Thermal Resistance, Theory and Practice

Special Subject Book January 2000
Thermal Resistance
Theory and Practice
http://www.infineon.com
SMD Packages
Never stop thinking
Edition January 2000
Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe
certain components and shall not be
considered as warranted characteristics.
Terms of delivery and rights to technical
change reserved.
We hereby disclaim any and all warranties,
including but not limited to warranties of
non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC
manufacturer.
Information
For further information on technology,
delivery terms and conditions and prices
please contact your nearest Infineon
Technologies Office in Germany or our
Infineon Technologies Representatives
worldwide (see address list).
Warnings
Due to technical requirements components
may contain dangerous substances.
For information on the types in question
please contact your nearest Infineon
Technologies Office.
Infineon Technologies Components may
only be used in life-support devices or
systems with the express written approval
of Infineon Technologies, if a failure of such
components can reasonably be expected to
cause the failure of that life-support device
or system, or to affect the safety or
effectiveness of that device or system.
Life support devices or systems are
intended to be implanted in the human
body, or to support and/or maintain and
sustain and/or protect human life. If they
fail, it is reasonable to assume that the
health of the user or other persons may be
endangered.
Thermal Resistance - Theory and Practice
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SMD-Package Properties for Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Using a Printed Circuit Board as a Heat Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Static Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Dynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Determining the Static Heat Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Measuring the Rthj-a in the Real Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Determining the Dynamic Heat Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Package and Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Michael Lenz
Günther Striedl
Ulrich Fröhler
Infineon Technologies AG
3
Thermal Resistance - Theory and Practice
Introduction
Power-SMD applications or
what’s the size of the heat sink ?
More and more frequently,
modern SMD-component users
(Surface Mounted Devices) ask
the question, “What’s the size of
the heat sink ?”
The reason: The trend from
through-hole packages to
low-cost SMD-applications is
marked by the improvement of
chip technologies.
„Silicon instead of heat sink“ is
therefore possible in many cases.
The printed circuit board (PCB)
itself becomes the heat sink. As
many applications today use
PCBs assembled with SMDtechnology, the emphasis is on
Power-ICs in SMD packages
mounted on single-sided PCBs
laminated on one side.
Pricing pressure demands simple
processes and lowest-cost
solutions. This report describes a
solution.
4
Infineon Technologies AG
SMD-Package Properties for
Power Applications
packages. Metal bridges are
connected between the chip
carrier (lead frame) and the pins.
From the outside, this package
looks identical to standard
components because the plastic
molding compound conceals
these details. Figure 1 shows
both types of packages with the
examples P-TO252-3-1 (D-Pack)
and P-DSO-14-4 (3 center pins
each per side of the cooling path).
The internal structure is described
in more detail in this report and
can be seen in Figure 11.
There are two basic groups of
packages:
Heat Sink packages are the first
group.The heat sink (chip carrier lead frame) is soldered directly to
the PCB. The thermal resistance
of this packages between chip
and heat sink is called Rthj-c
(junction-case) and has low
values.
Thermal Enhanced Leadframes
constitute the second group of
Footprint / Dimensions
5.8
Package
e
A
L
B
P-DSO-14-4 1.27 5.69 1.31 0.65
e
2.2
10.6
6.4
L
B
1.2
5.76
0.35 x 45˚
4 -0.2 1)
0.51 min
1.27
0...0.15
0.5 +0.08
-0.04
3x
0.75 ±0.1
2.28
0.25
0.1
0.35 +0.15 2)
0.4 +0.8
0.2 14x
6
14
8 max.
0.2 -0.1
1.45 -0.2
0.8 ±0.15
1 ±0.1
(4.17)
9.9 ±0.5
6.22 -0.2
4.57
0.9 +0.08
-0.04
B
5.4 ±0.1
1.75 max.
2.3 +0.05
-0.10
A
0.15 max
per side
A
0.19 +0.06
+0.15
6.5 -0.10
±0.2
8
1±0.1
M
A B
All metal surfaces thin plated,
except area of cut.
1
7
8.75 -0.21)
0.1
Index Marking
P-TO252-3-1
P-DSO-14-4
Dimensions in mm
Figure 1 Heat Sink - vs. Thermal Enhanced Package Types
Infineon Technologies AG
5
Thermal Resistance - Theory and Practice
Using a printed circuit board
as a heat sink ?
How do I calculate that ?
How big does my heat sink
need to be ?
Which size do we need ?
In earlier fabrications, a solid heat
sink was either screwed or
clamped to the power package. It
was easy to calculate the thermal
resistance from the geometry of
the heat sink.
In SMD-technology, this
calculation is much more difficult
because the heat path must be
evaluated: chip (junction) - lead
frame - case or pin - footprint PCB materials (basic material,
thickness of the laminate) - PCB
volume - surroundings.
As the layout of the PCB is a main
contributor to the result, a new
technique must be applied. The
Appendix proivdes thermal data for
all packages listed in Table 1.
Let us start with some
theoretical considerations:
Static Properties
To facilitate discussion of the
static properties of a Power IC
(PIC), the internal structure of a
PIC and its method of mounting
on a PCB or heat sink is
illustrated in Figure 2. The PIC
consists of a chip mounted on a
chip carrier or lead frame, and
held by solder or bonding
adhesive. The lead frame consists
of a high-conductivity material
such as copper, and can have a
6
Infineon Technologies AG
Package
Heat Sink / Pin
P-DSO-8-1
–
P-DSO-14-4
Pin 3-5; 10-12
P-DSO-16-1
–
P-DSO-20-1
–
P-DSO-20-6
Pin 4-7; 14-17
P-DSO-24-3
Pin 5-8; 17-20
P-DSO-28-6
Pin 6-9; 20-23
P-DSO-20-10
Tab
P-DSO-36-10
Tab
SCT-595-5-1
Pin 2; 5
SOT-223-4-2
Tab or Pin 4
P-TO252-3-1 (D-Pack)
Tab
P-TO263-5-1
Tab
Table 1
The Most Important
SMD-Packages
thickness of several millimeters.
The associated static equivalent
circuit is shown in Figure 3. The
following analogies with electrical
quantities have been used:
Molding compound
(Molding)
C The power dissipation PV
occurring close to the chip
surface is symbolized by a
current source.
Chip (Die)
Chip adhesive / Lot
(Die bond)
Chip carrier
(Leadframe)
Solder
C The thermal resistances are
represented by ohmic
resistors. The “resistance”
network is essentially a serial
connection to the ambient
temperature. As a first
approximation, the parallelconnected thermal resistance
of the molding (broken lines)
can be neglected in power
packages.
Heat sink or PCB
(Heat sink)
Figure 2 Internal Structure of
a PIC and Method of
Mounting on
a Heat Sink
C The ambient temperature is
represented by a voltage
source.
In accordance with the analogy,
the thermal current PV = Q/t can
now be calculated from the
“thermic Ohm’s law”
V = I • R as Tj - Ta = PV • Rthj-a.
Rth
Molding
PV
Tj
Rth
Rth
Rth
Rth
Rth
Die
Die
bond
Leadframe
Solder
Heat
sink
Tc
Rthj-c
Rth
Application
=
Ta
For the purpose of discussing the
application as a whole, the
function PV = ƒ(Ta) is of practical
interest. One obtains:
PV = - Ta / Rthj-a + Tj / Rthj-a.
This is a descending straight line
of gradient -1 / Rthj-a with its zero
at Tj.
Rthj-a
Figure 3 Static Equivalent
Circuit for the
Structure
shown in Figure 2
Infineon Technologies AG
7
Thermal Resistance - Theory and Practice
In Figure 4, this function is
shown for the P-DSO-14-4 Package (Thermal Enhanced Power
Package) mounted on the
standard application board. From
this function, the user can derive
the permissible power dissipation
directly for any ambient
temperature. At Ta = 85 °C, for
example, the permissible
dissipation is approxi-mately
0.7 W. The exact value can be
calculated from the equation
PV = (Tj - Tamax) / Rthj-a =
65 K / 92 K/W = 0.7 W.
It should be noted that in the data
sheets of the PICs the power
dissipation is given as a function
of the package (case) temperature TC, because the applicationspecific thermal resistances are
not known to the manufacturer.
This function, like the previous
one, is a descending straight line.
The slope now has the value
1 / Rthj-c. The zero remains at Tj.
As an example, this function is
presented in Figure 5 for the
P-TO252-3-1 Package.
The new P-TO252-3-1 package
has a thermal resistance of max.
4 K/W and is unique in the small
size of its base area when compared with packages of equivalent
performance (PCB board area). At
approximately 30 °C, the permissible power dissipation is 30 W.
Higher power dissipation is
prevented by intervention of the
chip-internal current limiters. For
this reason, the value for power
dissipation at lower temperatures
remains constant.
8
Infineon Technologies AG
PV
W
PVO =
1.63
1.08
Tj
Rthj-a
=
150
W ≈ 1.63 W
92
Parameter: Tjmax = 150 ˚C
Rthj-a = 92 K/W
Tamax = 85 ˚C
∆PV = 1 W
∆T = 92 ˚C
0.54
Tamax
0
0
50
100
Tj
Ta
150 ˚C
Figure 4 Permissible Power Dissipation of the
P-DSO-14-4 Package Mounted on a
PCB with 300 mm² Cooling Area, as
a Function of Ambient Temperature
PV
W
30
Rthj-c = 4 K/W
20
10
0
0
50
100
Figure 5 Permissible Power Dissipation of
the P-TO252-3-1 as a Function of
the Package (Case) Temperature
150
˚C
TC
Dynamic Properties
As mentioned earlier, the thermal
behavior of PICs changes when
dynamic phenomena are
considered (pulse power
operation). This behavior can be
described in terms of thermal
capacity Cth, which is directly
proportional to the relevant
volume V (in cm³), to the density
ρ (in g/cm³) of the material and to
a proportionality factor of the
specific heat c in Ws/g • K.
The applicable equation is:
Cth = c • ρ • V = m • c
This means: The thermal capacity
of a body of mass m = ρ • V
corresponds to the quantity of heat
needed to heat the body by 1 °C.
To calculate the temperature
change ∆T it is necessary to use
the quantity-of-charge equation
for a capacitance C.
The equation is:
V•C=I•t=Q
By analogy, the quantity-of-heat
equation is:
∆T • Cth = P • t = Q
This means: Just as the current
I = Q/t represents a transport of
charge per unit of time, the
power dissipation P represents
the transport of thermal energy
per unit of time. Consequently:
∆T = P • t
Cth
Die
PV
CthD
3 mWs/K
τD = 1.5 ms
The equivalent circuit of the
P-TO263-7-3 power package, with
the thermal capacities added, is
shown in Figure 6. The thermal
capacities calculated from the
material and the volume are
shown in parallel with the thermal
resistances.
When calculating the components
of a network it is necessary to
know the thickness d, the crosssectional area A and the thermal
conductivity L in W/m • K, in order
to obtain the appropriate thermal
resistance Rth. The formula is:
Rth =
d
L•A
K
W
[]
Heat sink
RthD
RthHS
0.48 K/W
0.24 K/W
CthHS
300 mWs/K
=
Tcase
τHS = 70 ms
Figure 6 Thermal Equivalent
Circuit of the
P-TO263-7-3 Package
(Simplified)
Infineon Technologies AG
9
Thermal Resistance - Theory and Practice
4.7 ±0.5
1.3 ±0.3
8 1)
6x1.27
9.4
0.8
10.8
2.4
2.7 ±0.3
1 ±0.3
7x0.6 ±0.1
0.05
B
A
9.25 ±0.2
(15)
1.27±0.1
0.1
8.5 1)
Footprint
0.47
9.8 ±0.15
8.42
4.4
10 ±0.2
4.6
16.15
0...0.15
0.5 ±0.1
0.25
M
0.1
1)
Typical
All metal surfaces tin plated, except area of cut.
A B
8˚ max.
Figure 7 Outline Drawing of the P-TO263-7-3 Power Package
To calculate the thermal capacity
Cth, it is necessary to know the
volume V = d • A, the specific
weight ρ in g/cm3 and the specific thermal capacity c in Ws/g • K.
The thermal capacity Cth is
calculated from:
Cth = m • c (Ws/T).
The package dimensions are
shown in Figure 7.
Parameters for the Chip
Symbol
Value
Dimension
Area
Thickness
Thermal conductivity of silicon
Thermal resistance of chip
Specific weight of silicon
Mass of chip
Spec, thermal capacity of Si
Thermal capacity of chip
Thermal time constant of chip
AD
dD
LSi
RthD
ρSi
mD
cSi
CthD
τD
5
360
150
0.48
2.33
4.2
approx. 0.7
approx. 3
approx. 1.5
mm²
µm
W/m • K
K/W
g/cm³
mg
Ws/g • K
mWs/K
ms
Parameters for the Heat Slug
Symbol
Value
Dimension
Area (effective area of 64 mm²)
Thickness
Thermal conductivity of cooper
Thermal resistance of heat slug
Specific weight of cooper
Mass of heat slug
Spec, thermal capacity of Cu
Thermal capacity of heat slug
Thermal time constant of heat slug
AHS
dHS
LCu
RthHS
ρCu
mHS
cCu
CthHS
τHS
14
1.27
384
0.24
8.93
0.8
0.385
310
70
mm²
mm
W/m • K
K/W
g/cm³
g
Ws/g • K
mWs/K
ms
Table 2 Parametric Data of the P-TO263-7-3
10
Table 2 lists all the important
parametric data of the
P-TO263-7-3 package.
Infineon Technologies AG
The die bond and molding
components have been omitted
from this discussion because they
do not significantly influence the
calculation of Rthj-c.
For reference, these data are
listed here:
The time constance of the die
bond is smaller than that of the
chip by two orders of magnitude
and can, thus, be neglected.
The thermal resistance RthM of
the molding is even three orders
of magnitude bigger than that of
the chip and that of the heat slug,
and, being in parallel, can be
neglected also.
Pulse operation and the associated chip temperature responses
also deserve examination.
In accordance with the analogy to
electrical systems, the chip temperature response can be viewed
like a voltage increase across an
C RthDB = 0.01 to 0.1 K/W;
C CthDB = 0.1 to 0.5 mWs/K;
C τDB = 1 to 50 ms;
C RthM = 100 K/W;
C CthM = 0.64 Ws/K and
C τM = 64 s.
(Die Bond = index: DB;
molding = index: M)
PV
RC section which is being fed by
a current pulse generator.
The following relationship applies:
V(t) = R • I • (1 - et/R C)
and for the increase in temperature:
T(t) = Rth • P • (1 - et/R C )
•
th •
th
This heating-up and cooling-down
process is presented qualitatively
in Figure 8 (valid for tp >> 2 ms
only).
The chip temperature goes up
and down between Tmin and Tmax.
The variation depends on the
magnitude of the power pulse
and its duty cycle.
T
t
tp
Tj
Tmax
Tavg
Tmin
t
Figure 8 Chip Temperature Tj
vs. Time, for Periodic
Pulse Operation
Infineon Technologies AG
11
Thermal Resistance - Theory and Practice
This junction temperature
transients can be represented in
the form of a function if the
dynamic thermal impedance
Zth = (Tmax - Tmin) / PV
is shown versus pulse width tp for
different duty cycles (duty cycle =
DC = tp/T) (Figure 9).
A special case of this representation is the dynamic thermal
impedance in single-pulse
operation (DC = 0). Figure 10
shows the thermal impedance in
single-pulse operation for the
medium-power package
P-DSO-14-4 for three different
cooling areas on the PCB.
This function clearly shows the
regions of dominance of the
various time constants of the
chip, the lead frame, and the
PCB.
The chip time constant tD lies in
the millisecond range, whereas
the lead frame dominates in the
range of several 100 ms and the
PCB in the 100-second range.
10 0
120
K/W
K/W
Footprint
Zthj-a
Zthj-c
100
10 -1
80
10
-2
10
-3
D=
0.50
0.20
0.10
0.05
0.02
0.01
single pulse
300 mm 2
60
600 mm 2
40
20
10 -4
10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1 s 10 0
tp
Figure 9 Dynamic Thermal
Impedance Zthj-c of a
P-TO263-7-3 Package
12
Infineon Technologies AG
0 -3
10
-2
10
10-1
100
101
102 s 103
tp
Figure 10 Thermal Impedance of the
P-DSO-14-4 Package for
Single-Pulse Operation
Finite Element Method (FEM)
The steps of the Finite Element
Method (FEM) are explained
below and one example is
provided per group.
P-TO252-3-1
The geometric data of the
package is entered into the FEM
model to calculate the thermal
resistance. This avoids timeconsuming measurements.
Figure 11 shows an implemented
model.
P-DSO-14-4
Figure 11 FEM Model of Heat Sink and
Thermal Enhanced Package
Infineon Technologies AG
13
Thermal Resistance - Theory and Practice
The temperatures of the
individual components (chip, diepad, molding compound, and
leadframe) can be viewed
individually or in combination
(Figure 12).
Chip with two active areas (dice only)
Mold compound without cooling
tab,chip and lead frame
P-TO252-3-1 without mold compound
with PV = 3 W for determining the Rthj-c
Chip and lead frame of the
SOT223-4-2 package on a PCB
with heat sink
Lead frame of the SCT595-5-1 on a
PCB with heat sink
SOT223-4-2 on a PCB with 6 cm²
heat sink; Rthj-a ~ 70 K/W is calculated
at PV = 0.5 W
Figure 12 FEM Analysis Possibilities
14
Infineon Technologies AG
Three different PCBs have been
created for each package model.
They differ in the size of the
copper laminated area A (heat
sink) which is linked to the heat
dissipating parts of the case (diepad in the P-TO252-3-1 or center
pins in the P-DSO-14) (Figure 13).
P-DSO-14-4
2
3 cm²
0.375
a/2
P-DSO-14-4
-16-1
3
Footprint only
0.375
a/2
a
a
0.67
1
6 cm²
P-DSO-14-4
1
1
1
Application-Board for Rth Measurement Rth-P-DSO-14-4 LP 1.0
P-TO252-3-1
P-TO252-3-1
a
1
6 cm²
I
1
3
2
3 cm²
a/2
P-TO252-3-1
a
Footprint only
a/2
I
Q
Q
1
I
Q
1
Application-Board for Rth Measurement Rth-P-TO252-3-1 LP 1.1
Figure 13 PCB-Layout for FEM-Simulation
P-DSO-14-4 and P-TO252-3-1
Infineon Technologies AG
15
Thermal Resistance - Theory and Practice
Determining the Static Heat
Resistance
value depends only slightly on the
active chip area. It is sufficient to
simulate just one medium-sized
chip (>2 mm²).
If the static thermal resistance
Rthj-a is applied versus the PCB
heat sink area, a very important
function is obtained for the
application of the component. By
estimating the heat sink area in a
real application, the user can
The FEM simulation calculates
the thermal static resistance Rthj-a
(junction-ambient) and the Rthj-c
(junction-case) for packages with
enhanced die-pad or Rthj-pin
(junction to a defined pin) for
thermal enhanced P-DSO
packages without die-pad. This
easily determine the expected
Rthj-a, especially as the simulated
values are calculated in still air.
Therefore, they represent the
“worst case“. In real applications
the values for the heat resistance
are much lower. At an air stream
of 500 lin ft/min (linear feet per
minute) the Rthj-a of the
P-DSO-14-4 for example is up to
15 % lower (Figure 15).
P-DSO-14-4
Rthj-a
120
K/W 112
P-TO252-3-1
Rthj-pin = 31.7 K/W
Rthj-a
160
K/W 143.9
Rthj-c = 1.8 K/W
100
92
90
120
80
78
70
100
80
78
60
60
50
40
54.7
0
100
200
300
400
500 mm 2 600
40
0
100
200
300
500 mm 2 600
400
A
A
Figure 14 Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A at zero airflow
P-DSO-14-4
P-TO252-3-1
120
K/W
Rthj-a 110
160
K/W
Rthj-a 140
Footprint only
A = 300 mm 2
A = 600 mm 2
100
120
90
100
80
80
70
60
60
0
100
200
300
400
m/min
600
40
Footprint only
A = 300 mm 2
A = 600 mm 2
0
Airspeed
Figure 15 Thermal Resistance Junction to Ambient Rthj-a vs.
Airspeed for the P-DSO-14-4 and P-TO252-3-1 Packages
16
Infineon Technologies AG
50
100
150
Airspeed
m/min
200
Measuring the Rthj-a in a
Real Application:
To measure the chip temperature
(Tj) requires a little trick:
A temperature sensor is required
on the chip which can also be read
during operation. In many products
a substrate diode can be used at
an output (Status, Reset, etc.) to
measure the chip temperature.
To do this, the forward voltage VF
of the diode is measured at load
independent current as a
calibration curve. Due to the
characteristic temperature behavior
of the forward voltage - it has a
negative temperature coefficient of
approx. -2 mV/K - the relevant chip
temperature can be determined.
Using the measurement described
below the real thermal resistance
can be determined.
To determine the actual Rthj-a the
temperature difference between
chip temperature Tj and ambient
temperature Ta is required. The
equation Rthj-a =
Tj - Ta
applies.
PV
The power loss PV and the ambient
temperature Ta can be determined
easily in a temperature chamber or
calculated.
The calibration curve is measured
in the temperature chamber with
airflow. The power loss should be
kept as low as possible to ensure
the chip temperature remains
equal to the ambient temperature.
For the voltage regulator
TLE 4269 GM (P-DSO-14-4 Package)
a calibration curve (measured at
the diode at the reset output, pin 7).
RO is illustrated in Figure 16.
Figure 17 shows the
corresponding measuring circuit.
700
mV
VF 600
500
400
300
200
100
0
0
50
100
˚C
150
T
Figure 16 Calibration Curve TLE 4269 GM for IRO = -500 µA
(current drawn from Pin 7; RO)
Infineon Technologies AG
17
Thermal Resistance - Theory and Practice
The Rthj-a of any application can be
determined by measuring the
forward voltage of an output with
substrate diode during operation
(Figure 17).
When the switch S1 is closed and
the output voltage VQ = 5 V, the
output current is 5 A.
35
The power loss PV = (VI - VQ) • IQ
forward voltage VF of the diode.
The appropriate Tj for every VF
value can be read from the
calibration curve VF = ƒ(Tj).
The exact heat resistance of the
real application is calculated with
this values in the formula
Rthj-a =
in the chip of the voltage
regulator is now 1 W. Now,
change the ambient temperature
Ta and measure the respective
Tj - Ta
PV
Parameters such as air flow can
be changed without affecting the
measuring accuracy.
TLE 4269 GM
I
TPower
13
9 Q
RPU
20 kΩ
VI = 12 V
CI
10 µF
Substrat
diode
of TRO
P-DSO-14-4
1. Measurement of function VF = f (Ta):
S1 open; we get IQ = 0 mA
and PV = VI * II ~ 0 mW
Ta ~ Tj
Figure 17 Measuring Circuit
with TLE 4269GM
18
Infineon Technologies AG
7 RO
TRO
3-5; 10-12
IF ~ 500 µA
RF
RL
100 kΩ
VF ~ 0.7 V
VB
50 V
35 Ω
–
+
2. Measurement of thermal resistance junction to ambient Rthj-a:
S1 closed; we get IQ = VQ / RQ
and PV = (VI - VQ) * IQ ~ 1 W
Tj then can be found by measuring VF at given Ta from function VF vs. Ta
then we get Rthj-a = (Ta - Tj) / 1 W
S1
CQ
22 µF
PV = Power losses
Ta = Ambient temperature
Tj = Junction temperature
Determining the Dynamic
Heat Resistance
The FEM analysis is used also for
dynamic processes.
As described above, the dynamic
thermal impedance is defined as
the ratio of the temperature
difference ∆T = Tj - Ta (chip temperature - start temperature) after
the time tp to the power loss.
If a transient FEM simulation is
performed, it is easy to obtain the
graph Zthj-a = ƒ(tp) (dynamic
thermal impedance as a function
of the pulse width tp).
For the P-TO252-3-1 (D-Pack) and
the P-DSO-14-4 the thermal
impedances for the abovementioned PCB configurations are
specified (Figure 18).
The peak temperatures can be
calculated easily from these
curves:
–
–
–
–
–
P-TO252-3-1 (D-Pack)
3 cm² heat sink
Power loss PV = 10 W
Pulse width tp = 200 ms
Ambient temperature
Ta = 85 °C.
From the middle curve (Figure 18),
the Zthj-a of approximately 3.5 K/W
at tp = 200 ms gives a temperature rise ∆T = PV x Zthj-a of 35 K
and finally a peak temperature
Tjmax of 85 °C+35 °C = 120 °C.
P-DSO-14-4
P-TO252-3-1
120
K/W
Zthj-a 100
Zthj-a
120
Footprint
300 mm 2
600 mm 2
80
160
K/W
100
60
80
Footprint
300 mm 2
600 mm 2
60
40
40
20
0 -3
10
20
10-2
10-1
100
101
102
tp
s 103
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Figure 18 Thermal Impedance
Junction to Ambient
Zthj-a vs. Single
Pulse Time tp
Infineon Technologies AG
19
Thermal Resistance - Theory and Practice
Summary
For each case listed in Table 1,
a „Package and Thermal
Information“ data sheet is
provided in the appendix.Each
data sheet shows the footprint
and case dimensions. The various
versions of the PCBs used for the
simulation are shown. It shows
the heat distribution diagrams and
the result diagrams of the FEM
simulation. The left side shows
the diagram of the static thermal
resistance Rthj-a depending on the
PCB heat sink area A. It includes
the related thermal resistance
Rthj-c (junction-case) or Rthj-pin.
20
Infineon Technologies AG
On the right side is the diagram
for the dynamic heat resistance
Zthj-a, with three graphs for the
various PCB heat sinks depending
on the single pulse duration tp.
This information is a valuable aid
for SMD Power applications. It is
intentionally limited to PCBs
laminated on one side because it
represents the cost optimum. For
double sided PCBs or multilayers
a simple attempt with
conductance cross sections can
be made to determine the change
in the PCB thermal resistance
(compare thermal data sheet of
P-DSO-20-10 with P-DSO-36-10 in
the appendix).
The PCBs are usually installed in
closed plastic cases. The most
favorable heat path then usually
forms at plug contacts to the
cables because a supply wire
with an adequate cross section is
ideal as a heat conductor.
The future of chip placement
requires mechatronic solutions
where the PCB can be replaced
by chip-connector-supply wire
configurations.
Package and Thermal Information
Appendix
P-DSO-8-1
22
P-DSO-14-4
23
P-DSO-16-1
24
P-DSO-20-1
25
P-DSO-20-6
26
P-DSO-24-3
27
P-DSO-28-6
28
P-DSO-20-10
29
P-DSO-36-10
30
SCT595-5-1
31
SOT223-4-2
32
P-TO252-3-1
33
P-TO263-5-1
34
Infineon Technologies AG
21
P-DSO-8-1
1.27
L
8 max.
0.4 +0.8
6 ±0.2
0.1
0.35 +0.15 2)
0.2 8x
8
5
B
e
4 -0.21)
0.19 +0.06
e
A
L
B
1.27 5.69 1.31 0.65
0.35 x 45˚
1.75 max.
Package
P-DSO-8-1
0.2 -0.1
1.45 -0.2
Footprint/Dimensions
A
1 4
5 -0.21)
Reflow soldering
Index Marking
PC-Board
Dimensions in mm
Application-Boards for Rth - Measurement
P-DSO-8-1
P-DSO-8-1
a/2
2
3 cm²
3
Footprint only
a/2
0.375
0.67
0.67
0.375
a
a
1
6 cm²
P-DSO-8-1
1
1
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm
Finite Element Method
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 0.5 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 369 K
A = 300 mm²; Ta = 298 K; Tmax = 380 K
Footprint only; Ta = 298 K; Tmax = 390 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
190
K/W 185
Rthj-a
Rthj-pin2 = 71.8 K/W
170
Zthj-a
164
160
150
140
142
130
120
110
100
0
100
200
300
400
500 mm 2 600
A
22
22
Infineon Technologies
AG
Infineon
Technologies
AG
200
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
160
140
120
100
80
60
40
20
0 -3
10
Footprint
300 mm 2
600 mm 2
10-2
10-1
100
101
102
tp
s 103
Package and Thermal Information
P-DSO-14-4
8 max.
4 -0.2
1)
0.19 +0.06
Package
e
A
L
B
P-DSO-14-4 1.27 5.69 1.31 0.65
0.35 x 45˚
1.75 max.
0.2 -0.1
1.45 -0.2
Footprint/Dimensions
1.27
L
0.1
0.35 +0.15 2)
0.4 +0.8
0.2 14x
GND
6 ±0.2
GND
8
B
e
14
A
1
7
8.75 -0.21)
Reflow soldering
Index Marking
Dimensions in mm
Application-Boards for Rth - Measurement
P-DSO-14-4
1
6 cm²
PC-Board
P-DSO-14-4
2
3 cm²
0.375
a/2
P-DSO-14-4
-16-1
3
Footprint only
0.375
a
a
0.67
a/2
1
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 1 W; zero airflow)
A = 600 mm²; Ta = 298.1 K; Tmax = 377.7 K
A = 300 mm²; Ta = 298 K; Tmax = 389.8 K
Finite Element Method
Footprint only; Ta = 298 K; Tmax = 410.1 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-a
120
K/W 112
Rthj-pin4 = 31.7 K/W
120
K/W
Zthj-a 100
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
100
92
90
Footprint
300 mm 2
600 mm 2
80
80
78
70
60
40
60
20
50
40
0
100
200
300
400
500 mm 2 600
A
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Infineon
Technologies AG
AG
Infineon
Technologies
23
23
P-DSO-16-1
4 -0.2
1.27
L
0.1
0.35 +0.15 2)
8 max.
0.35 x 45˚
1)
0.19 +0.06
Package
e
A
L
B
P-DSO-16-1 1.27 5.69 1.31 0.65
1.75 max.
0.2 -0.1
1.45 -0.2
Footprint/Dimensions
0.4 +0.8
0.2 16x
9
1
8
B
e
6 ±0.2
16
A
Reflow soldering
10 -0.21)
Index Marking
PC-Board
Dimensions in mm
Application-Board for Rth - Measurement
P-DSO-14-4
-16-1
3
Footprint only
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 1 W; zero airflow)
Finite Element Method
Footprint only; Ta = 298 K; Tmax = 419.1 K
Diagrams
130
Rthj-a
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
121
K/W
Rthj-pin4 = 48.2 K/W
110
90
80
80
60
70
40
60
20
50
40
Footprint
100
100
0
100
200
300
400
500 mm 2 600
A
24
24
Zthj-a
140
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
Infineon Technologies
AG
Infineon
Technologies
AG
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Package and Thermal Information
0.4 +0.8
0.35 +0.15 2)
L
11
B
e
20
10.3 ±0.3
0.1
0.2 20x
8˚max.
1.27
9
7.6 -0.21)
0.23 +0.0
Package
e
A
L
B
P-DSO-20-1 1.27 9.73 1.67 0.65
0.35 x 45˚
2.65 max.
0.2 -0.1
2.45 -0.2
P-DSO-20-1
Footprint/Dimensions
A
1 12.8 1) 10
-0.2
Reflow soldering
Dimensions in mm
Index Marking
Application-Board for Rth - Measurement
3
Footprint only
PC-Board
P-DSO-20-1
-20-6
-24-3
-28-6
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 1 W; zero airflow)
Finite Element Method
Footprint only; Ta = 298 K; Tmax = 407 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-a
120
K/W 109
Rthj-pin5 = 43.6 K/W
Zthj-a
120
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
100
Footprint
80
90
60
80
70
40
60
20
50
40
0
100
200
300
400
500 mm 2 600
A
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Infineon
Technologies AG
AG
Infineon
Technologies
25
25
P-DSO-20-6
0.4 +0.8
0.35 +0.15 2)
L
GND
11
GND
B
e
20
10.3 ±0.3
0.1
0.2 20x
8˚max.
1.27
9
7.6 -0.21)
0.23 +0.0
Package
e
A
L
B
P-DSO-20-6 1.27 9.73 1.67 0.65
0.35 x 45˚
2.65 max.
0.2 -0.1
2.45 -0.2
Footprint/Dimensions
A
1 12.8 1) 10
-0.2
Reflow soldering
Dimensions in mm
Index Marking
PC-Board
Application-Boards for Rth - Measurement
P-DSO-20-6
-24-3
-28-6
1
6 cm²
P-DSO-20-6
-24-3
-28-6
2
3 cm²
a
3
Footprint only
0.375
a/2
a/2
0.3
0.3
0.375
P-DSO-20-1
-20-6
-24-3
-28-6
a
1
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm
Finite Element Method
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 1 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 372 K
A = 300 mm²; Ta = 298 K; Tmax = 379 K
Footprint only; Ta = 298 K; Tmax = 397 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-a
110
K/W 100
Rthj-pin5 = 22.9 K/W
90
Zthj-a
120
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
Footprint
300 mm 2
600 mm 2
80
81
80
74
70
40
60
20
50
40
0
100
200
300
400
500 mm 2 600
A
26
60
Infineon Technologies AG
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Package and Thermal Information
GND
13
GND
B
e
24
10.3 ±0.3
0.1
0.2 24x
8˚max.
0.4 +0.8
1.27
0.35 +0.15 2)
L
+0.09
7.6 -0.21)
0.23
Package
e
A
L
B
P-DSO-24-3 1.27 9.73 1.67 0.65
0.35 x 45˚
2.65 max.
0.2 -0.1
2.45 -0.2
P-DSO-24-3
Footprint/Dimensions
A
1
Reflow soldering
15.6 -0.4 1)
12
Dimensions in mm
Index Marking
Application-Boards for Rth - Measurement
P-DSO-20-6
-24-3
-28-6
1
6 cm²
P-DSO-20-6
-24-3
-28-6
2
3 cm²
a
3
Footprint only
0.375
P-DSO-20-1
-20-6
-24-3
-28-6
a/2
a/2
0.3
0.3
0.375
PC-Board
a
1
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 1 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 358 K
A = 300 mm²; Ta = 298 K; Tmax = 365 K
Finite Element Method
Footprint only; Ta = 298 K; Tmax = 374 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-a
80
K/W 76.4
75
Rthj-pin6 = 20.5 K/W
70
90
K/W
Zthj-a
67.4
70
Footprint
300 mm 2
600 mm 2
60
65
60.5
60
50
40
55
30
50
20
45
10
40
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
0
100
200
300
400
500 mm 2 600
A
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Infineon Technologies AG
27
P-DSO-28-6
+0.09
0.4 +0.8
GND
15
GND
B
e
28
10.3 ±0.3
0.1
0.2 28x
8˚max.
1.27
0.35 +0.15 2)
L
7.6 -0.21)
0.23
Package
e
A
L
B
P-DSO-28-6 1.27 9.73 1.67 0.65
0.35 x 45˚
2.65 max.
0.2 -0.1
2.45 -0.2
Footprint/Dimensions
A
1
Reflow soldering
18.1 -0.4 1)
14
Dimensions in mm
Index Marking
PC-Board
Application-Boards for Rth - Measurement
P-DSO-20-6
-24-3
-28-6
1
6 cm²
P-DSO-20-6
-24-3
-28-6
2
3 cm²
a
3
Footprint only
0.375
a/2
a/2
0.3
0.3
0.375
P-DSO-20-1
-20-6
-24-3
-28-6
a
1
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm
Finite Element Method
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 1 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 349 K
A = 300 mm²; Ta = 298 K; Tmax = 354 K
Footprint only; Ta = 298 K; Tmax = 359 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
65
K/W 61.4
Rthj-a
60
Rthj-pin7 = 20.1 K/W
Zthj-a
70
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
Footprint
300 mm 2
600 mm 2
50
56
55
51
40
30
50
20
45
40
10
0
100
200
300
400
500 mm 2 600
A
28
Infineon Technologies AG
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Package and Thermal Information
B
Package
e
A
L
B
P-DSO-20-10 1.27 13.48 1.83 0.68
15.74 ±0.1
(Heatsink)
1.27
L
0.4 +0.13
6.3
0.1
0.25 M A 20x
e
1
10
GND
B
11
Heatsink
0.95 ±0.15
14.2 ±0.3
0.25 M B
20
5˚ ±3˚
0.25
2.8
1.3
1.2 -0.3
Footprint/Dimensions
+0.0
-0.027
0 +0.15
3.25 ±0.1
3.5 max.
P-DSO-20-10
11 ±0.15 1)
A
Index
Marking
Reflow soldering
1 x 45˚
15.9 ±0.15 1)
Dimensions in mm
A
Application-Boards for Rth - Measurement
P-DSO-20-10
P-DSO-20-10
a
P-DSO-20-10
0.375
a
3
Footprint only
a/2
a/2
2
3 cm²
0.3
0.3
0.375
1
6 cm²
PC-Board
1
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 3 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 406 K
A = 300 mm²; Ta = 298 K; Tmax = 421 K
Finite Element Method
Footprint only; Ta = 298 K; Tmax = 463 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
60
K/W 55
Rthj-a 55
Rthj-c = 2.4 K/W
50
60
K/W
Zthj-a 50
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
Footprint
300mm 2
600 mm 2
40
45
30
41
40
20
36
35
30
10
0
100
200
300
400
500 mm 2 600
A
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Infineon Technologies AG
29
15.74 ±0.1
(Heatsink)
0.65
6.3
0.1
0.25 M A 36x
36
19
1
18
Heatsink
0.95 ±0.15
14.2 ±0.3
GND
0.25 B
B
e
0.25 +0.13
5˚ ±3˚
Package
e
A
L
B
P-DSO-36-10 0.65 13.48 1.83 0.45
B
0.25
1.3
1.1 ±0.1
L
11 ±0.15 1)
2.8
0 +0.1
3.25 ±0.1
3.5 max.
Footprint/Dimensions
+0.0
-0.027
P-DSO-36-10
A
Index
Marking
Reflow soldering
PC-Board
1 x 45˚
15.9 ±0.15 1)
Dimensions in mm
A
Application-Boards for Rth - Measurement
P-DSO-36-10
P-DSO-36-10
FR4; 47 x 50 x 1.5 mm; 70 µ Cu
A = 600 mm²; 24.5 x 24.5 mm
Finite Element Method
FR4; 47 x 50 x 1.5 mm; 70 µ Cu
A = 300 mm²; 16 x 19 mm
FEM Simulation (chip area ≥ 2 mm²; Pv = 3.5 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 398 K
A = 300 mm²; Ta = 298 K; Tmax = 427 K
Diagrams
Rthj-a
60
K/W
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-c = 2 K/W
60
K/W
Zthj-a 50
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
50
40
45
40
300 mm 2
600 mm 2
30
36.8
35
20
30
28.6
25
20
0
100
200
300
400
500 mm 2 600
A
30
30
Infineon Technologies
AG
Infineon
Technologies
AG
10
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Package and Thermal Information
SCT595-5-1
Footprint/Dimensions
2.9 ±0.2
(2.2)
B
1.4
1.1 max
1.2 +0.1
-0.05
(0.3)
1
0.95
0.25
M
B
2
3
GND
0.3 +0.1
-0.05
10˚max
1.6 ±0.1
0.5
0.8
4
2.6 max
5
0.1 max
+0.2
acc. to
DIN 6784
10˚max
1.9
2.9
A
0.95
Reflow soldering
GND
0.15 +0.1
-0.06
0.6 +0.1
-0.05
0.20
M
A
1.9
Dimensions in mm
Application-Boards for Rth - Measurement
SCT595
1
6 cm²
PC-Board
SCT595
2
3 cm²
a
0.375
SCT595
3
Footprint only
a
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 17.32 mm
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 12.247 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 0.2 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 315 K
I Q
GND
I Q
INH
1
GND
I Q
INH
1
GND
INH
a/2
a/2
0.3
0.3
0.375
A = 300 mm²; Ta = 298 K; Tmax = 318 K
Finite Element Method
Footprint only; Ta = 298 K; Tmax = 334 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-a
200
K/W 178.7
Rthj-pin5 = 25.9 K/W
160
140
120
98.5
100
80
87
0
100
200
300
400
500 mm 2 600
A
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
200
K/W
Zthj-a
160
140
120
100
80
60
40
20
0 -3
10
Footprint
300 mm 2
600 mm 2
10-2
10-1
100
101
102
tp
s 103
Infineon
Technologies AG
AG
Infineon
Technologies
31
31
SOT223-4-2
Footprint/Dimensions
1.6 ±0.1
6.5±0.2
3 ±0.1
B
0.1 max
3.5
0.5 min
4.8
1.2
1.1
1.4
1
2
3.5 ±0.2
1.4
+0.2
acc. to
DIN 6784
15˚max
GND
4
7 ±0.3
B
3
0.28±0.04
2.3
0.7±0.1
4.6
Reflow soldering
0.25
PC-Board
M
A
0.25
M
Dimensions in mm
B
Application-Boards for Rth - Measurement
SOT223
SOT223
SOT223
a/2
2
3 cm²
3
Footprint only
a/2
a
a
1
6 cm²
0.3
I
0.3
Q GND
I
1
Q GND
I
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 24.49 mm
Finite Element Method
Q GND
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 17.32 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 0.5 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 332 K
A = 300 mm²; Ta = 298 K; Tmax = 339 K
Footprint only; Ta = 298 K; Tmax = 380 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-a
180
K/W 164.3
Rthj-pin4 = 16.5 K/W
Zthj-a
140
Footprint
300 mm 2
600 mm 2
100
80
100
60
40
81.2
80
68
0
100
200
300
400
500 mm 2 600
A
32
32
140
120
120
60
180
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
Infineon Technologies
AG
Infineon
Technologies
AG
20
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Package and Thermal Information
P-TO252-3-1
Footprint/Dimensions
6.5 +0.15
-0.10
2.3 +0.05
-0.10
A
5.76
GND
0.51 min
(4.17)
0.8 ±0.15
1 ±0.1
1
0.15 max
per side
1.2
3
0...0.15
0.5 +0.08
-0.04
3x
0.75 ±0.1
2.28
4.57
Reflow soldering
0.9 +0.08
-0.04
B
5.4 ±0.1
9.9 ±0.5
6.22 -0.2
2.2
10.6
6.4
5.8
1±0.1
0.25
M
0.1
A B
Dimensions in mm
Application-Boards for Rth - Measurement
P-TO252-3-1
P-TO252-3-1
a
1
6 cm²
P-TO252-3-1
3
2
3 cm²
a
a/2
I
PC-Board
Footprint only
a/2
Q
I
1
Q
I
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 24.49 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 17.32 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 1 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 353 K
Q
1
A = 300 mm²; Ta = 298 K; Tmax = 376 K
Finite Element Method
Footprint only; Ta = 298 K; Tmax = 442 K
Diagrams
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
Rthj-a
160
K/W 143.9
Rthj-c = 1.8 K/W
Zthj-a
160
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
120
120
100
100
80
80
78
40
60
54.7
40
Footprint
300 mm 2
600 mm 2
60
0
100
200
300
400
500 mm 2 600
A
20
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Infineon
Technologies AG
AG
Infineon
Technologies
33
33
P-TO263-5-1
Footprint/Dimensions
4.4 ±0.1
10 ±0.2
1.27±0.1
B
0.1 ±0.1
A
1
GND
2.4 ±0.1
81)
4.6
0.05
4.7 ±0.5
2.7 ±0.3
(15)
9.25 ±0.2
0.6
10.8
9.4
1.1
7.9
1±0.3
8.5 1)
5
16.15
5x0.8 ±0.1
0.5 ±0.1
4x1.7
Reflow soldering
0.25
PC-Board
M
8˚max.
A B
0.1 B
Dimensions in mm
Application-Boards for Rth - Measurement
P-TO263-5-1
P-TO263-5-1
a/2
2
3 cm²
3
Footprint only
a/2
a
a
1
6 cm²
P-TO263-5-1
1
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 600 mm²; a = 24.49 mm
Finite Element Method
1
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
A = 300 mm²; a = 17.32 mm
FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn
Footprint only
FEM Simulation (chip area ≥ 2 mm²; Pv = 3 W; zero airflow)
A = 600 mm²; Ta = 298 K; Tmax = 417 K
A = 300 mm²; Ta = 298 K; Tmax = 455 K
Footprint only; Ta = 298 K; Tmax = 533 K
Diagrams
85
K/W
Rthj-a
75
70
65
60
55
50
45
40
35
Thermal Resistance Junction to Ambient Rthj-a vs.
PCB Heat Sink Area A (zero airflow)
78.4
Rthj-c = 1.3 K/W
Zthj-a
70
60
Footprint
300 mm 2
600 mm 2
50
40
52.4
30
20
39
0
100
200
300
400
500 mm 2 600
A
34
34
90
K/W
Thermal Impedance Junction to Ambient Zthj-a vs.
Single Pulse Time tp (zero airflow)
Infineon Technologies
AG
Infineon
Technologies
AG
10
0 -3
10
10-2
10-1
100
101
102
tp
s 103
Infineon Technologies AG’s sales offices worldwide –
partly represented by Siemens AG
A
O
Siemens AG Österreich
Erdberger Lände 26
A-1031 Wien
T (+43) 1-17 07-3 56 11
Fax (+43) 1-17 07-5 59 73
AUS
O
Siemens Ltd.
885 Mountain Highway
Bayswater, Victoria 3153
T (+61) 3-97 21 21 11
Fax (+61) 3-97 21 72 75
B
O
Siemens Electronic Components
Benelux
Charleroisesteenweg 116/
Chaussée de Charleroi 116
B-1060 Brussel/Bruxelles
T (+32) 2-5 36 69 05
Fax (+32) 2-5 36 28 57
Email: [email protected]
BR
O
Siemens Ltda.
Semiconductores
Avenida Mutinga, 3800-Pirituba
05110-901 São Paulo-SP
T (+55) 11-39 08 25 64
Fax (+55) 11-39 08 27 28
CDN
O
Infineon Technologies Corporation
320 March Road, Suite 604
Canada, Ontario K2K 2E2
T (+1) 6 13-5 91 63 86
Fax (+1) 6 13-5 91 63 89
CH
O
Siemens Schweiz AG
Bauelemente
Freilagerstrasse 40
CH-8047 Zürich
T (+41) 1-4 95 30 65
Fax (+41) 1-4 95 50 50
D
O
Infineon Technologies AG
Völklinger Str. 2
D-40219 Düsseldorf
T (+49) 2 11-3 99 29 30
Fax (+49) 2 11-3 99 14 81
Infineon Technologies AG
Werner-von-Siemens-Platz 1
D-30880 Laatzen (Hannover)
T (+49) 5 11-8 77 22 22
Fax (+49) 5 11-8 77 15 20
Infineon Technologies AG
Von-der-Tann-Straße 30
D-90439 Nürnberg
T (+49) 9 11-6 54 76 99
Fax (+49) 9 11-6 54 76 24
Infineon Technologies AG
Weissacher Straße 11
D-70499 Stuttgart
T (+49) 7 11-137 33 14
Fax (+49) 7 11-137 24 48
D
O
Infineon Technologies AG
Halbleiter Distribution
Richard-Strauss-Straße 76
D-81679 München
T (+49) 89-92 21 40 86
Fax (+49) 89-92 21 20 71
DK
O
Siemens A/S
Borupvang 3
DK-2750 Ballerup
T (+45) 44 77-44 77
Fax (+45) 44 77-40 17
E
O
Siemens S.A.
Dpto. Componentes
Ronda de Europa, 5
E-28760 Tres Cantos-Madrid
T (+34) 91-5 14 71 51
Fax (+34) 91-5 14 70 13
F
O
Infineon Technologies France,
39/47, Bd. Ornano
F-93527 Saint-Denis CEDEX 2
T (+33) 1-49 22 31 00
Fax (+33) 1-49 22 28 01
FIN
O
Siemens Components
Scandinavia
P.O.Box 60
FIN-02601 Espoo (Helsinki)
T
(+3 58) 10-5 11 51 51
Fax (+3 58) 10-5 11 24 95
Email:
[email protected]
GB
O
Infineon Technologies
Siemens House
Oldbury
GB-Bracknell, Berkshire
RG 12 8FZ
T (+44) 13 44-39 66 18
Fax (+44) 13 44-39 66 32
O
H
Simacomp Kft.
Lajos u. 103
H-1036 Budapest
T (+36) 1-4 57 16 90
Fax (+36) 1-4 57 16 92
HK
O
Infineon Technologies
Hong Kong Ltd.
Suite 302, Level 3,
Festival Walk,
80 Tat Chee Avenue,
Yam Yat Tsuen,
Kowloon Tong
Hong Kong
T (+8 52) 28 32 05 00
Fax (+8 52) 28 27 97 62
O
I
Siemens S.p.A.
Semiconductor Sales
Via Piero e Alberto Pirelli, 10
I-20126 Milano
T (+39) 02-66 76 -1
Fax (+39) 02-66 76 43 95
Internet-address: http://www.infineon.com
IND
O
NL
O
Siemens Ltd.
Components Division
No. 84 Keonics Electronic City
Hosur Road
Bangalore 561 229
T (+91) 80-8 52 11 22
Fax (+91) 80-8 52 11 80
Siemens Electronic Components
Benelux
Postbus 16068
NL-2500 BB Den Haag
T (+31) 70-3 33 20 65
Fax (+31) 70-3 33 28 15
Email: [email protected]
Siemens Ltd.
CMP Div, 5th Floor
4A Ring Road, IP Estate
New Delhi 110 002
T (+91) 11-3 31 99 12
Fax (+91) 11-3 31 96 04
NZ
O
Siemens Ltd.
CMP Div, 4th Floor
130, Pandurang Budhkar Marg,
Worli
Mumbai 400 018
T (+91) 22-4 96 21 99
Fax (+91) 22-4 96 22 01
IRL
O
Siemens Ltd.
Electronic Components Division
8, Raglan Road
IRL-Dublin 4
T (+3 53) 1-2 16 23 42
Fax (+3 53) 1-2 16 23 49
O
IL
Nisko Ltd.
2A,Habarzel St.
P.O. Box 58151
61580 Tel Aviv – Isreal
T (+9 72) 3-7 65 73 00
Fax (+9 72) 3-7 65 73 33
J
O
Siemens Components K.K.
Talanawa Park Tower 12F & 17F
3-20-14, Higashi-Gotanda,
Shinagawa-ku
Tokyo
T (+81) 3-54 49 64 11
Fax (+81) 3-54 49 64 01
MAL
O
Infineon Technologies AG
Sdn Bhd
Bayan Lepas Free Industrial Zone 1
11900 Penang
T (+60) 4-6 44 99 75
Fax (+60) 4-6 41 48 72
N
O
Siemens Components
Scandinavia
Østre Aker vei 24
Postboks 10, Veitvet
N-0518 Oslo
T
(+47) 22-63 30 00
Fax (+47) 22-68 49 13
Email:
[email protected]
Siemens Auckland
300 Great South Road
Greenland
Auckland
T (+64) 9-5 20 30 33
Fax (+64) 9-5 20 15 56
P
O
Siemens S.A.
an Componentes Electronicos
R. Irmaos Siemens, 1
Alfragide
P-2720-093 Amadora
T (+351) 1-4 17 85 90
Fax (+351) 1-4 17 80 83
PK
O
Siemens Pakistan Engineering
Co.Ltd.
PO Box 1129, Islamabad 44000
23 West Jinnah Ave
Islamabad
T (+92) 51-21 22 00
Fax (+92) 51-21 16 10
PL
O
Siemens SP. z.o.o.
ul. Zupnicza 11
PL-03-821 Warszawa
T (+48) 22-8 70 91 50
Fax (+48) 22-8 70 91 59
ROK
O
Siemens Ltd.
Asia Tower, 10th Floor
726 Yeoksam-dong, Kang-nam Ku
CPO Box 3001
Seoul 135-080
T (+82) 2-5 27 77 00
Fax (+82) 2-5 27 77 79
RUS
O
INTECH electronics
ul. Smolnaya, 24/1203
RUS-125 445 Moskva
T (+7) 0 95-4 51 97 37
Fax (+7) 0 95-4 51 86 08
O
S
Siemens Components Scandinavia
Österögatan 1, Box 46
S-16493 Kista
T
(+46) 8-7 03 35 00
Fax (+46) 8-7 03 35 01
Email:
[email protected]
RC
O
Infineon Technologies
Asia Pacific Pte. Ltd.
Taiwan Branch
10F, No. 136 Nan King East Road
Section 23, Taipei
T (+8 86) 2-27 73 66 06
Fax (+8 86) 2-27 71 20 76
SGP
O
Infineon Technologies Asia
Pacific, Pte. Ltd.
168 Kallang Way
Singapore 349 253
T (+65) 8 40 06 10
Fax (+65) 7 42 62 39
USA
O
Infineon Technologies
Corporation
1730 North First Street
San Jose, CA 95112
T (+1) 4 08-5 01 60 00
Fax (+1) 4 08-5 01 24 24
Siemens Components, Inc.
Optoelectronics Division
19000 Homestead Road
Cupertino, CA 95014
T (+1) 4 08-2 57 79 10
Fax (+1) 4 08-7 25 34 39
Siemens Components, Inc.
Special Products Division
186 Wood Avenue South
Iselin, NJ 08830-2770
T (+1) 7 32-9 06 43 00
Fax (+1) 7 32-6 32 28 30
VRC
O
Infineon Technologies
Hong Kong Ltd.
Beijing Office
Room 2106, Building A
Vantone New World Plaza
No. 2 Fu Cheng Men Wai Da Jie
100037 Beijing
T (+86) 10-68 57 90 -06, -07
Fax (+86) 10-68 57 90 08
Infineon Technologies
Hong Kong Ltd.
Chengdu Office
Room 14J1, Jinyang Mansion
58 Tidu Street
Chengdu,
Sichuan Province 610 016
T (+86) 28-6 61 54 46 / 79 51
Fax (+86) 28-6 61 01 59
Infineon Technologies
Hong Kong Ltd.
Shanghai Office
Room 1101, Lucky Target Square
No. 500 Chengdu Road North
Shanghai 200003
T (+86) 21-63 61 26 18/19
Fax (+86) 21-63 61 11 67
Infineon Technologies
Hong Kong Ltd.
Shenzhen Office
Room 1502, Block A
Tian An International Building
Renim South Road
Shenzhen 518 005
T (+86) 7 55-2 28 91 04
Fax (+86) 7 55-2 28 02 17
ZA
O
Siemens Ltd.
Components Division
P.O.B. 3438
Halfway House 1685
T (+27) 11-6 52 -27 02
Fax (+27) 11-6 52 20 42
06.10.99
To t a l Q u a l i t y M a n a g e m e n t
Qualität hat für uns eine
umfassende Bedeutung.
Wir wollen allen Ihren
Ansprüchen in der
bestmöglichen Weise
gerecht werden. Es geht
uns also nicht nur um die
Produktqualität – unsere
Anstrengungen
gelten gleichermaßen der
Lieferqualität und Logistik,
dem Service und Support
sowie allen sonstigen
Beratungs- und Betreuungsleistungen.
Dazu gehört eine bestimmte
Geisteshaltung unserer
Mitarbeiter. Total Quality
im Denken und Handeln
gegenüber Kollegen,
Lieferanten und Ihnen,
unserem Kunden. Unsere
Leitlinie ist, jede Aufgabe
mit „Null Fehlern“ zu
lösen – in offener
Sichtweise auch über den
eigenen Arbeitsplatz
hinaus – und uns ständig
zu verbessern.
Unternehmensweit
orientieren wir uns dabei
auch an „top“ (Time
Optimized Processes), um
Ihnen durch größere
Schnelligkeit den
entscheidenden
Wettbewerbsvorsprung
zu verschaffen.
Geben Sie uns die Chance,
hohe Leistung durch
umfassende Qualität zu
beweisen.
Quality takes on an allencompassing significance
at Semiconductor Group.
For us it means living up
to each and every one of
your demands in the best
possible way. So we are
not only concerned with
product quality. We direct
our efforts equally at
quality of supply and
logistics, service and
support, as well as all the
other ways in which we
advise and attend to you.
Part of this is the very
special attitude of our
staff. Total Quality in
thought and deed,
towards co-workers,
suppliers and you, our
customer. Our guideline is
“do everything with zero
defects”, in an open
manner that is
demonstrated beyond
your immediate
workplace, and to
constantly improve.
Throughout the
corporation we also think
in terms of
Time Optimized Processes
(top), greater speed on
our part to give you that
decisive competitive edge.
Give us the chance to
prove the best of
performance through the
best of quality – you will
be convinced.
Wir werden Sie überzeugen.
Published by Infineon Technologies AG
Ordering No. B112-H7482-G1-X-7600
Printed in Germany
TB 01005.
NB