TDA52xx - Increase the sensitivity

A pp lica t ion Note , V 1.0 , Ju ly 20 0 4
TDA52xx
Incr e asing th e Se nsitivit y of t he TD A5 2xx
Re ceiver s
W i re l e s s C o n t r o l
Co mpo ne nts
N e v e r
s t o p
t h i n k i n g .
Edition 2004-07-01
Published by Infineon Technologies AG,
Am Campeon 1-12,
D-85579 Neubiberg, Germany
© Infineon Technologies AG 2004.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as a guarantee of
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies
Representatives worldwide (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
A pp lica t ion Note , V 1.0 , Ju ly 20 0 4
TDA52xx
Incr e asing th e Se nsitivit y of t he TD A5 2xx
Re ceiver s
W i re l e s s C o n t r o l
Co mpo ne nts
N e v e r
s t o p
t h i n k i n g .
TDA52xx
Revision History:
2004-07-01
Previous Version:
none
Page
V 1.0
Subjects (major changes since last revision)
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
TDA52xx
Table of Contents
1
1.1
1.2
1.3
Page
Increasing the Sensitivity of the TDA52xx Receivers . . . . . . . . . . . . . . 7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Sensitivity with and without External Amplifier . . . . . . . . . . . . . . . . . . . . . . . 8
Low-Cost, Widebande, Low-Current, UHF Feedback Low Noise Amplifier 10
Application Note
5
V 1.0, 2004-07-01
TDA52xx
Increasing the Sensitivity of the TDA52xx Receivers
1
Increasing the Sensitivity of the TDA52xx Receivers
1.1
Introduction
The sensitivity of a receiver mainly depends on the matching networks on the low noise
amplifier (LNA) input and output. On the one hand the LNA can be matched to maximum
gain (“simultaneous conjugate match”) or to minimum noise figure (NF), for instance.
On the other hand the matching network can be optimised for the best selectivity or for
the lowest losses (see also App. Note).
The efficiency of the matching network is
⎛
Q ⎞
⎝
U
2
η = ⎜⎜1 − L ⎟⎟
Q
⎠
QL ...loaded Q
QU ...unloaded Q
So it can be easily seen, that the higher the selectivity (the higher the loaded Q) of the
matching network the higher the losses or the lower the efficiency of the network.
Most of the applications, especially automotive applications, require a certain selectivity
of the matching network or even a SAW-Filter in the front of the receive chain.
Therefore a compromise is realised in the design of the INFINEON evaluation boards,
resulting in filter losses of about 3dB. In addition the evaluation boards are rather
designed for maximum gain than for minimum noise figure.
To achieve a higher sensitivity either the input matching network of the LNA can be
optimised towards minimum noise figure and to smaller losses (wider BW), or an
external amplifier with a smaller minimum NF can be used for an additional
enhancement of the sensitivity (see Table 1.3).
Increasing the sensitivity, as described above, yields smaller selectivity and (using an
external amplifier additional to) smaller large signal stability.
Application Note
7
V 1.0, 2004-07-01
TDA52xx
Increasing the Sensitivity of the TDA52xx Receivers
1.2
Sensitivity with and without External Amplifier
According to the Friis-Formula
NFsys = NF1 +
NFn − 1
NF2 − 1 NF3 − 1
+
+ ... +
G1
G1 ⋅ G2
G1 ⋅ G2 ⋅ G3 ⋅ ... ⋅ Gn −1
⎛
⎞
NF2 − 1 NF3 − 1
NFn − 1
⎟
NFsys dB =10 ⋅ log⎜⎜ NF1 +
+
+ ... +
G1
G1 ⋅ G2
G1 ⋅ G2 ⋅ G3 ⋅ ... ⋅ Gn −1 ⎟⎠
⎝
the use of an external amplifier (LNA) as described in chapter “3. Low-Cost, Wideband,
Low-Current, UHF Feedback Low Noise Amplifier” with an almost lossless input
matching network (0,2dB) and a matching to a NF of only 1,4dB, yields an enhanced
sensitivity as shown in the table below (see also the calculation example below).
Table 1
Enhancement of the sensitivity by using external LNA (cont’d)
Board and Frequency
Sensitivity
Infineon Evalboard [dBm]
with external LNA [dBm]
TDA5211 315MHz
-113,1
-116,9
TDA5210 434MHz
-110,1
-116,5
TDA5210 868MHz
-110,5
-115
TDA5212 915MHz
-110
-114,5
Values were measured on INFINEON evalboards in the laboratory.
Example for a 315MHz application:
Without external LNA:
LNA matching network:
NF M. L. = 2,6dB = 1,8197
Gain M. L. = -2,6dB = 0,5495
LNA:
NF LNA = 3dB = 1,9953
Gain LNA = 18,5dB = 70,795
Mixer:
NF Mix = 10dB = 10
Gain Mix = 15,5dB = 35,481
Limiter:
NF Limiter = 10dB = 10
These values are according to a typical Infineon evalboard.
Application Note
8
V 1.0, 2004-07-01
TDA52xx
Increasing the Sensitivity of the TDA52xx Receivers
NFsys = 1,8197 +
1,9953 − 1
10 − 1
10 − 1
+
+
0,5495
0,5495 ⋅ 70,8 0,5495 ⋅ 70,8 ⋅ 35,5
NFsys = 1,8197 + 1,8111 + 0,23134 + 0,00652 = 3,86864
NFsys dB = 10 ⋅ log(3,86864 ) = 5,88
With external LNA:
External matching network: NF ext. M. = 0,2dB = 1,047 Gain ext. M. = -0,2dB = 0,955
External LNA:
NF ext. LNA = 1,6dB = 1,445 Gain ext. M. = 14,8dB = 30,2
LNA Matching network:
NF L.M. = 2,6dB = 1,8197
Gain L.M. = -2,6dB = 0,5495
LNA:
NF LNA = 3dB = 1,9953
Gain LNA = 18,5dB = 70,795
Mixer:
NF Mix = 10dB = 10
Gain Mix = 15,5dB = 35,481
Limiter:
NF Limiter = 10dB = 10
1,445 − 1 1,8197 − 1
1,9953 − 1
+
+
+
0,955
0,955 ⋅ 30,2 0,955 ⋅ 30,2 ⋅ 0,5495
10 − 1
10 − 1
+
+
0,955 ⋅ 30,2 ⋅ 0,5495 ⋅ 70,8 0,955 ⋅ 30,2 ⋅ 0,5495 ⋅ 70,8 ⋅ 35,5
NFsys = 1,047 +
NFsys = 1,047 + 0,46643 + 0,02842 + 0,0628 + 0,00802 + 0,000226 = 1,61303
NFsys dB =10 ⋅ log(1,61303) = 2,08
The calculation indicates a 3,8dB lower NF of the application using the external amplifier
than the application without the external amplifier. This is exactly the same value as the
measurement shown in the Table 1.
Note: As explained above a lower loaded Q yields lower selectivity but higher efficiency
and therefore a higher sensitivity. For a multiple stage amplifier chain, however, a
matching for minimum noise (of the first stage) yields minimum noise figure.
Application Note
9
V 1.0, 2004-07-01
TDA52xx
Increasing the Sensitivity of the TDA52xx Receivers
However this brings along lower gain than at simultaneous conjugate match and
therefore a higher influence of the NF of the following stage(s) is to be expected.
Accordingly the minimum NF of the system is not reached exactly at the minimum
NF.
Changing the matching of an amplifier with a relatively high gain to minimum NF,
the reduction of the NF of the system is only slightly smaller than the reduction of
the NF of the first stage (see the Friis-Formula)
1.3
Low-Cost, Widebande, Low-Current, UHF Feedback Low Noise
Amplifier
For detailed information please see documents below.
Application Note
10
V 1.0, 2004-07-01
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
May 7, 2003
A Low-Cost, Wideband, Low-Current UHF Feedback Low Noise
Amplifier using the BFP540F Transistor in Ultra-Small TSFP-4
Package. Preliminary Results, Revision A.
Overview:
•
The BFP540F is investigated for use as a low-current, wideband feedback LNA to explore
feasibility as an external LNA for boosting sensitivity / range of Infineon Technologies’
Remote Keyless Entry ICs in the TDA52x0 / TDA52x1 family.
•
Design Goals: Gain > 15 dB, Noise Figure < 2.0 dB, Input / Output Return Loss 10 dB or better
from 300 to 928 MHz, current < 4 mA. Another goal: to provide one external LNA solution that
is usable over the 315 – 900 MHz frequency range, for improving sensitivity / range of the
Infineon Technologies Remote Keyless Entry (RKE) receiver products TDA52x0 / TDA52x1
in a variety of applications. Note this LNA should improve range of TDA52xx by a factor of
approximately two. Note M. Thomas has verified in the lab a 5 – 6 dB improvement in
sensitivity with a similar external LNA and TDA5212 receiver IC.
•
Potential target markets with established customer base for TDA52xx RKE products requiring
improved sensitivity / improved range (e.g. requiring external LNAs) include
•
High volume NAFTA automotive market for remote keyless entry systems (RKE) at 315 MHz
•
Security market at 345 MHz (e.g. alarm systems controlled with radio links)
•
Garage door opener market, 390 MHz range
•
European automotive RKE market at 434 MHz
•
Various 900 MHz ISM Band Applications in the 902-928 NAFTA ISM Band.
•
Printed Circuit Board is PCB 540F-041503 Rev A. Standard FR4 material is used in a simple,
low-cost two-layer 0.062 inch thick PC board design. No chip coils are required for this LNA
design, further reducing cost. (Only resistors and capacitors are required).
•
Low-cost, standard SMT passive components are used throughout, “0402” case size. Please
refer to schematic and Bill Of Material. The LNA is unconditionally stable from 5 MHz to 6 GHz.
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
1 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
•
Total PCB area used for the single LNA stage is approximately 50 mm2.
including the BFP540F transistor, is 10.
Total Parts count,
Achieved ≅ 15 dB gain, 1.5 to 1.6 dB Noise Figure from 300 – 900 MHz, on 5.0V supply, drawing
3.5mA. Note noise figure result does NOT “back out” FR4 PCB losses – if the PCB loss at LNA
input were extracted, Noise Figure result would be approximately 0.1 to 0.2 dB lower.
•
PCB Cross – Section Diagram:
PCB CROSS SECTION SHOWING "FINISHED" PCB THICKNESS.
NOTE THIS IS A SIMPLE 2-LAYER PC BOARD.
TOP LAYER
0.062 inch / 1.57 mm
SPECIFICATION FOR TOTAL "FINISHED" PCB THICKNESS INCLUDING
PLATING AND SOLDERMASK: 0.062 + 0.005 / - 0.005 INCH)
BOTTOM LAYER (GROUND PLANE)
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
2 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Summary of LNA Data :
(T = 25 C).
Parameter
Frequency Range
DC Current
Network analyzer source power = -30 dBm
Result
Comments
250 – 950 MHz
315, 345, 390, 434 and 900 MHz ISM bands
covered
3.5 mA
DC Voltage, Vcc
5.0 V
5.0 Volts standard in automotive applications
Collector-Emitter Voltage VCE
3.3 V
BFP540F VCEMAX = 4.5 V
Gain
14.8 dB @ 315 MHz
14.7 dB @ 345 MHz
14.5 dB @ 434 MHz
13.4 dB @ 915 MHz
Gain target is G > 15 dB. Possible to increase
gain slightly via re-tuning (future work).
1.6 dB @ 315 MHz
1.6 dB @ 345 MHz
1.6 dB @ 434 MHz
1.5 dB @ 915 MHz
See noise figure plots and tabular data, pages
6 and 7.
Noise Figure
(These values do NOT extract
PCB losses, etc. resulting from
FR4 board and passives used
on PCB – these results are at
input SMA connector)
Input P1dB
rd
Input 3 Order Intercept
-22.6 dBm @ 345 MHz
See input power sweep vs. gain plot, pg. 11
To Be Determined
Input Return Loss
10.0 dB @ 315 MHz
10.0 dB @ 345 MHz
9.9 dB @ 434 MHz
9.7 dB @ 915 MHz
Good broadband match.
Output Return Loss
15.7 dB @ 315 MHz
15.6 dB @ 345 MHz
15.2 dB @ 434 MHz
13.0 dB @ 915 MHz
Good broadband match.
Reverse Isolation
21.2 dB @ 315 MHz
21.2 dB @ 345 MHz
21.3 dB @ 434 MHz
21.7 dB @ 915 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
3 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Bill Of Material, Broadband BFP540F UHF Feedback LNA:
REFERENCE
DESIGNATOR
VALUE
MANUFACTURER
CASE
SIZE
FUNCTION
C1
C2
390 pF
390 pF
VARIOUS
VARIOUS
0402
0402
C3
C4
C5
390pF
0.1 uF
390 pF
VARIOUS
VARIOUS
VARIOUS
0402
0402
0402
R1
R2
R3
120K
560 ohms
300 ohms
VARIOUS
VARIOUS
VARIOUS
0402
0402
0402
R4
180 ohms
VARIOUS
0402
Q1
-
INFINEON
TECHNOLOGIES
SOT343
J1, J3
J3
-
JOHNSON 142-0701-841
AMP 5 PIN HEADER
MTA-100 SERIES
640456-5 (STANDARD
PIN PLATING)
OR
641215-5 (GOLD PLATED
PINS)
-
RF INPUT / OUTPUT CONNECTORS
DC CONNECTOR
-
PINS 1, 5 = GROUND
PIN 3 = VCC
PINS 2,4 = NO CONNECTION
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
4 / 17
DC BLOCKING, INPUT
DC BLOCK FOR FEEDBACK
NETWORK
OUTPUT DC BLOCK
DECOUPLING, LOW FREQUENCY
DECOUPLING
DC BIAS FOR BASE OF Q1
FEEDBACK RESISTOR FOR LNA
BRING DC TO COLLECTOR; HIGH
RESISTOR VALUE DOES NOT
“LOAD” LNA OUTPUT
PROVIDES SOME NEGATIVE
FEEDBACK FOR DC BIAS / DC
OPERATING POINT TO
COMPENSATE FOR VARIATIONS IN
TRANSISTOR DC CURRENT GAIN,
TEMPERATURE VARIATIONS, ETC.
ALSO DROPS 5 VOLTS DOWN TO 4.4
VOLTS (BELOW MAXIMUM
COLLECTOR-EMITTER VOLTAGE
FOR BFP540F)
BFP540F B6HFe TRANSISTOR
30 GHz fT
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Schematic Diagram for UHF LNA:
(Note low parts count and simple design. No chip inductors are required.)
V
cc
= 5.0V
J3
DC Connector
PCB = 540F- 041503 Rev A
PC Board Material = Standard FR4
Two Layer, 0.062 inch spacing
I = 3.5 mA
R4
180
ohms
(0402)
C4
0.1uF
(0402
)
R1
120K
(0402)
R2
560
ohms
(0403)
C5
390pF
(0402)
C2
390pF
(0403)
R3
300 ohms
(0402)
J1
J2
RF OUTPUT
RF INPUT
C1
390pF
(0402)
Q1
BFP540F
Transistor
C3
390pF
(0402)
Note: black rectangles are 50 ohm traces or
"tracks" on the Printed Circuit Board - these
marks are NOT Surface-Mount Components.
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
5 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Noise Figure, Plot.
Center of Plot (x-axis) is 550 MHz.
Rohde & Schwarz FSEK3
08 May 2003
Noise Figure
EUT Name:
Manufacturer:
Operating Conditions:
Operator Name:
Test Specification:
Comment:
BFP540F Low Current Broadband UHF Feedback LNA
Infineon Technologies
V=5.0 V, Vce=3.3V, I=3.5mA, T = 25 C
G. Wevers / M. Thomas
315, 390, 434 & 915 MHz
On BFP540F PCB 540F-041503 Rev A
7 May 2003
Analyzer
RF Att:
Ref Lvl:
0.00 dB
-43.00 dBm
RBW :
VBW :
1 MHz
100 Hz
Range: 40.00 dB
Ref Lvl auto: ON
Measurement
2nd stage corr: ON
Mode: Direct
ENR: HP346A.ENR
Noise Figure /dB
2.00
1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
150 MHz
80 MHz / DIV
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
6 / 17
950 MHz
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
= LNA NOISE FIGURE =
From Rohde & Schwarz FSEK3 + FSEB30
System Preamplifier = MITEQ SMC-02
Frequency
Nf
150 MHz
175 MHz
200 MHz
225 MHz
250 MHz
275 MHz
300 MHz
325 MHz
350 MHz
375 MHz
400 MHz
425 MHz
450 MHz
475 MHz
500 MHz
525 MHz
550 MHz
575 MHz
600 MHz
625 MHz
650 MHz
675 MHz
700 MHz
725 MHz
750 MHz
775 MHz
800 MHz
825 MHz
850 MHz
875 MHz
900 MHz
925 MHz
950 MHz
1.46 dB
1.43 dB
1.43 dB
1.50 dB
1.52 dB
1.57 dB
1.56 dB
1.56 dB
1.57 dB
1.60 dB
1.61 dB
1.57 dB
1.60 dB
1.57 dB
1.59 dB
1.59 dB
1.58 dB
1.58 dB
1.55 dB
1.56 dB
1.54 dB
1.54 dB
1.52 dB
1.52 dB
1.49 dB
1.50 dB
1.47 dB
1.48 dB
1.49 dB
1.50 dB
1.48 dB
1.48 dB
1.48 dB
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
7 / 17
Temp
116 K
113.4 K
113 K
119.6 K
121.8 K
126 K
125.2 K
125.7 K
126.5 K
129.2 K
129.8 K
126.2 K
129.4 K
126.5 K
128.3 K
128.5 K
127.1 K
127.7 K
124.3 K
125 K
123.5 K
123.9 K
121.6 K
121.2 K
118.9 K
120.1 K
116.4 K
117.8 K
118.2 K
119.7 K
117.9 K
117.8 K
117.7 K
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Scanned Image of PC Board
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
8 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Scanned Image of PC Board, Close-In Shot:
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
9 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Stabilty Factor “K” and Stabilty Measure “B1”. Note that if K > 1 and B1 > 0, the amplifier
is unconditionally stable. Measured LNA s-parameters were taken on a Network Analyzer
& then imported into GENESYS simulation package, which calculates and plots K and B1.
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
10 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Power Sweep at 345 MHz (CW)
Source Power (Input) Swept from –35 to -10 dBm
Input P1dB ≅ -22.6 dBm
CH1
S 21
log MAG
1 dB/
REF 15 dB
8 May 2003 00:50:00
2_: 13.85 dB
-22.6 dBm
PRm
1_: 14.845 dB
-35.0 dBm
Cor
Smo
1
START -35.0 dBm
2
CW 345.000 000 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
11 / 17
STOP -10.0 dBm
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Input Return Loss, Log Mag, Wide Sweep
(5 MHz – 6 GHz)
CH1
S 11
log MAG
5 dB/
REF 0 dB
8 May 2003 00:20:45
1_:-10.042 dB
315.000 000 MHz
PRm
2_:-10.009 dB
345 MHz
Cor
3_:-9.9004 dB
434 MHz
Del
4_:-9.6675 dB
915 MHz
1
23
START
4
5.000 000 MHz
STOP 6 000.000 000 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
12 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Input Return Loss, Smith Chart, Wide Sweep
(5 MHz – 6 GHz)
Reference plane = PCB Input SMA Connector
CH1
S 11
1 U FS
8 May 2003 00:21:01
-34.441
14.67 pF
1_: 67.137
315.000 000 MHz
PRm
2_: 63.676
-34.979
345 MHz
Cor
3_: 54.633
-35.043
434 MHz
Del
4_: 30.522
-18.863
915 MHz
1
4
START
3
5.000 000 MHz
STOP 6 000.000 000 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
2
13 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Forward Gain, Wide Sweep
(5 MHz – 6 GHz)
CH1
S 21
log MAG
5 dB/
REF 0 dB
8 May 2003 00:21:16
1_: 14.772 dB
315.000 000 MHz
PRm
Cor
2_: 14.7 dB
345 MHz
1
3_: 14.548 dB
434 MHz
Del
23
4_: 13.352 dB
915 MHz
4
START
5.000 000 MHz
STOP 6 000.000 000 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
14 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Reverse Isolation, Wide Sweep
(5 MHz – 6 GHz)
CH1
S 12
log MAG
5 dB/
REF 0 dB
8 May 2003 00:21:21
1_:-21.199 dB
315.000 000 MHz
PRm
2_:-21.211 dB
345 MHz
Cor
3_:-21.279 dB
434 MHz
Del
4_:-21.721 dB
915 MHz
1
23
START
4
5.000 000 MHz
STOP 6 000.000 000 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
15 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Output Return Loss, Log Mag, Wide Sweep
(5 MHz – 6 GHz)
CH1
S 22
log MAG
5 dB/
REF 0 dB
8 May 2003 00:21:32
1_:-15.728 dB
315.000 000 MHz
PRm
2_:-15.597 dB
345 MHz
Cor
3_:-15.18 dB
434 MHz
Del
4_:-13.056 dB
915 MHz
1
4
23
START
5.000 000 MHz
STOP 6 000.000 000 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
16 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
LWR # SD 00026 LNA P
Silicon Discretes – BFP540F
Broadband UHF Feedback LNA
Output Return Loss, Smith Chart, Wide Sweep
(5 MHz – 6 GHz)
Reference Plane = PCB Output SMA Connector
CH1
S 22
1 U FS
8 May 2003 00:21:39
-8.5898
58.82 pF
1_: 67.227
315.000 000 MHz
PRm
2_: 66.973
-9.5273
345 MHz
Cor
3_: 66.195
-12.379
434 MHz
Del
4_: 51.393
-23.057
915 MHz
1
2
3
4
START
5.000 000 MHz
STOP 6 000.000 000 MHz
Infineon Technologies, Inc.
Business Operation RF, Applications Engineering
1365 South Calistoga Ave.
Meridian, ID 83642-6479 USA
17 / 17
Gerard Wevers
TEL: 208.898.0823
FAX: 208.898.0826
email: [email protected]
Results of Temperature Test, BFP540F Low Current Broadband UHF
Broadband LNA Application (per forthcoming applications note AN084)
July 1, 2003 G. Wevers
PCB = S/N 039
Temperature
°C
-40
+25
+85
Frequency
MHz
315
345
434
915
dB[S11]2
13.6
13.6
13.3
14.2
dB[S21]2
16.3
16.3
16.1
14.9
dB[S12]2
21.6
21.7
21.9
21.8
dB[S22]2
18.6
18.7
17.4
15.1
315
345
434
915
10.8
10.8
10.8
11.4
15.2
15.2
15.0
13.9
21.0
21.1
21.3
21.3
15.0
15.1
14.7
13.7
315
345
434
915
9.7
9.6
9.3
9.2
14.2
14.2
14.0
12.8
20.6
20.7
20.9
21.1
14.1
14.1
13.1
11.6
Gain change @ 315 MHz, cold to hot = -2.1 dB
=> slope = -0.017 dB / °C
Current change, cold to hot = 0.12 mA
=> slope = 0.001 mA / °C
Refer to plots on following pages =>
Current
mA
3.43
3.52
3.55
COLD (-40 C)
Input Return Loss, Log Mag
CH1
S 11
log MAG
5 dB/
REF 0 dB
1 Jul 2003 10:22:49
1_:-13.555 dB
315.000 000 MHz
2_:-13.554 dB
345 MHz
Cor
3_:-13.272 dB
434 MHz
Del
Avg
10
Smo
4_:-14.211 dB
915 MHz
1
2
START
5.000 000 MHz
3
4
STOP 1 000.000 000 MHz
COLD (-40 C)
Input Return Loss, Smith Chart
(Reference Plane = SMA Input RF Connector on PC Board)
CH1
S 11
1 U FS
1 Jul 2003 10:23:08
-20.469
24.684 pF
1_: 62.717
315.000 000 MHz
2_: 60.383
-21.201
345 MHz
Cor
3_: 55.318
-22.787
434 MHz
Del
Avg
10
Smo
4_: 37.225
-11.771
915 MHz
1
4
START
5.000 000 MHz
3
2
STOP 1 000.000 000 MHz
COLD (-40 C)
Forward Gain
CH1
S 21
log MAG
5 dB/
REF 0 dB
1 Jul 2003 10:24:04
1_: 16.314 dB
315.000 000 MHz
2_: 16.299 dB
345 MHz
Cor
3_: 16.114 dB
434 MHz
Del
Avg
10
Smo
4_: 14.892 dB
915 MHz
1
2
START
5.000 000 MHz
3
4
STOP 1 000.000 000 MHz
COLD (-40 C)
Reverse Isolation
CH1
S 12
log MAG
5 dB/
REF 0 dB
1 Jul 2003 10:25:25
1_:-21.58 dB
315.000 000 MHz
2_:-21.669 dB
345 MHz
Cor
3_:-21.875 dB
434 MHz
Del
Avg
10
Smo
4_:-21.824 dB
915 MHz
1
2
START
5.000 000 MHz
4
3
STOP 1 000.000 000 MHz
COLD (-40 C)
Output Return Loss, Log Mag
CH1
S 22
log MAG
5 dB/
REF 0 dB
1 Jul 2003 10:26:31
1_:-18.632 dB
315.000 000 MHz
2_:-18.682 dB
345 MHz
Cor
3_:-17.355 dB
434 MHz
Del
Avg
10
Smo
4_:-15.07 dB
915 MHz
1
4
2
START
5.000 000 MHz
3
STOP 1 000.000 000 MHz
COLD (-40 C)
Output Return Loss, Smith Chart
(Reference Plane = SMA Output RF Connector on PC Board)
CH1
S 22
1 U FS
1 Jul 2003 10:26:44
-3.8086
132.66 pF
1_: 62.545
315.000 000 MHz
2_: 62.359
-4.168
345 MHz
Cor
3_: 64.027
-6.6836
434 MHz
Del
Avg
10
Smo
4_: 54.941
-18.197
915 MHz
1
23
4
START
5.000 000 MHz
STOP 1 000.000 000 MHz
ROOM Temperature (+25 C)
Input Return Loss, Log Mag
CH1
S 11
log MAG
5 dB/
REF 0 dB
1 Jul 2003 08:35:03
1_:-10.807 dB
315.000 000 MHz
2_:-10.84 dB
345 MHz
Cor
3_:-10.796 dB
434 MHz
Del
4_:-11.413 dB
915 MHz
Smo
1
2
START
5.000 000 MHz
3
4
STOP 1 000.000 000 MHz
ROOM Temperature (+25 C)
Input Return Loss, Smith Chart
(Reference Plane = SMA Input RF Connector on PC Board)
CH1
S 11
1 U FS
1_: 70.672
1 Jul 2003 08:39:33
-29.238
17.281 pF
315.000 000 MHz
2_: 67.406
-30.184
345 MHz
Cor
3_: 59.668
-31.549
434 MHz
Del
Avg
10
Smo
4_: 34.779
-18.447
915 MHz
1
4
START
5.000 000 MHz
3
2
STOP 1 000.000 000 MHz
ROOM Temperature (+25 C)
Forward Gain
CH1
S 21
log MAG
5 dB/
REF 0 dB
1 Jul 2003 17:03:12
1_: 15.179 dB
315.000 000 MHz
3_: 14.998 dB
434 MHz
Del
Avg
10
Smo
START
2_: 15.176 dB
345 MHz
1
Cor
2
5.000 000 MHz
3
4_: 13.865 dB 4
915 MHz
STOP 1 000.000 000 MHz
ROOM Temperature (+25 C)
Reverse Isolation
CH1
S 12
log MAG
5 dB/
REF 0 dB
1 Jul 2003 08:41:41
1_:-21.037 dB
315.000 000 MHz
2_:-21.109 dB
345 MHz
Cor
3_:-21.256 dB
434 MHz
Del
Avg
10
Smo
4_:-21.275 dB
915 MHz
1
2
START
5.000 000 MHz
3
4
STOP 1 000.000 000 MHz
ROOM Temperature (+25 C)
Output Return Loss, Log Mag
CH1
S 22
log MAG
5 dB/
REF 0 dB
1 Jul 2003 08:42:36
1_:-15.038 dB
315.000 000 MHz
2_:-15.079 dB
345 MHz
Cor
3_:-14.704 dB
434 MHz
Del
Avg
10
Smo
4_:-13.658 dB
915 MHz
1
2
START
5.000 000 MHz
4
3
STOP 1 000.000 000 MHz
ROOM Temperature (+25 C)
Output Return Loss, Smith Chart
(Reference Plane = SMA Output RF Connector on PC Board)
CH1
S 22
1 U FS
1 Jul 2003 08:42:59
-10.887
46.41 pF
1_: 67.867
315.000 000 MHz
2_: 67.09
-11.504
345 MHz
Cor
3_: 66.191
-14.129
434 MHz
Del
Avg
10
Smo
4_: 50.807
-21.441
915 MHz
1
2
3
4
START
5.000 000 MHz
STOP 1 000.000 000 MHz
HOT (+85 C)
Input Return Loss, Log Mag
CH1
S 11
log MAG
5 dB/
REF 0 dB
1 Jul 2003 11:10:02
1_:-9.6725 dB
315.000 000 MHz
2_:-9.601 dB
345 MHz
Cor
3_:-9.2743 dB
434 MHz
Del
Avg
10
Smo
4_:-9.2411 dB
915 MHz
1
2
START
5.000 000 MHz
4
3
STOP 1 000.000 000 MHz
HOT (+85 C)
Input Return Loss, Smith Chart
(Reference Plane = SMA Input RF Connector on PC Board)
CH1
S 11
1 U FS
1 Jul 2003 11:10:32
-34.496
14.647 pF
1_: 74.84
315.000 000 MHz
2_: 72.156
-35.82
345 MHz
Cor
3_: 64.992
-38.949
434 MHz
Del
Avg
10
Smo
4_: 35.936
-28.066
915 MHz
1
2
3
4
START
5.000 000 MHz
STOP 1 000.000 000 MHz
HOT (+85 C)
Forward Gain
CH1
S 21
log MAG
5 dB/
REF 0 dB
1 Jul 2003 11:11:40
1_: 14.202 dB
315.000 000 MHz
Cor
Del
Avg
10
Smo
2_: 14.193 dB
345 MHz
SCALE
5 dB/div
3_: 13.976 dB
434 MHz
4_: 12.843 dB
915 MHz
1
2
START
5.000 000 MHz
3
4
STOP 1 000.000 000 MHz
HOT (+85 C)
Reverse Isolation
CH1
S 12
log MAG
5 dB/
REF 0 dB
1 Jul 2003 11:12:18
1_:-20.646 dB
315.000 000 MHz
2_:-20.699 dB
345 MHz
Cor
3_:-20.936 dB
434 MHz
Del
Avg
10
Smo
4_:-21.066 dB
915 MHz
1
2
START
5.000 000 MHz
3
4
STOP 1 000.000 000 MHz
HOT (+85 C)
Output Return Loss, Log Mag
CH1
S 22
log MAG
5 dB/
REF 0 dB
1 Jul 2003 11:13:46
1_:-14.149 dB
315.000 000 MHz
2_:-14.051 dB
345 MHz
Cor
3_:-13.094 dB
434 MHz
Del
Avg
10
Smo
4_:-11.649 dB
915 MHz
1
4
2
START
5.000 000 MHz
3
STOP 1 000.000 000 MHz
HOT (+85 C)
Output Return Loss, Smith Chart
(Reference Plane = SMA Output RF Connector on PC Board)
CH1
S 22
1 U FS
1 Jul 2003 11:13:57
-11.055
45.705 pF
1_: 71.043
315.000 000 MHz
2_: 70.137
-12.879
345 MHz
Cor
3_: 70.969
-17.109
434 MHz
Del
Avg
10
Smo
4_: 56.332
-28.189
915 MHz
1
2
3
4
START
5.000 000 MHz
STOP 1 000.000 000 MHz
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG