode
HPF2 Co-efficient 0
HPF2 Co-efficient 1
HPF2 Co-efficient 2
HPF2 Co-efficient 3
LPF Co-efficient 0
LPF Co-efficient 1
LPF Co-efficient 2
LPF Co-efficient 3
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
D7
D6
D5
D4
D3
D2
D1
D0
PMPFIL
PMOSC
SLPSN
SPKG1
LVCM1
PLL3
TSDSEL
READ
VOL7
HPZ
DVOL7
PMVCM
0
MGAIN3
SPKG0
LVCM0
PLL2
THDET
0
VOL6
BPVCM
DVOL6
PMBP
PMHPR
DACS
0
DACL
PLL1
SMUTE
PMDMR
VOL5
BEEPS
DVOL5
0
PMHPL
MPSEL
MICL
0
PLL0
DVOLC
PMDM
VOL4
BEEPH
DVOL4
LOSEL
M/S
PMMP
INL1
PTS1
BCKO
MSBS
DCLKE
VOL3
BPLVL3
DVOL3
PMDAC
PMPLL
MGAIN2
INL0
PTS0
CKOFF
BCKP
0
VOL2
BPLVL2
DVOL2
PMADR
PMSL
MGAIN1
INR1
MONO1
BCKO1
DIF1
DCLKP
VOL1
BPLVL1
DVOL1
PMADC
LOSEL
MGAIN0
MDIF
MONO0
BCKO0
DIF0
DMIC
VOL0
BPLVL0
DVOL0
0
0
0
EQC5
EQC4
EQC3
EQC2
0
EQ2G5
EQ3G5
EQ4G5
EQ5G5
0
GN1
0
F1A7
0
F1B7
0
F2A7
0
F2B7
0
EQ2G4
EQ3G4
EQ4G4
EQ5G4
0
GN0
0
F1A6
0
F1B6
0
F2A6
0
F2B6
0
EQ2G3
EQ3G3
EQ4G3
EQ5G3
0
EQ0
PFVOL1
F1A5
F1A13
F1B5
F1B13
F2A5
F2A13
F2B5
F2B13
EQ2G2
EQ3G2
EQ4G2
EQ5G2
0
FIL3
PFVOL0
F1A4
F1A12
F1B4
F1B12
F2A4
F2A12
F2B4
F2B12
EQ2G1
EQ3G1
EQ4G1
EQ5G1
0
0
PFDAC1
F1A3
F1A11
F1B3
F1B11
F2A3
F2A11
F2B3
F2B11
EQ2G0
EQ3G0
EQ4G0
EQ5G0
HPFC1
0
PFDAC0
F1A2
F1A10
F1B2
F1B10
F2A2
F2A10
F2B2
F2B10
EQ2T1
EQ3T1
EQ4T1
EQ5T1
HPFC0
LPF
ADCPF
F1A1
F1A9
F1B1
F1B9
F2A1
F2A9
F2B1
F2B9
EQ2T0
EQ3T0
EQ4T0
EQ5T0
HPFAD
HPF
PFSDO
F1A0
F1A8
F1B0
F1B8
F2A0
F2A8
F2B0
F2B8
015010680-E-00
2015/09
-7-
[AK4637]
Addr
Register Name
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
Digital Filter Select 3
E1 Co-efficient 0
E1 Co-efficient 1
E1 Co-efficient 2
E1 Co-efficient 3
E1 Co-efficient 4
E1 Co-efficient 5
E2 Co-efficient 0
E2 Co-efficient 1
E2 Co-efficient 2
E2 Co-efficient 3
E2 Co-efficient 4
E2 Co-efficient 5
E3 Co-efficient 0
E3 Co-efficient 1
E3 Co-efficient 2
E3 Co-efficient 3
E3 Co-efficient 4
E3 Co-efficient 5
E4 Co-efficient 0
E4 Co-efficient 1
E4 Co-efficient 2
E4 Co-efficient 3
E4 Co-efficient 4
E4 Co-efficient 5
E5 Co-efficient 0
E5 Co-efficient 1
E5 Co-efficient 2
E5 Co-efficient 3
E5 Co-efficient 4
E5 Co-efficient 5
D7
D6
D5
D4
D3
D2
D1
D0
0
E1A7
E1A15
E1B7
E1B15
E1C7
E1C15
E2A7
E2A15
E2B7
E2B15
E2C7
E2C15
E3A7
E3A15
E3B7
E3B15
E3C7
E3C15
E4A7
E4A15
E4B7
E4B15
E4C7
E4C15
E5A7
E5A15
E5B7
E5B15
E5C7
E5C15
0
E1A6
E1A14
E1B6
E1B14
E1C6
E1C14
E2A6
E2A14
E2B6
E2B14
E2C6
E2C14
E3A6
E3A14
E3B6
E3B14
E3C6
E3C14
E4A6
E4A14
E4B6
E4B14
E4C6
E4C14
E5A6
E5A14
E5B6
E5B14
E5C6
E5C14
0
E1A5
E1A13
E1B5
E1B13
E1C5
E1C13
E2A5
E2A13
E2B5
E2B13
E2C5
E2C13
E3A5
E3A13
E3B5
E3B13
E3C5
E3C13
E4A5
E4A13
E4B5
E4B13
E4C5
E4C13
E5A5
E5A13
E5B5
E5B13
E5C5
E5C13
EQ5
E1A4
E1A12
E1B4
E1B12
E1C4
E1C12
E2A4
E2A12
E2B4
E2B12
E2C4
E2C12
E3A4
E3A12
E3B4
E3B12
E3C4
E3C12
E4A4
E4A12
E4B4
E4B12
E4C4
E4C12
E5A4
E5A12
E5B4
E5B12
E5C4
E5C12
EQ4
E1A3
E1A11
E1B3
E1B11
E1C3
E1C11
E2A3
E2A11
E2B3
E2B11
E2C3
E2C11
E3A3
E3A11
E3B3
E3B11
E3C3
E3C11
E4A3
E4A11
E4B3
E4B11
E4C3
E4C11
E5A3
E5A11
E5B3
E5B11
E5C3
E5C11
EQ3
E1A2
E1A10
E1B2
E1B10
E1C2
E1C10
E2A2
E2A10
E2B2
E2B10
E2C2
E2C10
E3A2
E3A10
E3B2
E3B10
E3C2
E3C10
E4A2
E4A10
E4B2
E4B10
E4C2
E4C10
E5A2
E5A10
E5B2
E5B10
E5C2
E5C10
EQ2
E1A1
E1A9
E1B1
E1B9
E1C1
E1C9
E2A1
E2A9
E2B1
E2B9
E2C1
E2C9
E3A1
E3A9
E3B1
E3B9
E3C1
E3C9
E4A1
E4A9
E4B1
E4B9
E4C1
E4C9
E5A1
E5A9
E5B1
E5B9
E5C1
E5C9
EQ1
E1A0
E1A8
E1B0
E1B8
E1C0
E1C8
E2A0
E2A8
E2B0
E2B8
E2C0
E2C8
E3A0
E3A8
E3B0
E3B8
E3C0
E3C8
E4A0
E4A8
E4B0
E4B8
E4C0
E4C8
E5A0
E5A8
E5B0
E5B8
E5C0
E5C8
These bits are added to the AK4637.
These bits are removed from the AK4637.
These bits are changed from the AK4637.
015010680-E-00
2015/09
-8-
[AK4637]
■ PIN/FUNCTION
No.
Pin Name I/O
AIN
I
Function
Analog Input Pin
(MDIF bit = “0”: Single-ended Input, DMIC bit = “0”: default)
Positive Analog Input Pin
IN+
I
(MDIF bit = “1”: Full-differential Input, DMIC bit = “0”)
DMDAT
I
Digital Microphone Data Input Pin (DMIC bit = “1”)
Reset & Power-down Pin
2
PDN
I
“L”: Reset & Power-down, “H”: Normal Operation
3
SCL
I
Control Data Clock Pin
4
SDA
I/O Control Data Input/Output Pin
5
SDTI
I
Audio Serial Data Input Pin
6
SDTO
O Audio Serial Data Output Pin
7
FCK
I/O Frame Clock Pin
8
BICK
I/O Audio Serial Data Clock Pin
9
MCKI
I
External Master Clock Input Pin
10 TVDD
Digital I/O Power Supply Pin, 1.6 or (DVDD-0.2) ~ 3.6V
11 DVDD
Digital Power Supply Pin, 1.6 ~ 1.98V
12 VSS2
Ground 2 Pin
SPN
O Speaker-Amp Negative Output Pin
(LOSEL bit = “0”: default)
13
No Connect Pin
(LOSEL bit = “1”)
NC
O
This pin should be open.
SPP
O Speaker-Amp Positive Output Pin
(LOSEL bit = “0”: default)
14
AOUT
O Line Output Pin
(LOSEL bit = “1”)
15 AVDD
Analog Power Supply Pin, 2.8 ~ 5.5V
16 VSS1
Ground 1 Pin
Common Voltage Output Pin
Bias voltage of ADC inputs and DAC outputs.
17 VCOM
O
This pin must be connected to VSS1 with 2.2μF±10% or 4.7μF±10%
capacitor in series.
LDO Voltage Output pin for Analog Block (typ 2.3V)
18 REGFIL
O
This pin must be connected to VSS1 with 2.2μF±10% capacitor in series.
19 MPWR
O MIC Power Supply Pin
Beep Signal Input Pin
BEEP
I
(MDIF bit=“0”: Single-ended Input, DMIC bit=“0”: default)
Negative Analog Input Pin
20
INI
(MDIF bit = “1”: Full-differential Input, DMIC bit=“0”)
DMCLK
O Digital Microphone Clock pin (DMIC bit = “1”)
Note 1. All input pins except analog input pins (AIN/IN+, IN-/BEEP) must not be allowed to float.
1
■ Handling of Unused Pin
Unused I/O pins must be processed appropriately as below.
Classification Pin Name
AIN/IN+/DMDAT, BEEP/IN-/DMCLK, MPWR,
Analog
SPN, SPP/AOUT
MCKI, SDTI
Digital
SDTO
015010680-E-00
Setting
Open
Connect to VSS2
Open
2015/09
-9-
[AK4637]
6. Absolute Maximum Ratings
(VSS1=VSS2=0V; Note 2)
Parameter
Power Supplies
Symbol
AVDD
DVDD
TVDD
SVDD
IIN
VINA
VIND
Ta
Tstg
Pd
Min.
0.3
0.3
0.3
0.3
0.3
0.3
40
65
-
Max.
6.0
2.5
6.0
6.0
10
AVDD+0.3
TVDD+0.3
85
150
800
Unit
V
V
V
V
mA
V
V
C
C
mW
Analog
Digital
Digital I/O
Speaker-Amp
Input Current, Any Pin Except Supplies
Analog Input Voltage (Note 3)
Digital Input Voltage (Note 4)
Operating Temperature (powered applied)
Storage Temperature
Maximum Power Dissipation (Note 5)
Note 2. All voltages are with respect to ground.
VSS1 and VSS2 must be connected to the same analog ground plane.
Note 3. AIN/IN+ and BEEP/IN- pins
Note 4. PDN, SCL, SDA, SDTI, FCK, BICK and MCKI pins
Pull-up resistors at the SDA and SCL pins must be connected to a voltage in the range from TVDD
or more to 6V or less.
Note 5. This power is the AK4637 internal dissipation that does not include power dissipation of externally
connected speakers. The maximum junction temperature is 125C and θja (Junction to Ambient) is
50C/W at JESD51-9 (2p2s) for the AK4637. When Pd = 800mW and the θja is 50C/W for the
AK4637, the junction temperature does not exceed 125C. In this case, the AK4637 will not be
damaged by its internal power dissipation. Therefore, the AK4637 should be used in the condition
of θja ≤ 50C/W.
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
7. Recommended Operating Conditions
(VSS1=VSS2=0V; Note 2)
Parameter
Power Supplies Analog
(Note 6) Digital
Digital I/O (Note 7)
Symbol
AVDD
DVDD
TVDD
Min.
2.8
1.6
1.6 or
(DVDD-0.2)
Typ.
3.3
1.8
Max.
3.5
1.98
Unit
V
V
1.8
3.5
V
Note 2. All voltages are with respect to ground.
Note 6. The power-up sequence between AVDD, DVDD, TVDD and SVDD is not critical. The PDN pin
must be “L” upon power up, and should be changed to “H” after all power supplies are supplied to
avoid an internal circuit error.
Note 7. The minimum value is higher voltage between DVDD-0.2 and 1.6V.
* When TVDD is powered ON and the PDN pin is “L”, AVDD and DVDD can be powered
ON/OFF. The PDN pin must be set to “H” after all power supplies are ON, when the
AK4637EN is powered-up from power-down state.
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.
015010680-E-00
2015/09
- 10 -
[AK4637]
8. Electrical Characteristics
■ Analog Characteristics
(Ta=25C; AVDD=3.3V, TVDD=DVDD=1.8V; VSS1=VSS2=0V; fs=48kHz, BICK=64fs; Signal Frequency
=1kHz; 24bit Data; Measurement Bandwidth=20Hz  20kHz; unless otherwise specified)
Parameter
Min.
Typ.
Max.
Unit
MIC Amplifier: AIN pin; MDIF bit = “0” (Single-ended input)
Input Resistance (Note 8)
20
30
40
k
Gain
Gain Setting
0
+30
dB
Step Width
3
dB
MIC Power Supply: MPWR pin
MICL bit = “0”
2.2
2.4
2.6
V
Output Voltage
MICL bit = “1”
1.8
2.0
2.2
Output Noise Level (A-weighted)
-108
dBV
Load Resistance
2.0
k
Load Capacitance
30
pF
PSRR (f = 1kHz) (Note 9)
100
dB
ADC Analog Input Characteristics: AIN pins → ADC (Programmable Filter = OFF) → SDTO
Resolution
24
Bits
(Note 11)
0.261
Vpp
Input Voltage (Note 10)
(Note 12)
1.86
2.07
2.28
Vpp
(Note 11)
73
83
dBFS
S/(N+D) (-1dBFS)
(Note 12)
84
dBFS
D-Range
(Note 11)
78
88
dB
(Note 12)
95
dB
(60dBFS, A-weighted)
(Note 11)
78
88
dB
S/N (A-weighted)
(Note 12)
95
dB
PSRR (f = 1kHz) (Note 9)
90
dB
Note 8. Full Differential Input: IN+=20kΩ(typ), IN-=57kΩ(typ)@MGAIN3-0 bits = “0000” (0dB),
IN+=16kΩ(typ), IN-=244kΩ(typ)@MGAIN3-0 bits = “0110” (+18dB)
Note 9. PSRR applied to AVDD with 500mVpp sine wave.
Note 10. Single-ended Input: Vin = 0.9 x 2.3Vpp (typ) @MGAIN3-0 bits = “0000” (0dB)
Full Differential Input: Vin = (IN+) – (IN–) = 0.9 x 2.3Vpp (typ)
IN+ = 0.45 x 2.3Vpp (typ), IN– = 0.45 x 2.3Vpp (typ)
Note 11. MGAIN3-0 bits = “0110” (+18dB)
Full Differential Input: S/(N+D) = 81dB、DR = S/N = 86dB
Note 12. MGAIN3-0 bits = “0000” (0dB)
Full Differential Input: S/(N+D) = 83dB、DR = S/N = 93dB
015010680-E-00
2015/09
- 11 -
[AK4637]
Parameter
Min.
Typ.
Max.
Unit
DAC Characteristics:
Resolution
24
Bit
Speaker-Amp Characteristics: DAC → SPP/SPN pins, ALC=OFF, IVOL=DVOL= 0dB, RL=8, BTL
Output Voltage
3.18
Vpp
SPKG1-0 bits = “00”, 0.5dBFS (Po=150mW)
3.20
4.00
4.80
Vpp
SPKG1-0 bits = “01”, 0.5dBFS (Po=250mW)
1.79
Vrms
SPKG1-0 bits = “10”, 0.5dBFS (Po=400mW)
SPKG1-0 bits = “11”, 0.5dBFS (Po=1000mW)
2.83
Vrms
(AVDD=5V)
S/(N+D)
80
dB
SPKG1-0 bits = “00”, 0.5dBFS (Po=150mW)
40
75
dB
SPKG1-0 bits = “01”, 0.5dBFS (Po=250mW)
20
dB
SPKG1-0 bits = “10”, 0.5dBFS (Po=400mW)
SPKG1-0 bits = “11”, 0.5dBFS (Po=1000mW)
20
dB
(AVDD=5V)
S/N (A-weighted)
SPKG1-0 bits = “01”
80
97
dB
Output Offset Voltage
SPKG1-0 bits = “01”
-30
0
+30
mV
Load Resistance
8

Load Capacitance
100
pF
PSRR (f = 1kHz) (Note 13)
60
dB
Line Output Characteristics: DAC → AOUT pin, ALC=OFF, IVOL=DVOL= 0dB, RL=10k,
LVCM1-0 bits = “01”
LVCM0 bit = “0”
2.26
Vpp
AVDD=2.8V
(0dBFS)
LVCM0 bit = “1”
1.0
Vrms
Output Voltage
LVCM0 bit = “0”
1.44
1.6
1.76
Vpp
(-3dBFS) AVDD=2.8V
LVCM0 bit = “1”
1.82
2.0
2.22
Vpp
LVCM0 bit = “0”
80
dB
AVDD=2.8V
(0dBFS)
S/(N+D)
LVCM0 bit = “1”
40
dB
(-3dBFS)
75
85
dB
S/N (A-weighted)
82
94
dB
Load Resistance
10
k
Load Capacitance
30
pF
Mono Input: BEEP pin (PMBP bit =“1”, BPVCM bit = “0”, BPLVL3-0 bits = “0000”)
Input Resistance
46
66
86
k
Maximum Input Voltage (Note 14)
1.54
Vpp
Gain
BEEP pin →
SPKG1-0 bits = “00”
+4.4
+6.4
+8.4
dB
SPP/SPN pins
SPKG1-0 bits = “01”
+8.4
dB
(Note 15)
SPKG1-0 bits = “10”
+11.1
dB
SPKG1-0 bits = “11”
+14.9
dB
BEEP pin → AOUT pin LVCM1-0 bits = “00”
-1
0
+1
dB
LVCM1-0 bits = “01”
+2
dB
LVCM1-0 bits = “10”
+2
dB
LVCM1-0 bits = “11”
+4
dB
Note 13. PSRR applied to AVDD with 500mVpp sine wave.
Note 14. The maximum value is the smaller one of AVDD Vpp or 3.3Vpp when BPVCM bit = “1”. However,
a click noise may occur when the amplitude after BEEP-Amp is 0.5Vpp or more. (Set by
BPLVL3-0 bits)
Note 15. This gain is an ideal gain when no load resistance.
015010680-E-00
2015/09
- 12 -
[AK4637]
Parameter
Min.
Typ.
Max.
Unit
Power Supplies:
Power Up (PDN pin = “H”, All Circuit Power Up)
AVDD+DVDD+TVDD (Note 16)
6.6
10.2
mA
AVDD+DVDD+TVDD (Note 17)
5.6
mA
Power Down (PDN pin = “L”)
AVDD+DVDD+TVDD (Note 18)
0
10
A
Note 16. When PLL Master Mode (MCKI=12MHz), PMADC=PMDAC=PMPFIL=PMSL=PMVCM=PMPLL
=PMBP=PMMP=M/S=SLPSN bits = “1” and LOSEL bit = “0”. In this case, the MPWR pin
outputs 0mA. AVDD= 4.9mA (typ), DVDD= 1.5mA (typ), TVDD= 0.2mA (typ).
Note 17. When EXT Slave Mode (PMPLL=M/S bits =“0”), PMADC =PMDAC=PMSL=PMVCM=PMBP
=PMMP=SLPSN bits = “1” and PMPFIL = LOSEL bits = “0”. In this case, the MPWR pin outputs
0mA. AVDD= 4.6mA (typ), DVDD= 1.0mA (typ), TVDD= 0.02mA (typ).
Note 18. All digital input pins are fixed to TVDD or VSS2.
■ Power Consumption on Each Operation Mode
PMPFIL
PMSL
LOSEL
PMDAC
PMADC
PMVCM
Conditions: Ta=25C; AVDD= 3.3V, TVDD=DVDD=1.8V; VSS1=VSS2=0V; fs=48kHz,
Programmable Filter=OFF, External Slave Mode, BICK=64fs; AIN input = No signal;
SDTI input = No data; Speaker output = No load.
Power Management Bit
Total
AVDD
DVDD
TVDD
Mode
Power
[mA]
[mA]
[mA]
[mW]
All Power-down
0 0 0 0 0 0
0
0
AIN → ADC
1 1 0 0 0 0
1.6
0.65
DAC → SPK
1 0 1 0 1 0
3.2
0.55
DAC → Line out
1 0 1 1 1 0
1.6
0.55
AIN → ADC & DAC → SPK
1 1 1 0 1 0
4.1
1.0
AIN → ADC & DAC → Line out
1 1 1 1 1 0
2.5
1.0
Table 1. Power Consumption on Each Operation Mode (typ)
015010680-E-00
0
0.02
0.02
0.02
0.02
0.02
0
6.5
11.6
6.3
15.4
10.1
2015/09
- 13 -
[AK4637]
■ Filter Characteristics
(Ta=25C; fs=48kHz; AVDD=2.85.5V, DVDD=1.6~1.98V, TVDD=1.6 or (DVDD-0.2)3.6V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
ADC Digital Filter (Decimation LPF):
Passband (Note 19)
PB
0
18.8
kHz
0.16dB
21.1
kHz
0.66dB
21.7
kHz
1.1dB
24.1
kHz
6.9dB
Stopband (Note 19)
SB
28.4
kHz
Passband Ripple
PR
dB
0.16
Stopband Attenuation
SA
73
dB
Group Delay (Note 20)
GD
17
1/fs
Group Delay Distortion
0
GD
s
ADC Digital Filter (HPF): HPFC1-0 bits = “00”
Frequency Response
FR
3.7
Hz
3.0dB
(Note 19)
10.9
Hz
0.5dB
23.9
Hz
0.1dB
DAC Digital Filter (LPF):
Passband
PB
0
21.9
kHz
0.006dB ~ +0.076dB
(Note 19)
24
kHz
6.0dB
Stopband (Note 19)
SB
26.2
kHz
Passband Ripple
PR
-0.006
+0.076
dB
Stopband Attenuation
SA
70
dB
Group Delay (Note 20)
GD
27
1/fs
DAC Digital Filter (LPF) + SCF:
FR
dB
Frequency Response: 0  20.0kHz
1.0
Note 19. The passband and stopband frequencies scale with fs (sampling frequency).
Note 20. A calculating delay time which is induced by digital filtering. This time is from the input of an
analog signal to the setting of 24-bit data of both channels to the ADC output register. For the
DAC, this time is from setting the 24-bit data of a channel from the input register to the output of
analog signal. For the signal through the programmable filters (1st order HPF + 1st order LPF +
4-band Equalizer + ALC + 1-band Equalizer), the group delay is increased by 4/fs from the value
above in both recording and playback modes if there is no phase change by the IIR filter.
015010680-E-00
2015/09
- 14 -
[AK4637]
■ DC Characteristics
(Ta=25C; fs=48kHz; AVDD=2.85.5V, DVDD=1.6~1.98V, TVDD=1.6 or (DVDD-0.2)3.6V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Audio Interface & Serial µP Interface (SDA, CSL, PDN, SDTI, BICK, FCK, MCKI pins Input)
High-Level Input Voltage
(TVDD ≥ 2.2V)
VIH
70%TVDD
V
(TVDD < 2.2V)
80%TVDD
V
Low-Level Input Voltage
(TVDD ≥ 2.2V)
VIL
30%TVDD
V
(TVDD < 2.2V)
20%TVDD
V
Input Leakage Current
Iin1
10
A
Audio Interface & Serial µP Interface (SDA, BICK, FCK, SDTO pins Output)
High-Level Output Voltage (Iout = 80A)
VOH
TVDD0.2
V
Low-Level Output Voltage
(Except SDA pin: Iout = 80A)
VOL1
0.2
V
(SDA pin, 2.0V  TVDD  3.6V: Iout = 3mA)
VOL2
0.4
V
(SDA pin, 1.6V  TVDD < 2.0V: Iout = 3mA)
VOL2
20%TVDD
V
Digital MIC Interface (DMDAT pin Input; DMIC bit = “1”, AVDD=2.8~3.6V)
High-Level Input Voltage
VIH2
65%AVDD
V
Low-Level Input Voltage
VIL2
35%AVDD
V
Input Leakage Current
Iin2
10
A
Digital MIC Interface (DMCLK pin Output; DMIC bit = “1” , AVDD=2.8~3.6V)
High-Level Output Voltage
(Iout=80A)
VOH3
AVDD-0.4
V
Low-Level Output Voltage
(Iout= 80A)
VOL3
0.4
V
015010680-E-00
2015/09
- 15 -
[AK4637]
■ Switching Characteristics
(Ta=25C; fs=48kHz; CL=20pF; AVDD=2.85.5V, DVDD=1.6~1.98V, TVDD=1.6 or (DVDD-0.2)3.6V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
PLL Master Mode (PLL Reference Clock = MCKI pin)
MCKI Input Timing
Frequency PLL3-0 bits = “0100”
fCLK
11.2896
MHz
PLL3-0 bits = “0101”
fCLK
12.288
MHz
PLL3-0 bits = “0110”
fCLK
12
MHz
PLL3-0 bits = “0111”
fCLK
24
MHz
PLL3-0 bits = “1100”
fCLK
13.5
MHz
PLL3-0 bits = “1101”
fCLK
27
MHz
Pulse Width Low
tCLKL
0.4/fCLK
s
Pulse Width High
tCLKH
0.4/fCLK
s
FCK Output Timing
Frequency
fs
Table 8
Hz
DSP Mode: Pulse Width High
tFCKH
1/fBCK
ns
Except DSP Mode: Duty Cycle
Duty
50
%
BICK Output Timing
Frequency BCKO1-0 bit = “00”
fBCK
16fs
Hz
BCKO1-0 bit = “01”
fBCK
32fs
Hz
BCKO1-0 bit = “10”
fBCK
64fs
Hz
Duty Cycle
dBCK
50
%
PLL Slave Mode (PLL Reference Clock = BICK pin)
FCK Input Timing
Frequency
PLL3-0 bits = “0001”
fs
fBCK/16
Hz
PLL3-0 bits = “0010”
fs
fBCK/32
Hz
PLL3-0 bits = “0011”
fs
fBCK/64
Hz
DSP Mode: Pulse Width High
tFCKH
ns
1/fBCK60
1/fs1/fBCK
Except DSP Mode: Duty Cycle
Duty
45
55
%
BICK Input Timing
Frequency
PLL3-0 bits = “0001”
fBCK
0.128
0.768
MHz
PLL3-0 bits = “0010”
fBCK
0.256
1.536
MHz
PLL3-0 bits = “0011”
fBCK
0.512
3.072
MHz
Pulse Width Low
tBCKL
0.4/fBCK
s
Pulse Width High
tBCKH
0.4/fBCK
s
015010680-E-00
2015/09
- 16 -
[AK4637]
Parameter
External Slave Mode
MCKI Input Timing
Frequency
CM1-0 bits = “00”
CM1-0 bits = “01”
CM1-0 bits = “10”
CM1-0 bits = “11”
Pulse Width Low
Pulse Width High
FCK Input Timing
Frequency
CM1-0 bits = “00”
CM1-0 bits = “01”
CM1-0 bits = “10”
CM1-0 bits = “11”
DSP Mode: Pulse Width High
Except DSP Mode: Duty Cycle
BICK Input Timing
Frequency
Pulse Width Low
Pulse Width High
External Master Mode
MCKI Input Timing
Frequency
256fs
384fs
512fs
1024fs
Pulse Width Low
Pulse Width High
FCK Output Timing
Frequency
CM1-0 bits = “00”
CM1-0 bits = “01”
CM1-0 bits = “10”
CM1-0 bits = “11”
DSP Mode: Pulse Width High
Except DSP Mode: Duty Cycle
BICK Output Timing
Frequency
BCKO1-0 bit = “00”
BCKO1-0 bit = “01”
BCKO1-0 bit = “10”
Duty Cycle
Symbol
Min.
Typ.
Max.
Unit
fCLK
fCLK
fCLK
fCLK
tCLKL
tCLKH
-
-
0.4/fCLK
0.4/fCLK
256fs
384fs
512fs
1024fs
-
-
Hz
Hz
Hz
Hz
s
s
fs
fs
fs
fs
tFCKH
Duty
8
8
8
8
1/fBCK60
45
-
48
48
48
24
1/fs1/fBCK
55
kHz
kHz
kHz
kHz
ns
%
fBCK
tBCKL
tBCKH
16fs
130
130
-
64fs
-
Hz
ns
ns
fCLK
fCLK
fCLK
fCLK
tCLKL
tCLKH
2.048
3.072
4.096
8.192
0.4/fCLK
0.4/fCLK
-
12.288
18.432
24.576
24.576
-
MHz
MHz
MHz
MHz
s
s
fs
fs
fs
fs
tFCKH
Duty
-
fCLK/256
fCLK/384
fCLK/512
fCLK/1024
1/fBCK
50
-
Hz
Hz
Hz
Hz
ns
%
fBCK
fBCK
fBCK
dBCK
-
16fs
32fs
64fs
50
-
Hz
Hz
Hz
%
015010680-E-00
2015/09
- 17 -
[AK4637]
Parameter
Symbol
Min.
Typ.
Max.
Unit
Audio Interface Timing (DSP Mode)
Master Mode
tDBF
FCK “” to BICK “” (Note 21)
0.5x1/fBCK40 0.5x1/fBCK 0.5x1/fBCK+40 ns
tDBF
FCK “” to BICK “” (Note 22)
0.5x1/fBCK40 0.5x1/fBCK 0.5x1/fBCK+40 ns
tBSD
70
ns
BICK “” to SDTO (BCKP bit =“0”)
70
tBSD
70
ns
BICK “” to SDTO (BCKP bit =“1”)
70
SDTI Hold Time
tSDH
50
ns
SDTI Setup Time
tSDS
50
ns
Slave Mode
tFCKB
0.4x1/fBCK
ns
FCK “” to BICK “” (Note 21)
tFCKB
0.4x1/fBCK
ns
FCK “” to BICK “” (Note 22)
tBFCK
0.4x1/fBCK
ns
BICK “” to FCK “” (Note 21)
tBFCK
0.4x1/fBCK
ns
BICK “” to FCK “” (Note 22)
tBSD
80
ns
BICK “” to SDTO (BCKP bit =“0”)
tBSD
80
ns
BICK “” to SDTO (BCKP bit =“1”)
SDTI Hold Time
tSDH
50
ns
SDTI Setup Time
tSDS
50
ns
Parameter
Symbol
Min.
Typ.
Max.
Unit
Audio Interface Timing (Right/Left justified &I2S)
Master Mode
tBFCK
40
ns
BICK “” to FCK Edge (Note 23)
40
FCK Edge to SDTO (MSB)
tFCKD
70
ns
70
(Except I2S mode)
tBSD
70
ns
BICK “” to SDTO
70
SDTI Hold Time
tSDH
50
ns
SDTI Setup Time
tSDS
50
ns
Slave Mode
tFCKB
50
ns
FCK Edge to BICK “” (Note 23)
tBFCK
50
ns
BICK “” to FCK Edge (Note 23)
FCK Edge to SDTO (MSB)
tFCKD
80
ns
(Except I2S mode)
tBSD
80
ns
BICK “” to SDTO
SDTI Hold Time
tSDH
50
ns
SDTI Setup Time
tSDS
50
ns
Digital Audio Interface Timing; CL=100pF
DMCLK Output Timing
Period
tSCK
1/(64fs)
s
Rising Time
tSRise
10
ns
Falling Time
tSFall
10
ns
Duty Cycle
dSCK
40
50
60
%
Audio Interface Timing
DMDAT Setup Time
tDSDS
50
ns
DMDAT Hold Time
tDSDH
0
ns
Note 21. MSBS, BCKP bits = “00” or “11”.
Note 22. MSBS, BCKP bits = “01” or “10”.
Note 23. BICK rising edge must not occur at the same time as FCK edge.
015010680-E-00
2015/09
- 18 -
[AK4637]
Parameter
Symbol
Min.
Typ.
Max. Unit
2
Control Interface Timing (I C Bus) (Note 24)
SCL Clock Frequency
fSCL
400
kHz
Bus Free Time Between Transmissions
tBUF
1.3
s
Start Condition Hold Time (prior to first clock pulse)
tHD:STA
0.6
s
Clock Low Time
tLOW
1.3
s
Clock High Time
tHIGH
0.6
s
Setup Time for Repeated Start Condition
tSU:STA
0.6
s
SDA Hold Time from SCL Falling
(Note 25)
tHD:DAT
0
s
SDA Setup Time from SCL Rising
tSU:DAT
0.1
s
Rise Time of Both SDA and SCL Lines
tR
0.3
s
Fall Time of Both SDA and SCL Lines
tF
0.3
s
Setup Time for Stop Condition
tSU:STO
0.6
s
Capacitive Load on Bus
Cb
400
pF
Pulse Width of Spike Noise Suppressed by Input Filter
tSP
0
50
ns
Power-down & Reset Timing
PDN Accept Pulse Width
(Note 26)
tAPD
200
ns
PDN Reject Pulse Width
(Note 26)
tRPD
50
ns
(Note 27)
PMADC “” to SDTO valid
ADRST1-0 bits =“00”
tPDV
1059
1/fs
ADRST1-0 bits =“01”
tPDV
267
1/fs
ADRST1-0 bits =“10”
tPDV
531
1/fs
ADRST1-0 bits =“11”
tPDV
135
1/fs
VCOM Voltage
Rising Time
(Note 28)
tRVCM
0.6
2.0
ms
Note 24. I2C Bus is a trademark of NXP B.V.
Note 25. Data must be held for sufficient time to bridge the 300ns transition time of SCL.
Note 26. The AK4637 can be reset by the PDN pin = “L”. The PDN pin must be held “L” for more than
200ns for a certain reset. The AK4637 is not reset by the “L” pulse less than 50ns.
Note 27. This is the count of FCK “↑” from the PMADC bit = “1”.
Note 28. All analog blocks including PLL block are powered up after the VCOM voltage (VCOM pin) rises
up. An external capacitor of the VCOM pin is 2.2μF (AVDD ≤ 3.6V) or 4.7μF (AVDD > 3.6V) and
the REGFIL pin is 2.2F. The capacitance variation should be ±10%.
015010680-E-00
2015/09
- 19 -
[AK4637]
■ Timing Diagram
1/fCLK
VIH
MCKI
VIL
tCLKH
tCLKL
1/fs
50%TVDD
FCK
tFCKH
tFCKL
1/fBCK
Duty = tFCKH x fs x 100
tFCKL x fs x 100
BICK
50%TVDD
tBCKH
tBCKL
Duty = tBCKH x fBCK x 100
tBCKL x fBCK x 100
Figure 3. Clock Timing (PLL/EXT Master mode)
tFCKH
FCK
50%TVDD
tDBF
BICK
(BCKP = "0")
50%TVDD
BICK
(BCKP = "1")
50%TVDD
tBSD
SDTO
MSB
tSDS
50%TVDD
tSDH
VIH
SDTI
VIL
Figure 4. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS bit= “0”)
015010680-E-00
2015/09
- 20 -
[AK4637]
tFCKH
FCK
50%TVDD
tDBF
BICK
(BCKP = "1")
50%TVDD
BICK
(BCKP = "0")
50%TVDD
tBSD
SDTO
50%TVDD
MSB
tSDS
tSDH
VIH
SDTI
VIL
Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS bit= “1”)
50%TVDD
FCK
tBFCK
tBCKL
BICK
50%TVDD
tFCKD
tBSD
SDTO
50%TVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 6. Audio Interface Timing (PLL/EXT Master mode; Except DSP mode)
015010680-E-00
2015/09
- 21 -
[AK4637]
1/fs
VIH
FCK
VIL
tFCKH
tBFCK
1/fBCK
VIH
BICK
(BCKP = "0")
VIL
tBCKH
tBCKL
VIH
BICK
(BCKP = "1")
VIL
Figure 7. Clock Timing (PLL/EXT Slave mode; DSP mode, MSBS bit= “0”)
1/fs
VIH
FCK
VIL
tFCKH
tBFCK
1/fBCK
VIH
BICK
(BCKP = "1")
VIL
tBCKH
tBCKL
VIH
BICK
(BCKP = "0")
VIL
Figure 8. Clock Timing (PLL/EXT Slave mode; DSP mode, MSBS bit= “1”)
VIL
MCKI
1/fs
VIH
FCK
VIL
tFCKH
tFCKL
Duty = tFCKH x fs x 100
tFCKL x fs x 100
1/fBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 9. Clock Timing (PLL Slave mode; Except DSP mode)
015010680-E-00
2015/09
- 22 -
[AK4637]
1/fCLK
VIH
MCKI
VIL
tCLKH
tCLKL
1/fs
VIH
FCK
VIL
tFCKH
tFCKL
Duty = tFCKH x fs x 100
tFCKL x fs x 100
1/fBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 10. Clock Timing (EXT Slave mode)
tFCKH
VIH
FCK
VIL
tFCKB
VIH
BICK
(BCKP = "0")
VIL
VIH
BICK
(BCKP = "1")
VIL
tBSD
SDTO
MSB
tSDS
50%TVDD
tSDH
VIH
SDTI
MSB
VIL
Figure 11. Audio Interface Timing (PLL/EXT Slave mode, DSP mode; MSBS bit= “0”)
015010680-E-00
2015/09
- 23 -
[AK4637]
tFCKH
VIH
FCK
VIL
tFCKB
VIH
BICK
(BCKP = "1")
VIL
VIH
BICK
(BCKP = "0")
VIL
tBSD
SDTO
50%TVDD
MSB
tSDS
tSDH
VIH
SDTI
MSB
VIL
Figure 12. Audio Interface Timing (PLL/EXT Slave mode, DSP mode, MSBS bit= “1”)
VIH
FCK
VIL
tBFCK
tFCKB
VIH
BICK
VIL
tFCKD
tBSD
SDTO
MSB
tSDS
50%TVDD
tSDH
VIH
SDTI
VIL
Figure 13. Audio Interface Timing (PLL/EXT Slave mode; Except DSP mode)
015010680-E-00
2015/09
- 24 -
[AK4637]
tSCK
65%AVDD
DMCLK
50%AVDD
35%AVDD
tSCKL
tSRise
tSFall
dSCK = 100 x tSCKL / tSCK
Figure 14. DMCLK Clock Timing
65%AVDD
DMCLK
35%AVDD
tDSDS
tDSDH
VIH2
DMDAT
VIL2
Figure 15. Audio Interface Timing (DCLKP bit = “1”)
65%AVDD
DMCLK
35%AVDD
tDSDS
tDSDH
VIH2
DMDAT
VIL2
Figure 16. Audio Interface Timing (DCLKP bit = “0”)
VIH
SDA
VIL
tBUF
tLOW
tHIGH
tR
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
tHD:DAT
tSU:DAT
Start
tSU:STA
Start
tSU:STO
Stop
2
Figure 17. I C Bus Mode Timing
015010680-E-00
2015/09
- 25 -
[AK4637]
tAPD
tRPD
PDN
VIL
Figure 18. Power Down & Reset Timing 1
PMAD bit
or
PMDM bit
tPDV
SDTO
50%TVDD
Figure 19. Power Down & Reset Timing 2
PMVCM bit
tRVCM
1.15V
VCOM pin
Figure 20. VCOM Rising Timing
015010680-E-00
2015/09
- 26 -
[AK4637]
9. Functional Descriptions
■ System Clock
There are the following four clock modes to interface with external devices (Table 2, Table 3).
Mode
PMPLL bit
M/S bit
PLL3-0 bits
PLL Master Mode
1
1
Table 5
PLL Slave Mode
1
0
Table 5
(PLL Reference Clock: BICK pin)
EXT Slave Mode
0
0
X
EXT Master Mode
0
1
X
Table 2. Clock Mode Setting (x: Don’t care)
Mode
Figure
Figure 21
Figure 22
Figure 23
Figure 24
MCKI pin
Input Frequency of Table 5
(Selected by PLL3-0 bits)
BICK pin
FCK pin
Output
Output
PLL Master Mode
(Selected by BCKO bit)
(1fs)
PLL Slave Mode
Input
Input
GND
(PLL Reference Clock: BICK pin)
(Selected by PLL3-0 bits)
(1fs)
Input
Input Frequency of Table 11
Input
EXT Slave Mode
(Selected by CM1-0 bits)
(1fs)
( 32fs)
Input Frequency of Table 14
Output
Output
EXT Master Mode
(Selected by CM1-0 bits)
(Selected by BCKO bit)
(1fs)
Table 3. Clock Pins States in Clock Mode
■ Master Mode/Slave Mode
The M/S bit selects either master or slave mode. M/S bit = “1” selects master mode and “0” selects slave
mode. When the AK4637 is in power-down mode (PDN pin = “L”) and when exits reset state, the AK4637
is in slave mode. After exiting reset state, the AK4637 goes to master mode by changing M/S bit to “1”.
When the AK4637 is in master mode, the FCK and BICK pins are a floating state until M/S bit becomes
“1”. The FCK and BICK pins of the AK4637 must be pulled-down or pulled-up by a resistor (about 100k)
externally to avoid the floating state.
M/S bit
Mode
0
Slave Mode
(default)
1
Master Mode
Table 4. Select Master/Slave Mode
015010680-E-00
2015/09
- 27 -
[AK4637]
■ PLL Mode
When PMPLL bit is “1”, a fully integrated analog phase locked loop (PLL) circuit generates a clock that is
selected by PLL3-0 and FS3-0 bits. The PLL lock times, when the AK4637 is supplied stable clocks after
PLL is powered-up (PMPLL bit = “0” → “1”) or the sampling frequency is changed, are shown in Table 5.
Mode
1
2
3
4
5
6
7
12
13
Others
PLL3
bit
0
0
0
0
0
0
0
1
1
PLL2 PLL1 PLL0 PLL Reference
Input
PLL Lock Time
bit
bit
bit
Clock Input Pin
Frequency
(max)
0
0
1
BICK pin
16fs
2ms
0
1
0
BICK pin
32fs
2ms
0
1
1
BICK pin
64fs
2ms
1
0
0
MCKI pin
11.2896MHz
5ms
1
0
1
MCKI pin
12.288MHz
5ms
1
1
0
MCKI pin
12MHz
5ms
1
1
1
MCKI pin
24MHz
5ms
1
0
0
MCKI pin
13.5MHz
5ms
1
0
1
MCKI pin
27MHz
5ms
Others
N/A
Table 5. PLL Mode Setting (*fs: Sampling Frequency, N/A: Not Available)
(default)
■ PLL Unlock State
In this mode, FCK and BICK pins go to “L” until the PLL goes to lock state after PMPLL bit = “0” → “1”
(Table 6).
After the PLL is locked, a first period of FCK and BICK may be invalid clock, but these clocks return to
normal state after a period of 1/fs.
The BICK and FCK pins do not output invalid clocks such as PLL unlock state by setting PMPLL bit to “0”.
During PMPLL bit = “0”, these pins output the same clock as EXT master mode.
PLL State
BICK pin
FCK pin
After PMPLL bit “0” → “1”
“L” Output
“L” Output
PLL Unlock (except the case above)
Invalid
Invalid
PLL Lock
Table 9
1fs Output
Table 6. Clock Operation at PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)
015010680-E-00
2015/09
- 28 -
[AK4637]
■ PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)
When an external clock (11.2896MHz, 12MHz, 12.288MHz, 13.5MHz, 24MHz or 27MHz) is input to the
MCKI pin, the internal PLL circuit generates BICK and FCK clocks. When the state of AK4637 is ADC
power-down or Loopback mode, the output of BICK, FCK and SDTO pins can be stopped by CKOFF bit.
When CKOFF bit = “1”, BICK, FCK and SDTO pins output “L”. The sampling frequency is selected by
FS3-0 bits as defined in Table 7. The BICK output frequency is selected between 16fs, 32fs or 64fs, by
BCKO bit (Table 9).
11.2896MHz, 12MHz, 12.288MHz,
13.5MHz, 24MHz, 27MHz
DSP or P
AK4637
MCKI
BICK
FCK
16fs, 32fs, 64fs
1fs
BCLK
FCK
SDTO
SDTI
SDTI
SDTO
Figure 21. PLL Master Mode
Mode
FS3 bit FS2 bit FS1 bit FS0 bit Sampling Frequency (Note 29)
1
0
0
0
1
8kHz mode
2
0
0
1
0
11.025kHz mode
3
0
0
1
1
12kHz mode
5
0
1
0
1
16kHz mode
6
0
1
1
0
22.05kHz mode
7
0
1
1
1
24kHz mode
9
1
0
0
1
32kHz mode
10
1
0
1
0
44.1kHz mode
11
1
0
1
1
48kHz mode
(default)
Others
Others
N/A
Table 7. Setting of Sampling Frequency (Reference Clock = MCKI pin) (N/A: Not Available)
Note 29. When the MCKI pin is the PLL reference clock input, the sampling frequency generated by PLL
differs from the sampling frequency of mode name in some combinations of MCKI
frequency(PLL3-0 bits) and sampling frequency (FS3-0 bits). Refer to Table 8 for the details of
sampling frequency. In master mode, FCK and BICK output frequency correspond to sampling
frequencies shown in Table 8.
015010680-E-00
2015/09
- 29 -
[AK4637]
Input Frequency
MCKI[MHz]
12
Sampling Frequency
Sampling Frequency
Mode
generated by PLL [kHz] (Note 30)
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.024877
22.05kHz mode
22.049753
44.1kHz mode
44.099507
24
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.024877
22.05kHz mode
22.049753
44.1kHz mode
44.099507
13.5
8kHz mode
8.000300
12kHz mode
12.000451
16kHz mode
16.000601
24kHz mode
24.000901
32kHz mode
32.001202
48kHz mode
48.001803
11.025kHz mode
11.025218
22.05kHz mode
22.050436
44.1kHz mode
44.100871
27
8kHz mode
8.000300
12kHz mode
12.000451
16kHz mode
16.000601
24kHz mode
24.000901
32kHz mode
32.001202
48kHz mode
48.001803
11.025kHz mode
11.025218
22.05kHz mode
22.050436
44.1kHz mode
44.100871
11.2896
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
Note 31
22.05kHz mode
Note 31
44.1kHz mode
Note 31
Sampling frequency that differs from sampling frequency of mode name
Note 30. These values are rounded off to six decimal places.
Note 31. The AK4637 must be in EXT master mode when selecting this mode.
Table 8. Sampling Frequency at PLL mode (Reference clock is MCKI) (1)
015010680-E-00
2015/09
- 30 -
[AK4637]
Input Frequency
MCKI[MHz]
12.288
Sampling Frequency
Sampling Frequency
Mode
generated by PLL [kHz] (Note 30)
8kHz mode
8.000000
12kHz mode
Note 31
16kHz mode
16.000000
24kHz mode
Note 31
32kHz mode
32.000000
48kHz mode
Note 31
11.025kHz mode
11.025000
22.05kHz mode
22.050000
44.1kHz mode
44.100000
Sampling frequency that differs from sampling frequency of mode name
Note 30. These values are rounded off to six decimal places.
Note 31. The AK4637 must be in EXT master mode when selecting this mode.
Table 8. Sampling Frequency at PLL mode (Reference clock is MCKI) (2)
Mode BCKO1 bit BCKO0 bit BICK Output Frequency
0
0
0
16fs
(default)
1
0
1
32fs
2
1
0
64fs
3
1
1
N/A
Table 9. BICK Output Frequency at Master Mode (N/A: Not available)
■ PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)
A reference clock of PLL is selected among the input clocks to the BICK pin. The required clock for the
AK4637 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 5).
The BICK and FCK inputs must be synchronized. The sampling frequency can be selected by FS3-2 bits
(Table 10).
DSP or P
AK4637
MCKI
BICK
FCK
16fs, 32fs, 64fs
1fs
BCLK
FCK
SDTO
SDTI
SDTI
SDTO
Figure 22. PLL Slave Mode (PLL Reference Clock: BICK pin)
Mode
0
1
2
Others
FS3 bit
0
0
1
FS2 bit FS1 bit FS0 bit
Sampling Frequency
0
x
x
8kHz ≤ fs ≤ 12kHz
1
x
x
12kHz < fs ≤ 24kHz
0
x
x
24kHz < fs ≤ 48kHz
(default)
Others
N/A
Table 10. Setting of Sampling Frequency (Reference Clock = BICK pin)
(x: Do not care, N/A: Not Available)
015010680-E-00
2015/09
- 31 -
[AK4637]
■ EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)
When PMPLL bit is “0”, the AK4637 becomes EXT mode. Master clock can be input to the internal ADC
and DAC directly from the MCKI pin without internal PLL circuit operation. This mode is compatible with
I/F of a normal audio CODEC. The external clocks required to operate this mode are MCKI (256fs, 384fs,
512fs or 1024fs), FCK (fs) and BICK (16fs). The master clock (MCKI) must be synchronized with FCK.
The phase between these clocks is not important. The input frequency of MCKI is selected by CM1-0 bits
(Table 11) and the sampling frequency is selected by FS3-2 bits (Table 12).
Mode
0
1
2
3
Mode
0
1
2
Others
MCKI Input
Sampling Frequency
Frequency
Range
0
0
256fs
8kHz ≤ fs ≤ 48kHz
(default)
0
1
384fs
8kHz ≤ fs ≤ 48kHz
1
0
512fs
8kHz ≤ fs ≤ 48kHz
1
1
1024fs
8kHz ≤ fs ≤ 24kHz
Table 11. MCKI Frequency at EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)
CM1 bit
CM0 bit
FS3 bit
0
0
1
FS2 bit
FS1 bit
FS0 bit
Sampling Frequency
0
x
x
8kHz ≤ fs ≤ 12kHz
12kHz < fs ≤ 24kHz
1
x
x
0
x
x
24kHz < fs ≤ 48kHz
Others
N/A
Table 12. Setting of Sampling Frequency (N/A: Not Available)
(default)
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to
out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock.
The S/N of the DAC output through SPP/SPN pins is shown in Table 13.
MCKI
S/N (fs=8kHz, 20kHzLPF + A-weighted)
256fs
80dB
384fs
80dB
512fs
93dB
1024fs
96dB
Table 13. Relationship between MCKI and S/N of SPP/SPN pins
DSP or P
AK4637
256fs, 384fs,
512fs or 1024fs
MCKI
 16fs
BICK
1fs
FCK
MCLK
BCLK
FCK
SDTO
SDTI
SDTI
SDTO
Figure 23. EXT Slave Mode
015010680-E-00
2015/09
- 32 -
[AK4637]
■ EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)
The AK4637 becomes EXT Master Mode by setting PMPLL bit = “0” and M/S bit = “1”. Master clock can
be input to the internal ADC and DAC directly from the MCKI pin without the internal PLL circuit operation.
The external clock required to operate the AK4637 is MCKI (256fs, 384fs, 512fs or 1024fs). The input
frequency of MCKI is selected by CM1-0 bits (Table 14) and the sampling frequency is selected by FS3-2
bits (Table 15). When the state of AK4637 is ADC power-down or Loopback mode, the output of BICK,
FCK and SDTO pins can be stopped by CKOFF bit. When CKOFF bit = “1”, BICK, FCK and SDTO pins
output “L”. The BICK output frequency is selected between 16fs, 32fs, 64fs, by BCKO bit (Table 17).
MCKI Input
Sampling Frequency
Frequency
Range
0
0
256fs
8kHz ≤ fs ≤ 48kHz
(default)
0
1
384fs
8kHz < fs ≤ 48kHz
1
0
512fs
8kHz < fs ≤ 48kHz
1
1
1024fs
8kHz ≤ fs ≤ 24kHz
Table 14. MCKI Frequency at EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)
Mode
0
1
2
3
Mode
0
1
2
Others
CM1 bit
CM0 bit
FS3 bit
0
0
1
FS2 bit
FS1 bit
FS0 bit
Sampling Frequency
0
x
x
8kHz ≤ fs ≤ 12kHz
1
x
x
12kHz < fs ≤ 24kHz
0
x
x
24kHz < fs ≤ 48kHz
(default)
Others
N/A
Table 15. Setting of Sampling Frequency (x: Do not care, N/A: Not Available)
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to
out-of-band noise. The out-of-band noise can be reduced by using higher frequency of the master clock.
The S/N of the DAC output through SPP/SPN pins is shown in Table 16.
MCKI
S/N (fs=8kHz, 20kHzLPF + A-weighted)
256fs
80dB
384fs
80dB
512fs
93dB
1024fs
96dB
Table 16. Relationship between MCKI and S/N of SPP/SPN pins
DSP or P
AK4637
MCKI
BICK
256fs, 384fs,
512fs or 1024fs
16fs, 32fs, 64fs
1fs
FCK
MCLK
BCLK
FCK
SDTO
SDTI
SDTI
SDTO
Figure 24. EXT Master Mode
Mode
0
1
2
3
BCKO1 bit BCKO0 bit BICK Output Frequency
0
0
16fs
0
1
32fs
1
0
64fs
1
1
N/A
Table 17. BICK Output Frequency at Master Mode
015010680-E-00
(default)
2015/09
- 33 -
[AK4637]
■ System Reset
Upon power-up, the AK4637 must be reset by bringing the PDN pin = “L”. This reset is released when a
dummy command is input after the PDN pin = “H”. This ensures that all internal registers reset to their
initial value. Dummy command is executed by writing all “0” to the register address 00H (Figure 25). It is
recommended to set the PDN pin to “L” before power up the AK4637.
In I2C Bus mode, the AK4637 does not return an ACK after receiving a slave address by a dummy
command as shown in Figure 25. In the actual case, initialization cycle starts by 8 SCL clocks during the
PDN pin = “H” regardless of the SDA line. Therefore, retry command is not required (Figure 26).
Executing a write or read command to the other device that is connected to the same I2C Bus also resets
the AK4637.
S
T
A
R
T
SDA
S
S
T
O
P
R/W="0"
Slave
Address
Sub
N
A Address(00H)
C
K
N
A
C
K
Data(00H)
N P
A
C
K
Figure 25. Dummy Command in I2C Bus Mode
S
T
A
R
T
SDA
R/W="0" S
T
O
P
Slave
S Address
N P
A
C
K
Figure 26. Reset Completion for example
The ADC starts an initialization cycle by setting PMADC bit to “1” from “0”. The initialization cycle is set by
ADRST1-0 bits (Table 18). During the initialization cycle, the ADC digital data outputs of both channels
are forced to “0” in 2's complement. The ADC output reflects the analog input signal after the initialization
cycle is finished. When using a digital microphone (PMDML/R bits =“0” → “1”), the initialization cycle is
the same as ADC’s.
Note 32. The initial data of ADC has offset data that depends on microphones and the cut-off frequency of
HPF. If this offset is not small, make initialization cycle longer by setting ADRST1-0 bits or do not
use the first data of ADC outputs.
ADRST1-0 bits
00
01
10
11
Cycle
1059/fs
267/fs
531/fs
135/fs
Initialize Cycle
fs = 8kHz
fs = 16kHz
132.4ms
66.2ms
33.4ms
16.7ms
66.4ms
33.2ms
16.9ms
8.4ms
Table 18. ADC Initialization Cycle
fs = 48kHz
22ms
5.6ms
11.1ms
2.8ms
(default)
The DAC is initialized by setting PMDAC bit “0” → “1”. The initialization cycle is 2/fs. Therefore, the DAC
outputs signals after group delay period and 2/fs when power up the device. Normally, this group delay
period or 2/fs initialization cycle mentioned above is absorbed by power-up time of amplifiers after the
DAC (Lineout-amp, SPK-amp).
015010680-E-00
2015/09
- 34 -
[AK4637]
■ Audio Interface Format
Four types of data formats are available and can be selected by setting the DIF1-0 bits (Table 19). In all
modes, the serial data is MSB first, 2’s complement format. Audio interface formats can be used in both
master and slave modes. FCK and BICK are output from the AK4637 in master mode, but must be input
to the AK4637 in slave mode.
0
DIF1
bit
0
DIF0
bit
0
1
0
1
2
1
0
3
1
1
Mode
SDTO (ADC)
SDTI (DAC)
BICK
16bit DSP Mode
16bit DSP Mode
 16fs
24/16bit
16bit LSB justified
 32fs
MSB justified
24bit MSB justified 24bit MSB justified
 48fs
=32fs or
24/16 bit
24/16 bit
I2S Compatible
I2S Compatible
 48fs
Table 19. Audio Interface Format
Figure
Table 20
Figure 31
Figure 32 (default)
Figure 33
If 24-bit(or 16-bit) data that ADC outputs is converted to 8-bit data by removing LSB 16-bit(8-bit), “-1” at
24bit(16bit) data is converted to “-1” at 8-bit data. And when the DAC playbacks this 8-bit data, “-1” at 8-bit
data will be converted to “-65536” at 24-bit (“-256” at 16-bit) data which is a large offset. This offset can be
removed by adding the offset of “32768” at 24-bit (“128” at 16bit) to 24-bit(16-bit) data before converting
to 8-bit data.
In Mode 1, 2 and 3, the SDTO is clocked out on the falling edge (“↓”) of BICK and the SDTI is latched on
the rising edge (“↑”).
In Mode 0 (16bit DSP mode), the audio I/F timing is changed by BCKP and MSBS bits (Table 20).
DIF1
bit
0
DIF0
bit
MSBS
bit
BCKP
bit
0
0
0
1
1
0
1
1
0
Audio Interface Format
MSB of SDTO is output by the rising edge (“”) of
the first BICK after the rising edge (“”) of FCK.
MSB of SDTI is latched by the falling edge (“”) of
the BICK just after the output timing of SDTO’s
MSB.
MSB of SDTO is output by the falling edge (“”) of
the first BICK after the rising edge (“”) of FCK.
MSB of SDTI is latched by the rising edge (“”) of
the BICK just after the output timing of SDTO’s
MSB.
MSB of SDTO is output by next rising edge (“”) of
the falling edge (“”) of the first BICK after the
rising edge (“”) of FCK.
MSB of SDTI is latched by the falling edge (“”) of
the BICK just after the output timing of SDTO’s
MSB.
MSB of SDTO is output by next falling edge (“”)
of the rising edge (“”) of the first BICK after the
rising edge (“”) of FCK.
MSB of SDTI is latched by the rising edge (“”) of
the BICK just after the output timing of SDTO’s
MSB.
Table 20. Audio Interface Format in Mode 0
015010680-E-00
Figure
Figure 27 (default)
Figure 28
Figure 29
Figure 30
2015/09
- 35 -
[AK4637]
FCK
(Master)
FCK
(Slave)
15
0
1
2
3
8
9
10
11
12
13
14
15
0
1
2
3
8
9
10
11
12
13
14
15
0
BICK(16fs)
SDTO(o)
0
15 14
8
7
6
5
4
3
2
1
0
15 14 13
7
6
5
4
3
2
1
0
SDTI(i)
0
15 14
8
7
6
5
4
3
2
1
0
15 14 13
7
6
5
4
3
2
1
0
31
0
1
2
13
14
15
16
17
18
29
30
31
0
1
2
13
14
15
16
17
18
29
30
31
0
15
0
BICK(32fs)
SDTO(o)
15 14
2
1
0
SDTI(i)
15 14
2
1
0
Don’t Care
15 14
2
1
0
15 14
2
1
0
1/fs
Don’t Care
1/fs
15: MSB, 0:LSB
Figure 27. Mode 0 Timing (BCKP bit = “0”, MSBS bit = “0”)
FCK
(Master)
FCK
(Slave)
15
0
1
2
3
8
9
10
11
12
13
14
15
0
1
2
3
8
9
10
11
12
13
14
BICK(16fs)
SDTO(o)
0
15 14
SDTI(i)
0
15 14
31
0
1
8
2
8
7
6
5
4
3
2
1
0
15 14
8
7
6
5
4
3
2
1
0
15 14
13
14
15
16
17
18
29
30
31
0
1
8
2
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
13
14
15
16
17
18
29
30
31
0
BICK(32fs)
SDTO(o)
15 14
2
1
0
SDTI(i)
15 14
2
1
0
Don’t Care
1/fs
15 14
8
2
1
0
15 14
8
2
1
0
Don’t Care
1/fs
15: MSB, 0:LSB
Figure 28. Mode 0 Timing (BCKP bit = “1”, MSBS bit = “0”)
015010680-E-00
2015/09
- 36 -
[AK4637]
FCK
(Master)
FCK
(Slave)
15
0
1
2
3
8
9
10
11
12
13
14
15
0
1
2
3
8
9
10
11
12
13
14
15
0
BICK(16fs)
SDTO(o)
0
15 14
8
7
6
5
4
3
2
1
0
15 14 13
7
6
5
4
3
2
1
0
SDTI(i)
0
15 14
8
7
6
5
4
3
2
1
0
15 14 13
7
6
5
4
3
2
1
0
31
0
1
2
13
14
15
16
17
18
29
30
31
0
1
2
13
14
15
16
17
18
29
30
31
0
15
0
BICK(32fs)
SDTO(o)
15 14
2
1
0
SDTI(i)
15 14
2
1
0
Don’t Care
15 14
2
1
0
15 14
2
1
0
1/fs
Don’t Care
1/fs
15: MSB, 0:LSB
Figure 29. Mode 0 Timing (BCKP bit = “0”, MSBS bit = “1”)
FCK
(Master)
FCK
(Slave)
15
0
1
2
7
8
9
10
11
12
13
14
15
0
1
2
3
8
9
10
11
12
13
14
BICK(16fs)
SDTO(o)
0
15 14
SDTI(i)
0
15 14
31
0
1
8
2
8
7
6
5
4
3
2
1
0
15 14
8
7
6
5
4
3
2
1
0
15 14
13
14
15
16
17
18
29
30
31
0
1
8
2
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
13
14
15
16
17
18
29
30
31
0
BICK(32fs)
SDTO(o)
15 14
2
1
0
SDTI(i)
15 14
2
1
0
Don’t Care
1/fs
15 14
8
2
1
0
15 14
8
2
1
0
Don’t Care
1/fs
15: MSB, 0:LSB
Figure 30. Mode 0 Timing (BCKP bit = “1”, MSBS bit = “1”)
015010680-E-00
2015/09
- 37 -
[AK4637]
FCK
0
1
2
3
8
9
10
11
12
13
14
15
0
1
2
3
8
9
10
11
12
13
14
15
0
1
BICK(32fs)
SDTO(o)
15 14 13
SDTI(i)
15 14 13
0
1
2
8
3
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
15
16
17
18
23
24
30
31
15
Don’t Care
0
1
2
3
15
16
17
18
15
23
24
30
31
0
1
BICK(64fs)
SDTO(o)
23 22 21
SDTI(i)
8
7
Don’t Care
6
0
15 14
8
23
1
Don’t Care
0
24bit: 23:MSB, 0:LSB
16bit: 15: MSB, 0:LSB
Data
1/fs
Figure 31. Mode 1 Timing
FCK
0
1
2
3
19
20
21
22
23
24
25
31
0
1
2
3
15
16
17
18
23
24
30
31
0
1
BICK(64fs)
SDTO(o)
23 22 21
4
3
2
1
0
SDTI(i)
23 22 21
4
3
2
1
0 Don’t Care
23
Don’t Care
24bit: 23:MSB, 0:LSB
Data
1/fs
Figure 32. Mode 2 Timing
FCK
0
1
2
3
4
9
10
11
12
13
14
15
0
1
2
3
8
9
10
11
12
13
14
15
0
1
23
24
30
31
0
1
BICK(32fs)
SDTO(o)
15 14 13
7
6
5
4
3
2
1
0
SDTI(i)
15 14 13
7
6
5
4
3
2
1
0
0
1
2
3
4
20
21
22
23
24
25
31
0
Don’t Care
1
2
3
15
16
17
18
BICK(64fs)
SDTO(o)
23 22 21
4
3
2
1
0
SDTI(i)
23 22 21
4
3
2
1
0
Don’t Care
Don’t Care
24bit: 23:MSB, 0:LSB
16bit: 15: MSB, 0:LSB
Data
1/fs
Figure 33. Mode 3 Timing
015010680-E-00
2015/09
- 38 -
[AK4637]
■ MIC/LINE Input Selector
The AK4637 has an input selector. MDIF bit select single-ended input and differential input. When MDIF
bit = “0”, the AIN pin is an input pin. Single-ended signal to the MIC-Amp can be input via the AIN pin.
When MDIF bit = “1”, the IN+ pin and the IN- pin are input pins. Differential signal can be input to these
pins. At this time, the IN- pin cannot be used as the BEEP pin. When DMIC bit = “1”, digital microphone
input is selected regardless of MDIF bit.
DMIC bit
MDIF bit
MIC Input
0
AIN pin
(default)
0
1
IN+/ pins
1
x
Digital MIC
Table 21. MIC/Line In Path Select (x: Do not care, N/A: Not available)
AK4637
MIC-Power
MPWR pin
1k
IN+ pin
A/D
IN- pin
1k
HPF
Audio
I/F
MIC-Amp
BICK pin
FCK pin
STDO pin
Figure 34. Differential Input Block Circuit (MDIF bit = “1”)
■ Microphone Gain Amplifier
The AK4637 has a gain amplifier for microphone input. It is powered-up by PMADC bit = “1”. The gain of
MIC-Amp is selected by the MGAIN3-0 bits. When single-ended input, the typical input impedance is
30k. When differential input, the typical input impedances are IN+=20kΩ and IN-=57kΩ@MGAIN3-0
bits = “0000” (0dB), IN+=16kΩ and IN-=244kΩ@MGAIN3-0 bits = “0110” (+18dB). A click noise may
occur if the MIC-Amp gain is changed when both MIC-Amp and ADC (PMADC bit = “1”) are powered up.
High frequency characteristics are attenuated when MIC-Amp = +30dB. The attenuation amount of when
MIC-Amp = +30dB is -0.5dB at 10kHz frequency and -1.5dB at 20kHz frequency comparing with when
MIC-Amp = +18dB.
MGAIN3 bit
0
0
0
0
0
0
0
0
1
1
1
MGAIN2 bit
MGAIN1 bit
MGAIN0 bit
Input Gain
0
0
0
0dB
0
0
1
+3dB
0
1
0
+6dB
0
1
1
+9dB
1
0
0
+12dB
1
0
1
+15dB
1
1
0
+18dB
1
1
1
+21dB
0
0
0
+24dB
0
0
1
+27dB
0
1
0
+30dB
Others
N/A
Table 22. Input Gain (N/A: Not available)
015010680-E-00
(default)
2015/09
- 39 -
[AK4637]
■ Microphone Power
When PMMP bit = “1”, the MPWR pin supplies the power for microphones. This output voltage is typically
2.4V @MICL bit =“0”, and typically 2.0V@MICL bit = “1”. The load resistance is minimum 2.0k. Any
capacitor must not be connected directly to the MPWR pin (Figure 35).
MICL bit Output Voltage (typ)
0
2.4V
(default)
1
2.0V
Table 23. Microphone Power
AK4637
MIC-Power
MPWR pin
 2k
Audio
AIN pin
A/D
HPF
I/F
BICK pin
FCK pin
STDO pin
MIC-Amp
Figure 35. MIC Block Circuit (MDIF bit = “0”)
015010680-E-00
2015/09
- 40 -
[AK4637]
■ Digital Microphone
1. Connection to Digital Microphones
When DMIC bit is set to “1”, the AIN/IN+ and BEEP/IN- pins become DMDAT (digital microphone data
input) and DMCLK (digital microphone clock supply) pins, respectively. The same voltage as AVDD must
be provided to the digital microphone. The Figure 36 shows mono connection examples. The DMCLK
clock is input to a digital microphone from the AK4637. The digital microphone outputs 1bit data, which is
generated by Modulator using DMCLK clock, to the DMDAT pin. PMDM bit control power up/down of
the digital block (Decimation Filter and Digital Filter). (PMADC bit settings do not affect the digital
microphone power management.) The DCLKE bit controls ON/OFF of the output clock from the DMCLK
pin. When the AK4637 is powered down (PDN pin= “L”), the DMCLK and DMDAT pins become floating
state. Pull-down resistors must be connected to DMCLK and DMDAT pins externally to avoid this floating
state. When the digital microphone is used, AVDD must be provided as 2.8~3.6V.
AVDD (2.8V~3.6V)
AK4637
VDD
AMP



DMCLK(64fs)
PLL
MCKI
100kΩ
Modulator
DMDAT
Decimation
Filter
HPF1
Programmable
Filter
ALC
SDTO
R
Figure 36. Connection Example of Monaural Digital Microphone
015010680-E-00
2015/09
- 41 -
[AK4637]
2. Interface
When DCLKP bit = “1”, data is input to the decimation filter while DMCLK = “H”. When DCLKP bit = “0”,
data is input to the decimation filter while DMCLK pin= “L”. The DMCLK pin only supports 64fs. When
DCLKE bit = “1”, DMCLK pin outputs 64fs. In this case, necessary clocks must be supplied to the AK4637
for ADC operation. When DCLKE bit = “0”, DMCLK pin outputs “L”. The Figure 37 and Figure 38 show the
input and output timing. When DCLKP bit = “1”, Digital MIC outputs the data by the rising edge (“”) of
DMCLK, and the AK4637 latches it by the falling edge (“”) of DMCLK. When DCLKP bit = “0”, Digital MIC
outputs the data by the rising edge (“”) of DMCLK, and the AK4637 latches it by the falling edge (“”) of
DMCLK. The output data through “the Decimation and Digital Filters” is 24bit full scale when the 1bit data
density is 0%~100%.
DMCLK(64fs)
DMDAT
DCLKP bit = “1”
Valid
Data
Valid
Data
Valid
Data
Valid
Data
Figure 37. Data In/Output Timing with Digital Microphone (DCLKP bit = “1”)
DMCLK(64fs)
DMDAT
DCLKP bit = “0”
Valid
Data
Valid
Data
Valid
Data
Valid
Data
Figure 38. Data In/Output Timing with Digital Microphone (DCLKP bit = “0”)
015010680-E-00
2015/09
- 42 -
[AK4637]
■ Digital Block
The digital block consists of the blocks shown in Figure 39. Recording path and playback path is selected
by setting ADCPF bit, PFDAC1-0 bits and PFSDO bit (Figure 40 ~ Figure 43, Table 24).
PMADC bit
ADC
SDTI
1st Order
HPFAD bit
HPF1
ADCPF bit
“1”
“0”
PMPFIL bit
HPF bit
LPF bit
EQ2-5 bits
ALC bit
1st Order
HPF2
1st Order
LPF
4-band
PFDAC1-0 bits
EQ
PMDAC bit
DVOL
ALC
(Volume)
EQ1 bit
“0”
SMUTE
1-band
EQ
DAC
“1”
PFVOL
PFSDO bit
SDTO
ADC: Includes the Digital Filter (LPF) for ADC as shown in “Filter Characteristics”.
HPF1: High Pass Filter (HPF) for ADC as shown in “Digital HPF1”.
HPF2: High Pass Filter. (See “Digital Programmable Filter Circuit”)
LPF: Low Pass Filter (See “Digital Programmable Filter Circuit”)
4 Band EQ: Applicable for use as Equalizer or Notch Filter.
(See “Digital Programmable Filter Circuit”)
(6) ALC (Volume): Digital Volume with ALC Function.
(See “Input Digital Volume (Manual Mode)” and “ALC Operation”)
(7) 1 Band EQ: Applicable for use as Notch Filter (See “Digital Programmable Filter Circuit”)
(8) PFVOL: Sidetone digital volume (See “Sidetone digital Volume”)
(9) DVOL: Digital volume for playback path (See “Output Digital Volume”)
(10) SMUTE: Soft mute function (See “Soft Mute”)
(1)
(2)
(3)
(4)
(5)
Figure 39. Digital Block Path Select
015010680-E-00
2015/09
- 43 -
[AK4637]
ADCPF
bit
1
0
Mode Example
PFDAC1-0
bits
00
01
PFSDO
bit
1
0
Figure
Recording Mode 1 & Playback Mode 2
Figure 40
Recording Mode 2 & Playback Mode 1
Figure 41
Recording Mode 2 & Playback Mode 2
(Programmable Filter Bypass Mode:
x
00
0
Figure 42
PMPFIL bit = “0”)
Loopback Mode
1
01
1
Figure 43
Table 24. Recording Playback Mode Example (x: Don’t care)
(default)
When changing those modes, PMPFIL bit must be “0”.
ADC
1st Order
1st Order
1st Order
4 Band
HPF1
HPF2
LPF
EQ
ALC
(Volume)
1 Band
EQ
DVOL/
SMUTE
DAC
Figure 40. The Path in Recording Mode 1 & Playback Mode 2 (default)
1st Order
ADC
HPF1
1 Band
DVOL/
SMUTE
DAC
EQ
ALC
4 Band
1st Order
1st Order
EQ
LPF
HPF2
(Volume)
Figure 41. The Path in Recording Mode 2 & Playback Mode 1
ADC
DAC
1st Order
HPF1
DVOL/
SMUTE
Figure 42. The Path in Recording Mode 2 & Playback Mode 2
ADC
DAC
1st Order
1st Order
1st Order
4 Band
HPF1
HPF2
LPF
EQ
ALC
(Volume)
1 Band
EQ
DVOL/
SMUTE
Figure 43. The Path in Loopback Mode
015010680-E-00
2015/09
- 44 -
[AK4637]
■ Digital HPF1
A digital High Pass Filter (HPF) is integrated for DC offset cancellation of the ADC input. The cut-off
frequencies (fc) of the HPF1 are set by HPFC1-0 bits. It is proportional to the sampling frequency (fs) and
the default value is 3.7Hz (@fs = 48kHz). HPFAD bit controls the ON/OFF of the HPF1 (HPF ON is
recommended).
HPFC1
bit
0
0
1
1
HPFC0
bit
0
1
0
1
fc
fs=8kHz
fs=16kHz
fs=48kHz
0.62Hz
1.2Hz
3.7Hz
2.47Hz
4.9Hz
14.8Hz
19.7Hz
39.5Hz
118.4Hz
39.5Hz
78.9Hz
236.8Hz
Table 25. HPF1 Cut-off Frequency
(default)
■ Digital Programmable Filter Circuit
(1) High Pass Filter (HPF2)
This is composed 1st order HPF. The coefficient of HPF is set by F1A13-0 bits and F1B13-0 bits. HPF bit
controls ON/OFF of the HPF2. When the HPF2 is OFF, the audio data passes this block by 0dB gain. The
coefficient must be set when PMPFIL bit = “0” or HPF bit = “0”. The HPF2 starts operation 4/fs (max) after
when HPF bit = PMPFIL bit = “1” is set.
fs: Sampling Frequency
fc: Cutoff Frequency
Register Setting (Note 33)
HPF: F1A[13:0] bits =A, F1B[13:0] bits =B
(MSB=F1A13, F1B13; LSB=F1A0, F1B0)
1  1 / tan (fc/fs)
1 / tan (fc/fs)
A=
,
1 + 1 / tan (fc/fs)
B=
1 + 1 / tan (fc/fs)
Transfer Function
1  z 1
H(z) = A
1 + Bz 1
The cut-off frequency must be set as below.
fc/fs  0.0001 (fc min = 4.8Hz at 48kHz)
(2) Low Pass Filter (LPF)
This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit
controls ON/OFF of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The
coefficient must be set when PMPFIL bit = “0” or LPF bit = “0”. The LPF starts operation 4/fs (max) after
when LPF bit =PMPFIL bit= “1” is set.
015010680-E-00
2015/09
- 45 -
[AK4637]
fs: Sampling Frequency
fc: Cutoff Frequency
Register Setting (Note 33)
LPF: F2A[13:0] bits =A, F2B[13:0] bits =B
(MSB=F2A13, F2B13; LSB=F2A0, F2B0)
1  1 / tan (fc/fs)
1
A=
,
1 + 1 / tan (fc/fs)
B=
1 + 1 / tan (fc/fs)
Transfer Function
1 + z 1
H(z) = A
1 + Bz 1
The cut-off frequency must be set as below.
fc/fs  0.05 (fc min = 2400Hz at 48kHz)
(3) 4-band Equalizer & 1-band Equalizer after ALC
This block can be used as equalizer or Notch Filter. 4-band equalizers (EQ2~EQ5) are switched ON/OFF
independently by EQ2, EQ3, EQ4 and EQ5 bits. EQ1 bit controls ON/OFF switching of the equalizer after
ALC (EQ1). When the equalizer is OFF, the audio data passes this block by 0dB gain. E1A15-0 bits,
E1B15-0 bits and E1C15-0 bits set the coefficient of EQ1. E2A15-0 bits, E2B15-0 bits and E2C15-0 bits
set the coefficient of EQ2. E3A15-0 bits, E3B15-0 bits and E3C15-0 bits set the coefficient of EQ3.
E4A15-0 bits, E4B15-0 bits and E4C15-0 bits set the coefficient of EQ4. E5A15-0 bits, E5B15-0 bits and
E5C15-0 bits set the coefficient of EQ5. The EQn (n=1, 2, 3, 4 or 5) coefficient must be set when EQn bit
= “0” or PMPFIL bit = “0”. EQn starts operation 4/fs(max) after when EQn = PMPFIL bit = “1” is set.
Each EQ2 ~ 5 blocks have a gain controller (EQ2G ~ EQ5G) independently after the equalizer. EQnG5-0
bits (n = 2~5) setting is reflected by writing “1” to EQCn bit (n = 2~5). EQnG5-0 bits and EQCn bit (n=2~5)
can be set during operation (EQn =PMPFIL bit= “1”).
fs: Sampling Frequency
fo1 ~ fo5: Center Frequency
fb1 ~ fb5: Band width where the gain is 3dB different from the center frequency
K1 ~ K5: Gain (1  Kn < 3)
Register Setting (Note 33)
EQ1: E1A[15:0] bits =A1, E1B[15:0] bits =B1, E1C[15:0] bits =C1
EQ2: E2A[15:0] bits =A2, E2B[15:0] bits =B2, E2C[15:0] bits =C2
EQ3: E3A[15:0] bits =A3, E3B[15:0] bits =B3, E3C[15:0] bits =C3
EQ4: E4A[15:0] bits =A4, E4B[15:0] bits =B4, E4C[15:0] bits =C4
EQ5: E5A[15:0] bits =A5, E5B[15:0] bits =B5, E5C[15:0] bits =C5
(MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15, E4A15, E4B15,
E4C15, E5A15, E5B15, E5C15 ; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0,
E3C0, E4A0, E4B0, E4C0, E5A0, E5B0, E5C0)
1  tan (fbn/fs)
2
tan (fbn/fs)
An = Kn x
, Bn = cos(2 fon/fs) x
1 + tan (fbn/fs)
,
1 + tan (fbn/fs)
Cn =
1 + tan (fbn/fs)
(n = 1, 2, 3, 4, 5)
015010680-E-00
2015/09
- 46 -
[AK4637]
Transfer Function
H(z) = {1 + G2 x h2(z) + G3 x h3(z) + G4 x h4(z) + G5 x h5(z)} x {1+ h1(z) }
(G2, 3, 4, 5 = 1 or G)
1  z 2
hn (z) = An
1 Bnz 1 Cnz 2
(n = 1, 2, 3, 4, 5)
The center frequency must be set as below.
0.003 < fon / fs < 0.497
When gain of K is set to “1”, this equalizer becomes a notch filter. When EQ2 EQ5 is used as a notch
filter, central frequency of a real notch filter deviates from the above-mentioned calculation, if its central
frequency of each band is near. The control soft that is attached to the evaluation board has functions that
revises a gap of frequency and calculates the coefficient. When its central frequency of each band is near,
the central frequency should be revised and confirm the frequency response.
Note 33. [Translation the filter coefficient calculated by the equations above from real number to binary
code (2’s complement)]
X = (Real number of filter coefficient calculated by the equations above) x 213
X should be rounded to integer, and then should be translated to binary code (2’s complement).
MSB of each filter coefficient setting register is sine bit.
OUT
IN
EQC2 bit = “0”
EQ2
EQC2 bit = “1”
EQ2 Gain (EQ2G5-0 bits)
EQC3 bit = “0”
EQ3
EQC3 bit = “1”
EQ3 Gain (EQ3G5-0 bits)
EQC4 bit = “0”
EQ4
EQC4 bit = “1”
EQ4 Gain (EQ4G5-0 bits)
EQC5 bit = “0”
EQ5
EQC5 bit = “1”
EQ5 Gain (EQ5G5-0 bits)
Figure 44. 4-Band EQ Structure
015010680-E-00
2015/09
- 47 -
[AK4637]
EQnG5-0 bits
3FH
3EH
3DH
:
02H
01H
00H
EQG_DATA
255
251
247
Gain [dB]
0
-0.17
-0.31
Formula
20 log10 (EQG_DATA/256)
11
-27.34
7
-31.26
0
MUTE
Table 26. EQn Gain Setting (n=2, 3, 4, 5)
(default)
Transition Time of EQnG5-0 bits = 3FH ~ 00H
EQnT1-0
bits
Setting Value
fs=8kHz
fs=48kHz
00
256/fs
32ms
5.3ms
(default)
01
2048/fs
256ms
42.7ms
10
8192/fs
1024ms
170.7ms
11
16384/fs
2048ms
341.3ms
Table 27. Transition Time of EQn Gain (n= 2, 3, 4, 5)
015010680-E-00
2015/09
- 48 -
[AK4637]
Common Gain Sequence Examples
<When noise is generated>
IN
OUT
EQCn bit = “0”
EQn
EQCn bit = “1”
EQn Gain (EQnG5-0 bits)
(assuming the noise continues)
(1) Set EQCn bit: “1” → “0” (Path Setting). The gain changes immediately by this setting.
(2) Set EQnT1-0 bits: “xx” → “00” (Transition Time)
(3) Set EQnG5-0 bits: “xxH” → “3FH” (Gain Setting; should be set to 0dB)
<When noise is stopped>
IN
OUT
EQCn bit = “0”
EQn
EQCn bit = “1”
EQn Gain (EQnG5-0 bits)
(4) Set EQCn bit: “0” → “1” (Path Setting), EQnT1-0 bits Setting
(Transition Time: It should be set longer when noise is stopped.) (Note 34)
(5) Set EQnG5-0 bits (Gain Setting)
The gain of EQn is changed after a transition time set by EQnT1-0 bits.
Note 34. When changing a path of EQC2-5 by setting EQC2-5 bits “0” → “1”, the gain should be
transitioned to 0dB before the settings. Otherwise, pop noise may occur on the path change.
015010680-E-00
2015/09
- 49 -
[AK4637]
■ ALC Operation
The ALC (Automatic Level Control) is operated by ALC block. When ADCPF bit is “1”, the ALC circuit
operates for recording path, and the ALC circuit operates for playback path when ADCPF bit is “0”. ALC
bit controls ON/OFF of ALC operation.
The ALC block consists of these blocks shown below. The ALC limiter detection level is monitored at the
level detection2 block after EQ block. The level detection1 block also monitors clipping detection level
(+0.53dBFS).
ALC
Control
Level
Detection2
EQ
Level
Detection1
Output
Input
Volume
Figure 45. ALC Block
The polar (fc1) and the zero point (fs2) frequencies of EQ block are set by EQFC1-0 bits. Set EQFC bits
according to the sampling frequency. When ALCEQ bit is OFF (ALCEQN bit = “1”), the level detection is
not executed on this block.
EQFC1-0
bits
00
01
10
11
Sampling Frequency
Range
8kHz ≤ fs ≤ 12kHz
12kHz < fs ≤ 24kHz
24kHz < fs ≤ 48kHz
Polar Frequency
Zero-point Frequency
(fc1)
(fc2)
150Hz @ fs=12kHz
100Hz @ fs=12kHz
150Hz @ fs=24kHz
100Hz @ fs=24kHz
150Hz @ fs=48kHz
100Hz @ fs=48kHz
N/A
Table 28. ALCEQ Frequency Setting (EQFC1-0 bits; N/A: Not available)
(default)
[ALCEQ: First order zero pole high pass filter]
Gain
[dB]
0dB
-3.5dB
100Hz
(fc2)
150Hz
(fc1)
Frequency
[Hz]
Note 35. Black: Diagrammatic Line, Red: Actual Curve
Figure 46. ALCEQ Frequency Response (fs = 48kHz)
015010680-E-00
2015/09
- 50 -
[AK4637]
1. ALC Limiter Operation
During ALC limiter operation, when output level exceeds the ALC limiter detection level (Table 29), the
VOL value is attenuated automatically by the amount defined by the ALC limiter ATT step (Table 30).
(Once this ALC limiter operation is started, attenuation will be repeated sixteen times.)
After completing the attenuate operation, unless ALC bit is changed to “0”, the operation repeats when
the input signal level exceeds ALC limiter detection level.
LMTH2 LMTH1 LMTH0 ALC Limiter Detection
ALC Recovery Counter Reset Level
bit
bit
bit
Level
0
0
0
ALC Output  2.5dBFS 2.5dBFS > ALC Output  4.1dBFS (default)
0
0
1
ALC Output  2.5dBFS 2.5dBFS > ALC Output  3.3dBFS
0
1
0
ALC Output  4.1dBFS 4.1dBFS > ALC Output  6.0dBFS
0
1
1
ALC Output  4.1dBFS 4.1dBFS > ALC Output  5.0dBFS
1
0
0
ALC Output  6.0dBFS 6.0dBFS > ALC Output  8.5dBFS
1
0
1
ALC Output  6.0dBFS 6.0dBFS > ALC Output  7.2dBFS
1
1
0
ALC Output  8.5dBFS 8.5dBFS > ALC Output  12.0dBFS
1
1
1
ALC Output  8.5dBFS 8.5dBFS > ALC Output  10.1dBFS
Table 29. ALC Limiter Detection Level/ Recovery Counter Reset Level
Output
ATT Amount [dB]
+0.53dBFS ≤ Output Level (*)
0.38148
–1.16dBFS ≤ Output Level < +0.53dBFS
0.06812
LM-LEVEL ≤ Output Level < –1.16dBFS
0.02548
(*) Comparison with the next output data.
Table 30. ALC Limiter ATT Step
015010680-E-00
2015/09
- 51 -
[AK4637]
2. ALC Recovery Operation
ALC recovery operation wait for the WTM1-0 bits (Table 31) to be set after completing ALC limiter
operation. If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 29) during
the wait time, ALC recovery operation is executed. The VOL value is automatically incremented by the
setting value of RGAIN2-0 bits (Table 32) up to the set reference level (Table 33) in every sampling.
When the VOL value exceeds the reference level (REF value), the VOL values are not increased. The
recovery speed gets slower when the VOL peak level exceeds -12dBFS to make the recovery speed for
low VOL level faster relatively.
When
“ALC recovery waiting counter reset level  Output Signal < ALC limiter detection level”
during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When
“ALC recovery waiting counter reset level > Output Signal”,
the waiting timer of ALC recovery operation starts.
ALC operations correspond to the impulse noise. When FRN bit = “0”, the impulse noise is input, the ALC
recovery operation becomes faster than a normal recovery operation. When large noise is input to a
microphone instantaneously, the quality of small level in the large noise can be improved by this fast
recovery operation. The speed of fast recovery operation is set by RFST1-0 bits (Table 34). When FRN
bit = “1”, the fast recovery does not operate though the impulse noise is input. Limiter amount of Fast
recovery is set by FRATT bit (Table 35).
WTM1
bit
0
0
1
1
ALC Recovery Cycle
WTM0
bit
8kHz
16kHz
48kHz
0
128/fs
16ms
8ms
2.7ms
1
256/fs
32ms
16ms
5.3ms
0
512/fs
64ms
32ms
10.7ms
1
1024/fs
128ms
64ms
21.3ms
Table 31. ALC Recovery Operation Waiting Period
RGAIN2 bit
RGAIN1 bit
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
RGAIN0 bit
GAIN Step [dB]
0
0.00424
1
0.00212
0
0.00106
1
0.00106
0
0.00106
1
0.00106
0
0.00106
1
0.00106
Table 32. ALC Recovery Gain Step
015010680-E-00
(default)
GAIN Change
Timing
1/fs
(default)
1/fs
1/fs
2/fs
4/fs
8/fs
16/fs
32/fs
2015/09
- 52 -
[AK4637]
REF7-0 bits
GAIN (dB)
Step
F1H
+36.0
F0H
+35.625
EFH
+35.25
:
:
E1H
+30.0
(default)
0.375dB
:
:
92H
+0.375
91H
0.0
90H
–0.375
:
:
06H
–52.125
05H
–52.5
04H~00H
MUTE
Table 33. Reference Level of ALC Recovery Operation
RFST1-0 bits
Fast Recovery Gain Step [dB]
00
0.0032
(default)
01
0.0042
10
0.0064
11
0.0127
Table 34. Fast Recovery Speed Setting (FRN bit = “0”)
ATT Switch
Timing
-0.00106
4/fs
(default)
0
-0.00106
16/fs
1
Table 35. Fast Recovery Reference Volume Attenuation Amount
FRATT bit
ATT Amount [dB]
3. The Volume at ALC Operation
The volume value during ALC operation is reflected in VOL7-0 bits. It is possible to check the current
volume in 0.75dB step by reading the register value of VOL7-0 bits.
VOL7-0 bits
GAIN [dB]
FFH
+36.0 ≤ Gain
FEH
+35.25 ≤ Gain < +36.0
FCH
+34.5 ≤ Gain < +35.25
FAH
+33.75≤ Gain < +34.5
:
:
A2H
+0.75 ≤ Gain < +1.5
A0H
0.0 ≤ Gain < +0.75
9EH
-0.75 ≤ Gain < 0.0
:
:
12H
-53.25 ≤ Gain < -52.5
10H
-72 ≤ Gain < -53.25
00H
MUTE
Table 36. Value of VOL7-0 bits
015010680-E-00
2015/09
- 53 -
[AK4637]
4. Example of ALC Setting
Table 37 and Table 38 show the examples of the ALC setting for recording and playback path.
Limiter detection Level
Fast Recovery mode
Recovery waiting period
Maximum gain at recovery operation
fs=8kHz
Data
Operation
010
4.1dBFS
0
Enable
01
32ms
E1H
+30dB
fs=48kHz
Data
Operation
010
4.1dBFS
0
Enable
11
21.3ms
E1H
+30dB
Gain of IVOL
E1H
+30dB
E1H
RGAIN2-0
Recovery GAIN
000
0.00424dB
011
RFST1-0
Fast Recovery GAIN
11
Register
Name
LMTH2-0
FRN
WTM1-0
REF7-0
IVL7-0,
IVR7-0
EQFC1-0
ALCEQN
ALC
Register
Name
LMTH2-0
FRN
WTM1-0
REF5-0
IVL7-0,
IVR7-0
Comment
0.0127dB
fc1=100Hz,
ALC EQ Frequency
00
fc2=67Hz
ALC EQ disable
0
Enable
ALC enable
1
Enable
Table 37. Example of the ALC Setting (Recording)
Comment
fs=8kHz
Operation
4.1dBFS
Enable
32ms
+6dB
00
10
0
1
Limiter detection Level
Fast Recovery mode
Recovery waiting period
Maximum gain at recovery operation
Data
010
0
01
28H
Gain of IVOL
91H
0dB
91H
RGAIN2-0
Recovery GAIN
000
0.00424dB
011
RFST1-0
Fast Recovery GAIN
11
EQFC1-0
ALCEQN
ALC
0.0127dB
fc1=100Hz,
ALC EQ Frequency
00
fc2=67Hz
ALC EQ disable
0
Enable
ALC enable
1
Enable
Table 38. Example of the ALC Setting (Playback)
015010680-E-00
Data
010
0
11
28H
00
10
0
1
+30dB
0.00106dB
(2/fs)
0.0032dB
fc1=150Hz,
fc2=100Hz
Enable
Enable
fs=48kHz
Operation
4.1dBFS
Enable
21.3ms
+6dB
0dB
0.00106dB
(2/fs)
0.0032dB
fc1=150Hz,
fc2=100Hz
Enable
Enable
2015/09
- 54 -
[AK4637]
5. Example of registers set-up sequence of ALC Operation
The following registers must not be changed during ALC operation. These bits must be changed after
ALC operation is stopped by ALC bit = “0”. ALC output is “0” data until the AK4637 becomes manual
mode after writing “0” to ALC bit.
LMTH2-0, WTM1-0, RGAIN2-0, REF7-0, RFST1-0, EQFC1-0, FRATT, FRN and ALCEQN bits
Example:
Recovery Waiting Period = 21.3ms@48kHz
Recovery Gain = 0.00106dB (2/fs)
Fast Recovery Gain = 0.0032dB
Maximum Gain = +30.0dB
Gain of IVOL = +30.0dB
Limiter Detection Level = 4.1dBFS
EQFC1-0 bits = “10”
ALCEQN bit = “0”
FRATT bit = “0”
FRN bit = “0”
ALC bit = “1”
Manual Mode
WR (FRATT= “0”, FRN = “0”)
(1) Addr=09H, Data=00H
WR (EQFC1-0, WTM1-0, RFST1-0)
(2) Addr=0AH, Data=6CH
WR (REF7-0)
(3) Addr=0CH, Data=E1H
WR (IVOL7-0)
* The value of IVOL should be
the same or smaller than REF’s
WR (ALCEQN = “0”, ALC = “1”, RGAIN2-0, LMTH2-0)
(4) Addr=0DH, Data=E1H
(5) Addr=0BH, Data=2EH
ALC Operation
WR: Write
Figure 47. Registers Set-up Sequence at ALC Operation (Recording path)
015010680-E-00
2015/09
- 55 -
[AK4637]
■ Input Digital Volume (Manual Mode)
The input digital volume becomes manual mode when ALC bit is set to “0” while ADCPF bit is “1”. This
mode is used in the cases shown below.
1. After exiting reset state, when setting up the registers for ALC operation (LMTH and etc.)
2. When the registers for ALC operation (Limiter period, Recovery period and etc.) are changed.
For example; when the sampling frequency is changed.
3. When IVOL is used as a manual volume control.
IVOL7-0 bits set the gain of the volume control (Table 39).
This volume has a soft transition function. Therefore no switching noise occurs during the transition. IVTM
bit set the transition time (Table 40). When IVTM bit = “1”, it takes 944/fs (19.7ms@fs=48kHz) from F1H
(+36dB) to 05H (-52.5dB). The volume is muted after transitioned to -72dB in the period set by IVTM bit
when changing the volume from 05H (-52.5dB) to 00H (MUTE).
IVOL7-0 bits
GAIN (dB)
Step
F1H
+36.0
F0H
+35.625
EFH
+35.25
:
:
E2H
+30.375
E1H
+30.0
E0H
+29.625
0.375dB
:
:
92H
+0.375
91H
0.0
90H
0.375
:
:
06H
52.125
05H
52.5
04H~00H
MUTE
Table 39. Input Digital Volume Setting
IVTM bit
0
1
(default)
Transition Time of Input Digital Volume
IVOL7-0 bits = “F1H” → “05H”
Setting Value
fs=8kHz
fs=48kHz
236/fs
29.5ms
4.9ms
944/fs
118ms
19.7ms
Table 40. Transition Time of Input Digital Volume
(default)
If IVOL7-0 bits are written during PMPFIL bit = “0”, IVOL operation starts with the written values after
PMPFIL bit is changed to “1”.
015010680-E-00
2015/09
- 56 -
[AK4637]
■ Sidetone Digital Volume
The AK4637 has the digital volume control (4 levels, 6dB step) for the programmable filter output.
PFVOL1-0 bits
Gain
00
0dB
(default)
01
-6dB
10
-12dB
11
-18dB
Table 41. Sidetone Digital Volume
■ DAC Input Selector
PFDAC1-0 bits select the signal of the DAC input or set the data mixing for each channel data.
PFDAC1 PFDAC0
DAC Input Signal
bit
bit
0
0
SDTI
(default)
0
1
PFVOL Output
1
0
(SDTI + PFVOL) / 2
1
1
N/A
Table 42. DAC Input Selector (N/A: Not available)
■ Output Digital Volume
The AK4637 has a digital output volume (205 levels, 0.5dB step, Mute). The volume is included in front of
a DAC block. The input data of DAC is changed from +12 to –89.5dB or MUTE. DVOL7-0 bits control
volume. This volume has soft transition function. In automatic attenuation, the volume is attenuated by
soft transition in 204/fs or 816/fs to reduce switching noises. When DVTM bit = “0”, it takes 816/fs
(17.0ms@fs=48kHz) from 00H (+12dB) to CCH (MUTE).
DVOL7-0 bits
Gain
Step
00H
+12.0dB
01H
+11.5dB
02H
+11.0dB
:
:
0.5dB
18H
0dB
(default)
:
CAH
89.0dB
CBH
89.5dB
CCH~FFH
Mute ( )
Table 43. Output Digital Volume Setting
Transition Time between
DVL/R7-0 bits = 00H and CCH
Setting
fs=8kHz
fs=48kHz
0
816/fs
102ms
17.0ms
(default)
1
204/fs
25.5ms
4.3ms
Table 44. Transition Time Setting of Output Digital Volume
DVTM bit
015010680-E-00
2015/09
- 57 -
[AK4637]
■ Soft Mute
Soft mute operation is performed in the digital domain. When the SMUTE bit is set “1”, the output signal is
attenuated by -∞ (“0”) from the value (ATT DATA) set by DVOL7-0 bits during the cycle set by DVTM bit.
When the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually
changes to ATT DATA from -∞ during the cycle set by DVTM bit. If the soft mute is cancelled within the
cycle set by DVTM bit after starting the operation, the attenuation is discontinued and returned to ATT
DATA. The soft mute is effective for changing the signal source without stopping the signal transaction.
SMUTE bit
ATT DATA
(1)
(1)
(3)
Attenuation
-
GD
(2)
GD
Analog Output
Figure 48. Soft Mute Function
(1) The input signal is attenuated to  (“0”) in the cycle set by DVTM bit. When ATT DATA = +12dB
(DVOL7-0 bits = 00H), 816/fs = 17ms@ fs=48kHz, DVTM bit= “0”.
(2) Analog output corresponding to digital input has group delay (GD).
(3) If soft mute is cancelled before attenuating to , the attenuation is discounted and returned to the
level set by DVOL7-0 bits within the same cycle.
015010680-E-00
2015/09
- 58 -
[AK4637]
■ BEEP Input
When BEEPS bit is set to “1” during PMBP = PMSL = SPLSN bits = “1”, the input signal from the BEEP
pin is output to the speaker amplifier (LOSEL bit = “0”) or mono line output (LOSEL bit = “1”). When BEEP
input is performed, MDIF bit must be set to “0”. BPLVL3-0 bits set the gain of BEEP-Amp. The total gain is
defined according to SPKG1-0 bits setting when speaker amplifier is performed, and LVCM1-0 bits when
mono line output is performed.
Input BEEP gain is controlled by BPLVL3-0 bits (Table 45).
BPLVL3 bit BPLVL2 bit BPLVL1 bit BPLVL0 bit BEEP Gain
0
0
0
0
0dB
(default)
0
0
0
1
6dB
0
0
1
0
12dB
0
0
1
1
18dB
0
1
0
0
24dB
0
1
0
1
30dB
0
1
1
0
33dB
0
1
1
1
36dB
1
0
0
0
39dB
1
0
0
1
42dB
Others
N/A
Table 45. BEEP Output Gain Setting (N/A: Not available)
BPVCM bit set the common voltage of BEEP input amplifier (Table 46).
BPVCM bit BEEP-Amp Common Voltage (typ)
0
1.15V
(default)
1
1.65V (Note 14, Note 36)
Note 14. The maximum value is the smaller one of AVDD Vpp or 3.3Vpp when BPVCM bit = “1”. However,
a click noise may occur when the amplitude after BEEP-Amp is 0.5Vpp or more. (Set by
BPLVL3-0 bits)
Note 36. When the BEEP signal is output to the speaker amplifier and BPVCM bit = “1”, AVDD must be
supplied 2.8V or more.
Table 46. Common Potential Setting of BEEP-Amp
To MIC-Amp
BEEP/IN- pin
BPLVL3-0 bits
“1”
BEEPS bit
To Speaker-Amp
or Lineout-Amp
“0”
MDIF bit
BEEP-Amp
Figure 49. Block Diagram of BEEP pin
015010680-E-00
2015/09
- 59 -
[AK4637]
■ Speaker Output (SPP/SPN pins, LOSEL bit = “0”)
When LOSEL bit = “0”, the DAC output signal is input to the speaker amplifier. The speaker amplifier has
mono output as it is BTL capable. The gain and output level are set by SPKG1-0 bits. The output level
depends on AVDD and SPKG1-0 bits setting.
SPK-Amp Output Level
(DAC Input =0dBFS, AVDD=3.3V)
00
+6.4dB
3.36Vpp
(default)
01
+8.4dB
4.23Vpp (Note 37)
10
+11.1dB
5.76Vpp (Note 37)
11
+14.9dB
8.90Vpp (AVDD=5.0V; Note 37)
Note 37. The output level is calculated on the assumption that the signal is not clipped. However, in the
actual case, the SPK-Amp output signal is clipped when DAC outputs 0dBFS signal. The
SPK-Amp output level should be kept under 4.0Vpp (AVDD=3.3V) by adjusting digital volume to
prevent clipped noise.
Table 47. SPK-Amp Gain
SPKG1-0 bits
Gain
< Speaker-Amp Control Sequence >
The speaker amplifier is powered-up/down by PMSL bit. When PMSL bit is “0” at LOSEL bit = “0”, SPP
pin is pulled-down to VSS1 by 100kΩ (typ) and the SPN pin is placed in a Hi-Z state. When PMSL bit is “1”
and SLPSN bit is “0” at LOSEL bit = “0”, the speaker amplifier enters power-save mode. In this mode, the
SPP pin is placed in Hi-Z state and the SPN pin outputs AVDD/2 voltage.
When the PMSL bit is “1” at LOSEL bit = “0” after the PDN pin is changed from “L” to “H”, the SPP and
SPN pins rise up in power-save mode. In this mode, the SPP pin is placed in a Hi-Z state and the SPN pin
goes to AVDD/2 voltage. Because the SPP and SPN pins rise up in power-save mode, pop noise can be
reduced. When the AK4637 is powered-down (PMSL bit = “0”), pop noise can also be reduced by first
entering power-save-mode.
PMSL SLPSN
bit
bit
0
x
0
1
1
LOSEL bit
Mode
SPP pin
SPN pin
Power-down
Pull-down to VSS1
Hi-Z
Power-save
Hi-Z
AVDD/2
Normal Operation
Normal Operation
Normal Operation
Table 48 Speaker-Amp Mode Setting (x: Don’t care)
Don't care
(default)
"L"
PMSL bit
>1ms
SLPSN bit
SPP pin
SPN pin
>0ms
Hi-Z
Hi-Z
Hi-Z
AVDD/2
AVDD/2
Hi-Z
Figure 50. Power-up/Power-down Timing for Speaker-Amp
015010680-E-00
2015/09
- 60 -
[AK4637]
■ Thermal Shutdown Function
When the internal temperature of the device rises up irregularly (e.g. Output pins of speaker-amp are
shortened), the speaker-amp and the lineout-amp are automatically powered down and then THDET bit
becomes “1” (thermal shutdown). When TSDSEL bit = “0” (default), the internal temperature goes down
and the thermal shutdown is released, the speaker-amp or the lineout-amp is powered up automatically
and THDET bit returns to “0”. When TSDSEL bit = “1”, these blocks will not return to a normal operation
until being reset by the PDN pin. THDET bit becomes “0” by this PDN pin reset.
015010680-E-00
2015/09
- 61 -
[AK4637]
■ Monaural Line Output (AOUT pin, LOSEL bit = “1”)
When LOSEL bit is set to “1”, the output signal of DAC is output in single-ended format via AOUT pin. The
monaural line output is valid at AVDD = 2.8~3.6V. When DACL bit is “0” at LOSEL = PMSL = SLPSN bits
= “1”, output signal is muted and AOUT pin output common voltage. The load impedance is 10k (min.).
When PMSL bit = “0” at LOSEL = SLPSN bits = “1”, the monaural line output enters power-down mode
and the output is pulled-down to VSS1 by 100k(typ). Pop noise at power-up/down can be reduced by
changing PMSL bit when SLPSN bit = “0” at LOSEL bit = “1”. In this case, output signal line should be
pulled-down to VSS1 by 22k after AC coupled as Figure 52. Rise/Fall time is 300ms (max) when C=1F
and RL=10k. When LOSEL = PMSL = SLPSN bits = “1”, monaural line output is in normal operation.
LVCM1-0 bits set the gain of monaural line output.
“DACL bit”
“LVCM1-0 bits”
DAC
AOUT pin
“BEEPS bit”
BEEP
Figure 51. Monaural Line Output
PMSL bit
0
1
SLPSN bit
Mode
AOUT pin
0
Power Down
Fall-down to VSS1
(default)
1
Power Down
Pull-down to VSS1
0
Power Save
Rise up to Common Voltage
1
Normal Operation
Normal Operation
Table 49. Monaural Line Output Mode Select
LVCM1-0 bits
00
01
10
11
AVDD
Gain
Common Voltage (typ)
2.8 ~ 3.6V
0dB
1.3V
3.0 ~ 3.6V
+2dB
1.5V
(default)
2.8 ~ 3.6V
+2dB
1.3V
3.0 ~ 3.6V
+4dB
1.5V
Table 50. Monaural Lineout Volume Setting
1F
AOUT
220
External
Input
22k
Note 38. If the value of 22k resistance at pop noise reduction circuit is increased, the power-up time of
Monaural line output is increased but the pop noise level is not decreased. Do not use a resistor
less than 22k at the pop noise reduction circuit since the line output drivability is minimum 10k.
Figure 52. External Circuit for Monaural Line Output (in case of using a Pop Noise Reduction Circuit)
015010680-E-00
2015/09
- 62 -
[AK4637]
[Monaural Line Output Control Sequence (in case of using a Pop Noise Reduction Circuit)]
(6)
(1)
LOSEL bit
(2)
(5)
PMSL bit
(3)
(4)
SLPSN bit
99%
Common Voltage
Normal Output
AOUT pins
1%
Common Voltage
300 ms
300 ms
Figure 53. Monaural Line Output Control Sequence (in case of using a Pop Noise Reduction Circuit)
(1) Set LOSEL bit = “1”. Enable monaural line output.
(2) Set PMSL bit = “1”. Monaural line output exits power-down mode.
AOUT pin rises up to common voltage. Rise time to 99% common voltage is 200ms (max.
300ms) when C=1F.
(3) Set SLPSN bit = “1” after AOUT pin rises up. Monaural line output exits power-save mode.
Monaural line output is enabled.
(4) Set SLPSN bit = “0”. Monaural line output enters power-save mode.
(5) Set PMSL bit = “0”. Monaural line output enters power-down mode.
AOUT pin falls down to 1% of the common voltage. Fall time is 200ms (max. 300ms) when
C=1F.
(6) Set LOSEL bit = “0” after wait time (≥300ms). Disable monaural line output.
015010680-E-00
2015/09
- 63 -
[AK4637]
[Monaural Line Output Control Sequence (SLPSN bit = “1”: in case of not using a Pop Noise Reduction
Circuit)]
(8)
(1)
LOSEL bit
(2)
SLPSN bit
(7)
(3)
PMSL bit
AOUT pin
External Input
(4)
(4)
(5)
External MUTE
(6)
MUTE
Normal Operation
MUTE
Figure 54. Monaural Line Output Control Sequence
(SLPSN bit = “1”: in case of not using a Pop Noise Reduction Circuit)
(1) Set LOSEL bit = “1”. Enable monaural line output.
(2) Set SLPSN bit = “1”. Pop noise reduction circuit is disabled.
(3) Set PMSL bit = “1”. Monaural line output is powered-up.
AOUT pin rises up to common voltage.
(4) Time constant is defined according to external capacitor (C) and resistor (RL).
(5) Release external MUTE when the external input is stabled.
Monaural line output is enabled.
(6) Set external MUTE ON
(7) Set PMSL bit = “0”. Monaural line output is powered-down.
AOUT pin fall down.
(8) Set LOSEL bit = “0” after wait time (≥300ms). Disable monaural line output.
■ Regulator Block
The AK4637 integrates a regulator. The 3.3V (typ) power supply voltage from the AVDD pin is converted
to 2.3V (typ) by the regulator and supplied to the analog blocks (MIC-Amp, ADC, DAC, BEEP). The
regulator is powered up by PMVCM bit = “1”, and powered down by PMVCM = “0”. Connect a 2.2µF (±
10%) capacitor to the REGFIL pin to reduce noise on AVDD.
AK4637
Power-up: PMVCM bit = “1”
Power-down: PMVCM bit = “0”
AVDD
Regulator
To Analog Block
typ 2.3V
REGFIL
2.2F ± 10%
Figure 55 Regulator Block
015010680-E-00
2015/09
- 64 -
[AK4637]
■ Serial Control Interface
The AK4637 supports the fast-mode I2C Bus (max: 400kHz). Pull-up resistors at the SDA and SCL pins
must be connected to a voltage in the range from TVDD or more to 6V or less.
1. WRITE Operations
Figure 56 shows the data transfer sequence for the I2C Bus mode. All commands are preceded by a
START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START
condition (Figure 62). After the START condition, a slave address is sent. This address is seven bits of the
slave address are fixed as “0010010” and the next bit is a data direction bit (R/W) (Figure 57). If the slave
address matches that of the AK4637, the AK4637 generates an acknowledge and the operation is
executed. The master must generate the acknowledge-related clock pulse and release the SDA line
(HIGH) during the acknowledge clock pulse (Figure 63). A R/W bit value of “1” indicates that the read
operation is to be executed, and “0” indicates that the write operation is to be executed.
The second byte consists of the control register address of the AK4637. The format is MSB first, and
those most significant 1bit is fixed to zero (Figure 58). The data after the second byte contains control
data. The format is MSB first, 8bits (Figure 59). The AK4637 generates an acknowledge after each byte is
received. Data transfer is always terminated by a STOP condition generated by the master. A LOW to
HIGH transition on the SDA line while SCL is HIGH defines a STOP condition (Figure 62).
The AK4637 can perform more than one byte write operation per sequence. After receipt of the third byte
the AK4637 generates an acknowledge and awaits the next data. The master can transmit more than one
byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data
packet the internal address counter is incremented by one, and the next data is automatically taken into
the next address. The address counter will “roll over” to 00H and the previous data will be overwritten if
the address exceeds “3FH” prior to generating a stop condition.
The data on the SDA line must remain stable during the HIGH period of the clock. HIGH or LOW state of
the data line can only be changed when the clock signal on the SCL line is LOW (Figure 64) except for the
START and STOP conditions.
S
T
A
R
T
SDA
S
T
O
P
R/W="0"
Slave
S Address
Sub
Address(n)
Data(n)
A
C
K
A
C
K
Data(n+1)
Data(n+x)
A
C
K
A
C
K
A
C
K
A
C
K
Figure 56. Data Transfer Sequence at I2C Bus Mode
0
0
1
0
0
P
1
0
R/W
A2
A1
A0
Figure 57. The First Byte
0
A6
A5
A4
A3
Figure 58. The Second Byte
015010680-E-00
2015/09
- 65 -
[AK4637]
D7
D6
D5
D4
D3
D2
D1
D0
Figure 59. The Third Byte
2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4637. After transmission of data, the master can
read the next address’s data by generating an acknowledge instead of terminating the write cycle after
the receipt of the first data word. After receiving each data packet the internal address counter is
incremented by one, and the next data is automatically taken into the next address. The address counter
will “roll over” to 00H and the data of 00H will be read out if the address exceeds “3FH” of Register map
prior to generating a stop condition.
The AK4637 supports two basic read operations: CURRENT ADDRESS READ and RANDOM
ADDRESS READ.
2-1. CURRENT ADDRESS READ
The AK4637 has an internal address counter that maintains the address of the last accessed word
incremented by one. Therefore, if the last access (either a read or write) were to address “n”, the next
CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address
with R/W bit “1”, the AK4637 generates an acknowledge, transmits 1-byte of data to the address set by
the internal address counter and increments the internal address counter by 1. If the master does not
generate an acknowledge but generates a stop condition instead, the AK4637 ceases the transmission.
S
T
A
R
T
SDA
S
S
T
O
P
R/W="1"
Slave
Address
Data(n)
Data(n+1)
MA
AC
SK
T
E
R
A
C
K
Data(n+2)
MA
AC
S K
T
E
R
Data(n+x)
MA
AC
S K
T
E
R
MA
AC
SK
T
E
R
P
MN
AA
SC
T K
E
R
Figure 60. Current Address Read
2-2. RANDOM ADDRESS READ
The random read operation allows the master to access any memory location at random. Prior to issuing
the slave address with the R/W bit “1”, the master must first perform a “dummy” write operation. The
master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After
the register address is acknowledged, the master immediately reissues the start request and the slave
address with the R/W bit “1”. The AK4637 then generates an acknowledge, 1 byte of data and increments
the internal address counter by 1. If the master does not generate an acknowledge but generates a stop
condition instead, the AK4637 ceases the transmission.
S
T
A
R
T
SDA
S
T
A
R
T
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Slave
S Address
A
C
K
S
T
O
P
R/W="1"
Data(n)
A
C
K
Data(n+1)
MA
AC
S K
T
E
R
Data(n+x)
MA
AC
SK
T
E
R
MA
AC
SK
T
E
R
P
MN
A A
SC
T K
E
R
Figure 61. Random Address Read
015010680-E-00
2015/09
- 66 -
[AK4637]
SDA
SCL
S
P
start condition
stop condition
Figure 62. Start Condition and Stop Condition
DATA
OUTPUT BY
TRANSMITTER
not acknowledge
DATA
OUTPUT BY
RECEIVER
acknowledge
SCL FROM
MASTER
2
1
8
9
S
clock pulse for
acknowledgement
START
CONDITION
Figure 63. Acknowledge (I2C Bus)
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 64. Bit Transfer (I2C Bus)
015010680-E-00
2015/09
- 67 -
[AK4637]
■ Register Map
Addr
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
Register Name
D7
D6
D5
D4
D3
Power Management 1
PMPFIL PMVCM
PMBP
0
LOSEL
Power Management 2
0
0
0
0
M/S
Signal Select 1
SLPSN MGAIN3 DACS
0
PMMP
Signal Select 2
SPKG1 SPKG0
0
MICL
0
Signal Select 3
LVCM1 LVCM0
DACL
0
0
Mode Control 1
PLL3
PLL2
PLL1
PLL0
0
Mode Control 2
CM1
CM0
0
0
FS3
Mode Control 3
TSDSEL THDET SMUTE
0
MSBS
Digital MIC
0
0
0
PMDM
DCLKE
Timer Select
ADRST1 ADRST0 FRATT
FRN
0
ALC Timer Select
0
IVTM
EQFC1 EQFC0
WTM1
ALC Mode Control 1
ALCEQN LMTH2
ALC
RGAIN2 RGAIN1
ALC Mode Control 2
REF7
REF6
REF5
REF4
REF3
Input Volume Control
IVOL7
IVOL6
IVOL5
IVOL4
IVOL3
ALC Volume
VOL7
VOL6
VOL5
VOL4
VOL3
BEEP Control
0
BPVCM BEEPS
0
BPLVL3
Digital Volume Control
DVOL7 DVOL6
DVOL5
DVOL4
DVOL3
EQ Common Gain Select
0
0
0
EQC5
EQC4
EQ2 Gain Setting
EQ2G5 EQ2G4 EQ2G3 EQ2G2 EQ2G1
EQ3 Gain Setting
EQ3G5 EQ3G4 EQ3G3 EQ3G2 EQ3G1
EQ4 Gain Setting
EQ4G5 EQ4G4 EQ4G3 EQ4G2 EQ4G1
EQ5 Gain Setting
EQ5G5 EQ5G4 EQ5G3 EQ5G2 EQ5G1
Digital Filter Select 1
0
0
0
0
0
Digital Filter Select 2
0
0
0
0
0
Digital Filter Mode
0
0
PFVOL1 PFVOL0 PFDAC1
HPF2 Co-efficient 0
F1A7
F1A6
F1A5
F1A4
F1A3
HPF2 Co-efficient 1
0
0
F1A13
F1A12
F1A11
HPF2 Co-efficient 2
F1B7
F1B6
F1B5
F1B4
F1B3
HPF2 Co-efficient 3
0
0
F1B13
F1B12
F1B11
LPF Co-efficient 0
F2A7
F2A6
F2A5
F2A4
F2A3
LPF Co-efficient 1
0
0
F2A13
F2A12
F2A11
LPF Co-efficient 2
F2B7
F2B6
F2B5
F2B4
F2B3
LPF Co-efficient 3
0
0
F2B13
F2B12
F2B11
Digital Filter Select 3
0
0
0
EQ5
EQ4
E1 Co-efficient 0
E1A7
E1A6
E1A5
E1A4
E1A3
E1 Co-efficient 1
E1A15
E1A14
E1A13
E1A12
E1A11
E1 Co-efficient 2
E1B7
E1B6
E1B5
E1B4
E1B3
E1 Co-efficient 3
E1B15
E1B14
E1B13
E1B12
E1B11
E1 Co-efficient 4
E1C7
E1C6
E1C5
E1C4
E1C3
E1 Co-efficient 5
E1C15
E1C14
E1C13
E1C12
E1C11
E2 Co-efficient 0
E2A7
E2A6
E2A5
E2A4
E2A3
E2 Co-efficient 1
E2A15
E2A14
E2A13
E2A12
E2A11
E2 Co-efficient 2
E2B7
E2B6
E2B5
E2B4
E2B3
E2 Co-efficient 3
E2B15
E2B14
E2B13
E2B12
E2B11
E2 Co-efficient 4
E2C7
E2C6
E2C5
E2C4
E2C3
E2 Co-efficient 5
E2C15
E2C14
E2C13
E2C12
E2C11
E3 Co-efficient 0
E3A7
E3A6
E3A5
E3A4
E3A3
E3 Co-efficient 1
E3A15
E3A14
E3A13
E3A12
E3A11
015010680-E-00
D2
D1
PMDAC
0
PMPLL
PMSL
MGAIN2 MGAIN1
0
0
0
0
CKOFF BCKO1
FS2
FS1
BCKP
DIF1
0
DCLKP
0
0
WTM0
RFST1
RGAIN0 LMTH1
REF2
REF1
IVOL2
IVOL1
VOL2
VOL1
BPLVL2 BPLVL1
DVOL2
DVOL1
EQC3
EQC2
EQ2G0
EQ2T1
EQ3G0
EQ3T1
EQ4G0
EQ4T1
EQ5G0
EQ5T1
HPFC1
HPFC0
0
LPF
PFDAC0 ADCPF
F1A2
F1A1
F1A10
F1A9
F1B2
F1B1
F1B10
F1B9
F2A2
F2A1
F2A10
F2A9
F2B2
F2B1
F2B10
F2B9
EQ3
EQ2
E1A2
E1A1
E1A10
E1A9
E1B2
E1B1
E1B10
E1B9
E1C2
E1C1
E1C10
E1C9
E2A2
E2A1
E2A10
E2A9
E2B2
E2B1
E2B10
E2B9
E2C2
E2C1
E2C10
E2C9
E3A2
E3A1
E3A10
E3A9
D0
PMADC
0
MGAIN0
MDIF
0
BCKO0
FS0
DIF0
DMIC
DVTM
RFST0
LMTH0
REF0
IVOL0
VOL0
BPLVL0
DVOL0
0
EQ2T0
EQ3T0
EQ4T0
EQ5T0
HPFAD
HPF
PFSDO
F1A0
F1A8
F1B0
F1B8
F2A0
F2A8
F2B0
F2B8
EQ1
E1A0
E1A8
E1B0
E1B8
E1C0
E1C8
E2A0
E2A8
E2B0
E2B8
E2C0
E2C8
E3A0
E3A8
2015/09
- 68 -
[AK4637]
Addr
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
Register Name
E3 Co-efficient 2
E3 Co-efficient 3
E3 Co-efficient 4
E3 Co-efficient 5
E4 Co-efficient 0
E4 Co-efficient 1
E4 Co-efficient 2
E4 Co-efficient 3
E4 Co-efficient 4
E4 Co-efficient 5
E5 Co-efficient 0
E5 Co-efficient 1
E5 Co-efficient 2
E5 Co-efficient 3
E5 Co-efficient 4
E5 Co-efficient 5
D7
E3B7
E3B15
E3C7
E3C15
E4A7
E4A15
E4B7
E4B15
E4C7
E4C15
E5A7
E5A15
E5B7
E5B15
E5C7
E5C15
D6
E3B6
E3B14
E3C6
E3C14
E4A6
E4A14
E4B6
E4B14
E4C6
E4C14
E5A6
E5A14
E5B6
E5B14
E5C6
E5C14
D5
E3B5
E3B13
E3C5
E3C13
E4A5
E4A13
E4B5
E4B13
E4C5
E4C13
E5A5
E5A13
E5B5
E5B13
E5C5
E5C13
D4
E3B4
E3B12
E3C4
E3C12
E4A4
E4A12
E4B4
E4B12
E4C4
E4C12
E5A4
E5A12
E5B4
E5B12
E5C4
E5C12
D3
E3B3
E3B11
E3C3
E3C11
E4A3
E4A11
E4B3
E4B11
E4C3
E4C11
E5A3
E5A11
E5B3
E5B11
E5C3
E5C11
D2
E3B2
E3B10
E3C2
E3C10
E4A2
E4A10
E4B2
E4B10
E4C2
E4C10
E5A2
E5A10
E5B2
E5B10
E5C2
E5C10
D1
E3B1
E3B9
E3C1
E3C9
E4A1
E4A9
E4B1
E4B9
E4C1
E4C9
E5A1
E5A9
E5B1
E5B9
E5C1
E5C9
D0
E3B0
E3B8
E3C0
E3C8
E4A0
E4A8
E4B0
E4B8
E4C0
E4C8
E5A0
E5A8
E5B0
E5B8
E5C0
E5C8
Note 39. PDN pin = “L” resets the registers to their default values.
Note 40. The bits defined as 0 must contain a “0” value.
Note 41. Writing access to 40H ~ 7FH is prohibited.
015010680-E-00
2015/09
- 69 -
[AK4637]
■ Register Definitions
Addr
00H
Register Name
Power Management 1
R/W
Default
D7
PMPFIL
D6
PMVCM
D5
PMBP
D4
0
D3
LOSEL
D2
PMDAC
D1
0
D0
PMADC
R/W
0
R/W
0
R/W
0
R
0
R/W
0
R/W
0
R
0
R/W
0
PMADC: Microphone Amplifier and ADC Power Management
0: Power-down (default)
1: Power-up
When the PMADC bit is changed from “0” to “1”, the initialization cycle (1059/fs=22ms @48kHz,
ADRST1-0 bits = “00”) starts. After initializing, digital data of the ADC is output.
PMDAC: DAC Power Management
0: Power down (default)
1: Power up
LOSEL: Monaural Line Output Select
0: Speaker Output (SPP/SPN pins) (default)
1: Monaural Line Output (AOUT pin)
PMBP: BEEP Input Select and Power Management
0: Power down (IN- pin) (default)
1: Power up (BEEP pin)
PMVCM: VCOM and Regulator (2.3V) Power Management
0: Power down (default)
1: Power up
PMPFIL: Programmable Filter Block Power Management
0: Power down (default)
1: Power up
The AK4637 can be powered down by writing “0” to the address “00H” and PMPLL, PMMP, PMSL
and PMDM bits. In this case, register values are maintained.
015010680-E-00
2015/09
- 70 -
[AK4637]
Addr
01H
Register Name
Power Management 2
R/W
Default
D7
0
D6
0
D5
0
D4
0
D3
M/S
D2
PMPLL
D1
PMSL
D0
0
R
0
R
0
R
0
R
0
R/W
0
R/W
0
R/W
0
R
0
PMSL: Speaker Amplifier or Monaural Line Output Power Management
0: Power down (default)
1: Power up
PMPLL: PLL Power Management
0: EXT Mode and Power down (default)
1: PLL Mode and Power up
M/S: Master / Slave Mode Select
0: Slave Mode (default)
1: Master Mode
Addr
02H
Register Name
Signal Select 1
R/W
Default
D7
SLPSN
D6
MGAIN3
D5
DACS
D4
0
D3
PMMP
D2
MGAIN2
D1
MGAIN1
D0
MGAIN0
R/W
0
R/W
0
R/W
0
R
0
R/W
0
R/W
1
R/W
1
R/W
0
MGAIN3-0: Microphone Amplifier Gain Control (Table 22)
Default: “0110” (+18dB)
PMMP: MPWR pin Power Management
0: Power down: Hi-Z (default)
1: Power up
DACS: Signal Switch Control from DAC to Speaker Amplifier
0: OFF (default)
1: ON
SLPSN: Speaker Amplifier or Monaural Line Output Power-Save Mode
LOSEL bit = “0” (Speaker Output Select)
0: Power Save Mode (default)
1: Normal Operation
When SLPSN bit is “0”, Speaker Amplifier is in power-save mode. In this mode, the SPP pin
goes to Hi-Z and the SPN pin outputs AVDD/2 voltage. When PMSL bit = “1”, SLPSN bit is
enabled. After the PDN pin is set to “L”, Speaker Amplifier is in power-down mode since PMSL
bit is “0”.
LOSEL bit = “1” (Monaural Line Output Select)
0: Power Save Mode (default)
1: Normal Operation
When SLPSN bit is “0”, Monaural line output is in power-save mode. In this mode, the AOUT pin
output 1.5V or 1.3V. When PMSL bit = “1”, SLPSN bit is enabled. After the PDN pin is set to “L”,
Monaural line output is in power-down mode since PMSL bit is “0”.
015010680-E-00
2015/09
- 71 -
[AK4637]
Addr
03H
Register Name
Signal Select 2
R/W
Default
D7
SPKG1
D6
SPKG0
D5
0
D4
MICL
D3
0
D2
0
D1
0
D0
MDIF
R/W
0
R/W
0
R
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
MDIF: ADC Input Source Select (Table 21)
0: AIN pin Single-ended Input (default)
1: IN+/ pins Full-differential Input
MICL: MPWR pin Output Voltage Select
0: typ 2.4V (default)
1: typ 2.0V
SPKG1-0: Speaker Amplifier Output Gain Select (Table 47)
Default: “00” (+6.4dB)
Addr
04H
Register Name
Signal Select 3
R/W
Default
D7
LVCM1
D6
LVCM0
D5
DACL
D4
0
D3
0
D2
0
D1
0
D0
0
R/W
0
R/W
1
R/W
0
R
0
R
0
R
0
R
0
R
0
DACL: Signal Switch Control from DAC to Monaural Line Amplifier
0: OFF (default)
1: ON
LVCM1-0: Monaural Line Output Gain and Common Voltage Setting (Table 50)
Default: “01” (+2dB, 1.5V)
Addr
05H
Register Name
Mode Control 1
R/W
Default
D7
PLL3
D6
PLL2
D5
PLL1
D4
PLL0
D3
0
D2
CKOFF
D1
BCKO1
D0
BCKO0
R/W
0
R/W
1
R/W
0
R/W
1
R
0
R/W
0
R/W
0
R/W
0
BCKO: BICK Output Frequency Setting in Master Mode (Table 9, Table 17)
00: 16fs (default)
01: 32fs
10: 64fs
11: N/A
CKOFF: FCK, BICK, SDTO Output Stop Setting in Master Mode
0: FCK, BICK, SDTO Output (default)
1: FCK, BICK, SDTO Output Stop
PLL3-0: PLL Reference Clock Select (Table 5)
Default: “0101” (MCKI, 12.288MHz)
015010680-E-00
2015/09
- 72 -
[AK4637]
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
06H
Mode Control 2
R/W
Default
CM1
R/W
0
CM0
R/W
0
0
R
0
0
R
0
FS3
R/W
1
FS2
R/W
0
FS1
R/W
1
FS0
R/W
1
FS3-0: Sampling frequency Setting (Table 7, Table 10, Table 12, Table 15)
Default: “1011” (fs=48kHz)
CM1-0: MCKI Input Frequency Setting in EXT mode (Table 11, Table 14)
Default: “00” (256fs)
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
07H
Mode Control 3
R/W
Default
TSDSEL
R/W
0
THDET
R
0
SMUTE
R/W
0
0
R
0
MSBS
R/W
0
BCKP
R/W
0
DIF1
R/W
1
DIF0
R/W
0
DIF2-0: Audio Interface Format (Table 19)
Default: “10” (MSB justified)
BCKP: BICK Polarity at DSP Mode (Table 20)
“0”: SDTO is output by the rising edge (“”) of BICK and SDTI is latched by the falling edge (“”).
(default)
“1”: SDTO is output by the falling edge (“”) of BICK and SDTI is latched by the rising edge (“”).
MSBS: FCK Phase at DSP Mode (Table 20)
“0”: The rising edge (“”) of FCK is half clock of BICK before the channel change. (default)
“1”: The rising edge (“”) of FCK is one clock of BICK before the channel change.
SMUTE: Soft Mute Control
0: Normal Operation (default)
1: DAC outputs soft-muted
THDET: Thermal Shutdown Detection Result
0: Normal Operation (default)
1: During Thermal Shutdown
TSDSEL: Thermal Shutdown Mode Select
0: Automatic Power up (default)
1: Manual Power up
015010680-E-00
2015/09
- 73 -
[AK4637]
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
08H
Digital MIC
R/W
Default
0
R
0
0
R
0
0
R
0
PMDM
R/W
0
DCLKE
R/W
0
0
R
0
DCLKP
R/W
0
DMIC
R/W
0
DMIC: Digital Microphone Connection Select
0: Analog Microphone (default)
1: Digital Microphone
DCLKP: Data Latching Edge Select
0: Data is latched on the DMCLK rising edge (“”). (default)
1: Data is latched on the DMCLK falling edge (“”).
DCLKE: DMCLK pin Output Clock Control
0: “L” Output (default)
1: 64fs Output
PMDM: Input Signal Select with Digital Microphone
0: OFF (default)
1: ON
ADC digital block is powered-down by PMDM bit = “0” when selecting a digital microphone input
(DMIC bit = “1”).
Addr
Register Name
09H
Timer Select
R/W
Default
D7
D6
ADRST1 ADRST0
R/W
R/W
0
0
D5
D4
D3
D2
D1
D0
FRATT
R/W
0
FRN
R/W
0
0
R
0
0
R
0
0
R
0
DVTM
R/W
0
DVTM: Output Digital Volume Soft Transition Time Setting (Table 44)
0: 816/fs (default)
1: 204/fs
This is the transition time between DVOL7-0 bits = 00H and CCH.
FRN: ALC Fast Recovery Function Enable
0: Enable (default)
1: Disable
RFATT: Fast Recovery Reference Volume Attenuation Amount (Table 35)
0: -0.00106dB (4/fs) (default)
1: -0.00106dB (16/fs)
ADRST1-0: ADC Initialization Cycle Setting (Table 18)
Default: “00” (1059/fs)
015010680-E-00
2015/09
- 74 -
[AK4637]
Addr
0AH
Register Name
ALC Timer Select
R/W
Default
D7
0
D6
IVTM
D5
EQFC1
D4
EQFC0
D3
WTM1
D2
WTM0
D1
RFST1
D0
RFST0
R
0
R/W
1
R/W
1
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
RFST1-0: ALC First Recovery Speed (Table 34)
Default: “00” (0.0032dB)
WTM1-0: ALC Recovery Waiting Period (Table 31)
Default: “00” (128/fs)
EQFC1-0: ALCEQ Frequency Setting (Table 28)
Default: “10” (Extreme value=150Hz, Zero point=100Hz @ fs = 48kHz)
IVTM: Input Digital Volume Soft Transition Time Setting (Table 40)
0: 236/fs
1: 944/fs (default)
A transition time when changing IVOL7-0 bits to F1H from 05H.
Addr
Register Name
0BH
ALC Mode Control 1
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
ALCEQN
R/W
0
LMTH2
R/W
0
ALC
R/W
0
RGAIN2
R/W
0
RGAIN1
R/W
0
RGAIN0
R/W
0
LMTH1
R/W
0
LMTH0
R/W
0
LMTH2-0: ALC Limiter Detection Level / Recovery Counter Reset Level (Table 29)
Default: “000”
RGAIN2-0: ALC Recovery Gain Step (Table 32)
Default: “000” (0.00424dB)
ALC: ALC Enable
0: ALC Disable (default)
1: ALC Enable
ALCEQN: ALC EQ Enable
0: ALC EQ On (default)
1: ALC EQ Off
Addr
Register Name
0CH
ALC Mode Control 2
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
REF7
R/W
1
REF6
R/W
1
REF5
R/W
1
REF4
R/W
0
REF3
R/W
0
REF2
R/W
0
REF1
R/W
0
REF0
R/W
1
REF7-0: Reference Value at ALC Recovery Operation. 0.375dB step, 242 Level (Table 33)
Default: “E1H” (+30.0dB)
015010680-E-00
2015/09
- 75 -
[AK4637]
Addr
Register Name
0DH
Input Volume Control
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
IVOL7
R/W
1
IVOL6
R/W
1
IVOL5
R/W
1
IVOL4
R/W
0
IVOL3
R/W
0
IVOL2
R/W
0
IVOL1
R/W
0
IVOL0
R/W
1
IVOL7-0: Digital Input Volume; 0.375dB step, 242 Level (Table 39)
Default: “E1H” (+30.0dB)
Addr
Register Name
0EH
ALC Volume
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
VOL7
R
-
VOL6
R
-
VOL5
R
-
VOL4
R
-
VOL3
R
-
VOL2
R
-
VOL1
R
-
VOL0
R
-
VOL7-0: Current ALC volume value; 0.375dB step, 242 Level. Read operation only. (Table 36)
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
0FH
Beep Control
R/W
Default
0
R
0
BPVCM
R/W
0
BEEPS
R/W
0
0
R
0
BPLVL3
R/W
0
BPLVL2
R/W
0
BPLVL1
R/W
0
BPLVL0
R/W
0
BPLVL3-0:BEEP Output Level Setting (Table 45)
Default: “0000” (0dB)
BEEPS: Signal Switch Control from the BEEP pin to Speaker Amplifier
0: OFF (default)
1: ON
BPVCM: Common Voltage Setting of BEEP Input Amplifier (Table 46)
0: 1.15V (default)
1: 1.65V
Addr
Register Name
10H
Digital Volume Control
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
DVOL7
R/W
0
DVOL6
R/W
0
DVOL5
R/W
0
DVOL4
R/W
1
DVOL3
R/W
1
DVOL2
R/W
0
DVOL1
R/W
0
DVOL0
R/W
0
DVOL7-0: Digital Output Volume (Table 43)
Default: “18H” (0dB)
015010680-E-00
2015/09
- 76 -
[AK4637]
Addr
Register Name
11H
EQ Common Gain Select
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
EQC5
EQC4
EQC3
EQC2
0
R
0
R
0
R
0
R/W
0
R/W
0
R/W
0
R/W
0
R
0
D2
EQ2G0
EQ3G0
EQ4G0
EQ5G0
R/W
0
D1
EQ2T1
EQ3T1
EQ4T1
EQ5T1
R/W
0
D0
EQ2T0
EQ3T0
EQ4T0
EQ5T0
R/W
0
EQC2: Equalizer 2 Common Gain Selector
0: Disable (default)
1: Enable
When EQC2 bit = “1”, the common gain setting (EQ2G) is reflected.
EQC3: Equalizer 3 Common Gain Selector
0: Disable (default)
1: Enable
When EQC3 bit = “1”, the common gain setting (EQ3G) is reflected.
EQC4: Equalizer 4 Common Gain Selector
0: Disable (default)
1: Enable
When EQC4 bit = “1”, the common gain setting (EQ4G) is reflected.
EQC5: Equalizer 5 Common Gain Selector
0: Disable (default)
1: Enable
When EQC5 bit = “1”, the common gain setting (EQ5G) is reflected.
Addr
12H
13H
14H
15H
Register Name
EQ2 Gain Setting
EQ3 Gain Setting
EQ4 Gain Setting
EQ5 Gain Setting
R/W
Default
D7
EQ2G5
EQ3G5
EQ4G5
EQ5G5
R/W
0
D6
EQ2G4
EQ3G4
EQ4G4
EQ5G4
R/W
0
D5
EQ2G3
EQ3G3
EQ4G3
EQ5G3
R/W
0
D4
EQ2G2
EQ3G2
EQ4G2
EQ5G2
R/W
0
D3
EQ2G1
EQ3G1
EQ4G1
EQ5G1
R/W
0
EQ2T1-0, EQ3T1-0, EQ4T1-0, EQ5T1-0: Transition Time of EQ2~EQ5 Gain (Table 27)
Default: “00H” (256/fs)
EQ2G5-0, EQ3G5-0, EQ4G5-0, EQ5G5-0: Gain setting of EQ2~EQ5 (Table 26)
Default: “00H” (Mute)
015010680-E-00
2015/09
- 77 -
[AK4637]
Addr
16H
Register Name
Digital Filter Select 1
R/W
Default
D7
0
D6
0
D5
0
D4
0
D3
0
D2
HPFC1
D1
HPFC0
D0
HPFAD
R
0
R
0
R
0
R
0
R
0
R/W
0
R/W
0
R/W
1
HPFAD: HPF1 Control after ADC
0: OFF
1: ON (default)
When HPFAD bit is “1”, the settings of HPFC1-0 bits are enabled. When HPFAD bit is “0”, the
audio data passes the HPFAD block by 0dB gain.
When PMADC bit = “1”, set HPFAD bit to “1”.
HPFC1-0: Cut-off Frequency Setting of HPF1 (ADC) (Table 25)
Default: “00” (3.7Hz @ fs = 48kHz)
Addr
17H
Register Name
Digital Filter Select 2
R/W
Default
D7
0
D6
0
D5
0
D4
0
D3
0
D2
0
D1
LPF
D0
HPF
R
0
R
0
R
0
R
0
R
0
R
0
R/W
0
R/W
0
HPF: HPF2 Coefficient Setting Enable
0: OFF (default)
1: ON
When HPF bit is “1”, the settings of F1A13-0 and F1B13-0 bits are enabled. When HPF bit is
“0”, the audio data passes the HPF2 block by is 0dB gain.
LPF: LPF Coefficient Setting Enable
0: OFF (default)
1: ON
When LPF bit is “1”, the settings of F2A13-0 and F2B13-0 bits are enabled. When LPF bit is “0”,
the audio data passes the LPF block by 0dB gain.
Addr
Register Name
D7
D6
18H
Digital Filter Mode
R/W
Default
0
R
0
0
R
0
D5
D4
D3
PFVOL1 PFVOL0 PFDAC1
R/W
R/W
R/W
0
0
0
D2
D1
D0
PFDAC0
R/W
0
ADCPF
R/W
1
PFSDO
R/W
1
PFSDO: SDTO Output Signal Select
0: ADC (+ 1st order HPF) Output
1: Programmable Filter / ALC Output (default)
ADCPF: Programmable Filter / ALC Input Signal Select
0: SDTI
1: ADC Output (default)
PFDAC1-0: DAC Input Signal Select (Table 42)
Default: 00 (SDTI)
PFVOL1-0: Sidetone Digital Volume (Table 41)
Default: 00 (0dB)
015010680-E-00
2015/09
- 78 -
[AK4637]
Addr
Register Name
19H
1AH
1BH
1CH
HPF2 Co-efficient 0
HPF2 Co-efficient 1
HPF2 Co-efficient 2
HPF2 Co-efficient 3
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
F1A7
0
F1B7
0
F1A6
0
F1B6
0
F1A5
F1A13
F1B5
F1B13
F1A4
F1A12
F1B4
F1B12
F1A3
F1A11
F1B3
F1B11
F1A2
F1A10
F1B2
F1B10
F1A1
F1A9
F1B1
F1B9
F1A0
F1A8
F1B0
F1B8
R/W
R/W
R/W
R/W
R/W
R/W
R/W
F1A13-0 bits = 0x1FB0, F1B13-0 bits = 0x209F
R/W
F1A13-0, F1B13-0: HPF2 Coefficient (14bit x 2)
Default: F1A13-0 bits = 0x1FB0, F1B13-0 bits = 0x209F (fc = 150Hz@fs=48kHz)
Addr
Register Name
1DH
1EH
1FH
20H
LPF Co-efficient 0
LPF Co-efficient 1
LPF Co-efficient 2
LPF Co-efficient 3
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
F2A7
0
F2B7
0
F2A6
0
F2B6
0
F2A5
F2A13
F2B5
F2B13
F2A4
F2A12
F2B4
F2B12
F2A3
F2A11
F2B3
F2B11
F2A2
F2A10
F2B2
F2B10
F2A1
F2A9
F2B1
F2B9
F2A0
F2A8
F2B0
F2B8
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
F2A13-0, F2B13-0: LPF Coefficient (14bit x 2)
Default: “0000H”
015010680-E-00
2015/09
- 79 -
[AK4637]
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
21H
Digital Filter Select 3
R/W
Default
0
R
0
0
R
0
0
R
0
EQ5
R/W
0
EQ4
R/W
0
EQ3
R/W
0
EQ2
R/W
0
EQ1
R/W
0
EQ1: Equalizer 1 Coefficient Setting Enable
0: Disable (default)
1: Enable
When EQ1 bit is “1”, the settings of E1A15-0, E1B15-0 and E1C15-0 bits are enabled. When
EQ1 bit is “0”, the audio data passes the EQ1 block by 0dB gain.
EQ2: Equalizer 2 Coefficient Setting Enable
0: Disable (default)
1: Enable
When EQ2 bit is “1”, the settings of E2A15-0, E2B15-0 and E2C15-0 bits are enabled. When
EQ2 bit is “0”, the audio data passes the EQ2 block by 0dB gain.
EQ3: Equalizer 3 Coefficient Setting Enable
0: Disable (default)
1: Enable
When EQ3 bit is “1”, the settings of E3A15-0, E3B15-0 and E3C15-0 bits are enabled. When
EQ3 bit is “0”, the audio data passes the EQ3 block by 0dB gain.
EQ4: Equalizer 4 Coefficient Setting Enable
0: Disable (default)
1: Enable
When EQ4 bit is “1”, the settings of E4A15-0, E4B15-0 and E4C15-0 bits are enabled. When
EQ4 bit is “0”, the audio data passes the EQ4 block by 0dB gain.
EQ5: Equalizer 5 Coefficient Setting Enable
0: Disable (default)
1: Enable
When EQ5 bit is “1”, the settings of E5A15-0, E5B15-0 and E5C15-0 bits are enabled. When
EQ5 bit is “0”, the audio data passes the EQ5 block by 0dB gain.
015010680-E-00
2015/09
- 80 -
[AK4637]
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
E1 Co-efficient 0
E1 Co-efficient 1
E1 Co-efficient 2
E1 Co-efficient 3
E1 Co-efficient 4
E1 Co-efficient 5
E2 Co-efficient 0
E2 Co-efficient 1
E2 Co-efficient 2
E2 Co-efficient 3
E2 Co-efficient 4
E2 Co-efficient 5
E3 Co-efficient 0
E3 Co-efficient 1
E3 Co-efficient 2
E3 Co-efficient 3
E3 Co-efficient 4
E3 Co-efficient 5
E4 Co-efficient 0
E4 Co-efficient 1
E4 Co-efficient 2
E4 Co-efficient 3
E4 Co-efficient 4
E4 Co-efficient 5
E5 Co-efficient 0
E5 Co-efficient 1
E5 Co-efficient 2
E5 Co-efficient 3
E5 Co-efficient 4
E5 Co-efficient 5
E1A7
E1A15
E1B7
E1B15
E1C7
E1C15
E2A7
E2A15
E2B7
E2B15
E2C7
E2C15
E3A7
E3A15
E3B7
E3B15
E3C7
E3C15
E4A7
E4A15
E4B7
E4B15
E4C7
E4C15
E5A7
E5A15
E5B7
E5B15
E5C7
E5C15
E1A6
E1A14
E1B6
E1B14
E1C6
E1C14
E2A6
E2A14
E2B6
E2B14
E2C6
E2C14
E3A6
E3A14
E3B6
E3B14
E3C6
E3C14
E4A6
E4A14
E4B6
E4B14
E4C6
E4C14
E5A6
E5A14
E5B6
E5B14
E5C6
E5C14
E1A5
E1A13
E1B5
E1B13
E1C5
E1C13
E2A5
E2A13
E2B5
E2B13
E2C5
E2C13
E3A5
E3A13
E3B5
E3B13
E3C5
E3C13
E4A5
E4A13
E4B5
E4B13
E4C5
E4C13
E5A5
E5A13
E5B5
E5B13
E5C5
E5C13
E1A4
E1A12
E1B4
E1B12
E1C4
E1C12
E2A4
E2A12
E2B4
E2B12
E2C4
E2C12
E3A4
E3A12
E3B4
E3B12
E3C4
E3C12
E4A4
E4A12
E4B4
E4B12
E4C4
E4C12
E5A4
E5A12
E5B4
E5B12
E5C4
E5C12
E1A3
E1A11
E1B3
E1B11
E1C3
E1C11
E2A3
E2A11
E2B3
E2B11
E2C3
E2C11
E3A3
E3A11
E3B3
E3B11
E3C3
E3C11
E4A3
E4A11
E4B3
E4B11
E4C3
E4C11
E5A3
E5A11
E5B3
E5B11
E5C3
E5C11
E1A2
E1A10
E1B2
E1B10
E1C2
E1C10
E2A2
E2A10
E2B2
E2B10
E2C2
E2C10
E3A2
E3A10
E3B2
E3B10
E3C2
E3C10
E4A2
E4A10
E4B2
E4B10
E4C2
E4C10
E5A2
E5A10
E5B2
E5B10
E5C2
E5C10
E1A1
E1A9
E1B1
E1B9
E1C1
E1C9
E2A1
E2A9
E2B1
E2B9
E2C1
E2C9
E3A1
E3A9
E3B1
E3B9
E3C1
E3C9
E4A1
E4A9
E4B1
E4B9
E4C1
E4C9
E5A1
E5A9
E5B1
E5B9
E5C1
E5C9
E1A0
E1A8
E1B0
E1B8
E1C0
E1C8
E2A0
E2A8
E2B0
E2B8
E2C0
E2C8
E3A0
E3A8
E3B0
E3B8
E3C0
E3C8
E4A0
E4A8
E4B0
E4B8
E4C0
E4C8
E5A0
E5A8
E5B0
E5B8
E5C0
E5C8
R/W
Default
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3)
Default: “0000H”
E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3)
Default: “0000H”
E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3)
Default: “0000H”
E4A15-0, E4B15-0, E4C15-0: Equalizer 4 Coefficient (16bit x3)
Default: “0000H”
E5A15-0, E5B15-0, E5C15-0: Equalizer 5 Coefficient (16bit x3)
Default: “0000H”
015010680-E-00
2015/09
- 81 -
[AK4637]
10. Recommended External Circuits
Figure 65 shows the system connection diagram. An evaluation board (AKD4637) is available for fast
evaluation as well as suggestions for peripheral circuitry.
Analog Ground
Digital Ground
Speaker
Power Supply
1.6  1.98V
10u
0.1u
16 VSS1
2.2u
or 4.7u
17 VCOM
DVD 11
D
VSS2 12
SPN/NC 13
SPP/AOUT 14
0.1u
10u
AVDD 15
Power Supply
2.8  5.5V
AK4637
2.2u
18 REGFIL
TVDD
10
MCKI
9
BICK
8
FCK
7
SDTO
6
Top View
19 MPWR
C
AIN/IN+
/DMDAT
PDN
SCL
SDA
SDTI
2
3
4
5
2.2k
20 /DMCLK
1
BEEP/IN-
Beep In
0.1u 10u
Power Supply
1.6  3.6V
DSP
C
Internal MIC
P
Notes:
- VSS1 and VSS2 of the AK4637 must be distributed separately from the ground of external
controllers.
- All digital input pins must not be allowed to float.
- When the AK4637 is used in master mode, FCK pin is floating before M/S bit is changed to “1”.
Therefore, a pull-up or pull-down resistor around 100k must be connected to FCK pin of the
AK4637.
- The pull-up resistors of the SCL and SDA pins must be connected to a voltage in the range from
TVDD or more to 6V or less.
- 0.1μF capacitors at power supply pins. Other capacitors do not have specific types.
Figure 65. System Connection Diagram
015010680-E-00
2015/09
- 82 -
[AK4637]
1. Grounding and Power Supply Decoupling
The AK4637 requires careful attention to power supply and grounding arrangements. AVDD is usually
supplied from the system’s analog supply, and DVDD and TVDD are supplied from the system’s digital
power supply. If AVDD, DVDD and TVDD are supplied separately, the power-up sequence is not critical.
The PDN pin should be held “L” when power supplies are tuning on. The PDN pin is allowed to be “H”
after all power supplies are applied and settled.
To avoid pop noise on line output when power up/down, the AK4637 should be operated along the
following recommended power-up/down sequence.
1) Power-up
- The PDN pin should be held “L” when power supplies are turning on. The AK4637 can be reset by
keeping the PDN pin “L” for 200ns or longer after all power supplies are applied and settled.
2) Power-down
- Each of power supplies can be powered OFF after the PDN pin is set to “L”.
VSS1 and VSS2 of the AK4637 should be connected to the analog ground plane. System analog ground
and digital ground should be wired separately and connected together as close as possible to where the
supplies are brought onto the printed circuit board. Decoupling capacitors should be as close the power
supply pins as possible. Especially, the small value ceramic capacitor is to be closest.
2. Internal Regulated Voltage Power Supply
REGFIL is a power supply of the analog circuit (typ. 2.3V). A 2.2F ±10% capacitor attached to the VSS1
pin eliminates the effects of high frequency noise. This capacitor should be placed as near as possible to
the AK4637. No load current may be drawn from the REGFIL pin. All digital signals, especially clocks,
should be kept away from the REGFIL pin in order to avoid unwanted coupling into the AK4637.
3. Reference Voltage
VCOM is a signal ground of this chip. A 2.2F ±10%(AVDD ≤ 3.6V) or 4.7μF±10%(AVDD > 3.6V)
capacitor attached to the VSS1 pin eliminates the effects of high frequency noise. This capacitor should
be placed as near as possible to the AK4637. No load current may be drawn from the VCOM pin. All
signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling
into the AK4637. Attention must be paid to the printing pattern and the material of the capacitors to
prevent superimposed noises and voltage drops since the VCOM voltage is the reference of many
functions.
4. Analog Inputs
The microphone and line inputs support single-ended or full-differential format. When single-ended input,
the input signal range scales with nominally at typ. 2.07Vpp (@ MGAIN = 0dB), centered around the
internal signal ground (typ. 1.15V). Usually the input signal is AC coupled with a capacitor. The cut-off
frequency is fc = 1/(2RC).
5. Analog Outputs
The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for
7FFFFFH (@24bit) and a negative full scale for 800000H (@24bit). The ideal output is VCOM voltage for
000000H (@24bit data). The speaker amplifier (SPP and SPN pins) is BTL output, and they should be
connected directly to a speaker. There is no need for AC coupling capacitors. The monaural line output
(AOUT pin) is single-ended and centered on 1.5V (LVCM0 bit = “1”: default). This pin must be AC-coupled
using a capacitor.
015010680-E-00
2015/09
- 83 -
[AK4637]
11. Control Sequence
■ Clock Set Up
When ADC, DAC or Programmable Filter is powered-up, the clocks must be supplied. Turn off the power
management bits first when switching the master clock. The power management bits should be turned on
after the master clock is stabilized.
1. PLL Master Mode
Example:
Audio I/F Format: I2S Compatible (ADC & DAC)
BICK frequency at Master Mode: 64fs
Input Master Clock Select at PLL Mode: 12MHz
Sampling Frequency: 48kHz
Power Supply
(1)
(1) Power Supply & PDN pin = “L”  “H”
PDN pin
(2)
(3)
PMVCM bit
(2)Dummy Command
Addr:01H, Data:08H
Addr:05H, Data:62H
Addr:06H, Data:0BH
Addr:07H, Data:03H
(Addr:00H, D6)
>2.0ms
PMPLL bit
(Addr:01H, D2)
MCKI pin
(4)
Input
(3)Addr:00H, Data:40H
M/S bit
(Addr:01H, D3)
5ms (max)
(5)
BICK pin
FCK pin
(4)Addr:01H, Data:0CH
Output
BICK and FCK output
Figure 66. Clock Set Up Sequence (1)
<Sequence>
(1) After Power Up: PDN pin “L” → “H”
“L” time of 200ns or more is needed to reset the AK4637.
(2) After Dummy Command (Addr:00H, Data:00H) input, M/S, PLL3-0, BCKO1-0, FS3-0, MSBS,
BCKP and DIF1-0 bits must be set during this period.
(3) Power Up VCOM and Regulator: PMVCM bit = “0” → “1”
VCOM and Regulator must first be powered-up before the other block operates. Power up time
is 2.0ms (max) when the capacitance of an external capacitor for the VCOM is 2.2μF (AVDD ≤
3.6V), 4.7μF(AVDD > 3.6V) and the REGFIL pin is 2.2μF.
(4) PLL starts after PMPLL bit changes from “0” to “1” and MCKI is supplied from an external source,
and PLL lock time is 5ms (max)
(5) The AK4637 starts to output the BICK and FCK clocks after the PLL became stable. Then
normal operation starts.
015010680-E-00
2015/09
- 84 -
[AK4637]
2. PLL Slave Mode (BICK pin)
Example:
Audio I/F Format : I2S Compatible (ADC & DAC)
PLL Reference clock: BICK
BICK frequency: 64fs
Sampling Frequency: 48kHz
Power Supply
(1)
(1) Power Supply & PDN pin = “L”  “H”
PDN pin
(2)
(3)
PMVCM bit
(Addr:00H, D6)
(2) Dummy Command
Addr:05H, Data:30H
Addr:06H, Data:0BH
Addr:07H, Data:03H
>2.0ms
PMPLL bit
(Addr:01H, D2)
(4)
FCK pin
BICK pin
Input
(3) Addr:00H, Data:40H
2m (max)
Internal Clock
(4) Addr:01H, Data:04H
(5)
Figure 67. Clock Set Up Sequence (2)
<Sequence>
(1) After Power Up: PDN pin “L” → “H”
“L” time of 200ns or more is needed to reset the AK4637.
(2) After Dummy Command (Addr:00H, Data:00H) input, DIF1-0, PLL3-0, and FS3-0 bits must be
set during this period.
(3) Power Up VCOM and Regulator: PMVCM bit = “0” → “1”
VCOM and Regulator must first be powered-up before the other block operates. Power up time
is 2.0ms (max) when the capacitance of an external capacitor for the VCOM is 2.2μF (AVDD ≤
3.6V), 4.7μF(AVDD > 3.6V) and the REGFIL pin is 2.2μF.
(4) PLL starts after the PMPLL bit changes from “0” to “1” and PLL reference clock (BICK pin) is
supplied. PLL lock time is 2ms (max) when BICK is a PLL reference clock.
(5) Normal operation starts after that the PLL is locked.
015010680-E-00
2015/09
- 85 -
[AK4637]
3. EXT Slave Mode
Example:
: Audio I/F Format:
I2S Compatible (ADC and DAC)
Input MCKI frequency: 256fs
Sampling Frequency: 4 8kHz
Power Supply
(1) Power Supply & PDN pin = “L”  “H”
(1)
PDN pin
(2)
PMVCM bit
(3)
(2)Dummy Command
Addr:05H, Data:00H
Addr:06H, D3-2 bits = “10”
Addr:07H, Data:03H
(Addr:00H, D6)
(4)
MCKI pin
Input
(4)
(3) Addr:00H, Data:40H
FCK pin
BICK pin
Input
MCKI, BICK and FCK input
Figure 68. Clock Set Up Sequence (3)
<Sequence>
(1) After Power Up: PDN pin “L” → “H”
“L” time of 200ns or more is needed to reset the AK4637.
(2) After Dummy Command (Addr:00H, Data:00H) input, CM1-0, FS3-2, MSBS,BCKP and DIF1-0
bits must be set during this period.
(3) Power Up VCOM and Regulator: PMVCM bit = “0” → “1”
VCOM and Regulator must first be powered-up before the other block operates. Power up time
is 2.0ms (max) when the capacitance of an external capacitor for the VCOM is 2.2μF (AVDD ≤
3.6V), 4.7μF(AVDD > 3.6V) and the REGFIL pin is 2.2μF.
(4) Normal operation starts after the MCKI, FCK and BICK are supplied.
4. EXT Master Mode
Example:
: Audio I/F Format: I2S Compatible (ADC and DAC)
Input MCKI frequency: 256fs
Sampling Frequency: 4 8kHz
BCKO: 64fs
Power Supply
(1) Power Supply & PDN pin = “L”  “H”
(1)
PDN pin
(2) MCKI input
(4)
PMVCM bit
(Addr:00H, D6)
(3)Dummy Command
Addr:01H, Data:08H
Addr:05H, Data:02H
Addr:06H, D3-2 bits = “10”
Addr:07H, Data:03H
(2)
MCKI pin
Input
(3)
M/S bit
(Addr:01H, D3)
FCK pin
BICK pin
BICK and FCK output
Output
(4) Addr:00H, Data:40H
Figure 69. Clock Set Up Sequence (4)
<Sequence>
(1) After Power Up: PDN pin “L” → “H”
“L” time of 200ns or more is needed to reset the AK4637.
(2) MCKI is supplied.
(3) After Dummy Command (Addr:00H, Data:00H) input, BCKO1-0, CM1-0, FS3-2, MSBS,BCKP
and DIF1-0 bits are set. M/S bit should be set to “1”. Then FCK and BICK are output.
(4) Power Up VCOM and Regulator: PMVCM bit = “0” → “1”
VCOM and Regulator must first be powered-up before the other block operates. Power up time
is 2.0ms (max) when both capacitances of an external capacitor for the VCOM is 2.2μF (AVDD ≤
3.6V), 4.7μF(AVDD > 3.6V) and REGFIL pins are 2.2μF.
015010680-E-00
2015/09
- 86 -
[AK4637]
■ Microphone Input Recording
FS3-0 bits
(Addr:06H, D3-0)
1011
Example:
1011
PLL Master Mode
Audio I/F Format: I2S Compatible
MIC Amp: +18dB
MIC Power: ON
Sampling Frequency: 48kHz
ALC setting: Refer to Table 37
HPF1: fc=3.7Hz, ADRST1-0 bits = “00”
(1)
MGAIN3-0 bits
0,110,0
PMMP bit
(Addr:02H, D6,D2-0, D3)
Signal Select
(Addr:03H, D3)
Timer Select
(Addr:09H)
0,110, 1
(2)
0
0
(1) Addr:06H, Data:0BH
(3)
00H
(2) Addr:02H, Data:0EH
00H
(4)
ALC Setting
(Addr:0AH, 0BH )
(3) Addr:03H, Data:00H
60H,00H
6CH,2EH
6CH,0EH
(13)
(5)
REF7-0 bits
(Addr:0CH)
IVOL7-0 bits
(Addr:0DH)
Filter Select
(Addr:16H,17H,21H)
Digital Filter Path
(Addr:18H)
Filter Co-efficient
(Addr:19H-20H, 22H-3FH)
ALC State
E1H
E1H
(5) Addr:0AH, Data:6CH
Addr:0BH, Data:2EH
(6)
E1H
(4) Addr:09H, Data:00H
E1H
(6) Addr:0CH, Data:E1H
(7)
01H,00H,00H
01H, xxH,xxH
(7) Addr:0DH, Data:E1H
03H
(8) Addr:16H, Data:01H
Addr:17H, Data:xxH
Addr:21H, Data:xxH
(8)
03H
(9)
xxH
(9) Addr:18H, Data:03H
xxH
(10)
ALC Disable
ALC Enable
ALC Disable
PMPFIL bit
PMADC bit
(10) Addr:19H-20H,Data:xxH
Addr:22H-3FH, Data:xxH
(11) Addr:00H, Data:C1H
(Addr:00H, D7, D0)
(11)
SDTO pin
State
0 data Output
(12)
1059/fs
Initialize
Normal
Data Output
Recording
(12) Addr:00H, Data:40H
0 data output
(13) Addr:0BH, Data:0EH
Figure 70. Microphone Input Recording Sequence
<Sequence>
This sequence is an example of ALC setting at fs= 48kHz. For changing the parameter of ALC,
please refer to Table 37. At first, clocks should be supplied according to “Clock Set Up” sequence.
(1) Set up a sampling frequency (FS3-0 bits). When the AK4637 is in PLL mode, Microphone,
ADC and Programmable Filter of (12) must be powered-up in consideration of PLL lock time
after a sampling frequency is changed.
(2) Set up Microphone Amp and Microphone Power. (Addr = 02H)
(3) Set up Input Signal. (Addr = 03H)
(4) Set up FRN, FRATT and ADRST1-0 bits (Addr = 09H)
(5) Set up ALC mode. (Addr = 0AH, 0BH)
(6) Set up REF value at ALC (Addtr = 0CH)
(7) Set up IVOL value at ALC operation start (Addr = 0DH)
(8) Programmable Filter ON/OFF Setting (Addr: 16H, 17H, 21H)
(9) Set up Programmable Filter Path: PFSDO bit = ADCPF bit = “1” (Addr = 18H)
(10) Set up Coefficient Programmable Filter (Addr: 19H ~ 20H, 22H ~ 3FH)
(11) Power Up Microphone Amp, ADC and Programmable Filter: PMADC =PMPFIL bits = “0” → “1”
The initialization cycle time of ADC is 1059/fs=22ms @ fs=48kHz, ADRST1-0 bit = “00”. ADC
outputs “0” data during the initialization cycle. After the ALC bit is set to “1”, the ALC operation
starts from IVOL value of (7).
(12) Power Down Microphone Amp, ADC and Programmable Filter: PMADC = PMPFIL bits = “1” →
“0”
(13) ALC Disable: ALC bit = “1” → “0”
015010680-E-00
2015/09
- 87 -
[AK4637]
■ Digital Microphone Input
Example:
FS3-0 bits
(Addr:06H, D3-0)
PLL Master Mode
Audio I/F Format: I2S Compatible
Sampling Frequency: 48kHz
Digital MIC setting:
Data is latched on the DMCLK falling edge.
ALC setting: Refer to Table 37
HPF1: fc=3.7Hz, ADRST1-0 bits = “00”
1011
1011
(1)
Timer Select
00H
(Addr:09H)
00H
(1) Addr:06H, Data:0BH
(2)
ALC Setting
60H,00H
(Addr:0AH, 0BH)
6CH,2EH
REF7-0 bits
E1H
(Addr:0CH)
6CH,0EH
(2) Addr:09H, Data:00H
(13)
(3)
(3) Addr:0AH, Data:6CH
Addr:0BH, Data:2EH
E1H
(4)
(4) Addr:0CH, Data:E1H
IVOL7-0 bits
E1H
(Addr:0DH)
E1H
(5) Addr:0DH, Data:E1H
(5)
Filter Select
01H,00H,00H
(Addr:16H,17H,21H)
01H,xxH,xxH
(6) Addr:16H, Data:01H
Addr:17H, Data:xxH
Addr:21H, Data:xxH
(6)
Digital Filter Path
(Addr:18H)
03H
03H
(7)
Filter Co-efficient
(Addr:19H-20H,22H-3FH)
ALC State
(7) Addr:18H, Data:03H
xxH
xxH
(8) Addr:19H-20H, Data:xxH
Addr:22H-3FH, Data:xxH
(8)
ALC Disable
ALC Enable
ALC Disable
(9) Addr:00H, Data:C0H
PMPFIL bit
(10) Addr:08H, Data:11H
(Addr:00H, D5)
(9)
Digital MIC
(Addr:08H)
(12)
Recording
00H
11H
00H
(11) Addr:08H, Data:00H
1059/fs
(10)
SDTO pin
State
0 data output
(11)
Normal
Data ouput
(12) Addr:00H, Data:40H
0 data output
(13) Addr:0BH, Data:0DH
Figure 71. Digital Microphone Input Recording Sequence
<Sequence>
This sequence is an example of ALC setting at fs=48kHz. For changing the parameter of ALC,
please refer to Table 37. At first, clocks should be supplied according to “Clock Set Up” sequence.
(1) Set up a sampling frequency (FS3-0 bits). When the AK4637 is PLL mode, Digital Microphone of
(11) and Programmable Filter of (10) must be powered-up in consideration of PLL lock time after
a sampling frequency is changed.
(2) Set up FRN, FRATT and ADRST1-0 bits (Addr = 09H)
(3) Set up ALC mode. (Addr = 0AH, 0BH)
(4) Set up REF value for ALC (Addtr = 0CH)
(5) Set up IVOL value at ALC operation start (Addr = 0DH)
(6) Set up Programmable Filter ON/OFF (Addr = 16H, 17H, 21H)
(7) Set up Programmable Filter Path: PFSDO bit = ADCPF bit = “1” (Addr = 18H)
(8) Set up Coefficient of Programmable Filter (Addr:19H ~ 20H, 22H ~ 3FH)
(9) Power Up Programmable Filter: PMPFIL bit = “0” → “1”
(10) Set Up & Power Up Digital Microphone: DMIC = PMDM bits = “0” → “1”
The initialization cycle time of ADC is 1059/fs=22ms@ fs=48kHz, ADRST1-0 bit = “00”. ADC
outputs “0” data during initialization cycle. After the ALC bit is set to “1”, the ALC operation starts
from IVOL value of (5).
(11) Power Down Digital Microphone: PMDM bit = “1” → “0”
(12) Power Down Programmable Filter: PMPFIL bit = “1” → “0”
(13) ALC Disable: ALC bit = “1” → “0”
015010680-E-00
2015/09
- 88 -
[AK4637]
■ Speaker Amplifier Output
FS3-0 bits
(Addr:06H, D3-0)
1011
Example:
1011
PLL Master Mode
Audio I/F Format: I2S Compatible
Sampling Frequency: 48KHz
Output Digital Volume: 0dB
ALC setting: Refer to Table 38
Programmable Filter OFF
(1)
(14)
DACS bit
(1) Addr:06H, Data:0BH
(Addr:02H, D5)
(2)
SPKG1-0 bits
(Addr:03H, D7-6)
Timer Select
(Addr:09H)
00
(2) Addr:02H, Data:20H
01
(3)
(3) Addr:03H, Data:40H
00H
00H
(4)
ALC Setting
(Addr:0AH, 0BH)
REF7-0 bitsl
(Addr:0CH)
(4) Addr:09H, Data:00H
60H, 00H
6CH, 2EH
(5)
(5) Addr:0AH, Data:6CH
Addr:0BH, Data:2EH
E1H
A1H
(6)
IVOL7-0 bits
(Addr:0DH)
(6) Addr:0CH, Data:A1H
E1H
91H
(7) Addr:0DH, Data:91H
(7)
DVOL7-0 bits
(Addr:10H)
18H
18H
(8) Addr:10H, Data:18H
04H
(9) Addr:18H, Data:04H
(8)
Digital Filter Path
(Addr:18H)
03H
(9)
(10) Addr:00H, Data:C4H
ALC State
ALC Disable
ALC Enable
ALC Disable
(11) Addr:01H, Data:0EH
(16)
(10)
PMPFIL bit
PMDAC bit
(12) Addr:02H, Data:A0H
(Addr:00H, D2)
(11)
PMSL bit
Playback
(Addr:01H, D1)
> 1 ms
SLPSN bit
(12)
(13)
(15)
(13) Addr:02H, Data:20H
(Addr:02H, D7)
(14) Addr:02H, Data:00H
SPP pin
Hi-Z
Normal Output
Hi-Z
SPN pin
AVDD/2
Normal Output
AVDD/2
(15) Addr:01H, Data:0CH
Hi-Z
Hi-Z
(16) Addr:00H, Data:40H
Figure 72. Speaker-Amp Output Sequence
<Sequence>
At first, clocks must be supplied according to “Clock Set Up” sequence.
(1) Set up a sampling frequency (FS3-0 bits). When the AK4637 is in PLL mode, DAC,
Programmable Filter and Speaker-Amp of (10) must be powered-up in consideration of PLL
lock time after a sampling frequency is changed.
(2) Set up the path of DAC → SPK-Amp: DACS bit = “0” → “1” (Addr = 02H)
(3) SPK-Amp gain setting: SPKG1-0 bits = “00” → “01” (Addr = 03H)
(4) Set up FRN, FRATT and ADRST1-0 bits (Addr = 09H)
(5) Set up ALC mode (Addr = 0AH, 0BH)
(6) Set up REF value of ALC (Addr = 0CH)
(7) Set up IVOL value of ALC operation start (Addr = 0DH)
(8) Set up the output digital volume. (Addr = 10H)
(9) Set up Programmable Filter Path: PFDAC1-0 bits=“01”, PFSDO=ADCPF bits=“0” (Addr = 18H)
(10) Power up DAC and Programmable Filter: PMDAC=PMPFIL bits=“0”→“1” (Addr = 00H)
(11) Power up Speaker-Amp: PMSL bit=“0”→“1” (Addr = 01H)
(12) Exit the power-save mode of Speaker-Amp: SLPSN bit = “0” → “1” (Addr = 02H)
(13) Enter Speaker-Amp Power Save Mode: SLPSN bit = “1” → “0” (Addr = 02H)
(14) Disable the path of DAC → SPK-Amp: DACS bit = “1” → “0” (Addr = 02H)
(15) Power down Speaker-Amp: PMSL bit= “1”→“0” (Addr =01H)
(16) Power down DAC and Programmable Filter: PMDAC=PMPFIL bits= “1”→“0” (Addr = 00H)
015010680-E-00
2015/09
- 89 -
[AK4637]
■ Beep Signal Output from Speaker Amplifier
Example: SPKGain = +6.4dB
(SPKG1-0 bits = “00”)
PMVCM bit
(Addr:00H, D6)
(1) Addr:00H, Data:60H
Addr:01H, Data:02H
PMBP bit
(Addr:00H, D5)
(1)
(5)
PMSL bit
(2) Addr:0FH, D5 bit = “1”
(Addr:01H, D1)
(2)
(6)
BEEPS bit
(Addr:0FH, D5)
(3) Addr:02H, Data:84H
(3)
BEEP Signal Output
SLPSN bit
(Addr:02H, D7)
(4)
SPP pin
Hi-Z
Normal Output
(4) Addr:02H, Data:04H
Hi-Z
(5) Addr:00H, Data:40H
SPN pin
Hi-Z
AVDD/2
Normal Output
AVDD/2 Hi-Z
(6) Addr:03H, Data:00H
Figure 73. “BEEP-Amp → Speaker-Amp” Output Sequence
<Sequence>
Clock input is not necessary when the AK4637 is operating only on the path of “BEEP-Amp” →
“SPK-Amp”.
(1) Power up VCOM, MIN-Amp and Speaker: PMVCM = PMBP = PMSL bits = “0” → “1”
(2) Set up the path of BEEP  SPK-Amp: BEEPS bit = “0” → “1”
(3) Exit the power save mode of Speaker-Amp: SLPSN bit = “0” → “1”
Period (3) should be set according to the time constant of a capacitor and a resistor that are
connected to the BEEP pin. Pop noise may occur if the SPK-Amp output is enabled before the
BEEP-Amp input is stabilized. The BEEP Amp is powered up after VCOM voltage rise. The
maximum rise-up time of VCOM is 2msec.
(4) Enter Speaker-Amp Power-save mode: SLPSN bit = “1” → “0”
(5) Power Down BEEP-Amp and Speaker: PMBP = PMSL bits = “1” → “0”
(6) Disable the path of BEEP  SPK-Amp: BEEPS bit = “1” → “0”
015010680-E-00
2015/09
- 90 -
[AK4637]
■ Lineout Output
Example:
FS3-0 bits
(Addr:06H, D3-0)
1011
1011
(1)
(12)
LOSEL bit
(Addr:00H, D3)
PLL Master Mode
Audio I/F Format: I2S Compatible
Sampling Frequency: 48KHz
Output Digital Volume: 0dB
Line Output Gain: +2dB
Programmable Filter OFF
(1) Addr:06H, Data:0BH
(2)
(3)
(2) Addr:00H, Data:48H
DACL bit
(Addr:04H, D5)
(3) Addr:04H, Data:60H
LVCM1-0 bits
(Addr:04H, D7-6)
DVOL7-0 bits
(Addr:10H)
Digital Filter Path
(Addr:18H)
XX
01
18H
18H
(4) Addr:10H, Data:18H
(5) Addr:18H, Data:03H
(4)
(6) Addr:00H, Data:4CH
XXH
(7) Addr:01H, Data:0EH
03H
(5)
(11)
(6)
(8) Addr:02H, Data:86H
PMDAC bit
(Addr:00H, D2)
(7)
Playback
(10)
PMSL bit
(9) Addr:02H, Data:06H
(Addr:01H, D1)
(8)
(9)
(10) Addr:01H, Data:0CH
SLPSN bit
(Addr:02H, D7)
>300 ms
AOUT pin
>300 ms
Normal Output
(11) Addr:00H, Data:48H
(12) Addr:04H, Data:40H
Addr:00H, Data:40H
Figure 74. Lineout Sequence
<Sequence>
At first, clocks must be supplied according to “Clock Set Up” sequence.
(1) Set up a sampling frequency (FS3-0 bits). When the AK4637 is in PLL mode, DAC and Lineout
Output of (6) must be powered-up in consideration of PLL lock time after a sampling frequency
is changed.
(2) Enter Lineout Output Mode: LOSEL bit = “0”  “1” (Addr = 00H)
(3) Set up the path of DAC  Lineout, and Lineout gain setting:
DACL bit = “0”  “1”, LVCM1-0 bits = “xx”  “01” (Addr = 04H)
(4) Set up the output digital volume. (Addr = 10H)
(5) Set up Programmable Filter Path: PFDAC1-0 bit=“00”, PFSDO=ADCPF bits = “1” (Addr = 18H)
(6) Power up DAC: PMDAC bit = “0”  “1” (Addr = 00H)
(7) Power up Lineout Output: PMSL bit = “0”  “1” (Addr =01H)
The AOUT pin starts rising after PMSL bit = “1”. The maximum rise-up time to 99% VCOM
voltage is 300ms when C = 1F and RL=10k.
(8) Exit the power-save mode of Lineout Output: SLPSN bit = “0”  “1” (Addr = 04H)
SLPSN bit should be set after the AOUT pin is risen up. The AOUT pin starts to output
sound data after SLPSN bit = “0”  “1”.
(9) Enter Lineout Output Power Save Mode: SLPSN bit = “1”  “0” (Addr = 04H)
(10) Power down Lineout Output: PMSL bit = “1”  “0” (Addr = 01H)
(11) Power down DAC: PMDAC bit = “1”  “0” (Addr = 00H)
The AOUT pin is powered down after PMSL bit = “0”. The maximum power down time to 1%
VCOM voltage is 300ms.
(12) Exit the path of DAC  Lineout: DACL bit = “1”  “0” (Addr = 04H)
Exit Lineout Output Mode: LOSEL bit = “1”  “0” (Addr = 00H)
DACL and LOSEL bits should be set after the AOUT pin is powered down.
015010680-E-00
2015/09
- 91 -
[AK4637]
■ Stop of Clock
When ADC, DAC or Programmable Filter is powered-up, the clocks must be supplied.
1.
PLL Master Mode
Example:
Audio I/F Format: I2S Compatible (ADC & DAC)
BICK frequency at Master Mode: 64fs
Input Master Clock Select at PLL Mode: 12MHz
(1)
PMPLL bit
(Addr:01H, D2)
(1) Addr:01H, Data:08H
(2)
External MCKI
Input
(2) Stop an external MCKI
Figure 75. Clock Stopping Sequence (1)
<Sequence>
(1) Power down PLL: PMPLL bit = “1”  “0”
(2) Stop an external master clock.
2.
PLL Slave Mode (BICK pin)
Example
(1)
PMPLL bit
: I/F Format: I2S Compatible (ADC & DAC)
Audio
PLL Reference clock: BICK
BICK frequency: 64fs
(Addr:01H, D2)
(2)
External BICK
Input
(1) Addr:01H, Data:00H
(2)
External FCK
Input
(2) Stop the external clocks
Figure 76. Clock Stopping Sequence (2)
<Sequence>
(1) Power down PLL: PMPLL bit = “1”  “0”
(2) Stop an external master clock.
3.
EXT Slave Mode
(1)
External MCKI
Example
:Audio I/F Format: I2S Compatible (ADC & DAC)
Input
Input MCKI frequency: 256fs
(1)
External BICK
Input
(1) Stop the external clocks
(1)
External FCK
Input
Figure 77. Clock Stopping Sequence (3)
<Sequence>
(1) Stop the external MCKI, BICK and FCK clocks.
015010680-E-00
2015/09
- 92 -
[AK4637]
4.
EXT Master Mode
(1)
External MCKI
Example
:Audio I/F Format: I2S Compatible (ADC & DAC)
Input
Input MCKI frequency: 256fs
BICK
Output
"H" or "L"
FCK
Output
"H" or "L"
(1) Stop the external MCKI
Figure 78. Clock Stopping Sequence (4)
<Sequence>
(1) Stop an external master clock. BICK and FCK are fixed to “H” or “L”.
■ Power Down
Power supply current cannot be shut down by stopping clocks and setting PMVCM bit = “0”. Power supply
current can be shut down (typ. 1A) by stopping clocks and setting the PDN pin = “L”. When the PDN pin
= “L”, all registers are initialized.
015010680-E-00
2015/09
- 93 -
[AK4637]
12. Package
■ Outline Dimensions
20-pin QFN (Unit: mm)
C0.25
0.75 ± 0.05
B
16
20
1
15
A
10
3.00 ± 0.05
Exposed
Pad
6
0~0.05
0.20 ± 0.05
0.07 M C A B
(0.20)
0.40
0.30 ± 0.05
1.90 ± 0.10
(0.25)
3.00 ± 0.05
1.90 ± 0.10
0.05 C
C
Note. The exposed pad on the bottom surface of the package must be connected to the ground.
■ Material & Lead finish
Package molding compound: Epoxy Resin, Halogen (Br and Cl) free
Lead frame material: Cu Alloy
Pin surface treatment: Solder (Pb free) plate
■ Marking
4637
XXXX
1
XXXX: Date code (4 digit)
Pin #1 indication
015010680-E-00
2015/09
- 94 -
[AK4637]
13. Ordering Guide
40  +85C
20-pin QFN (0.4mm pitch)
Evaluation board for AK4637EN
AK4637EN
AKD4637EN
14. Revision History
Date (Y/M/D)
15/09/30
Revision
00
Reason
First Edition
Page
Contents
015010680-E-00
2015/09
- 95 -
[AK4637]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application of
AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM
or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and
application examples of AKM Products. AKM neither makes warranties or representations with
respect to the accuracy or completeness of the information contained in this document nor grants any
license to any intellectual property rights or any other rights of AKM or any third party with respect
to the information in this document. You are fully responsible for use of such information contained
in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR
ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF
SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact, including
but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry,
medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
signaling equipment, equipment used to control combustions or explosions, safety devices, elevators
and escalators, devices related to electric power, and equipment used in finance-related fields. Do not
use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible
for complying with safety standards and for providing adequate designs and safeguards for your
hardware, software and systems which minimize risk and avoid situations in which a malfunction or
failure of the Product could cause loss of human life, bodily injury or damage to property, including
data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or related
technology or any information contained in this document, you should comply with the applicable
export control laws and regulations and follow the procedures required by such laws and regulations.
The Products and related technology may not be used for or incorporated into any products or
systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth
in this document shall immediately void any warranty granted by AKM for the Product and shall not
create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of AKM.
015010680-E-00
2015/09
- 96 -