AK4436VN

[AK4436]
AK4436
108dB 768kHz 32bit 6-Channel Audio DAC
1. General Description
The AK4436 is an 6-channel 32-bit DAC which corresponds to digital audio systems. An internal circuit
includes newly developed 32-bit Digital Filter achieving short group delay and high quality sound. It
corresponds to a 768kHz PCM input at maximum, suitable for play backing high resolution audio sources
that are becoming widespread in network audios, USB-DACs and Car Audio Systems. In addition,
“OSR-Doubler” technology is newly adopted, making the AK4436 capable of supporting wide range
signals and achieving low out-of-band noise while realizing low power consumption. Moreover, the
AK4436 has five types of 32-bit digital filters, realizing simple and flexible sound making in wide range of
applications.
Application: AV Receivers, CD/SACD Players, Network Audios, USB DACs, USB Headphones, Sound
Plate/Bars, Car Audios, Automotive External Amplifiers, Measuring Instruments and Control
Systems.
2. Features
1. 6ch 32bit DAC
- 256 x Over sampling
- 32-bit High Quality Sound Short Delay Digital Filter
- Single-ended Output, Smoothing Filter
- THD+N: 91dB
- DR, S/N: 108dB
- Channel Independent Digital Volume Control (0dB~-127dB, 0.5dB Step, Mute)
- Soft Mute
- De-emphasis Filter (supporting 32kHz, 44.1kHz and 48kHz)
- I/F Format: MSB justified, LSB justified, I2S, TDM
- Zero Detection
2. Sampling Frequency
- Normal Speed Mode: 8kHz to 48kHz
- Double Speed Mode: 48kHz to 96kHz
- Quad Speed Mode: 96kHz to 192kHz
- Oct Speed
Mode: 384kHz
- Hex Speed
Mode: 768kHz
3. Master Clock
256fs, 384fs or 512fs, 768fs (Normal Speed Mode: fs=8kHz  48kHz)
256fs, 384fs
(Double Speed Mode: fs=48kHz  96kHz)
128fs, 192fs
(Quad Speed Mode: fs=96kHz  192kHz)
64fs, 96fs
(Oct Speed Mode: fs=384kHz)
32fs, 48fs
(Hex Speed Mode: fs=768kHz)
4. P Interface: 3-wire Serial/ I2C bus (Ver 1.0, 400kHz mode)
5. Power Supply
- Analog Supply: AVDD = 3.0  3.6V
- In/Output Buffer: TVDD = 1.7  3.6V
- Integrated LDO for Digital Power Supply
8. Power Consumption: 24mA (fs=48kHz)
9. Operating Temperature: Ta = - 40  105℃
10. Package: 32-pin QFN(0.5mm pitch)
016001934-E-00
2016/03
-1-
[AK4436]
3. Table of Contents
1.
2.
3.
4.
5.
General Description ............................................................................................................................. 1
Features............................................................................................................................................... 1
Table of Contents ................................................................................................................................ 2
Block Diagram and Functions ............................................................................................................. 3
Pin Configurations and Functions ....................................................................................................... 4
■ Pin Configurations .............................................................................................................................. 4
■ Pin Functions...................................................................................................................................... 5
■ Handling of Unused Pin ..................................................................................................................... 6
6. Absolute Maximum Ratings................................................................................................................. 7
7. Recommended Operation Conditions ................................................................................................. 7
8. Electrical Characteristics ..................................................................................................................... 8
9. Filter Characteristics (fs=48kHz) ......................................................................................................... 9
■ Sharp Roll-Off Filter (SD bit = “0”, SLOW bit = “0”) ........................................................................... 9
■ Slow Roll-Off Filter (SD bit = “0”, SLOW bit = “1”) ........................................................................... 10
■ Short Delay Sharp Roll-Off Filter (SD bit = “1”, SLOW bit = “0”) ..................................................... 11
■ Short Delay Slow Roll-Off Filter (SD bit = “1”, SLOW bit = “1”) ....................................................... 12
10. DC Characteristics ......................................................................................................................... 13
11. Switching Characteristics ............................................................................................................... 14
■ Timing Diagram ................................................................................................................................ 17
12. Functional Descriptions.................................................................................................................. 21
■ System Clock ................................................................................................................................... 21
■ De-emphasis Filter ........................................................................................................................... 24
■ Audio Interface Format..................................................................................................................... 25
■ Digital Filter ...................................................................................................................................... 34
■ Zero Detection .................................................................................................................................. 34
■ Digital Volume Function ................................................................................................................... 35
■ Soft Mute Operation ......................................................................................................................... 38
■ Error Detection ................................................................................................................................. 39
■ System Reset ................................................................................................................................... 39
■ Power Down Function ...................................................................................................................... 40
■ Power Off and Reset Functions ....................................................................................................... 41
■ Clock Synchronization ..................................................................................................................... 45
■ Parallel Mode ................................................................................................................................... 47
■ Audio Interface ................................................................................................................................. 47
■ Soft Mute .......................................................................................................................................... 47
■ Serial Control Interface .................................................................................................................... 48
■ Register Map .................................................................................................................................... 52
■ Register Definitions .......................................................................................................................... 53
13. Recommended External Circuits ................................................................................................... 58
■ Typical Connection Diagram ............................................................................................................ 58
14. Package ......................................................................................................................................... 61
■ Outline Dimensions .......................................................................................................................... 61
■ Material & Lead Finish ..................................................................................................................... 61
■ Marking............................................................................................................................................. 62
15. Ordering Guide............................................................................................................................... 62
■ Ordering Guide ................................................................................................................................. 62
16. Revision History ............................................................................................................................. 62
IMPORTANT NOTICE............................................................................................................................ 63
016001934-E-00
2016/03
-2-
[AK4436]
4. Block Diagram and Functions

Modulator
Audio
I/F
AOUTL1
SMF
SCF
AOUTR1
SMF
SCF
MCLK
MCLK
LRCK
BICK
LRCK
BICK
AOUTL2
SMF
SCF
AOUTR2
SMF
SCF
AOUTL3
SMF
SCF
AOUTR3
SMF
SCF
8X
Interpolator
DATT
Soft Mute

Modulator
8X
Interpolator
DATT
Soft Mute

Modulator
8X
Interpolator
DATT
Soft Mute
SDIN1
SDTI1
SDIN2
SDTI2
SDIN3
SDTI3
TST1
TST2
TST3
uP I/F
(I2C/SPI)
VREFL
CAD0_I2C/CSN/DIF
SCL/CCLK/TDM1
SDA/CDTI/TDM0
VREFH
VSS2
AVDD
PDN
I2C
TEST
SMUTE/CAD1
PS/CAD0_SPI
LDO
VCOM
DZF
TVDD VSS1 LDOO
Figure 1. Block Diagram
016001934-E-00
2016/03
-3-
[AK4436]
5. Pin Configurations and Functions
AOUTL3
AVDD
VSS2
VCOM
VREFL
VREFH
AOUTR2
AOUTL2
24
23
22
21
20
19
18
17
■ Pin Configurations
25
16
AOUTR1
TST2
26
15
AOUTL1
TST3
27
14
PS/CAD0_SPI
TEST
28
13
CAD0_I2C/CSN/DIF
I2C
29
12
SCL/ CCLK/TDM1
TVDD
30
11
SDA/ CDTI /TDM0
VSS1
31
10
SMUTE / CAD1
LDOO
32
Top View
Back TAB:Note
1
2
3
4
5
6
7
8
BICK
LRCK
SDTI1
SDTI2
SDTI3
TST1
DZF
9
MCLK
AOUTR3
PDN
Figure 2. Pin Configurations
Note: The exposed pad on the bottom surface of the package must be open or connected to the analog
ground.
016001934-E-00
2016/03
-4-
[AK4436]
■ Pin Functions
Pin Name
I/O
PD state
1
2
3
4
5
6
7
8
MCLK
BICK
LRCK
SDTI1
SDTI2
SDTI3
TST1
DZF
I
I
I
I
I
I
I
O
Hi-z
Hi-z
Hi-z
Hi-z
Hi-z
Hi-z
Hi-z
50kΩ, Pull-down
9
PDN
I
Hi-z
SMUTE
I
No.
10
11
12
13
CAD1
SDA
CDTI
TDM0
SCL
CCLK
TDM1
CAD0_I2C
CSN
I
I/O
I
I
I
I
I
I
I
Hi-z
Hi-z
Hi-z
Hi-z
DIF
I
PS
I
15
16
17
18
19
20
CAD0_SPI
AOUTL1
AOUTR1
AOUTL2
AOUTR2
VREFH
VREFL
I
O
O
O
O
-
Hi-z
Hi-z
Hi-z
Hi-z
Hi-z
Hi-z
21
VCOM
O
500Ω, Pull-down
22
23
24
25
26
27
28
VSS2
AVDD
AOUTL3
AOUTR3
TST2
TST3
TEST
O
O
O
O
-
Hi-z
Hi-z
Hi-z
Hi-z
25kΩ, Pull-down
29
I2C
I
Hi-z
30
31
TVDD
VSS1
32
LDOO
O
580Ω, Pull-down
14
Hi-z
Function
External Master Clock Input Pin
Audio Serial Data Clock Pin
Input Channel Clock Pin
Audio Serial Data Input
Audio Serial Data Input
Audio Serial Data Input
Test pin. This pin must be connected to VSS1.
Zero Input Detect in I2C Bus or 3-wire serial control mode
Power-Down & Reset Pin.
When “L”, the AK4436 is powered-down and the control registers are
reset to default state.
Soft Mute Pin in Parallel control mode.
When this pin is changed to “H”, soft mute cycle is initiated. When
returning “L”, the output mute releases.
2
Chip Address 1 Pin in I C Bus or 3-wire serial control mode
2
Control Data Input Pin in I C Bus serial control mode
Control Data Input Pin in 3-wire serial control mode
TDM Mode select pin in Parallel control mode.
2
Control Data Clock Pin in I C Bus serial control mode
Control Data Clock Pin in 3-wire serial control mode
TDM Mode select pin in Parallel control mode.
2
Chip Address 0 Pin in I C Bus serial control mode
Chip Select Pin in 3-wire serial control mode
Audio Data Format Select in Parallel control mode.
“L”: 32bit MSB, “H”: 32bit I2S
(I2C pin = “H”) Control Mode Select Pin
2
“L”: I C Bus serial control mode, “H”: Parallel control mode.
(I2C pin = “L”) Chip Address 0 Pin in 3-wire serial control mode
Lch Analog Output Pin
Rch Analog Output Pin
Lch Analog Output Pin
Rch Analog Output Pin
Positive Voltage Reference Input Pin, AVDD
Negative Voltage Reference Input Pin, VSS2
Common Voltage Output Pin, AVDDx1/2
Large external capacitor around 2.2µF is used to reduce
power-supply noise.
Analog Ground Pin
Analog Power Supply Pin, 3.0V3.6V
Lch Analog Output Pin
Rch Analog Output Pin
Test pin. This pin must be open.
Test pin. This pin must be open.
This pin must be connected to VSS1.
Control Mode Select Pin
“L”: 3-wire serial control mode
2
“H”: I C Bus serial control mode or Parallel control mode.
Digital Power Supply Pin, 1.7V3.6V
Digital Ground Pin
LDO Output Pin.
This pin must be connected to ground with 2.2uF ±50
Note 1. All digital input pins must not be allowed to float.
016001934-E-00
2016/03
-5-
[AK4436]
■ Handling of Unused Pin
Unused I/O pins must be connected appropriately.
Classification
Analog
Digital
Pin Name
AOUTL1-3, AOUTR1-3
DZF
SDTI1-3
Setting
Open
Open
Connect to VSS1
016001934-E-00
2016/03
-6-
[AK4436]
6. Absolute Maximum Ratings
(VSS1=VSS2=0V; Note 2)
Parameter
Symbol
Min.
Max.
Unit
Power Supplies
Analog
AVDD
-0.3
4.3
V
Digital
TVDD
-0.3
4.3
V
Difference (VSS1 ~ 2)
ΔGND
-0.3
0.3
V
Input Current (any pins except for supplies)
IIN
mA
10
Digital Input Voltage
VIND
-0.3
TVDD+0.3
V
Ambient Temperature (power applied)
Ta
-40
105
C
Storage Temperature
Tstg
-65
150
C
Note 2. All voltages with respect to ground. VSS1 and VSS2 must be connected to the same analog
ground plane.
Note 3. The maximum Digital input voltage is smaller value between (LVDD+0.3)V and 4.3V.
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
7. Recommended Operation Conditions
(VSS1=VSS2=0V; Note 2)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Analog
AVDD
3.0
3.3
3.6
V
Power Supplies
Digital
TVDD
1.7
3.3
3.6
V
Voltage Reference “H” voltage reference
VREFH
AVDD0.5
AVDD
V
(Note 5)
“L” voltage reference
VREFL
VSS2
V
Note 4. The power up sequence between AVDD and TVDD is not critical.
Note 5. The VREFL pin must be connected to VSS2.
Note 6. Do not turn off the power supply of the AK4436 with the power supply of the peripheral device
turned on. When using the I2C interface, pull-up resistors of SDA and SCL pins should be
connected to TVDD or less voltage.
* AKM assumes no responsibility for the usage beyond the conditions in this data sheet.
016001934-E-00
2016/03
-7-
[AK4436]
8. Electrical Characteristics
(Ta=25C; AVDD =TVDD=3.3V; VSS1=VSS2 =0V; VREFH=AVDD; fs=48kHz; BICK=64fs; Signal
Frequency=1kHz; 32bit Data; Measurement Frequency=20Hz20kHz at 48kHz, 20Hz~40kHz at
fs=96kHz, 20Hz~40kHz at fs=192kHz, unless otherwise specified.)
Parameter
Min.
Typ.
Max.
Unit
DAC Analog Output Characteristics
Resolution
32
bit
Output Voltage
(Note 7)
2.55
2.83
3.11
Vpp
S/(N+D)
fs=48kHz
80
91
dB
(0dBFS)
fs=96kHz
89
dB
fs=192kHz
89
dB
Dynamic Range
fs=48kHz (A-weighted)
104
108
dB
(-60dBFS)
fs=96kHz
101
dB
fs=192kHz
101
dB
S/N
fs=48kHz (A-weighted)
104
108
dB
fs=96kHz
101
dB
fs=192kHz
101
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0
0.7
dB
Load Resistance
(Note 8)
10
k
Load Capacitance
30
pF
Power Supply Rejection
(Note 9)
50
dB
Note 7. Full-scale output voltage. The output voltage is always proportional to AVDD (AVDD x 0.86).
Note 8. AC Load
Note 9. This is a value when applying a 1kHz 50mVpp sine wave to AVDD.
Parameter
Min.
Typ.
Max.
Power Supplies
Power Supply Current
Normal Operation (PDN pin = “H”)
AVDD
fs=48kHz, 96kHz, 192kHz
21
28
TVDD
fs=48kHz
2.8
3.7
TVDD
fs=96kHz
4.2
5.5
TVDD
fs=192kHz
6.7
8.8
Power-down mode
(PDN pin = “L”) (Note 10)
AVDD+TVDD
10
200
Note 10. Quiescent Current. All digital input pins including clock pins are fixed to VSS.
016001934-E-00
Unit
mA
mA
mA
mA
µA
2016/03
-8-
[AK4436]
9. Filter Characteristics (fs=48kHz)
(Ta= -40  +105C; AVDD =3.0 3.6V, TVDD=1.7 3.6V; DEM=OFF)
■ Sharp Roll-Off Filter (SD bit = “0”, SLOW bit = “0”)
fs=44.1kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 11)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response : 0  20.0kHz
Passband
(Note 11)
fs=96kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 11)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 11)
fs=192kHz
Parameter
Digital Filter
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
Max.
Unit
20.0
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
43.5
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
21.5
-0.0032
24.1
80
-
0.0032
26.8
-0.26
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
46.8
-0.0032
52.5
80
-
0.0032
0
26.8
-0.53
Symbol
Min.
Typ.
0.05dB
PB
0
87.0
kHz
3.0dB
PB
93.6
kHz
Passband Ripple
(Note 12)
PR
-0.0032
0.0032
dB
Stopband
(Note 11)
SB
105
kHz
Stopband Attenuation
(Note 14)
SA
80
dB
Group Delay
(Note 13)
GD
26.8
1/fs
Digital Filter + SCF + SMF (Note 14)
Frequency Response : 0  20.0kHz
-1.9
0.1
dB
Note 11. The pass band and stop band frequencies scale with fs. For example, PB=0.4535×fs,
SB=0.546×fs.
Note 12. It is the pass band gain amplitude of the double over sampling filter at the first step of the
Interpolator.
Note 13. The calculating delay time which occurred by digital filtering. This time is from setting the
16/20/24/32bit data of both channels to input register to the output of analog signal.
Note 14. The output level is assumed as 0dB when inputting a 1kHz 0dB sine wave.
Passband
(Note 11)
*Digital filter characteristics are based on simulation results.
016001934-E-00
2016/03
-9-
[AK4436]
■ Slow Roll-Off Filter (SD bit = “0”, SLOW bit = “1”)
fs=44.1kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 15)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 15)
fs=96kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 15)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 15)
fs=192kHz
Parameter
Digital Filter
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
Max.
Unit
8.1
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
17.7
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
18.2
-0.043
39.2
73
-
0.0032
6.3
-5.06
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
39.5
-0.043
85.3
73
-
0.043
6.3
-5.23
Symbol
Min.
Typ.
0.05dB
PB
0
35.5
3.0dB
PB
79.0
Passband Ripple
(Note 12)
PR
-0.043
0.043
Stopband
(Note 15)
SB
171
Stopband Attenuation
(Note 14)
SA
73
Group Delay
(Note 13)
GD
6.3
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
-5.90
0.1
Note 15. The pass band and stop band frequencies scale with fs. For example, PB=0.185×fs,
SB=0.888×fs.
Passband
(Note 15)
016001934-E-00
kHz
kHz
dB
kHz
dB
1/fs
dB
2016/03
- 10 -
[AK4436]
■ Short Delay Sharp Roll-Off Filter (SD bit = “1”, SLOW bit = “0”)
fs=44.1kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 11)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 11)
fs=96kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 11)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 11)
fs=192kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 11)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 11)
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
Max.
Unit
20.0
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
43.5
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
87.0
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
21.5
-0.0031
24.1
80
-
0.0031
5.8
-0.26
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
46.8
-0.0031
52.5
80
-
0.0031
0
5.8
-0.53
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
93.6
-0.0031
105
80
-1.9
016001934-E-00
0.0031
5.8
2016/03
- 11 -
[AK4436]
■ Short Delay Slow Roll-Off Filter (SD bit = “1”, SLOW bit = “1”)
fs=44.1kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 16)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 16)
fs=96kHz
Parameter
Digital Filter
0.05dB
3.0dB
Passband Ripple
(Note 12)
Stopband
(Note 16)
Stopband Attenuation
(Note 14)
Group Delay
(Note 13)
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
Passband
(Note 16)
fs=192kH
Parameter
Digital Filter
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
Max.
Unit
11.1
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
24.2
-
kHz
kHz
dB
kHz
dB
1/fs
0.1
dB
Max.
Unit
19.4
-0.05
38.1
82
-
0.05
4.8
-5.06
Symbol
Min.
PB
PB
PR
SB
SA
GD
0
Typ.
42.1
-0.05
83.0
82
-
0.05
4.8
-5.23
Symbol
Min.
Typ.
0.05dB
PB
0
48.4
3.0dB
PB
84.3
Passband Ripple
(Note 12)
PR
-0.05
0.05
Stopband
(Note 16)
SB
165.9
Stopband Attenuation
(Note 14)
SA
82
Group Delay
(Note 13)
GD
4.8
Digital Filter + SCF + SMF (Note 14)
Frequency Response: 0  20.0kHz
-5.90
0.1
Note 16. The pass band and stop band frequencies scale with fs. For example, PB=0.252×fs,
SB=0.864×fs.
Passband
(Note 16)
016001934-E-00
kHz
kHz
dB
kHz
dB
1/fs
dB
2016/03
- 12 -
[AK4436]
10. DC Characteristics
(Ta= -40  +105C; AVDD =3.0 3.6V, TVDD=1.7 3.6V)
Parameter
Symbol
Min.
TVDD=1.7V  3.0V
High-Level Input Voltage
VIH1
80%TVDD
Low-Level Input Voltage
VIL1
TVDD=3.0V  3.6V
High-Level Input Voltage
VIH2
70%TVDD
Low-Level Input Voltage
VIL2
High-Level Output Voltage
VOH
TVDD0.5
(DZF pins: Iout= -100µA)
Low-Level Output Voltage
(DZF pin : Iout= 100µA)
VOL1
(SDA pin, 2.0V  TVDD  3.6V: Iout= 3mA)
VOL2
(SDA pin, 1.7V  TVDD  2.0V: Iout= 3mA)
VOL3
Input Leakage Current
Iin
-
016001934-E-00
Typ.
Max.
Unit
-
20%TVDD
V
V
-
30%TVDD
V
V
-
-
V
-
0.5
0.4
20%TVDD
10
V
V
V
A
-
2016/03
- 13 -
[AK4436]
11. Switching Characteristics
(Ta=-40  105C; AVDD=3.0  3.6V, TVDD=1.7  3.6V; CL=20pF, unless otherwise specified.)
Parameter
Symbol
Min.
Typ.
Max.
Master Clock Timing
External Clock
256fsn:
fCLK
2.048
12.288
Pulse Width Low
tCLKL
32
Pulse Width High
tCLKH
32
384fsn:
fCLK
3.072
18.432
Pulse Width Low
tCLKL
22
Pulse Width High
tCLKH
22
512fsn, 256fsd, 128fsq, 64fso, 32fsh:
fCLK
4.096
24.576
Pulse Width Low
tCLKL
16
Pulse Width High
tCLKH
16
768fsn, 384fsd, 192fsq, 96fso, 48fsh:
fCLK
6.144
36.864
Pulse Width Low
tCLKL
11
Pulse Width High
tCLKH
11
LRCK Timing (Slave mode)
Stereo mode
(TDM1-0 bits = “00”)
Normal Speed Mode
fsn
8
48
Double Speed Mode
fsd
48
96
Quad Speed Mode
fsq
96
192
Oct speed mode
fso
384
Hex speed mode
fsh
768
Duty Cycle
Duty
45
55
TDM128 mode
(TDM1-0 bits = “01”)
LRCK frequency
fsn
8
48
fsd
48
96
fsq
96
192
“H” time
tLRH
1/128fs
“L” time
tLRL
1/128fs
TDM256 mode
(TDM1-0 bits = “10”)
LRCK frequency
fsn
8
48
fsd
48
96
“H” time
tLRH
1/256fs
“L” time
tLRL
1/256fs
TDM512 mode
(TDM1-0 bits = “11”)
LRCK frequency
fsn
8
48
“H” time
tLRH
1/512fs
“L” time
tLRL
1/512fs
016001934-E-00
Unit
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
MHz
ns
ns
kHz
kHz
kHz
kHz
kHz
%
kHz
kHz
kHz
ns
ns
kHz
kHz
ns
ns
kHz
ns
ns
2016/03
- 14 -
[AK4436]
Parameter
Symbol
Min.
Typ.
Audio Interface Timing
Stereo mode (TDM1-0 bits = “00”)
BICK Period
Normal Speed Mode
tBCK
1/256fsn
Double Speed Mode
tBCK
1/128fsd
Quad Speed Mode
tBCK
1/64fsq
Oct Speed Mode
tBCK
1/64fso
Hex Speed Mode
tBCK
1/64fsh
BICK Pulse Width Low
tBCKL
9
BICK Pulse Width High
tBCKH
9
tLRB
5
LRCK Edge to BICK “”
(Note 17)
tBLR
5
BICK “” to LRCK Edge
(Note 17)
tSDH
5
SDTI Hold Time
5
tSDS
SDTI Setup Time
TDM128 mode (TDM1-0 bits = “01”)
BICK Period
Normal Speed Mode
tBCK
1/128fsn
Double Speed Mode
tBCK
1/128fsd
Quad Speed Mode
tBCK
1/128fsq
BICK Pulse Width Low
tBCKL
16
BICK Pulse Width High
tBCKH
16
tBLR
5
LRCK Edge to BICK “”
(Note 17)
tLRB
5
BICK “” to LRCK Edge
(Note 17)
tSDH
5
SDTI Hold Time
tSDS
5
SDTI Setup Time
TDM256 mode (TDM1-0 bits = “10”)
BICK Period
Normal Speed Mode
tBCK
1/256fsn
Double Speed Mode
tBCK
1/256fsd
BICK Pulse Width Low
tBCKL
16
BICK Pulse Width High
tBCKH
16
LRCK Edge to BICK “”
(Note 17)
tBLR
5
tLRB
5
BICK “” to LRCK Edge
(Note 17)
tSDH
5
SDTI Hold Time
tSDS
5
SDTI Setup Time
TDM512 mode (TDM1-0 bits = “11”)
BICK Period
Normal Speed Mode
tBCK
1/512fsn
BICK Pulse Width Low
tBCKL
16
BICK Pulse Width High
tBCKH
16
LRCK Edge to BICK “”
(Note 17)
tBLR
5
tLRB
5
BICK “” to LRCK Edge
(Note 17)
tSDH
5
SDTI Hold Time
tSDS
5
SDTI Setup Time
Note 17. BICK rising edge must not occur at the same time as LRCK edge.
016001934-E-00
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
2016/03
- 15 -
[AK4436]
Parameter
Control Interface Timing (3-wire Serial mode):
CCLK Period
CCLK Pulse Width Low
Pulse Width High
CDTI Setup Time
CDTI Hold Time
CSN “H” Time
CSN “” to CCLK “”
CCLK “” to CSN “”
Control Interface Timing (I2C Bus mode):
SCL Clock Frequency
Bus Free Time Between Transmissions
Start Condition Hold Time (prior to first clock pulse)
Clock Low Time
Clock High Time
Setup Time for Repeated Start Condition
SDA Hold Time from SCL Falling
(Note 18)
SDA Setup Time from SCL Rising
Rise Time of Both SDA and SCL Lines
Fall Time of Both SDA and SCL Lines
Setup Time for Stop Condition
Pulse Width of Spike Noise Suppressed by Input Filter
Capacitive load on bus
Power-down & Reset Timing
PDN Pulse Width
(Note 19)
Symbol
Min.
tCCK
tCCKL
tCCKH
tCDS
tCDH
tCSW
tCSS
tCSH
200
80
80
40
40
150
50
50
fSCL
tBUF
tHD:STA
tLOW
tHIGH
tSU:STA
tHD:DAT
tSU:DAT
tR
tF
tSU:STO
tSP
Cb
1.3
0.6
1.3
0.6
0.6
0
0.1
0.6
0
-
Typ.
Max.
Unit
ns
ns
ns
ns
ns
ns
ns
ns
400
1.0
0.3
50
400
kHz
s
s
s
s
s
s
s
s
s
ns
pF
tAPD
800
ns
tRPD
50
ns
Note 18. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
Note 19. The AK4436 can be reset by setting the PDN pin to “L” upon power-up. The PDN pin must held
“L” for more than 800ns for a certain reset. The AK4436 is not reset by the “L” pulse less than
50ns.
Note 20. I2C-bus is a trademark of NXP B.V.
PDN Reject Pulse Width
016001934-E-00
2016/03
- 16 -
[AK4436]
■ Timing Diagram
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fsn, 1/fsd, 1/fsq
VIH
LRCK
VIL
tdLRKH
tdLRKL
Duty
= tdLRKH (or tdLRKL) x fs x 100
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 3. Clock Timing (TDM1-0 bits = “00”)
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tLRH
tLRL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 4. Clock Timing (Except TDM1-0 bits = “00”)
016001934-E-00
2016/03
- 17 -
[AK4436]
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tSDS
tSDH
VIH
SDTI
VIL
Figure 5. Audio Interface Timing (TDM1-0 bits = “00”)
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tSDS
tSDH
VIH
SDTI
VIL
Figure 6. Audio Interface Timing (Except TDM1-0 bits = “00”)
016001934-E-00
2016/03
- 18 -
[AK4436]
VIH
CSN
VIL
tCSH
tCSS
tCCKL
tCCKH
VIH
CCLK
VIL
tCDS
tCDH
VIH
CDTI
C1
C0
R/W
VIL
Figure 7. WRITE Command Input Timing (3-wire Serial mode)
tCSW
VIH
CSN
VIL
tCSH
tCSS
VIH
CCLK
VIL
VIH
CDTI
D2
D1
D0
VIL
Figure 8. WRITE Data Input Timing (3-wire Serial mode)
016001934-E-00
2016/03
- 19 -
[AK4436]
VIH
SDA
VIL
tLOW
tBUF
tR
tHIGH
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
tHD:DAT
tSU:DAT
Start
tSU:STA
tSU:STO
Start
Stop
2
Figure 9. I C Bus mode Timing
tAPD
tRPD
PDN
VIL
Figure 10. Power-down & Reset Timing
016001934-E-00
2016/03
- 20 -
[AK4436]
12. Functional Descriptions
■ System Clock
The external clocks which are required to operate the AK4436 are MCLK, LRCK and BICK. MCLK should
be synchronized with LRCK and BICK but the phase is not critical. There are two methods to set MCLK
frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS2-0 bit
(Table 1). The frequency of MCLK at each sampling speed is set automatically (Table 2, Table 3). In Auto
Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 4) and the internal
master clock attains the appropriate frequency (Table 5), so it is not necessary to set DFS2-0 bits.
After exiting reset at power-up (PDN pin = “L” →“H”), the AK4436 is in power-down mode until MCLK and
LRCK are input. The AK4436 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When
changing the clock, the AK4436 must be reset by the PDN pin or RSTN bit.
If the clock is stopped, a click noise occurs when restarting the clock. Mute the digital output externally if
the click noise affects system applications.
016001934-E-00
2016/03
- 21 -
[AK4436]
1. Manual Setting Mode (ACKS bit = “0”)
MCLK frequency is detected automatically and the sampling rate is set by DFS2-0 bits (Table 1). The
MCLK frequency corresponding to each sampling speed should be provided externally (Table 2, Table 3).
The AK4436 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When DFS2-0 bits are
changed, the AK4436 should be reset by RSTN bit.
DFS2
0
0
0
0
1
1
1
1
DFS1
0
0
1
1
0
0
1
1
DFS0
0
1
0
1
0
1
0
1
Sampling Speed Mode (fs)
Normal Speed Mode
8kHz~48kHz
Double Speed Mode
48kHz~96kHz
Quad Speed Mode
96kHz~192kHz
N/A
N/A
Oct Speed Mode
Hex Speed Mode
384kHz
768kHz
N/A
N/A
N/A
N/A
(default)
(N/A: Not Available)
Table 1. Sampling Speed (Manual Setting Mode)
LRCK
MCLK(MHz)
Sampling
Speed
fs
32fs
48fs
64fs
96fs
N/A
N/A
N/A
N/A
8.0kHz
N/A
N/A
N/A
N/A
44.1kHz
Normal
N/A
N/A
N/A
N/A
48.0kHz
N/A
N/A
N/A
N/A
88.2kHz
Double
N/A
N/A
N/A
N/A
96.0kHz
N/A
N/A
N/A
N/A
176.4kHz
Quad
N/A
N/A
N/A
N/A
192.0kHz
N/A
N/A
24.576 36.864
384.0kHz
Oct
24.576
36.864
N/A
N/A
768.0kHz
Hex
Table 2. System Clock Example (Manual Setting Mode)
LRCK
fs
128fs
192fs
8.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384.0kHz
768.0kHz
N/A
N/A
N/A
N/A
N/A
22.5792
24.5760
N/A
N/A
N/A
N/A
N/A
N/A
N/A
33.8688
36.8640
N/A
N/A
MCLK(MHz)
256fs
384fs
2.0480
11.2896
12.2880
22.5792
24.5760
N/A
N/A
N/A
N/A
3.0720
16.9344
18.4320
33.8688
36.8640
N/A
N/A
N/A
N/A
512fs
768fs
4.0960
22.5792
24.5760
N/A
N/A
N/A
N/A
N/A
N/A
6.1440
33.8688
36.8640
N/A
N/A
N/A
N/A
N/A
N/A
Sampling
Speed
Normal
Double
Quad
Oct
Hex
Table 3. System Clock Example (Manual Setting Mode)
016001934-E-00
2016/03
- 22 -
[AK4436]
2. Auto Setting Mode (ACKS bit = “1”)
MCLK frequency and the sampling speed are detected automatically (Table 4) and DFS2-0 bits are
ignored. The MCLK frequency corresponding to each sampling speed should be provided externally
(Table 5,Table 6).
MCLK
Sampling Speed Mode
512fs/256fs 768fs/384fs
Normal Speed Mode
256fs
384fs
Double Speed Mode
128fs
192fs
Quad Speed Mode
64fs
96fs
Oct Speed Mode
32fs
48fs
Hex Speed Mode
Table 4. Sampling Speed (Auto Setting Mode)
LRCK
MCLK(MHz)
Sampling
Speed
fs
32fs
48fs
64fs
96fs
N/A
N/A
N/A
N/A
8.0kHz
N/A
N/A
N/A
N/A
44.1kHz
Normal
N/A
N/A
N/A
N/A
48.0kHz
N/A
N/A
N/A
N/A
88.2kHz
Double
N/A
N/A
N/A
N/A
96.0kHz
N/A
N/A
N/A
N/A
176.4kHz
Quad
N/A
N/A
N/A
N/A
192.0kHz
N/A
N/A
24.576 36.864
384.0kHz
Oct
24.576 36.864
N/A
N/A
768.0kHz
Hex
Table 5. System Clock Example (Auto Setting Mode)
LRCK
fs
8.0kHz
44.1kHz
48.0kHz
88.2kHz
96.0kHz
176.4kHz
192.0kHz
384.0kHz
768.0kHz
128fs
192fs
N/A
N/A
N/A
N/A
N/A
22.5792
24.5760
N/A
N/A
N/A
N/A
N/A
N/A
N/A
33.8688
36.8640
N/A
N/A
MCLK(MHz)
256fs
384fs
2.0480
11.2896
12.2880
22.5792
24.5760
N/A
N/A
N/A
N/A
3.0720
16.9344
18.4320
33.8688
36.8640
N/A
N/A
N/A
N/A
512fs
768fs
4.0960
22.5792
24.5760
N/A
N/A
N/A
N/A
N/A
N/A
6.1440
33.8688
36.8640
N/A
N/A
N/A
N/A
N/A
N/A
Sampling
Speed
Normal
Double
Quad
Oct
Hex
Table 6. System Clock Example (Auto Setting Mode)
MCLK= 256fs/384fs supports sampling rate of 8kHz~96kHz (Table 7). However, when the sampling rate
is 8kHz~48kHz, DR and S/N will degrade by approximately 3dB as compared to when MCLK=
512fs/768fs.
ACKS bit
MCLK
DR,S/N
L
256fs/384fs/512fs/768fs
108dB
H
256fs/384fs
105dB
H
512fs/768fs
108dB
Table 7. Relationship of DR, S/N and MCLK frequency (fs = 44.1kHz)
016001934-E-00
2016/03
- 23 -
[AK4436]
■ De-emphasis Filter
The AK4436 has a digital de-emphasis filter (tc=50/15µs) by an IIR filter. The de-emphasis filter only
supports Normal Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz,
48kHz). De-emphasis of each DAC can be set individually for DAC1(SDTI1), DAC2(SDTI2),
DAC3(SDTI3) by register settings.
Mode
0
1
2
3
Sampling Speed
Mode
Normal Speed Mode
Normal Speed Mode
Normal Speed Mode
Normal Speed Mode
DEM11
(DEM31-21)
0
0
1
1
DEM10
(DEM30-20)
0
1
0
1
DEM
44.1kHz
OFF
48kHz
32kHz
(default)
Table 8. De-emphasis Control
016001934-E-00
2016/03
- 24 -
[AK4436]
■ Audio Interface Format
TDM1-0 bits, DIF2-0 bits, SDS2-0 bits, TDM1-0 pins and DIF pin settings should not be changed during
operation.
[1] PCM Mode
Normal Mode (TDM1-0 bit=“00”)
Six channels audio data is shifted in via the SDTI1-3 pins using BICK and LRCK inputs. Data is selected
by SDS2-0 bits. Six data formats are supported and selected by the DIF2-0 bits as shown in Table 9. In all
formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK. Mode
2 can be used in 16-bit and 20-bit MSB justified and Mode 6 can be used in 16-bit, 20-bit and 24-bit MSB
justified formats by zeroing the unused LSBs.
TDM128 Mode (TDM1-0 bit=“01”)
Eight channels audio data is shifted in via the SDTI1-2 pins using BICK and LRCK inputs. Data is selected
by SDS2-0 bits. The data input to the SDTI3 pin is ignored. BICK is fixed to 128fs. Six data formats are
supported and selected by the DIF2-0 bits as shown in Table 9. In all formats the serial data is MSB first,
2's compliment format and is latched on the rising edge of BICK.
TDM256 Mode (TDM1-0 bit=“10”)
Sixteen channels audio data is shifted in via the SDTI1-2 pins using BICK and LRCK inputs. Data is
selected by SDS2-0 bits. The data input to the SDTI3 pin is ignored. BICK is fixed to 256fs. Six data
formats are supported and selected by the DIF2-0 bits as shown in Table 9. In all formats the serial data is
MSB first, 2's compliment format and is latched on the rising edge of BICK.
TDM512 Mode (TDM1-0 bit=“11”)
Sixteen channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected
by SDS2-0 bits. The data input to the SDTI2-3 pins are ignored. BICK is fixed to 512fs. Six data formats
are supported and selected by the DIF2-0 bits as shown in Table 9. In all formats the serial data is MSB
first, 2's compliment format and is latched on the rising edge of BICK.
016001934-E-00
2016/03
- 25 -
[AK4436]
Mode
TDM1
TDM0
DIF2
0
0
0
DIF1
0
0
1
DIF0
0
1
0
SDTI Format
LRCK BICK
0
16-bit LSB justified
H/L
32fs
1
20-bit LSB justified
H/L
40fs
2
24-bit MSB justified
H/L
48fs
16-bit I2S compatible
L/H
32fs
3
0
1
1
Normal
2
24-bit I S compatible
L/H
0
0
48fs
(Note 21)
4
1
0
0
24-bit LSB justified
H/L
48fs
5
1
0
1
32-bit LSB justified
H/L
64fs
6
1
1
0
32-bit MSB justified
H/L
64fs
7
1
1
1
32-bit I2S compatible
L/H
64fs
0
0
0
N/A
128fs

0
0
1
N/A
128fs

8
0
1
0
24-bit MSB justified
128fs

9
0
1
1
24-bit I2S compatible
128fs

TDM128
0
1
10
1
0
0
24-bit LSB justified
128fs

11
1
0
1
32-bit LSB justified
128fs

12
1
1
0
32-bit MSB justified
128fs

13
1
1
1
32-bit I2S compatible
128fs

0
0
0
N/A
256fs

0
0
1
N/A
256fs

14
0
1
0
24-bit MSB justified
256fs

15
0
1
1
24-bit I2S compatible
256fs

TDM256
1
0
16
1
0
0
24-bit LSB justified
256fs

17
1
0
1
32-bit LSB justified
256fs

18
1
1
0
32-bit MSB justified
256fs

19
1
1
1
32-bit I2S compatible
256fs

0
0
0
N/A
512fs

0
0
1
N/A
512fs

20
0
1
0
24-bit MSB justified
512fs

21
0
1
1
24-bit I2S compatible
512fs

TDM512
1
1
22
1
0
0
24-bit LSB justified
512fs

23
1
0
1
32-bit LSB justified
512fs

24
1
1
0
32-bit MSB justified
512fs

2
25
1
1
1
32-bit I S compatible
512fs

Note 21. BICK that is input to each channel must be longer than the bit length of setting format.
(N/A: Not available)
Table 9. Audio Data Format
016001934-E-00
2016/03
- 26 -
[AK4436]
LRCK
0
1
10
11
12
13
14
15
0
1
10
11
12
13
14
15
0
1
BICK
(32fs)
SDTI1-3
Mode 0
15
14
6
1
0
5
14
4
15
3
16
2
1
17
15
0
31
0
14
6
5
14
1
4
15
3
16
2
1
17
0
31
15
14
0
1
0
1
0
1
BICK
(64fs)
SDTI1-3
Mode 0
Don’t care
15
14
0
Don’t care
15
14
0
15:MSB, 0:LSB
Lch Data
Rch Data
Figure 11. Mode 0 Timing
LRCK
1
0
8
9
10
11
12
31
0
8
1
9
10
11
12
31
BICK
(64fs)
SDTI1-3
Mode 1
Don’t care
19
0
Don’t care
19
0
Don’t care
19
0
19
0
19:MSB, 0:LSB
SDTI1-3
Mode 4
Don’t care
23
22
21
20
23
22
20
21
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 12. Mode 1/4 Timing
LRCK
0
1
2
22
23
24
30
31
0
1
2
22
23
24
30
31
BICK
(64fs)
SDTI1-3
23
22
1
0
Don’t care
23
22
1
0
Don’t care
23
22
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 13. Mode 2 Timing
016001934-E-00
2016/03
- 27 -
[AK4436]
LRCK
0
1
2
3
23
24
25
31
0
1
2
3
23
24
25
31
0
1
BICK
(64fs)
SDTI1-3
23
0
1
22
Don’t care
23
22
0
1
23
Don’t care
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 14. Mode 3 Timing
LRCK
0
1
2
22
23
24
30
31
0
1
2
22
23
24
30
31
0
1
BICK
(64fs)
SDTI1-3
Mode 5,6
31
30
1
0
31
30
0
1
31
30
32:MSB, 0:LSB
Lch Data
Rch Data
Figure 15. Mode 5/6 Timing
LRCK
0
1
2
3
23
24
25
31
0
1
0
31
2
3
23
24
25
31
0
1
0
31
BICK
(64fs)
SDTI1-3
31
30
1
30
1
30
32:MSB, 0:LSB
Lch Data
Rch Data
Figure 16. Mode 7 Timing
016001934-E-00
2016/03
- 28 -
[AK4436]
128 BICK
LRCK
BICK(128fs)
SDTI1-2
Mode8
23 22
SDTI1-2
Mode11,12
31 30
0
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0 31 30
2
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
Figure 17. Mode 8/11/12 Timing
128 BICK
LRCK
BICK(128fs)
SDTI1-2
Mode9
SDTI1-2
Mode13
0
23 22
0
23 22
31 30
0
23 22
0 31 30
23 22
0 31 30
L1
R1
32 BICK
32 BICK
23
0
0 31 30
2
0 31 30
L2
R2
32 BICK
32 BICK
Figure 18. Mode 9/13 Timing
128 BICK
LRCK
BICK(128fs)
SDTI1-2
23 22
0
23 22
0
23 22
0
23 22
0
L1
R1
L2
R2
32 BICK
32 BICK
32 BICK
32 BICK
23
Figure 19. Mode 10 Timing
016001934-E-00
2016/03
- 29 -
[AK4436]
256 BICK
LRCK
BICK (256fs)
SDTI1-2
Mode14
SDTI1-2
Mode17,18
23 22
0
31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0
0 31 30
23 22
0 31 30
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
23
Figure 20. Mode 14/17/18 Timing
256 BICK
LRCK
BICK (256fs)
SDTI1-2
Mode15
SDTI1-2
Mode19
23
0
23
31 30
0
23
0 31 30
0
23
0 31 30
0
23
0 31 30
0
23
0 31 30
0
0 31 30
0
0 31 30
0
0 31 30
23
0 31
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
Figure 21. Mode 15/19 Timing
256 BICK
LRCK
BICK(256fs)
SDTI1-2
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
L1
R1
L2
R2
L3
R3
L4
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
0
23
Figure 22. Mode 16 Timing
016001934-E-00
2016/03
- 30 -
[AK4436]
512BICK
LRCK
BICK(512fs)
SDTI1
Mode8
SDTI1
Mode11,12
23 22
0
23 22
0
23 22
23 22
0
0
23 22
0
23 22
0
23 22
0
23 22
23
0
2
31 22
0 31 22
0 31 22
R1
L1
0 31 22
0 31 22
R2
L2
0 31 22
0 31 22
R3
L3
0 31 22
31
0
R4
L4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 23. Mode 20/23/24 Timing
512BICK
LRCK
BICK(512fs)
SDTI1
Mode21
SDTI1
Mode25
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
0
23 22
23
0
2
31 22
0 31 22
0 31 22
R1
L1
0 31 22
0 31 22
R2
L2
0 31 22
0 31 22
R3
L3
0 31 22
31
0
R4
L4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 24. Mode 21/25 Timing
512BICK
LRCK
BICK(512fs)
SDTI1
Mode22
23 22
0
L1
23 22
2
R1
0
23 22
L2
0
23 22
R2
0
23 22
L3
0
23 22
R3
0
23 22
L4
0
23 22
23
0
R4
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK
Figure 25. Mode 22 Timing
016001934-E-00
2016/03
- 31 -
[AK4436]
[2] Data Select
SDS2-0 bits control the playback channel of each DAC.
LRCK
SDTI1
L1
R1
SDTI2
L2
R2
SDTI3
L3
R3
Figure 26. Data Slot in Normal Mode
128 BICK
LRCK
SDTI1
L1
R1
L2
R2
SDTI2
L3
R3
L4
R4
Figure 27. Data Slot in TDM128 Mode
256 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
SDTI2
L5
R5
L6
R6
L7
R7
L8
R8
Figure 28. Data Slot in TDM256 Mode
512 BICK
LRCK
SDTI1
L1
R1
L2
R2
L3
R3
L4
R4
L5
R5
L6
R6
L7
R7
L8
R8
Figure 29. Data Slot in TDM512 Mode
016001934-E-00
2016/03
- 32 -
[AK4436]
0
DAC1
Lch Rch
L1
R1
DAC2
Lch Rch
L2
R2
DAC3
Lch Rch
L3 R3
0
1
L2
R2
L3
R3
L4
R4
*
1
0
L3
R3
L4
R4
L1
R1
*
1
1
L4
R4
L1
R1
L2
R2
*
0
0
L1
R1
L2
R2
L3
R3
*
0
1
L2
R2
L3
R3
L4
R4
*
1
0
L3
R3
L4
R4
L1
R1
*
1
1
L4
R4
L1
R1
L2
R2
0
0
0
0
0
1
L1
L2
R1
R2
L2
L3
R2
R3
L3
L4
R3
R4
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
L3
L4
L5
L6
L7
L8
R3
R4
R5
R6
R7
R8
L4
L5
L6
L7
L8
L1
R4
R5
R6
R7
R8
R1
L5
L6
L7
L8
L1
L2
R5
R6
R7
R8
R1
R2
0
0
0
0
0
1
L1
L2
R1
R2
L2
L3
R2
R3
L3
L4
R3
R4
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
L3
L4
L5
L6
L7
L8
R3
R4
R5
R6
R7
R8
L4
L5
L6
L7
L8
L1
R4
R5
R6
R7
R8
R1
L5
L6
L7
L8
L1
L2
R5
R6
R7
R8
R1
R2
SDS2
SDS1
SDS0
*
0
*
Normal
TDM128
TDM256
TDM512
(*: Do not care)
Table 10. Data Select
016001934-E-00
2016/03
- 33 -
[AK4436]
■ Digital Filter
Five digital filters are available for playback, providing a choice of different sound colors. These digital
filters are selected by SD bit, SLOW bit and SSLOW bit.
SSLOW
0
0
0
0
1
SD bit
0
0
1
1
*
SLOW bit
Mode
0
Sharp roll-off filter
1
Slow roll-off filter
0
Short delay Sharp roll-off filter
1
Short delay Slow roll-off filter
*
Super Slow Roll-off Mode
Table 11. Digital Filter Setting (*: Do not care)
(default)
■ Zero Detection
The AK4436 has channel-independent zero detection function. Zero detection channels (AOUTL1-3 and
AOUTR1-3 pins) can be selected by 07H/08H registers (L1-3 bits, R1-3 bits). When the input data at each
channel is continuously zeros for 8192 LRCK cycles, the DZF pin goes to “H”. The DZF pin immediately
returns to “L” if the input data of each channel is not zero. If the RSTN bit is “0”, the DZF pins of both
channels go to “H”. The DZF pin of both channels go to “L” after 4 ~ 5/fs when RSTN bit returns to “1”. The
DZFB bit can invert the polarity of the DZF pin. If all channels are disabled, the DZF pin outputs “Not
zero”.
DZFB bit
Data
DZF pin
Not zero
L
0
Zero detect
H
Not zero
H
1
Zero detect
L
Not zero: One of the zero detection channels set by L1-3 bits and R1-3 bits does not detect zero.
Zero detect: All zero detection channels set by L1-3 bits and R1-3 bits detect zero.
Table 12. DZF Pin Function
016001934-E-00
2016/03
- 34 -
[AK4436]
■ Digital Volume Function
The AK4436 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of
each DAC1-3 can be set by ATT7-0 bits (register 0A-11H), respectively (Table 13).
ATT7-0bits
Attenuation Level
(register 03, 04, 0F-12H)
FFH
+0dB
(default)
FEH
-0.5dB
FDH
-1.0dB
:
:
:
:
02H
-126.5dB
01H
-127.0dB
00H
MUTE (-∞)
Table 13. Attenuation level of Digital Attenuator
Transition time between set values of ATT7-0 bits can be selected by the ATS1-0 bits (Table 14). The
transition between set values is a soft transition in Mode0/1/2 eliminating switching noise in the transition.
Mode
0
1
2
3
ATS1
0
0
1
1
ATS0
0
1
0
1
ATT speed
4080/fs
2040/fs
510/fs
255/fs
(default)
Table 14. Transition Time of Digital Volume
The transition between set values is a soft transition of 4080 levels in Mode 0. It takes 4080/fs (85ms
@fs=48kHz) from FFH to 00H. If the PDN pin goes to “L”, ATT7-0 bits are initialized to FFH.
If the digital volume is changed during reset, the volume will be changed to the setting value after
releasing the reset. If the volume is changed in 5/fs after releasing a reset, the volume is changed
immediately without soft transition.
016001934-E-00
2016/03
- 35 -
[AK4436]
■ LR Channel Output Signal Select
Input and output signal combination of the AK4436 can be set by MONO1-3 bits and SELLR1-3 bits. The
output signal phase of DAC is controlled by INVL1-3 and INVR1-3 bits. These settings are available for
any audio format.
MONO1 bit
0
SELLR1 bit
INVL1 bit
INVR1 bit
L1ch Out
R1ch Out
0
0
1
0
1
0
0
1
1
L1ch In
L1ch In Invert
L1ch In
L1ch In Invert
R1ch In
R1ch In
R1ch In Invert
R1ch In Invert
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
R1ch In
R1ch In Invert
R1ch In
R1ch In Invert
L1ch In
L1ch In Invert
L1ch In
L1ch In Invert
L1ch In
L1ch In
L1ch In Invert
L1ch In Invert
L1ch In
L1ch In
L1ch In Invert
L1ch In Invert
0
0
R1ch In
1
0
R1ch In Invert
0
1
R1ch In
1
1
R1ch In Invert
Table 15. Output Select for DAC1
R1ch In
R1ch In
R1ch In Invert
R1ch In Invert
0
1
1
0
1
1
MONO2 bit
SELLR2 bit
INVL2 bit
INVR2 bit
L2ch Out
R2ch Out
0
0
1
0
1
0
0
1
1
L2ch In
L2ch In Invert
L2ch In
L2ch In Invert
R2ch In
R2ch In
R2ch In Invert
R2ch In Invert
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
R2ch In
R2ch In Invert
R2ch In
R2ch In Invert
L2ch In
L2ch In Invert
L2ch In
L2ch In Invert
L2ch In
L2ch In
L2ch In Invert
L2ch In Invert
L2ch In
L2ch In
L2ch In Invert
L2ch In Invert
0
0
R2ch In
1
0
R2ch In Invert
0
1
R2ch In
1
1
R2ch In Invert
Table 16. Output Select for DAC2
R2ch In
R2ch In
R2ch In Invert
R2ch In Invert
0
0
1
1
0
1
1
016001934-E-00
2016/03
- 36 -
[AK4436]
MONO3 bit
0
0
1
1
SELLR3 bit
INVL3 bit
INVR3 bit
L3ch Out
R3ch Out
0
0
1
0
1
0
0
1
1
L3ch In
L3ch In Invert
L3ch In
L3ch In Invert
R3ch In
R3ch In
R3ch In Invert
R3ch In Invert
1
0
1
0
1
0
0
1
1
R3ch In
R3ch In Invert
R3ch In
R3ch In Invert
L3ch In
L3ch In
L3ch In Invert
L3ch In Invert
0
0
1
0
1
0
0
1
1
L3ch In
L3ch In Invert
L3ch In
L3ch In Invert
L3ch In
L3ch In
L3ch In Invert
L3ch In Invert
0
0
R3ch In
1
0
R3ch In Invert
0
1
R3ch In
1
1
R3ch In Invert
Table 17. Output Select for DAC3
R3ch In
R3ch In
R3ch In Invert
R3ch In Invert
1
016001934-E-00
2016/03
- 37 -
[AK4436]
■ Soft Mute Operation
The soft mute operation is performed at digital domain. When the SMUTE pin goes to “H” or set SMUTE
bit to “1”, the output signal is attenuated by  during ATT_DATA  ATT transition time from the current
ATT level. When the SMUTE pin is returned to “L” or the SMUTE bit is returned to “0”, the mute is
cancelled and the output attenuation gradually changes to the ATT level during ATT_DATA  ATT
transition time. If the soft mute is cancelled before attenuating , the attenuation is discontinued and
returned to ATT level by the same cycle. The soft mute is effective for changing the signal source without
stopping the signal transmission.
SMUTE pin or
SMUTE bit
(1)
(1)
ATT_Level
(3)
Attenuation
-
GD
(2)
GD
(2)
AOUT
DZF pin
(4)
8192/fs
Notes:
(1) ATT_DATA  ATT transition time. For example, this time is 4080LRCK cycles at ATT_DATA=255 in
Normal Speed Mode.
(2) The analog output corresponding to the digital input has group delay (GD).
(3) If the soft mute is cancelled before attenuating  after starting the operation, the attenuation is
discontinued and returned to ATT level by the same cycle.
(4) When the input data for a zero detection channel is continuously zeros for 8192 LRCK cycles, the
DZF pin goes to “H”. The DZF pin immediately returns to “L” if input data are not zero.
Figure 30. Soft Mute Function and Zero Detection
016001934-E-00
2016/03
- 38 -
[AK4436]
■ Error Detection
Three types of error can be detected in I2C mode when the LDOE pin = “H”. (Table 18).When the error is
detected, LDO is powered down and writing into the control registers is prohibited. Once the error is
detected the AK4436 does not return to normal operation automatically even if the error condition is
removed so restart the AK4436 by the PDN pin. In I2C mode, the AK4436 does not generate
acknowledge (ACK) in error status.
No
Error
Error Condition
1
Internal Reference Voltage Error
Internal reference voltage is not powered up.
2
LDO Over Voltage Detection
LDO voltage > 1.5V (typ.)
3
LDO Over Current Detection
LDO current < 51mA (typ.)
Table 18. Error Detection
■ System Reset
The AK4436 should be reset once by bringing the PDN pin = “L” upon power-up. Power-down state of the
reference voltage such as LDO and VCOM will be released by PDN pin = “H” and writing into resisters is
valid in 1ms. The AK4436 is in power-down state until MCLK and LRCK input.
016001934-E-00
2016/03
- 39 -
[AK4436]
■ Power Down Function
The AK4436 is placed in power-down mode by bringing the PDN pin “L” and the analog outputs become
floating (Hi-Z) state. Power-up and power-down timings are shown in Figure 31.
Power
PDN pin
(1)
LDOO pin
(2)
Internal PDN
Internal
State
Normal Operation (Register Write and DAC input are available)
DAC In
(Digital)
“0”data
“0”data
GD
(4)
DAC Out
(Analog)
Reset
(3)
(5)
GD
(5)
(4)
(6)
Clock In
Don’t care
Don’t care
MCLK,LRCK,BICK
(8)
DZF
External
Mute
(7)
Mute ON
Mute ON
Notes:
(1) After AVDD and TVDD are powered-up, the PDN pin should be “L” for 800ns.
(2) After PDN pin = “H”, the internal LDO and VCOM power-up. The internal registers are initialized.
Register writing is available in 1msec after PDN pin = “H”.
(3) The analog output corresponding to digital input has group delay (GD).
(4) Analog outputs are floating (Hi-Z) in power down mode.
(5) Click noise occurs at an edge of PDN signal. This noise is output even if “0” data is input.
(6) MCLK, BICK and LRCK clocks can be stopped in power-down mode (PDN pin= “L”).
(7) Mute the analog output externally if click noise (5) adversely affect system performance
The timing example is shown in this figure.
(8) The DZF pin outputs “L” in internal power-down mode.
Figure 31. Pin Power Down/Up Sequence Example
016001934-E-00
2016/03
- 40 -
[AK4436]
■ Power Off and Reset Functions
RSTN
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
PW3-1
000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111
DAC3
Hi-Z
Hi-Z
Hi-Z
Hi-Z
VCOM
VCOM
VCOM
VCOM
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Normal
Normal
Normal
Normal
Analog Output
DAC2
Hi-Z
Hi-Z
VCOM
VCOM
Hi-Z
Hi-Z
VCOM
VCOM
Hi-Z
Hi-Z
Normal
Normal
Hi-Z
Hi-Z
Normal
Normal
DAC1
Hi-Z
VCOM
Hi-Z
VCOM
Hi-Z
VCOM
Hi-Z
VCOM
Hi-Z
Normal
Hi-Z
Normal
Hi-Z
Normal
Hi-Z
Normal
Table 19. Power OFF and Reset Function
016001934-E-00
2016/03
- 41 -
[AK4436]
(1) Power OFF Function (PW3-1 bits)
All DAC3-1 can be powered down immediately by setting PW3-1 bits to “000”. In this time, the analog
output goes to floating state (Hi-z). DACs will be reset and the digital block is powered down by setting
RSTN bit to “0”. In the reset state, the analog output becomes VCOM voltage if DAC is powered-up and
MCLK, LRCK and BICK are supplied (Table 19). Internal register values are not initialized by power-off or
reset by bit settings. Figure 32 shows a timing example of power-on and power-down.
PMDA3-1bit
Internal
State
Normal Operation
Power-off
D/A In
(Digital)
Normal Operation
“0” data
GD
D/A Out
(Analog)
(1)
GD
(3)
(2)
(3)
(1)
(4)
Clock In
Don’t care
MCLK, BICK, LRCK
DZF
External
MUTE
(6)
(5)
Mute ON
Notes:
(1) The analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are floating (Hi-Z) in power down mode.
(3) Click noise occurs at the edges (“ ”) of the internal timing of PW3-1 bits. This noise is output
even if “0” data is input.
(4) Each clock input (MCLK, BICK, LRCK) can be stopped in power down mode (PW3-1 bits =
“000”).
(5) Mute the analog output externally if the click noise (3) adversely affect system performance.
(6) The DZF pin outputs “L”, in power down mode (PW3-1 bits = “000”).
Figure 32. Power-off/on Sequence Example
016001934-E-00
2016/03
- 42 -
[AK4436]
(2) Reset Function (RSTN bit)
The DAC can be reset by setting RSTN bit to “0” but the internal registers are not initialized. In this time,
the corresponding analog outputs go to VCOM and the DZF pin outputs “H” if clocks (MCLK, BICK and
LRCK) are input. Figure 33 shows an example of reset sequence by RSTN bit.
RSTN bit
3~4/fs
(5)
2~3/fs
Internal
RSTN bit
Internal
State
Normal Operation
Power-down
D/A In
(Digital)
“0” data
(1)
D/A Out
(Analog)
Clock In
BICK
Normal Operation
Digital Block
GD
GD
(3)
(2)
(3)
(1)
Don’t care
2/fs
(4)
DZF
Notes:
(1) he analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are VCOM in power down mode.
(3) Click noise occurs at the edges (“ ”) of the internal timing of RSTN bit. This noise is output even
if “0” data is input.
(4) The DZF pin goes to “H” on the falling edge of RSTN bit and goes to “L” in 2/fs after a rising edge
of the internal RSTN.
(5) There is a delay, 3~4/fs from RSTN bit “0” to the internal RSTN bit “0”, and 2~3/fs from RSTN bit
“1” to the internal RSTN bit “1”.
Figure 33. Reset Sequence Example
016001934-E-00
2016/03
- 43 -
[AK4436]
(3) Reset Function (MCLK)
The AK4436 is automatically placed in reset state when MCLK is stopped during normal operation (PDN
pin = “H”), and the analog outputs go to VCOM voltage. When MCLK are input again, the AK4436 exits
reset state and starts the operation. Zero detect function is disable when MCLK is stopped.
AVDD pin
TVDD pin
(1)
RSTN bit
Internal
State
Power-down
D/A In
(Digital)
Power-down
Normal Operation
(2)
GD
(5)
Hi-Z
(3)
(2)
(5)
(5)
Clock In
MCLK Stop
MCLK
External
MUTE
Normal Operation
(4)
GD
D/A Out
(Analog)
Digital Circuit Power-down
(6)
(6)
(6)
Notes:
(1) After AVDD and TVDD are powered-up, the PDN pin should be “L” for 800ns.
(2) The analog output corresponding to digital input has group delay (GD).
(3) When MCLK is stopped, analog outputs go to VCOM voltage.
(4) The digital data can be stopped. Click noise after MCLK is input again can be reduced by inputting
“0” data during this period.
(5) Click noise occurs within 3 ~ 4LRCK cycles from the riding edge (“↑”) of the PDN pin or MCLK
inputs. This noise occurs even when “0” data is input.
(6) Mute the analog output externally if click noise (5) influences system applications. The timing
example is shown in this figure.
Figure 34. Reset Sequence Example2
016001934-E-00
2016/03
- 44 -
[AK4436]
■ Clock Synchronization
The AK4436 has a function that resets the internal counter to keep a falling edge of the internal FSI clock
is in 3/256fs from an edge of the external FSI clock. Clock synchronization function becomes valid when
data at all channels are continuously “0” for 8192 times if SYNCE bit is set to “1” during operation in PCM
mode or when RSTN bit is set to “0”. The operation clock is synchronized to a falling edge of LRCK in
PCM mode and a rising edge of LRCK in I2C mode.
The analog output becomes VCOM voltage when RSTN bit = “0” or zero data is detected. Figure 35
shows a synchronization sequence when the input data is “0” for 8192 times continuously. Figure 36
shows a synchronization sequence by RSTN bit.
(1) Clock Synchronization Sequence when Input Data is “0” for 8192 Cycles Continuously
The DZF pin goes to “H” and the synchronization function becomes enabled when input data is “0” for
8192 time continuously including when the data is attenuated. Figure 35 shows a synchronization
sequence.
D/A In
(Digital)
SMUTE
(1)
(1)
ATT_Level
Attenuation
-
GD
GD
GD
(4)
AOUT
DZF pin
(2)
8192/fs
(2)
8192/fs
Operation (2)
Internal Counter
Reset
Internal
Data Reset
Operation (2)
(5)
4~5/fs (3)
Notes:
(1) Refer to Table 14 internal transition time of ATT.
(2) The synchronization function becomes enabled when all channels input data are “0” for 8192 times
continuously.
(3) Internal data is fixed to “0” for 4~5/fs forcibly when the internal counter is reset.
(4) Click noise occurs when the internal counter is reset. This noise is output even if “0” data is input.
Mute the analog output externally if this click noise adversely affects system performance.
(5) The internal counter will not be reset when the internal and the external clocks are synchronized
even if the synchronization function is enabled.
Figure 35. Clock Synchronization Sequence with Continuous Zero Data
016001934-E-00
2016/03
- 45 -
[AK4436]
(2) Clock Synchronization Sequence with RSTN-bit
The DZF pin outputs “H” by setting RSTN bit to “0”. The DAC is reset after 3~4/fs from the DZF pin = “H”,
and the analog output goes to VCOM voltage. The synchronization function is enabled when the DZF pin
= “H”. Figure 36 shows synchronization sequence with RSTN bit.
RSTN bit
3~4/fs (4)
2~3/fs (4)
Internal
RSTN bit
Internal
State
Normal Operation
D/A In
(Digital)
force”0” (2)
(3)
D/A Out
(Analog)
Normal Operation
Digital Block Power-down
GD
GD (3)
(5)
(5)
2/fs(4)
DZF
Operation (1)
Internal Counter
Reset
Internal
Data Reset
4~5/fs (2)
Notes:
(1) The DZF pin outputs “H” by a falling edge of RSTN bit, and returns to “L” after 2/fs from the internal
rising edge of RSTN bit. During this period the synchronization function is enabled.
(2) Internal data is fixed to “0” for 4~5/fs forcibly when the internal counter is reset.
(3) The analog output corresponding to digital input has group delay (GD). It is recommended that
when writing “0” data to RSTN bit, “0” period should be longer than the GD period.
(4) It takes 3~4/fs to fall down and 2~3/fs to rise up for the internal RSTN signal from RSTN bit writing.
There is a case that the internal counter is reset before internal RSTN bit is changed to “1” since the
synchronization function becomes enabled immediately by setting RSTN bit = “0”.
(5) A click noise occurs by an internal RSTN signal edge or an internal counter reset. This noise is
output even if “0” data is input. Mute the analog output externally if the click noise adversely affects
the system performance.
Figure 36. Clock Synchronization Sequence by RSTN bit
016001934-E-00
2016/03
- 46 -
[AK4436]
■ Parallel Mode
Parallel mode is available by setting the I2C pin = “H” and the PS pin = “H”. In parallel mode, the register
setting is ignored. Audio interface format and soft mute function are controlled by Pins. Other functions
operate in default setting of registers. The system clock is always in auto setting mode.
■ Audio Interface
Audio interface format of the parallel mode is controlled by TDM1-0 and DIF pins (Table 20).
Zero detection function and functions set by registers are not available in parallel mode.
TDM1 pin
0
0
0
0
1
1
1
1
TDM0 pin
DIF pin
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
Table 20. Parallel Mode
Mode
Mode6 (Table 9)
Mode7 (Table 9)
Mode12 (Table 9)
Mode13 (Table 9)
Mode18 (Table 9)
Mode19 (Table 9)
Mode24 (Table 9)
Mode25 (Table 9)
■ Soft Mute
The soft mute operation is controlled by SMUTE pin (Figure 30).
016001934-E-00
2016/03
- 47 -
[AK4436]
■ Serial Control Interface
The AK4436’s functions are controlled through registers. The registers may be written by two types of
control modes. The internal registers are controlled in 3-wire serial control mode when the I2C pin = “L”
and the PS pin = “L”, and in I2C bus control mode when the I2C pin = “H” and the PS pin = “L”. Chip
address is determined by the CAD0 and CAD1 pins. The internal registers are initialized by setting the
PDN pin to “L”. The internal timing circuit is reset by setting RSTN bit = “0” but register values are not
initialized..
*Register writings are not available when the PDN pin = “L”.
(1) 3-wire Serial Control Mode (I2C pin = “L”)
The internal registers may be written through the 3-wire µP interface pins (CSN, CCLK and CDTI). The
data on this interface consists of a 2-bit Chip address, Read/Write (1bit, Fixed to “1”, Write only), Register
address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in on the
rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is latched after
a low-to-high transition of CSN. The clock speed of CCLK is 5MHz (max).
The internal registers are initialized by setting the PDN pin = “L”. In serial mode, the internal timing circuit
is reset by setting RSTN bit = “0” but register values are not initialized.
CSN
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CCLK
CDTI
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
C1-C0:
R/W:
A4-A0:
D7-D0:
Chip Address (C1=CAD1, C0=CAD0)
READ/WRITE (Fixed to “1”, Write only)
Register Address
Control Data
Figure 37. Control I/F Timing
* The AK4436 does not support read commands in 3-wire serial control mode.
* When the AK4436 is in power down mode (PDN pin = “L”), a writing into the control registers is
prohibited.
* The control data cannot be written when the CCLK rising edge is 15 times or less, or 17 times or more
during CSN is “L”.
016001934-E-00
2016/03
- 48 -
[AK4436]
(2) I2C-bus Control Mode (I2C pin = “H”)
The AK4436 supports the fast-mode I2C-bus (max: 400kHz, Ver1.0).
(2)-1. WRITE Operations
Figure 38 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by a
START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START
condition (Figure 44). After the START condition, a slave address is sent. This address is 7 bits long
followed by the eighth bit that is a data direction bit (R/W). The most significant five bits of the slave
address are fixed as “00100”. The next bits are CAD1-0 (device address bits). These bits identify the
specific device on the bus. The hard-wired input pins (CAD1-0 pins) set these device address bits (Figure
39). If the slave address matches that of the AK4436, the AK4436 generates an acknowledge and the
operation is executed. The master must generate the acknowledge-related clock pulse and release the
SDA line (HIGH) during the acknowledge clock pulse (Figure 45). R/W bit = “1” indicates that the read
operation is to be executed. “0” indicates that the write operation is to be executed.
The second byte consists of the control register address of the AK4436. The format is MSB first, and
those most significant 3-bits are fixed to zeros (Figure 40). The data after the second byte contains control
data. The format is MSB first, 8bits (Figure 41). The AK4436 generates an acknowledge after each byte is
received. Data transfer is always terminated by a STOP condition generated by the master. A LOW to
HIGH transition on the SDA line while SCL is HIGH defines STOP condition (Figure 44).
The AK4436 can perform more than one byte write operation per sequence. After receipt of the third byte
the AK4436 generates an acknowledge and awaits the next data. The master can transmit more than one
byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data
packet the internal address counter is incremented by one, and the next data is automatically taken into
the next address. If the address exceeds “14H” prior to generating a stop condition, the address counter
will “roll over” to “00H” and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state
of the data line can only be changed when the clock signal on the SCL line is LOW (Figure 46) except for
the START and STOP conditions.
S
T
A
R
T
SDA
S
T
O
P
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Data(n)
A
C
K
Data(n+1)
A
C
K
Data(n+x)
A
C
K
A
C
K
P
A
C
K
Figure 38. Data Transfer Sequence at the I2C-Bus Mode
0
0
1
0
0
CAD1
CAD0
R/W
A1
A0
D1
D0
(CAD1 and CAD0 are determined by pin settings)
Figure 39. The First Byte
0
0
0
A4
A3
A2
Figure 40. The Second Byte
D7
D6
D5
D4
D3
D2
Figure 41. Byte Structure After The Second Byte
016001934-E-00
2016/03
- 49 -
[AK4436]
(2)-2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4436. After transmission of data, the master can
read the next address’s data by generating an acknowledge instead of terminating the write cycle after
the receipt of the first data word. After receiving each data packet the internal address counter is
incremented by one, and the next data is automatically taken into the next address. If the address
exceeds “14H” prior to generating stop condition, the address counter will “roll over” to “00H” and the data
of “00H” will be read out.
The AK4436 supports two basic read operations: Current Address Read and Random Address Read.
(2)-2-1. Current Address Read
The AK4436 contains an internal address counter that maintains the address of the last word accessed,
incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next
CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address
with R/W bit “1”, the AK4436 generates an acknowledge, transmits 1-byte of data to the address set by
the internal address counter and increments the internal address counter by 1. If the master does not
generate an acknowledge but generates a stop condition instead, the AK4436 ceases transmission.
S
T
A
R
T
SDA
S
T
O
P
R/W="1"
Slave
S Address
Data(n)
Data(n+1)
MA
AC
SK
T
E
R
A
C
K
Data(n+2)
MA
AC
SK
T
E
R
Data(n+x)
MA
AC
SK
T
E
R
MA
AC
SK
T
E
R
P
MN
AA
SC
T
EK
R
Figure 42. Current Address Read
(2)-2-2. Random Address Read
The random read operation allows the master to access any memory location at random. Prior to issuing
a slave address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The
master issues a start request, a slave address (R/W bit = “0”) and then the register address to read. After
the register address is acknowledged, the master immediately reissues the start request and the slave
address with the R/W bit =“1”. The AK4436 then generates an acknowledge, 1 byte of data and
increments the internal address counter by 1. If the master does not generate an acknowledge but
generates a stop condition instead, the AK4436 ceases transmission.
S
T
A
R
T
SDA
S
T
A
R
T
R/W="0"
Slave
S Address
Sub
Address(n)
A
C
K
Slave
S Address
A
C
K
S
T
O
P
R/W="1"
Data(n)
A
C
K
Data(n+1)
MA
AC
S K
T
E
R
Data(n+x)
MA
AC
S
T K
E
R
MA
AC
S
T K
E
R
P
MN
A A
S
T C
E K
R
Figure 43. Random Address Read
016001934-E-00
2016/03
- 50 -
[AK4436]
SDA
SCL
S
P
start condition
stop condition
Figure 44. START and STOP Conditions
DATA
OUTPUT BY
TRANSMITTER
not acknowledge
DATA
OUTPUT BY
RECEIVER
acknowledge
SCL FROM
MASTER
2
1
8
9
S
clock pulse for
acknowledgement
START
CONDITION
Figure 45. Acknowledge on the I2C-Bus
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 46. Bit Transfer on the I2C-Bus
016001934-E-00
2016/03
- 51 -
[AK4436]
■ Register Map
Addr
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
Register Name
Control 1
Control 2
Control 3
L1ch ATT
R1ch ATT
Control 4
Control 6
Control 7
Control 8
Control 9
Control 10
Control 11
Control 12
L2ch ATT
R2ch ATT
L3ch ATT
R3ch ATT
Control 13
Control 14
D7
ACKS
0
0
ATT7
ATT7
INVL1
0
L3
L1
0
TDM1
ATS1
0
0
0
ATT7
ATT7
ATT7
ATT7
1
1
D6
0
0
0
ATT6
ATT6
INVR1
0
R3
R1
0
TDM0
ATS0
0
MONO3
1
ATT6
ATT6
ATT6
ATT6
1
1
D5
0
SD
0
ATT5
ATT5
INVL2
0
0
L2
0
SDS1
0
INVR3
MONO2
DEM31
ATT5
ATT5
ATT5
ATT5
1
1
D4
0
DFS1
0
ATT4
ATT4
INVR2
0
0
R2
0
SDS2
SDS0
INVL3
0
DEM30
ATT4
ATT4
ATT4
ATT4
1
1
D3
DIF2
DFS0
MONO1
ATT3
ATT3
SELLR2
0
0
0
0
PW2
1
0
0
0
ATT3
ATT3
ATT3
ATT3
1
1
D2
DIF1
DEM11
DZFB
ATT2
ATT2
0
0
0
0
0
PW1
PW3
0
SELLR3
0
ATT2
ATT2
ATT2
ATT2
1
1
D1
DIF0
DEM10
SELLR1
ATT1
ATT1
DFS2
0
0
0
0
DEM21
0
0
0
0
ATT1
ATT1
ATT1
ATT1
1
1
D0
RSTN
SMUTE
SLOW
ATT0
ATT0
SSLOW
0
SYNCE
0
0
DEM20
0
0
0
0
ATT0
ATT0
ATT0
ATT0
1
1
Notes: Data must not be written into addresses from 15H to 1FH.
The bit defined as 0 must contain a “0” value.
When the PDN pin goes to “L”, the registers are initialized to their default values.
When RSTN bit goes to “0”, the internal timing is reset, but registers are not initialized.
016001934-E-00
2016/03
- 52 -
[AK4436]
■ Register Definitions
Addr
00H
Register Name
Control 1
R/W
Default
D7
ACKS
R/W
0
D6
0
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
DIF2
R/W
1
D2
DIF1
R/W
1
D1
DIF0
R/W
0
D0
RSTN
R/W
1
D1
DEM10
R/W
1
D0
SMUTE
R/W
0
RSTN: Internal Timing Reset
0: Reset The DZF pin goes “H” but register values are not initialized.
1: Normal Operation (default)
DIF2-0: Audio Data Interface Modes (Table 9)
Default value is “110” (Mode 6: 32-bit MSB justified).
ACKS: Master Clock Frequency Auto Setting Mode Enable
0: Disable, Manual Setting Mode (default)
1: Enable, Auto Setting Mode
When ACKS bit = “1”, the MCLK frequency is detected automatically.
Addr
01H
Register Name
Control 2
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
SD
R/W
1
D4
DFS1
R/W
0
D3
DFS0
R/W
0
D2
DEM11
R/W
0
SMUTE: Soft Mute Enable.
0: Normal Operation (default)
1: DAC outputs soft-muted.
DEM11-0: DAC1 De-emphasis Response (Table 8)
Default value is “01” (OFF).
DFS2-0: Sampling Speed Control (Table 1)
Default value is “000” (Normal Speed).
A click noise occurs when switching DFS2-0 bits setting.
SD: Short delay Filter Enable. (Table 11)
0: Sharp roll off filter or Slow roll off filter
1: Short delay Sharp roll off filter or Short delay Slow roll off filter (default)
016001934-E-00
2016/03
- 53 -
[AK4436]
Addr
02H
Register Name
Control 3
R/W
Default
D7
0
D6
0
D5
0
D4
0
R/W
0
R/W
0
R/W
0
R/W
0
D3
D2
MONO1
DZFB
R/W
0
R/W
0
D1
SELLR
1
R/W
0
D0
SLOW
R/W
0
SLOW: Slow Roll-off Filter Enable (Table 11)
0: Sharp Roll-off Filter (default)
1: Slow Roll-off Filter
SELLR1: The data selection of DAC1 (Table 15)
Default value is “0”
DZB: Inverting Enable of DZF (Table 12)
0: DZF pin goes “H” at Zero Detection (default)
1: DZF pin goes “L” at Zero Detection
MONO1: DAC1 enters monaural output mode when MONO bit = “1” (Table 15).
0: Stereo mode (default)
1: MONO mode
Addr
03H
04H
Register Name
L1ch ATT
R1ch ATT
R/W
Default
D7
ATT7
ATT7
R/W
1
D6
ATT6
ATT6
R/W
1
D5
ATT5
ATT5
R/W
1
D4
ATT4
ATT4
R/W
1
D3
ATT3
ATT3
R/W
1
D2
ATT2
ATT2
R/W
1
D1
ATT1
ATT1
R/W
1
D0
ATT0
ATT0
R/W
1
ATT7-0: Attenuation Level (Table 13)
Default value is “FF” (0dB)
Addr
05H
Register Name
Control 4
R/W
Default
D7
INVL1
R/W
0
D6
INVR1
R/W
0
D5
INVL2
R/W
0
D4
INVR2
R/W
0
D3
SELLR2
R/W
0
D2
0
R/W
0
D1
DFS2
R/W
0
D0
SSLOW
R/W
0
SSLOW: Digital Filter bypass mode Enable (Table 11)
0: Disable (default)
1: Enable
DFS2-0: Sampling Speed Control (Table 1)
Default value is “000” (Normal Speed).
A click noise occurs when switching DFS2-0 bits setting.
SELLR2: The data selection of DAC2 (Table 16)
Default value is “0”
INVL1: AOUTL1 Output Phase Inverting Bit (Table 15)
INVR1: AOUTR1 Output Phase Inverting Bit (Table 15)
INVL2: AOUTL2 Output Phase Inverting Bit (Table 16)
INVR2: AOUTR2 Output Phase Inverting Bit (Table 16)
0: Normal (default)
1: Inverted
016001934-E-00
2016/03
- 54 -
[AK4436]
Addr
07H
Register Name
Control 6
R/W
Default
D7
L3
R/W
0
D6
R3
R/W
0
D5
0
R/W
0
D4
0
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
0
R/W
0
D0
SYNCE
R/W
1
D3
0
R/W
0
D2
0
R/W
0
D1
0
R/W
0
D0
0
R/W
0
D3
PW2
R/W
1
D2
PW1
R/W
1
D1
DEM21
R/W
0
D0
DEM20
R/W
1
SYNCE: SYNC Mode Enable
0: SYNC Mode Disable
1: SYNC Mode Enable (default)
L3, R3: Zero Detect Flag Enable Bit for the DZF pin
0: Disable(default)
1: Enable
Addr
08H
Register Name
Control 7
R/W
Default
D7
L1
R/W
0
D6
R1
R/W
0
D5
L2
RD
0
D4
R2
RD
0
L1-2, R1-2: Zero Detect Flag Enable Bit for the DZF pin
0: Disable(default)
1: Enable
Addr
0AH
Register Name
Control 8
R/W
Default
D7
TDM1
R/W
0
D6
TDM0
R/W
0
D5
SDS1
R/W
0
D4
SDS2
R/W
0
DEM21-20: DAC2 De-emphasis Response (Table 8)
Default value is “01”. (OFF)
PW2-1: Power Down control for DAC
PW2: Power management for DAC2
0: DAC2 power OFF
1: DAC2 power ON (default)
PW1: Power management for DAC1
0: DAC1 power OFF
1: DAC1 power ON (default)
SDS2-0: DAC1-3 Data Select
0: Normal Operation
1: Output Other Slot Data (Table 10)
Default value is “000”.
TDM1-0: TDM Mode Select (Table 9)
Default value is “00”.
016001934-E-00
2016/03
- 55 -
[AK4436]
Addr
0BH
Register Name
Control 9
R/W
Default
D7
ATS1
R/W
0
D6
ATS0
R/W
0
D5
0
R/W
0
D4
SDS0
R/W
0
D3
PW4
R/W
1
D2
PW3
R/W
1
D1
0
R/W
0
D0
0
R/W
0
PW3: Power Down control for DAC
PW3: Power management for DAC3
0: DAC3 power OFF
1: DAC3 power ON (default)
SDS2-0: DAC1-3 Data Select
0: Normal Operation
1: Output Other Slot Data (Table 10)
The default value is “000”.
ATS1-0: Transition Time between Set Values of ATT7-0 bits (Table 14)
The default value is “00”.
Addr
0CH
Register Name
Control 6
R/W
Default
D7
0
R/W
0
D6
0
R/W
0
D5
INVR3
R/W
0
D4
INVL3
R/W
0
D3
0
R/W
0
D2
0
R/W
0
D1
0
R/W
0
D0
0
R/W
0
D3
0
R/W
0
D2
SELLR3
R/W
0
D1
0
R/W
0
D0
0
R/W
0
INVL3: AOUTL3 Output Phase Inverting Bit (Table 17)
INVR3: AOUTR3 Output Phase Inverting Bit (Table 17)
0: Normal (default)
1: Inverted
Addr
0DH
Register Name
Control 6
R/W
Default
D7
0
R/W
0
D6
MONO3
R/W
0
D5
MONO2
R/W
0
D4
0
R/W
0
SELLR3: The data selection of DAC3 (Table 17)
The default value is “0”.
MONO2: DAC2 enters Mono output mode when MONO2 bit =“1”. (Table 16)
MONO3: DAC3 enters Mono output mode when MONO3 bit =“1”. (Table 17)
0: Stereo mode (default)
1: MONO mode
016001934-E-00
2016/03
- 56 -
[AK4436]
Addr
0EH
Register Name
Control 6
R/W
Default
D7
0
R/W
0
D6
1
R/W
1
D5
DEM31
R/W
0
D4
DEM30
R/W
1
D3
0
R/W
0
D2
0
R/W
0
D1
0
R/W
0
D0
0
R/W
0
DEM31-30: DAC3 De-emphasis Response (Table 8)
The default value is “01”, OFF
Addr
0FH
10H
11H
12H
13H
14H
Register Name
L2ch ATT
R2ch ATT
L3ch ATT
R3ch ATT
Control 13
Control 14
R/W
Default
D7
ATT7
ATT7
ATT7
ATT7
1
1
R/W
1
D6
ATT6
ATT6
ATT6
ATT6
1
1
R/W
1
D5
ATT5
ATT5
ATT5
ATT5
1
1
R/W
1
D4
ATT4
ATT4
ATT4
ATT4
1
1
R/W
1
D3
ATT3
ATT3
ATT3
ATT3
1
1
R/W
1
D2
ATT2
ATT2
ATT2
ATT2
1
1
R/W
1
D1
ATT1
ATT1
ATT1
ATT1
1
1
R/W
1
D0
ATT0
ATT0
ATT0
ATT0
1
1
R/W
1
ATT7-0: Attenuation Level (Table 13)
The default value is “FF”, (0dB)
016001934-E-00
2016/03
- 57 -
[AK4436]
13. Recommended External Circuits
■ Typical Connection Diagram
L1ch out
R1ch out
L2ch out
R2ch out
L3ch out
R3ch out
Power Supply
3.0  3.6V
OPEN
OPEN
21
20
19
18
VCOM
VREFL
VREFH
AOUTR2
17
22
VSS2
AOUTL2
23
AVDD
AOUTR3
AOUTR1
16
26
TST2
AOUTL1
15
27
TST3
PS/CAD0_SPI
14
28
TEST
CAD0_I2C/CSN/DIF
13
29
I2C
SCL/CCLK/TDM1
12
30
TVDD
SDA/CDTI/TDM0
11
31
VSS1
SMUTE/CAD1
10
32
LDOO
PDN
AK4436
Top View
P
BICK
LRCK
SDTI1
SDTI2
SDTI3
TST1
DZF
3
4
5
6
7
8
0.1u
2
2.2u
25
MCLK
H : I2C
L : SPI
10u +
10u
+
0.1u
1
Power Supply
1.7  3.6V
AOUTL3
24
10u 2.2u
+
0.1u
9
Analog Ground Digital Ground
Analog Ground
Digital Ground
DSP
Figure 47. Typical Connection Diagram
Note: The AK4436 integrates smoothing filters.
016001934-E-00
2016/03
- 58 -
[AK4436]
1. Grounding and Power Supply Decoupling
The AK4436 requires careful attention to power supply and grounding arrangements. AVDD and TVDD
are usually supplied from the analog supply of the system. If AVDD and TVDD are supplied separately,
the power-up sequences between AVDD and TVDD is not critical. VSS1 and VSS2 must be connected
to the same analog ground plane. System analog ground and digital ground should be wired separately
and connected together as close as possible to where the supplies are brought onto the printed circuit
board. Decoupling capacitors should be as near to the AK4436 as possible.
2. Voltage Reference
The differential voltage between VREFH pin and VREFL pin sets the analog output range. The VREFH
pin is normally connected to AVDD, and the VREFL pin is normally connected to VSS2. VREFHL and
VREFL should be connected with a 0.1µF ceramic capacitor and 10µF electrolytic capacitor as near as
possible to the pin to eliminate the effects of high frequency noise.
VCOM is a signal ground of this chip and output the voltage AVDDx1/2. A 2.2F ±50% ceramic capacitor
attached between the VCOM pin and VSS2 eliminates the effects of high frequency noise. This capacitor
should be as close to the pin as possible. No load current may be drawn from the VCOM pin. All signals,
especially clocks, should be kept away from the VREFH pin and the VCOM pin in order to avoid unwanted
coupling into the AK4436.
LDOO outputs 1.2V that is used for internal digital circuit. LDOO and VSS1 should be connected with a
2.2F ±50% ceramic capacitor as near as possible to the pin to stabilize internal LDO. No load current
may be drawn from the VCOM pin.
3. Analog Output
The output signal range is nominally 0.86 x VREFH Vpp centered around the VCOM voltage. The DAC
input data format is 2’s complement. The output voltage is a positive full scale for 7FFFFFFFH(@32bit)
and a negative full scale for 80000000H(@32bit). The ideal output is VCOM voltage for
00000000H(@32bit). The internal analog filters remove most of the noise generated by the delta-sigma
modulator of DAC beyond the audio passband, in single-ended input mode.
Normally, DC component is cut by an external capacitor since the DAC outputs have DC offsets of a few
millivolts to the VCOM voltage.
016001934-E-00
2016/03
- 59 -
[AK4436]
4. External Analog Outputs Circuit
The output level of this circuit is 2.83Vpp (AK4436: typ. 2.83Vpp). Normally, DC component is cut by an
external capacitor since the DAC outputs have DC offsets of a few millivolts to the VCOM voltage. The
cutoff frequency of HPF is shown below.
fc= 1/(2 × π × R × C) [Hz]
Where the C is the external AC coupling capacitor and the R is load resistance.
When C = 1μF and R = 10kΩ, then fs = 16Hz.
AK4436
AOUT
Analog Out
C=1F
R=10k
2.83Vppv (typ)
Figure 48. Output Buffer Circuit Example
016001934-E-00
2016/03
- 60 -
[AK4436]
14. Package
■ Outline Dimensions
32-pin QFN
(Unit : mm)
■ Material & Lead Finish
Package molding compound:
Lead frame material:
Terminal surface treatment:
Epoxy, Halogen (Br and Cl) free
Cu
Solder (Pb free) plate
016001934-E-00
2016/03
- 61 -
[AK4436]
■ Marking
4436
XXXX
1
1) Pin #1 indication
2) Date Code: XXXX (4 digits)
3) Marking Code: 4436
15. Ordering Guide
■ Ordering Guide
AK4436VN
AKD4436
-40  +105C
32-pin QFN (0.5mm pitch)
Evaluation Board for the AK4436
16. Revision History
Date (Y/M/D)
16/03/04
Revision
00
Reason
First Edition
Page
Contents
016001934-E-00
2016/03
- 62 -
[AK4436]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application
of AKM product stipulated in this document (“Product”), please make inquiries the sales office of
AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and
application examples of AKM Products. AKM neither makes warranties or representations with
respect to the accuracy or completeness of the information contained in this document nor
grants any license to any intellectual property rights or any other rights of AKM or any third party
with respect to the information in this document. You are fully responsible for use of such
information contained in this document in your product design or applications. AKM ASSUMES
NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM
THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact,
including but not limited to, equipment used in nuclear facilities, equipment used in the
aerospace industry, medical equipment, equipment used for automobiles, trains, ships and
other transportation, traffic signaling equipment, equipment used to control combustions or
explosions, safety devices, elevators and escalators, devices related to electric power, and
equipment used in finance-related fields. Do not use Product for the above use unless
specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are
responsible for complying with safety standards and for providing adequate designs and
safeguards for your hardware, software and systems which minimize risk and avoid situations in
which a malfunction or failure of the Product could cause loss of human life, bodily injury or
damage to property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or
related technology or any information contained in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws
and regulations. The Products and related technology may not be used for or incorporated into
any products or systems whose manufacture, use, or sale is prohibited under any applicable
domestic or foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the
RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws
and regulations that regulate the inclusion or use of controlled substances, including without
limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as
a result of noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set
forth in this document shall immediately void any warranty granted by AKM for the Product and
shall not create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without
prior written consent of AKM.
016001934-E-00
2016/03
- 63 -
Similar pages