110W 54V Power Supply Demo Board using ICL5101

110 W / 54 V P o wer S u p p ly D em o B oar d
usin g I CL 5 101 in PF C & L L C Top ol og y
Application Note
About this document
Scope and purpose
This document presents the details about the ICL5101 evaluation board and ICL5101 product feature set. It
illustrates all necessary steps to get the board and related environment up and running, and provides all
information to become familiar with this comprehensive solution. The evaluation board passes EMI
conductive, radiated and is CE certificated.
The ICL5101 is a mixed signal PFC + resonant controller for non-dimmable and dimmable LED light
applications using LLC topology for highest efficiency levels exceeding 94 %, including a PFC stage for
lowest THD < 5 % and high power factor correction figures > 95 % @ > 50 % load in a wide line input voltage
range. The ICL5101 evaluation board is designed to evaluate the performance and flexibility of the ICL5101.
It supports an output power of 110 W, easily configurable by using only resistor settings without any user
interface tool.
Intended audience
This document is intended for anyone who needs to use the ICL5101 evaluation board, either for their own
application tests or to use it as a reference for a new ICL5101-based development.
1
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Table of Contents
Table of Contents
1
Introduction ............................................................................................................... 3
2
Technical Specification ................................................................................................ 4
3
Schematic .................................................................................................................. 5
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.3
4.4
4.4.1
4.4.2
4.5
Key Measurements and Waveforms ............................................................................... 6
Line Regulation, Startup Time, Load Regulation, PF and THD .......................................................... 6
Line Regulation ............................................................................................................................. 6
Startup Time.................................................................................................................................. 7
Load Regulation ............................................................................................................................ 9
PF and THD vs. POUT ....................................................................................................................... 9
Surge Protection ............................................................................................................................... 12
Harmonics ......................................................................................................................................... 13
System Efficiency and Standby Power ............................................................................................. 14
System Efficiency ........................................................................................................................ 14
Power Consumption at Output Open Loop (Standby Power) ................................................... 15
EMI Test.............................................................................................................................................. 16
5
5.1
5.2
5.3
Surge, Flicker & Burst Test Results .............................................................................. 20
Surge .................................................................................................................................................. 20
Flicker ................................................................................................................................................ 21
Burst................................................................................................................................................... 23
6
6.1
6.2
6.3
6.4
Power Transformer Specification ............................................................................... 24
Common Mode Choke Spec L1 ......................................................................................................... 24
PFC Choke Spec T1 ............................................................................................................................ 25
LLC Resonant Choke Spec L2 ............................................................................................................ 26
LLC Transformer Spec T2 .................................................................................................................. 27
7
Board Layout ............................................................................................................ 28
8
Bill of Material (BOM)................................................................................................. 29
9
References ............................................................................................................... 33
Application Note
2
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Introduction
1
Introduction
This application note describes the characteristics and features of a 110 W SMPS demonstration board with
constant 54 V voltage output. High efficiency, high PF, low THD and very stable output voltage with low
ripple at whole power range are the key features of this demonstration board, which makes it very suitable
to be used as a primary power supply for low power systems, such as LED lighting. Its compact design and
low BOM cost is due to Infineon IC ICL5101 (CrCM PFC and resonant block are integrated together), which is
used as main controller here. With this highly integrated smart IC, the circuit design is dramatically
simplified, which results space and BOM cost saving. Furthermore, numerous monitor and protection
features ensure highest reliability.
Key specification measurements and waveforms are also shown in this application note.
Figure 1 Demonstration Board of 110 W / 54 V LED Driver
Application Note
3
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Technical Specification
2
Technical Specification
This demo board consists of a CrCM PFC and a half-bridge LLC, which outputs a stable 54 VDC voltage.
The PFC stage of this demo board is controlled by the PFC block of the ICL5101, which has an integrated
digital PFC control loop and improved compensation for low THD of AC input current. It operates in critical
conduction mode (CrCM) in a load range from 10 % to 100 % to achieve a very good power factor and very
low THD. When the load is smaller than 10 %, in order to limit the PFC switching frequency, the IC controls
the PFC to operate in discontinuous conduction mode (DCM).
The half-bridge LLC stage has a fixed duty cycle of D=0.5 and an adjustable self-adapting dead time from
0.5 µs to 1 µs. The operation frequency starts from typical 135 kHz at start-up and decreases to a range of
between 45 kHz (full load) and 75 kHz (output open loop). The 54 V output voltage has a very stable value
throughout the whole output power range. The value variation is tested to be smaller than 0.2 % from full
load to open loop. Over voltage protection (OVP) is implemented at the main output. When the output
voltage reaches 60 V, the main converter is stopped by the OVP circuit. It starts to operate again when the
main output decreases to 54 V. In addition, many other protection functions are also implemented, such as
Output Short Circuit Protection of the main output (OSCP), LLC primary winding short circuit protection
(WSCP), Capacitive Mode Protection of the main output (CMP), LLC Over Current Protection (LOCP), over
temperature protection (OTP) at certain hot spot on board and more. These protection functions are
realized by the built-in protection functions of the IC ICL5101.
Features

Input voltage range: 85–305 VAC

Input voltage frequency: 47–63 Hz

Regulated main output voltage: 54 VDC / 2.06 A

Efficiency at nominal load: ≥ 93.5 % at 230 VAC

Input current THD: < 10 % @ > 35% Load at 230 VAC

Harmonics: According to EN61000-3-2 Class-D

EMI: According to EN55015

Safety : According to EN61347-2-13

Board dimensions: 247.3 mm (L) x 48.25 mm (W) x 34.2 mm (H)
Application Note
4
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Schematic
3
Schematic
Figure 2 shows the schematic of the ICL5101 demonstration board.
Figure 2 Schematic of 110 W / 54 V Power Supply Demo Board
Application Note
5
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
4
Key Measurements and Waveforms
4.1
Line Regulation, Startup Time, Load Regulation, PF and THD
4.1.1
Line Regulation
The output voltage of the demo board is tested under nominal load (110 W) with input voltages from 85 VAC
up to 300 VAC.
The detailed test results are shown in Figure 3.
VOUT versus VIN at Nominal Load
54,2
54,1
54
Output Voltage [V]
53,9
53,8
53,7
53,6
53,5
53,4
53,3
53,2
80
95
110
125
140
155
170
185
200
215
230
245
260
275
290
305
Input Voltage [V]
OUTPUT VOLTAGE
Figure 3 DC Output Voltage at Different VIN Values
Application Note
6
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
4.1.2
Startup Time
Start-up time is shorter than 200ms at whole input voltage and power range. Oscilloscope pictures are
shown in pictures from Figure 4 to Figure 9
Figure 4: AC Input Voltage 85VACIN, NO Load
CH1: Chip Supply Voltage VCC (Yellow) to IC GND; 5V/div
CH2: Low Side Gate Drive VLSGD (Blue) to IC GND; 10V/div
CH3: PFC BUS Voltage VBUS to Power GND (Magenta); 100V/div
CH4: Output Voltage VOUT (Green) to Sec GND; 10V/div
Time: 100ms/div;
Start-up time:180.1ms
Figure 5: AC Input Voltage 85VACIN, Full Load
CH1: Chip Supply Voltage VCC (Yellow) to IC GND; 5V/div
CH2: Low Side Gate Drive VLSGD (Blue) to IC GND; 10V/div
CH3: PFC BUS Voltage VBUS to Power GND (Magenta); 100V/div
CH4: Output Voltage VOUT (Green) to Sec GND; 10V/div
Time: 100ms/div;
Start-up time:195.1ms
Figure 6: AC Input Voltage 230VACIN, NO Load
CH1: Chip Supply Voltage VCC (Yellow) to IC GND; 5V/div
CH2: Low Side Gate Drive VLSGD (Blue) to IC GND; 10V/div
CH3: PFC BUS Voltage VBUS to Power GND (Magenta); 100V/div
CH4: Output Voltage VOUT (Green) to Sec GND; 10V/div
Time: 50ms/div;
Start-up time: 88ms
Figure 7: AC Input Voltage 230VACIN, Full Load
CH1: Chip Supply Voltage VCC (Yellow) to IC GND; 5V/div
CH2: Low Side Gate Drive VLSGD (Blue) to IC GND; 10V/div
CH3: PFC BUS Voltage VBUS to Power GND (Magenta); 100V/div
CH4: Output Voltage VOUT (Green) to Sec GND; 10V/div
Time: 50ms/div;
Start-up time: 100ms
Application Note
7
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
Figure 8: AC Input Voltage 300VACIN, NO Load
CH1: Chip Supply Voltage VCC (Yellow) to IC GND; 5V/div
CH2: Low Side Gate Drive VLSGD (Blue) to IC GND; 10V/div
CH3: PFC BUS Voltage VBUS to Power GND (Magenta); 100V/div
CH4: Output Voltage VOUT (Green) to Sec GND; 10V/div
Time: 50ms/div;
Start-up time: 88ms
Application Note
Figure 9: AC Input Voltage 300VACIN, Full Load
CH1: Chip Supply Voltage VCC (Yellow) to IC GND; 5V/div
CH2: Low Side Gate Drive VLSGD (Blue) to IC GND; 10V/div
CH3: PFC BUS Voltage VBUS to Power GND (Magenta); 100V/div
CH4: Output Voltage VOUT (Green) to Sec GND; 10V/div
Time: 50ms/div;
Start-up time: 93.5ms
8
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
4.1.3
Load Regulation
The output voltage of the demo board is tested at 230 VAC input voltage and with loads from 0 % up to 100 %
(110 W). The detailed test results are shown in Figure 10.
VOUT versus POUT @ VACIN = 230V
54,4
54,3
54,2
Output Voltage [V]
54,1
54
53,9
53,8
53,7
53,6
53,5
53,4
0
10
20
30
40
50
60
70
80
90
100
110
Output Power [W]
VOUT
Figure 10 Output Voltage VOUT versus POUT
4.1.4
PF and THD vs. POUT
Due to the smart internal digital PFC controller and improved THD correction of the ICL5101, PF values of
greater than 94 % and THD values of lower than 10 % from loads upwards of 45 % are achieved at
VIN = 230 VAC. The detailed test results are shown in Figure 11.
PF / THD vs. Load @ VACIN = 230 using diff. RZCD 110W
45
100
40
90
80
35
THD [%]
60
RZCD = 51kΩ ideal for stable Load Conditions
25
Mode change from CritCM into WCM
50
20
Limit starting THD is higher
15
40
Power Factor PF [%]
70
30
30
10
20
5
10
RZCD = 39kΩ ideal for vary Load Conditions
Smooth mode change
0
0
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100 105
Load[%]
THD [%] 39kΩ
THD [%] 51kΩ
Power Factor [%] #48 Ref
Figure 11 PF and THD versus Load
Application Note
9
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
Introduction THD Adjustment:
In order to provide an excellent THD result, the THD of the ICL5101 is adjustable. Especially at high line input
voltage and low load condition, the THD is a critical value. It doesn´t matter in which condition:
- Line input voltage
- Stable load
- Load variation
the ICL5101 is providing best results for all cases – only in trimming the ZCD resistor at PIN 7 see Figure 12.
VBUS
HS MOSFET
LS MOSFET
1
0.8VRefCS
LVcc
LPFC
HSVCC 15
3 VCC
HSGND 14
4 GND
PFC MOSFET
5 PFCGD
1.0VRefPFCS
HSGD 16
2 LSCS
6 PFCCS
ICL5101
VBUS
LSGD
Vcc
ϑR
OTP 13
OVP 12
Vcc
n.a. 11
VBUS
LPFCsec
7 PFCZCD
n.a. 10
2.5VRefPFCVS
8 PFCVS
RFM 9
RfRUN
Rfmin
PG-DSO-16 (150mil)
Figure 12 PIN SetUP ICL5101
How to do:
To improve the THD the resistor – see red signed resistor in Figure 12 – at ZCD PIN 7 can be trimmed to an
optimal value (several k-ohm ~ 20 up to 100k) in order to reach best THD results.
Step one is to define the inductivity of the PFC choke and the MOSFET. After fixing PFC choke and transistor,
two scenarios are happen:
1/ operation in stable load condition e.g. lamp ON / OFF
SET nominal load condition and vary the value of the resistor until you get the best THD results. Outcome
sees in Figure 11 black curve
2/ operation with load variation e.g. dimming of an LED
Choose a resistor and vary the load. Change value up or down in order to get your best result over the whole
load range – outcome sees Figure 11 red curve.
Application Note
10
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
Mechanism:
The controller operates in two modes:
- Critical Conduction Mode (CrCM) in a wide load range
- Wait Cycle Mode (WCM – a kind of DCM) for low load
Switch from CrCM into WCM):
The ICL5101 has an integrated logic which can be regulated via the resistor at the ZCD PIN 7 in varying the
value of the resistor.
Limit:
The digital logic of the controller is limited. At high line input voltages, the controller reduces the ON time of
the PFC gate driver. If the minimum ON time is reached – physically given by the internal digital stage – the
controller switches over from the critical conduction mode CrCM into the wait cycle mode WCM. This switch
over can be seen in the THD measurement shown in Figure xx. Depending on the load (stable or variable) the
optimum configuration can be found, shown in . This effect can be prevented by trimming the resistor at the
ZCD PIN 7 – lower the resistance leads to a smother cross over from CrCM into WCM (red curve) but increases
slightly the THD.
Application Note
11
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
4.2
Surge Protection
Description SURGE Protection
In case of a surge event, the voltage at the BUS capacitors C5 & C8 rises up, the driver stages of the ICL5101
are shut off when VLSCS > 0.8V and VBUS > 109% for longer than 500ns. After the surge the controller restarts
automatically when VBUS drops below 109% of the rated voltage. This feature allows driving 500V MOSFETs
at the half bridge stage when adequate EMI and DC LINK networking is present.
SURGE Detection
If the bus voltage exceeds:
VBUS > 109%
and the voltage at the low side current sense pin 2 exceeds:
VLSCS > 0.8V
for longer than
t = 500ns
SURGE Protection
All Gate Drives OFF
Auto Restart:
VBUS < 109%
Measurement
Surge Event of 1.7kV WITHOUT Varistor VR1
Figure 13: SURGE 1.7kV / FULL Load / Detail
L  N / Phase: 90°
Figure 14: SURGE 1.7kV / FULL Load / Auto Restart
L  N / Phase: 90°
Ch 1 dark blue: VLSCS LS Current Sense to IC GND
Ch 1 dark blue: VLSCS LS Current Sense to IC GND
Ch 2 blue: VBUS to Power GND
Ch 2 blue: VBUS to Power GND
Ch 3 magenta: VLSDS LS Drain to Power GND
Ch 3 magenta: VLSDS LS Drain to Power GND
Ch 4 green: VPFCDS PFC Drain to Power GND
Ch 4 green: VPFCDS PFC Drain to Power GND
Surge Event: VBUS > 109% & VLSCS > 800mV
Auto Restart:VBUS < 109%
Application Note
12
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
4.3
Harmonics
Harmonics are tested according to the standard EN61000-3-2 Class-D, as shown in the following figures.
Figure 15 Input Current Harmonic Spectrum at Full Load and VIN = 85 VAC
Figure 16 Input Current Harmonic Spectrum at Full Load and VIN = 230 VAC
Application Note
13
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
Figure 17 Input Current Harmonic Spectrum at Full Load and VIN = 300 VAC
4.4
System Efficiency and Standby Power
4.4.1
System Efficiency
The efficiency of the demo board is tested at 230 VAC input voltage and under different output power from
0 W to 110 W.
System Effieciency [%]
System - ƞ versus Load @ VACIN = 230V
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
Load [%]
Efficiency
Figure 18 System Efficiency versus Load
Application Note
14
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
4.4.2
Power Consumption at Output Open Loop (Standby Power)
At output open loop (NO Load), the power converter keeps the output voltage at a stable value of 54 V and
will not go into burst mode.
STB versus VIN at NO Load
1,8
1,6
1,4
Standby Power [W]
1,2
1
0,8
0,6
0,4
0,2
0
50
100
150
200
250
300
350
Input Voltage [V]
STB [W]
Figure 19 Standby Power versus VAC
Application Note
15
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
4.5
EMI Test
Conducted EMI and radiated EMI are tested according to the standard EN55015.
Figure 20 Conducted EMI -- 230VAC/50Hz N
Figure 21 Conducted EMI -- 230VAC/50Hz L
Application Note
16
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
Figure 22 Conducted EMI -- 120VAC/60Hz N
Figure 23 Conducted EMI -- 120VAC/60Hz L
Application Note
17
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
Figure 24 Radiated EMI -- 230VAC/50Hz Horizontal
Figure 25 Radiated EMI -- 230VAC/50Hz Vertical
Application Note
18
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Key Measurements and Waveforms
Figure 26 Radiated EMI -- 120VAC/60Hz Horizontal
Figure 27 Radiated EMI -- 120VAC/60Hz Vertical
Application Note
19
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Surge, Flicker & Burst Test Results
5
Surge, Flicker & Burst Test Results
5.1
Surge
Application Note
20
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Surge, Flicker & Burst Test Results
5.2
Flicker
Application Note
21
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Surge, Flicker & Burst Test Results
Application Note
22
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Surge, Flicker & Burst Test Results
5.3
Burst
Application Note
23
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Power Transformer Specification
6
Power Transformer Specification
6.1
Common Mode Choke Spec L1
Figure 28 Common Mode Choke
Application Note
24
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Power Transformer Specification
6.2
PFC Choke Spec T1
110W/ PFC Inductance
Core form and material:EV30,TPA44
Bobbin former: Horizontal version
Primary inductance and saturation current: LP = 580µH / ISAT = 6A
6 turns 6 x 0.15mm
79 turns 50 x 0.1mm
Pin 6
Pin 5
Pin 1
Pin 12
Sec.1
4layer
Prim
Center leg
means one layer Makrofol
Start
End
No of Turns
Wire size
Layer
Method
12
1
79
50 x 0.1 mm
Primary
Tight
5
6
6
6 x 0.15 mm
Sec.1
Tight
Top View:
Pin 1 •
∙ Pin 12
Pin 5 ∙
Pin 6
Figure 29 PFC Choke
Application Note
25
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Power Transformer Specification
6.3
LLC Resonant Choke Spec L2
110W/ LLC Resonence Inductance
Core form and material:EP20,TPW33
Bobbin former: Vertical version
Primary inductance and saturation current: LP = 225µH
Pin3
41 turns 40 x 0.1mm
4layer
Pin1
Center leg
means one layer Makrofol
Start
End
No. of Turns
Wire size
1
3
41
40 x 0.1mm
Top View :
Pin 1 •
Pin 2 ∙
Pin 3 ∙
Layer
Method
Tight
∙ Pin 5
Figure 30 LLC Resonant Choke
Application Note
26
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Power Transformer Specification
6.4
LLC Transformer Spec T2
110W/LLC transformer
Core form and material:ED26/7/30,TPW33
Bobbin former: Horizontal version
Primary inductance : LP = 2700µH
1 = 15Turns
5 turns 1Sec
x 0.15mm
27 turns 1 x 0.4mm
Prim VCC
2layer
½ Prim
13 turns 1 x 0.65mm
Sec.2
13 turns 1 x 0.65mm
Sec.1
27 turns 1 x 0.4mm
Pin 6
Pin 5
Pin 1
Pin 3/float
Pin 7
Pin 8
2layer
Pin 9
Pin 10
Pin 3/float
Pin 2
½ Prim
Center leg
means one layer Makrofol
Start
End
No of Turns
Wire size
Layer
Method
2
3 / flox
27
0.4mm
1/2 Primary
Tight
10
9
13
0.65mm, tripple isolation
Sec.1
Tight
8
7
13
0.65mm, tripple isolation
Sec.2
Tight
3 / float
1
27
0.4mm
1/2 Primary
Tight
5
6
5
0.15mm
VCC
spread
Top View:
Pin
Pin
Pin
Pin
Pin
Pin
1
2
3
4
5
6
•
∙
∙
∙
∙
∙
∙
∙
∙
∙
∙
Pin
Pin
Pin
Pin
Pin
Pin
12
11
10
9
8
7
Figure 31 LLC Transformer
Application Note
27
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Board Layout
7
Board Layout
Figure 32 Layout of 110 W / 54 V Power Supply Demo Board (Bottom View)
Figure 33 Assembly Print (Top View)
Figure 34 Assembly Print (Bottom View)
Application Note
28
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Bill of Material (BOM)
8
Bill of Material (BOM)
Designator
Part Value
Description
Packag/Footprint
Supplier
Order Number
BR1
C1
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C2
C20
C21
C22
C23
C24
C25
C26
C27
C28
LL15XB60
330nF/305V/X2
100nF/50V
22nF/50V
100nF/50V
100pF/50V
100nF/50V
4n7/50V
220nF/50V
33nF/630V
100uF/35V
2n2/400V/Y2
100nF/305V/X2
150nF/520V
220nF/50V
330uF/100V
100pF/50V
100pF/630V
100uF/100V
100pF/630V
1nF/50V
100nF/305V/X2
bridge, 15A/600V
305V/X2 capacitor
ceramic capacitor
ceramic capacitor
ceramic capacitor
ceramic capacitor
ceramic capacitor
ceramic capacitor
ceramic capacitor
film capacitor
Aluminium Electrolyte
400V/Y2 capacitor
305V/X2 capacitor
film capacitor
ceramic capacitor
Aluminium Electrolyte
HV ceramic capacitor
HV ceramic capacitor
Aluminium Electrolyte
ceramic capacitor
ceramic capacitor
305V/X2 capacitor
GSIB-5S
FCAP-18-9-15/10
C0805
C0805
C0805
C0805
C1206
C1206
C1206
FCAP-18-6-12-15-H
EUE2.5-7
FCAP-18-6-15/10
FCAP-13-6-10
FCAP-18-6-12-15-H
C1206
EUE5-B12,5-L35
C1206
C1206
ECAP-10-5
C1206
C0805
FCAP-18-9-15/10
SHINDENGEN
EPCOS
LL15XB60
BS2922C3334M
EPCOS
RUBYCON
B32672L6333K
RUBYCON
EPCOS
EPCOS
B32921C3104M
B32672Z5154K
RUBYCON
100ZLJ330M12.5X35
RUBYCON
100ZLJ100M10X20
EPCOS,
B32921C3104M
C29
C3
C30
C31
C32
C33
C34
C4
C5
C6
C7
C8
C9
CY1
CY2
D1
D10
D11
D12
D13
D14
D15
D16
D2
D3
100nF/50V
2u2/50V
470nF/630V
10nF/630V
10nF/630V
100nF/630V
47pF/1kV
470nF/630V
150uF/250V
100nF/50V
2u2/50V
150uF/250V
2n2/50V
2n2/400V/Y2
2n2/400V/Y2
8ETL06PBF
1N4148
MURS160
SS210
1N4148
V10150C
V10150C
BZT52C9V1
S2JA
BZT52C16
ceramic capacitor
ceramic capacitor
film capacitor
HV ceramic capacitor
HV ceramic capacitor
HV ceramic capacitor
HV ceramic capacitor
film capacitor
Aluminium Electrolyte
ceramic capacitor
ceramic capacitor
Aluminium Electrolyte
ceramic capacitor
400V/Y2 capacitor
400V/Y2 capacitor
rectification diode
small single switch diode
rectification diode
rectification diode
small single switch diode
rectification diode
rectification diode
Zener diode
rectification diode
Zener diode
C1206
C1206
FCAP-18-6-15/10
C1206
C1206
C1812
C050-024x044
FCAP-18-6-15/10
ECAP-12.5-5-H
C0805
C1206
ECAP-12.5-5-H
C0805
FCAP-18-6-15/10
FCAP-18-6-15/10
TO220-2
SOD-123_MINI-SM
SMA
SMA
SOD-123_MINI-SM
TO220
TO220
SOD-123_MINI-SM
SMA
SOD-123_MINI-SM
EPCOS
B32922
EPCOS
NICHICON
B32652A6224K
UCY2E151MHD6
NICHICON
UCY2E151MHD6
VISHAY
8ETL06PBF
ON
VISHAY
ON
VISHAY
VISHAY
VISHAY
V10150C
V10150C
diodes
diodes
Application Note
29
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Bill of Material (BOM)
D4
D5
D8
D9
F1
IC1
L1
BZT52C16
BZT52C13
BZT52C15
BZT52C8V2
3.15A/300V
ICL5101
2x10mH CM choke
Zener diode
Zener diode
Zener diode
Zener diode
fuse
control IC
CM inductance
SOD-123_MINI-SM
SOD-123_MINI-SM
SOD-123_MINI-SM
SOD-123_MINI-SM
FUSE8.5-4
SOP16
EMI_CHOKE_14,5X24,
5EF16LONG
L11
B core
bead
L12
L14
L2
L3
L4
L5
L6
L7
L8
OT1
OT2
Q1
Q10
Q11
Q12
Q13
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
R1
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R2
R20
R21
R22
R23
R24
R25
R26
2X1mH/2A CM choke
470uH/1A inductance
IND,EF20
B core
B core
B core
B core
4.7uH/3.7A inductance
860uH/3A inductance
VOL617A-3
VOL617A-3
PMMT491
KST2222
KST2222
KST2907
KST2222
KST5551MTF
IPP60R125C6
2N7002
KST2907
2N7002
IPD60R450E6
IPD60R450E6
BSP135
10k
4R99
2K
562K
2M
2M
25K5
0R
10k
2K21
12k1
51k1
n.c.
0R
133k
9k1
0R0
47k5
0R
CM choke
inductance
inductance
bead
bead
bead
bead
inductance
inductance
optocoupler
optocoupler
NPN transister
NPN transister
NPN transister
NPN transister
NPN transister
NPN transister
N MOSFET
N MOSFET
PNP transistor
N MOSFET
N MOSFET
N MOSFET
depletion MOSFET
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
Application Note
30
INFINEON
ICT
ICL5101
NP2014-9132
WE-CBF_1812
WÜRTH
742792515
WE-CMB_XS
FERRITE_R16
EF20
WE_PBF_7427932
WE_PBF_7427932
WE_PBF_7427932
1812
5070
WE_7447075
DIL4-SMD
DIL4-SMD
SOT23
SOT23
SOT23
SOT23
SOT23
SOT23
TO220
SOT23
SOT23
SOT23
TO252
TO252
SOT223
R0805
R0805
R1206
R1206
R1206
R1206
R0805
R1206
R0805
R1206
R0805
R1206
R0805
R1206
R0805
R0805
R0805
R0805
R0805
WÜRTH
WÜRTH
ICT
WÜRTH
WÜRTH
WÜRTH
WÜRTH
WÜRTH
WÜRTH
VISHAY
VISHAY
744821201
7447010
NP2014-9133
7427932
7427932
7427932
742792515
7447462047
7447075
VOL617A-3
VOL617A-3
INFINEON
IPP60R125C6
INFINEON
INFINEON
INFINEON
IPD60R450E6
IPD60R450E6
BSP135
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Bill of Material (BOM)
R27
R28
R29
R3
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R4
R40
R41
R42
R43
R44
R45
R46
R47
R48
R49
R5
R50
R51
R52
R53
R54
R55
R56
R57
R58
R59
R6
R60
R61
R62
R63
R64
R65
R66
R67
R68
R69
R7
R70
R71
R72
R73
4M02
10R
0R
0R68
33K
22R
22R
n.c.
0R0
10k
10k
n.c.
1K
1R5
0R68
35R
1R5
2R
2R0
10K
30K
680R
10K
10K
100R
0R0
7K5
20K
127K
34K
221K
51K
464K
200K
182K
830K
10k
150K
1M
680R
1M
n.c.
15R
n.c.
1M
1M
0R
2k21
0R
0R
0R
0R
Application Note
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
PTC
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
R0805
R1206
R0805
R1206
R0805
R1206
R1206
R1206
R1206
R1206
R1206
R1206
R1206
R1206
R1206
R0805
R1206
R1206
R1206
R0805
R1206
R1206
R0805
R0805
R0805
R0805
R1206
R1206
R1206
R1206
R0805
R0805
R0805
R0805
R0805
R0805
R0805
R0805
R1206
R0805
R1206
R1206
R0805
R1206
R1206
R1206
R1206
R1206
R1206
R1206
R1206
R0805
31
EPCOS
B59701A0100A062
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
Bill of Material (BOM)
R74
R75
R76
R77
0R
0R
0R
680R
film resistor
film resistor
film resistor
PTC
R1206
R1206
R0805
R0805
R78
R79
R8
R80
R81
R82
R83
R84
R85
R9
T1
T2
U1
U6
VR1
X1
X2
255K
0R
2k21
0R
0R
22R
0R68
0R5
20K
100K
EVD30
transformer
AZ431
AZ431
S10K350E2K1
3pin connector
2pin connector
heatsink-second
heatsink-prim.
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
film resistor
PFC inductance
llc transformer
V-regulator
V-regulator
varistor
connector
connector
heatsink
heatsink
R0805
R1206
R1206
R1206
R1206
R0805
R1206
R1206
R0805
R0805
EVD30
ED26/7/30-12PIN
SOT-23
SOT-23
VR-8*4*5P
WAGO3P
WAGO2P
Application Note
32
EPCOS
B59701A0100A062
ICT
ICT
NP2014-9135
NP2014-9134
EPCOS
WÜRTH
WÜRTH
S10K350E2K1
691412120003B
691412120002B
Revision 2.2, 2015-09-22
110 W / 54 V Power Supply Demo Board using ICL5101
References
9
References
[1] ICL5101 Data Sheet
Application Note
33
Revision 2.2, 2015-09-22
ICL5101
Evaluation Board
Revision History
Revision History
Major changes since the last revision
Date
Version
Changed by
Change Description
2015-02-03
1.1
KLING
Published & initial
2015-02-11
2.0
KLING
EMI Performance Conductive and Radiated / CE Certificated
2015-02-11
2.0
KLING
Section 1: Board Photo
2015-02-13
2.0
KLING
Section 2: Board Dimension Adjustment
2015-02-13
2.0
KLING
Section 3: Schematic
2015-02-13
2.0
KLING
Section 4: Complete Update
2015-02-13
2.0
KLING
Section 4.4: EMI Test (NEW)
2015-02-13
2.0
KLING
Section 5: Surge, Flicker and Burst (NEW)
2015-02-13
2.0
KLING
Section 7: Board Layout (Update)
2015-02-13
2.0
KLING
Section 8: Bill of Material BOM (Update)
2015-02-19
2.0
KLING
Improved Resolution of Figure: 2 / 29 / 30 / 31
2015-02-19
2.0
KLING
Section 4.1.2: Start-Up Time, Update of Figure 4 until Figure 9
2015-02-24
2.1
KLING
Schematic Update Figure: 2
2015-03-02
2.1
KLING
LLC Transformer Figure: 28 / Resolution
2015-03-04
2.1
KLING
Resonant Choke Figure: 27 / Resolution
2015-02-05
2.1
KLING
Schematic Update Figure: 2 / BOM Update
2015-03-04
2.1
KLING
PFC Choke Figure: 26 / Resolution
2015-04-13
2.1
KLING
Update BOM / including Supplier and Part Number
2015-06-19
2.1
KLING
Typo Correction
2015-07-24
2.1
KLING
Figure 11 update / Figure 12 new
2015-07-27
2.1
KLING
Add THD description for stable and vary load condition
2015-07-27
2.1
KLING
Add Surge protection feature
2015-09-19
2.2
KLING
BOM & Schematic correction: L8: Value / C30 + D1 Partnr.
2015-09-19
2.2
KLING
Overall correction
Application Note
34
Revision 2.2, 2015-09-22
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™,
EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, iWafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CATiq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of
Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of
Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2014-07-17
www.infineon.com
Edition 2015-09-22
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
ANDEMO_201501_PL21_010
Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NONINFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.
Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.
Similar pages