Data Sheet

74LVC3G17-Q100
Triple non-inverting Schmitt trigger with 5 V tolerant input
Rev. 1 — 22 May 2014
Product data sheet
1. General description
The 74LVC3G17-Q100 provides three non-inverting buffers with Schmitt trigger input. It is
capable of transforming slowly changing input signals into sharply defined, jitter-free
output signals.
Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of the
74LVC3G17-Q100 as a translator in a mixed 3.3 V and 5 V environment.
This device is fully specified for partial power-down applications using IOFF. The IOFF
circuitry disables the output, preventing a damaging backflow current through the device
when it is powered down.
This product has been qualified to the Automotive Electronics Council (AEC) standard
Q100 (Grade 1) and is suitable for use in automotive applications.
2. Features and benefits
 Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from 40 C to +85 C and from 40 C to +125 C
 Wide supply voltage range from 1.65 V to 5.5 V
 5 V tolerant input/output for interfacing with 5 V logic
 High noise immunity
 ESD protection:
 MIL-STD-883, method 3015 exceeds 2000 V
 HBM JESD22-A114F exceeds 2000 V
 MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 )
 24 mA output drive (VCC = 3.0 V)
 CMOS low-power consumption
 Latch-up performance exceeds 250 mA
 Direct interface with TTL levels
 Multiple package options
3. Applications
 Wave and pulse shapers for highly noisy environments
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
4. Ordering information
Table 1.
Ordering information
Type number
Package
Temperature range Name
Description
Version
SOT505-2
74LVC3G17DP-Q100 40 C to +125 C
TSSOP8
plastic thin shrink small outline package; 8 leads;
body width 3 mm; lead length 0.5 mm
74LVC3G17DC-Q100 40 C to +125 C
VSSOP8
plastic very thin shrink small outline package; 8 leads; SOT765-1
body width 2.3 mm
5. Marking
Table 2.
Marking codes
Type number
Marking code[1]
74LVC3G17DP-Q100
V17
74LVC3G17DC-Q100
V17
[1]
The pin 1 indicator is located on the lower left corner of the device, below the marking code.
6. Functional diagram
1A
1Y
3Y
3A
2A
2Y
001aah861
001aah860
Fig 1.
Logic symbol
Fig 2.
IEC logic symbol
A
Y
001aab109
Fig 3.
Logic diagram (one gate)
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
2 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
7. Pinning information
7.1 Pinning
/9&*4
$
9&&
<
<
$
$
*1'
<
DDD
Fig 4.
Pin configuration SOT505-2 and SOT765-1
7.2 Pin description
Table 3.
Pin description
Symbol
Pin
Description
1A, 2A, 3A
1, 3, 6
data input
GND
4
ground (0 V)
1Y, 2Y, 3Y
7, 5, 2
data output
VCC
8
supply voltage
8. Functional description
Table 4.
Function table[1]
Input
Output
nA
nY
L
L
H
H
[1]
H = HIGH voltage level; L = LOW voltage level.
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
3 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
9. Limiting values
Table 5.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
Symbol
Parameter
VCC
supply voltage
IIK
input clamping current
VI
input voltage
IOK
output clamping current
output voltage
VO
Conditions
VI < 0 V
[1]
Power-down mode
Max
Unit
0.5
+6.5
V
50
-
mA
0.5
+6.5
V
-
50
mA
[1]
0.5
VCC + 0.5
V
[1][2]
0.5
+6.5
V
-
50
mA
VO > VCC or VO < 0 V
Active mode
Min
IO
output current
VO = 0 V to VCC
ICC
supply current
-
100
mA
IGND
ground current
100
-
mA
Tstg
storage temperature
65
+150
C
Ptot
total power dissipation
-
250
mW
Tamb = 40 C to +125 C
[3]
[1]
The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2]
When VCC = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.
[3]
For TSSOP8 package: above 55 C the value of Ptot derates linearly with 2.5 mW/K.
For VSSOP8 package: above 110 C the value of Ptot derates linearly with 8 mW/K.
10. Recommended operating conditions
Table 6.
Operating conditions
Symbol
Parameter
VCC
Min
Max
Unit
supply voltage
1.65
5.5
V
VI
input voltage
0
5.5
V
VO
output voltage
0
VCC
V
Tamb
ambient temperature
40
+125
C
74LVC3G17_Q100
Product data sheet
Conditions
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
4 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
11. Static characteristics
Table 7.
Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter
Min
Typ[1]
Max
Unit
IO = 100 A; VCC = 1.65 V to 5.5 V
-
-
0.1
V
IO = 4 mA; VCC = 1.65 V
-
-
0.45
V
IO = 8 mA; VCC = 2.3 V
-
-
0.3
V
IO = 12 mA; VCC = 2.7 V
-
-
0.4
V
IO = 24 mA; VCC = 3.0 V
-
-
0.55
V
IO = 32 mA; VCC = 4.5 V
-
-
0.55
V
Conditions
Tamb = 40 C to +85 C
VOL
VOH
LOW-level output voltage
HIGH-level output voltage
VI = VT+ or VT
VI = VT+ or VT
IO = 100 A; VCC = 1.65 V to 5.5 V
VCC  0.1 -
-
V
IO = 4 mA; VCC = 1.65 V
1.2
-
-
V
IO = 8 mA; VCC = 2.3 V
1.9
-
-
V
IO = 12 mA; VCC = 2.7 V
2.2
-
-
V
IO = 24 mA; VCC = 3.0 V
2.3
-
-
V
IO = 32 mA; VCC = 4.5 V
3.8
-
-
V
-
0.1
5
A
[2]
II
input leakage current
VI = 5.5 V or GND; VCC = 0 V to 5.5 V
IOFF
power-off leakage current
VI or VO = 5.5 V; VCC = 0 V
-
0.1
10
A
ICC
supply current
VI = 5.5 V or GND; IO = 0 A;
VCC = 1.65 V to 5.5 V
-
0.1
10
A
ICC
additional supply current
VI = VCC  0.6 V; IO = 0 A;
VCC = 2.3 V to 5.5 V
-
5
500
A
CI
input capacitance
-
3.5
-
pF
IO = 100 A; VCC = 1.65 V to 5.5 V
-
-
0.1
V
IO = 4 mA; VCC = 1.65 V
-
-
0.70
V
IO = 8 mA; VCC = 2.3 V
-
-
0.45
V
IO = 12 mA; VCC = 2.7 V
-
-
0.60
V
IO = 24 mA; VCC = 3.0 V
-
-
0.80
V
IO = 32 mA; VCC = 4.5 V
-
-
0.80
V
[2]
Tamb = 40 C to +125 C
VOL
VOH
II
LOW-level output voltage
HIGH-level output voltage
input leakage current
74LVC3G17_Q100
Product data sheet
VI = VT+ or VT
VI = VT+ or VT
IO = 100 A; VCC = 1.65 V to 5.5 V
VCC  0.1 -
-
V
IO = 4 mA; VCC = 1.65 V
0.95
-
-
V
IO = 8 mA; VCC = 2.3 V
1.7
-
-
V
IO = 12 mA; VCC = 2.7 V
1.9
-
-
V
IO = 24 mA; VCC = 3.0 V
2.0
-
-
V
IO = 32 mA; VCC = 4.5 V
3.4
-
-
V
-
-
20
A
VI = 5.5 V or GND; VCC = 0 V to 5.5 V
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
5 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
Table 7.
Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter
Conditions
Min
Typ[1]
Max
Unit
IOFF
power-off leakage current
VI or VO = 5.5 V; VCC = 0 V
-
-
20
A
ICC
supply current
VI = 5.5 V or GND; IO = 0 A;
VCC = 1.65 V to 5.5 V
-
-
40
A
ICC
additional supply current
VI = VCC  0.6 V; IO = 0 A;
VCC = 2.3 V to 5.5 V
-
-
5
mA
[1]
All typical values are measured at Tamb = 25 C.
[2]
These typical values are measured at VCC = 3.3 V.
12. Dynamic characteristics
Table 8.
Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6.
Symbol Parameter
tpd
40 C to +85 C
Conditions
propagation delay nA to nY; see Figure 5
[1]
power dissipation
capacitance
Min
Max
Min
Max
Unit
[2]
VCC = 1.65 V to 1.95 V
1.5
5.6
10.5
1.5
13.1
ns
VCC = 2.3 V to 2.7 V
1.0
3.7
6.5
1.0
8.5
ns
VCC = 2.7 V
1.0
3.8
6.5
1.0
8.5
ns
VCC = 3.0 V to 3.6 V
1.0
3.6
5.7
1.0
7.1
ns
1.0
2.7
4.3
1.0
5.4
ns
-
16.3
-
-
-
pF
VCC = 4.5 V to 5.5 V
CPD
40 C to +125 C
Typ[1]
per buffer; VCC = 3.3 V;
VI = GND to VCC
[3]
Typical values are measured at Tamb = 25 C and VCC = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.
[2]
tpd is the same as tPLH and tPHL.
[3]
CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD  VCC2  fi  N + (CL  VCC2  fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
(CL  VCC2  fo) = sum of outputs.
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
6 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
13. Waveforms
VI
nA input
VM
VM
GND
tPLH
tPHL
VOH
VM
nY output
VM
VOL
mnb072
Measurement points are given in Table 9.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig 5.
The input (nA) to output (nY) propagation delays and the output transition times
Table 9.
Measurement points
Supply voltage
Input
Output
VCC
VM
VM
1.65 V to 1.95 V
0.5  VCC
0.5  VCC
2.3 V to 2.7 V
0.5  VCC
0.5  VCC
2.7 V
1.5 V
1.5 V
3.0 V to 3.6 V
1.5 V
1.5 V
4.5 V to 5.5 V
0.5  VCC
0.5  VCC
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
7 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
VEXT
VCC
VI
RL
VO
G
DUT
RT
CL
RL
mna616
Test data is given in Table 10.
Definitions for test circuit:
RL = Load resistance.
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.
VEXT = External voltage for measuring switching times.
Fig 6.
Test circuit for measuring switching times
Table 10.
Test data
Supply voltage
Input
VCC
VI
tr, tf
CL
RL
tPLH, tPHL
tPZH, tPHZ
tPZL, tPLZ
1.65 V to 1.95 V
VCC
 2.0 ns
30 pF
1 k
open
GND
2  VCC
2.3 V to 2.7 V
VCC
 2.0 ns
30 pF
500 
open
GND
2  VCC
2.7 V
2.7 V
 2.5 ns
50 pF
500 
open
GND
6V
3.0 V to 3.6 V
2.7 V
 2.5 ns
50 pF
500 
open
GND
6V
4.5 V to 5.5 V
VCC
 2.5 ns
50 pF
500 
open
GND
2  VCC
74LVC3G17_Q100
Product data sheet
Load
VEXT
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
8 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
14. Transfer characteristics
Table 11. Transfer characteristics
At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).
Symbol Parameter
positive-going
threshold voltage
VT+
negative-going
threshold voltage
VT
40 C to +125 C Unit
Min
Typ[1]
Max
Min
Max
VCC = 1.8 V
0.70
1.10
1.50
0.70
1.70
V
VCC = 2.3 V
1.00
1.40
1.80
1.00
2.00
V
VCC = 3.0 V
1.30
1.76
2.20
1.30
2.40
V
VCC = 4.5 V
1.90
2.47
3.10
1.90
3.30
V
VCC = 5.5 V
2.20
2.91
3.60
2.20
3.80
V
VCC = 1.8 V
0.25
0.61
0.90
0.25
1.10
V
VCC = 2.3 V
0.40
0.80
1.15
0.40
1.35
V
VCC = 3.0 V
0.60
1.04
1.50
0.60
1.70
V
VCC = 4.5 V
1.00
1.55
2.00
1.00
2.20
V
VCC = 5.5 V
1.20
1.86
2.30
1.20
2.50
V
VCC = 1.8 V
0.15
0.49
1.00
0.15
1.20
V
VCC = 2.3 V
0.25
0.60
1.10
0.25
1.30
V
VCC = 3.0 V
0.40
0.73
1.20
0.40
1.40
V
VCC = 4.5 V
0.60
0.92
1.50
0.60
1.70
V
VCC = 5.5 V
0.70
1.02
1.70
0.70
1.90
V
see Figure 7 and Figure 8
see Figure 7 and Figure 8
hysteresis voltage (VT+  VT); see Figure 7,
Figure 8 and Figure 9
VH
[1]
40 C to +85 C
Conditions
All typical values are measured at Tamb = 25 C.
15. Waveforms transfer characteristics
VO
VI
VT+
VT−
VH
VO
VI
VH
VT−
Fig 7.
VT+
Transfer characteristic
74LVC3G17_Q100
Product data sheet
mnb155
mnb154
VT+ and VT limits at 70 % and 20 %.
Fig 8.
Definition of VT+, VT and VH
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
9 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
mnb071
14
ICC
(mA)
12
10
8
6
4
2
0
0
0.5
1
1.5
2
VI (V)
VCC = 3.0 V.
Fig 9.
Typical transfer characteristic
mnb156
50
ICC
(mA)
(1)
40
30
20
(2)
10
0
2
3
4
5
VCC (V)
6
(1) Positive-going edge.
(2) Negative-going edge.
Linear change of VI between 0.8 V to 2.0 V. All values given are typical unless otherwise specified.
Fig 10. Average ICC as a function of VCC
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
10 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
16. Package outline
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm
D
E
A
SOT505-2
X
c
HE
y
v M A
Z
5
8
A
A2
(A3)
A1
pin 1 index
θ
Lp
L
1
4
e
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D(1)
E(1)
e
HE
L
Lp
v
w
y
Z(1)
θ
mm
1.1
0.15
0.00
0.95
0.75
0.25
0.38
0.22
0.18
0.08
3.1
2.9
3.1
2.9
0.65
4.1
3.9
0.5
0.47
0.33
0.2
0.13
0.1
0.70
0.35
8°
0°
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
OUTLINE
VERSION
SOT505-2
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
02-01-16
---
Fig 11. Package outline SOT505-2 (TSSOP8)
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
11 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm
D
E
SOT765-1
A
X
c
y
HE
v M A
Z
5
8
Q
A
A2
A1
pin 1 index
(A3)
θ
Lp
1
4
e
L
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D(1)
E(2)
e
HE
L
Lp
Q
v
w
y
Z(1)
θ
mm
1
0.15
0.00
0.85
0.60
0.12
0.27
0.17
0.23
0.08
2.1
1.9
2.4
2.2
0.5
3.2
3.0
0.4
0.40
0.15
0.21
0.19
0.2
0.13
0.1
0.4
0.1
8°
0°
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
SOT765-1
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
02-06-07
MO-187
Fig 12. Package outline SOT765-1 (VSSOP8)
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
12 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
17. Abbreviations
Table 12.
Abbreviations
Acronym
Description
CMOS
Complementary Metal-Oxide Semiconductor
DUT
Device Under Test
ESD
ElectroStatic Discharge
HBM
Human Body Model
MIL
Military
MM
Machine Model
TTL
Transistor-Transistor Logic
18. Revision history
Table 13.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
74LVC3G17_Q100 v.1
20140522
Product data sheet
-
-
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
13 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
19. Legal information
19.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
19.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
19.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
74LVC3G17_Q100
Product data sheet
Suitability for use in automotive applications — This NXP
Semiconductors product has been qualified for use in automotive
applications. Unless otherwise agreed in writing, the product is not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer's own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
14 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
19.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
20. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
74LVC3G17_Q100
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 22 May 2014
© NXP Semiconductors N.V. 2014. All rights reserved.
15 of 16
74LVC3G17-Q100
NXP Semiconductors
Triple non-inverting Schmitt trigger with 5 V tolerant input
21. Contents
1
2
3
4
5
6
7
7.1
7.2
8
9
10
11
12
13
14
15
16
17
18
19
19.1
19.2
19.3
19.4
20
21
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
Pinning information . . . . . . . . . . . . . . . . . . . . . . 3
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3
Functional description . . . . . . . . . . . . . . . . . . . 3
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recommended operating conditions. . . . . . . . 4
Static characteristics. . . . . . . . . . . . . . . . . . . . . 5
Dynamic characteristics . . . . . . . . . . . . . . . . . . 6
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Transfer characteristics . . . . . . . . . . . . . . . . . . 9
Waveforms transfer characteristics. . . . . . . . . 9
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 11
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 13
Legal information. . . . . . . . . . . . . . . . . . . . . . . 14
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 14
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Contact information. . . . . . . . . . . . . . . . . . . . . 15
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP Semiconductors N.V. 2014.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 22 May 2014
Document identifier: 74LVC3G17_Q100