Download

LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
1
Product name
Description
Version
S4-0606
Datasheet of S4-0606 ROM-based standalone GPS module
1.0
Introduction
LOCOSYS S4-0606 GPS module features high sensitivity, low power and ultra small form factor. This
GPS module is powered by SiRF Star IV, it can provide you with superior sensitivity and performance even in
urban canyon and dense foliage environment. User can add a serial EEPROM (or use the host CPU’s memory)
to get SiRF CGEE (Client Generated Extended Ephemeris) function that predicts satellite positions for up to 3
days and delivers CGEE-start time of less than 15 seconds under most conditions, without any network
assistance. Besides, MicroPower Mode allows GPS module to stay in a hot-start condition nearly
continuously while consuming very little power.
2
Features
3
SiRF Star IV high sensitivity solution
Support 48-channel GPS
Fast TTFF at low signal level
Built-in active jammer remover to track up to 8 CW jammers
Free CGEE technology to get faster location fix (optional with an external EEPROM)
Support 3 communication interfaces: UART, SPI and I2C
Capable of SBAS (WAAS, EGNOS, MSAS, GAGAN) (optional)
Micro Power Mode (optional)
Built-in LNA and SAW filter
Small form factor 6 x 6 x 1.35 mm
SMD type; RoHS compliant
Application
Personal positioning and navigation
Automotive navigation
Marine navigation
Page 1/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
GPS antenna
TCXO
1PPS
WAKEUP
SAW
SiRF
GPS chip
VCC
ON_OFF
GND
UART/I2C/SPI
RTC
GPIO0,1,4
S4-0606
EEPROM,
Accelerometer,
Magnetic sensor,
Gyro,
Pressure sensor
Fig 3-1 System block diagram.
GPS passive
antenna
15
14
GPIO1
13
RTC_XO
12
RTC_XI
11
GND
VCC_IO
RX
2.2K 2.2K
GPIO0
6
DI_RX
7
ON_OFF
8
VCC
9
CS_RTS
10
CLK_CTS
DO_TX
Optional serial EEPROM
for CGEE
1PPS
1.8V
GND
WAKEUP
(for UART)
GND
GND
10K
GND
GND
1
2
3
4
5
RFIN
1.8V
1.8V
WAKEUP
16
17
18
19
20
50 ohm
Ex: FC-135 with 12.5pF
load capacitance
32.768KHz
VCC
GPIO4
GND
IN
WAKEUP
DU
4
3
2
1
CL=12.5pF
18pF
22pF
100nF
S4-0606
TX
OUT
ST M24M01
5
SDA GND
6
SCL
E2
1.8V 7 /WC
E1
8
1.8V
Keep alive to get
1uF hot start and CGEE
CGEE data can also be stored
into the host CPU’s memory to
save this EEPROM
Micro processor
Fig 3-2 Typical application circuit that uses a passive antenna.
Page 2/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
GPS active
antenna
LNA
VCC for antenna
27nH or
BEAD
Ex: FC-135 with 12.5pF
load capacitance
100pF
18pF
1.8V
WAKEUP
16
17
18
19
20
Optional serial EEPROM
for CGEE
GND
DO_TX
VCC_IO
RX
2.2K 2.2K
15
GPIO0
14
GPIO1
13
RTC_XO
12
RTC_XI
11
6
DI_RX
7
ON_OFF
8
VCC
9
CS_RTS
10
CLK_CTS
1PPS
1.8V
GND
WAKEUP
(for UART)
GND
GND
10K
GND
GND
1
2
3
4
5
RFIN
1.8V
32.768KHz
VCC
GPIO4
GND
IN
WAKEUP
DU
4
3
2
1
CL=12.5pF
18pF
22pF
100nF
S4-0606
TX
OUT
ST M24M01
5
SDA GND
6
SCL
E2
1.8V 7 /WC
E1
8
1.8V
Keep alive to get
1uF hot start and CGEE
CGEE data can also be stored
into the host CPU’s memory to
save this EEPROM
Micro processor
Fig 3-3 Typical application circuit that uses an active antenna
Page 3/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
GPS active
antenna
LNA
VCC for antenna
27nH or
BEAD
Ex: FC-135 with 12.5pF
load capacitance
100pF
18pF
1.8V
WAKEUP
16
17
18
19
20
Optional serial EEPROM
for CGEE
CLK_CTS
Level
shifter
VCC_IO
RX
32.768KHz
Level
shifter
IN
GND
WAKEUP
DU
4
3
2
1
CL=12.5pF
18pF
22pF
100nF
S4-0606
TX
OUT
ST M24M01
5
SDA GND
6
SCL
E2
1.8V 7 /WC
E1
8
VCC
GPIO4
GND
DO_TX
2.2K 2.2K
15
GPIO0
14
GPIO1
13
RTC_XO
12
RTC_XI
11
6
DI_RX
7
ON_OFF
8
VCC
9
CS_RTS
10
Ex: SN74LVC1T45
GND
1PPS
3.3V
GND
WAKEUP
(for UART)
GND
GND
10K
GND
1
2
3
4
5
RFIN
1.8V
1.8V
Keep alive to get
1uF hot start and CGEE
CGEE data can also be stored
into the host CPU’s memory to
save this EEPROM
Micro processor
Fig 3-4 Use a level shifter for a micro processor of 3.3V IO voltage to communicate with S4-0606.
16
17
18
19
20
GND
CS_RTS
VCC
32.768 KHz clock
1.2V to 3.3V
GND
GPIO4
6
7
8
9
10
DI_RX
DO_TX
ON_OFF
CLK_CTS
15
14
GPIO1
13
RTC_XO
12
RTC_XI
11
GPIO0
GND
GND
1PPS
GND
WAKEUP
GND
GND
RFIN
1
2
3
4
5
Fig 3-5 Use a clock instead of a crystal for RTC of S4-0606.
Page 4/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
GND
GND
CLK_CTS
SPI_CLK
SPI_DI
2.2K 2.2K
32.768KHz
18pF
22pF
IN
GND
100nF
S4-0606
CGEE data can also be stored
into the host CPU’s memory to
save this EEPROM
SPI_nCS
1.8V
Keep alive to get
1uF hot start and CGEE
WAKEUP
DU
4
3
2
1
CL=12.5pF
SPI_DO
OUT
ST M24M01
5
SDA GND
6
SCL
E2
1.8V 7 /WC
E1
8
VCC
GPIO4
GND
DO_TX
VCC_IO
Optional serial EEPROM
for CGEE
15
GPIO0
14
GPIO1
13
RTC_XO
12
RTC_XI
11
6
DI_RX
7
ON_OFF
8
VCC
9
CS_RTS
10
1.8V
GND
1.8V
WAKEUP
RFIN
1
2
3
4
5
Ex: FC-135 with 12.5pF
load capacitance
16
1PPS
17
WAKEUP
18
GND
19
GND
20
50 ohm
GPS passive
antenna
Micro processor
Fig 3-6 Use SPI interface to communicate with S4-0606.
GND
GND
CLK_CTS
DO_TX
GND
1.8V
GND
VCC_IO
Optional serial EEPROM
for CGEE
2.2K 2.2K
15
GPIO0
14
GPIO1
13
RTC_XO
12
RTC_XI
11
6
DI_RX
7
ON_OFF
8
VCC
9
CS_RTS
10
2.2K 2.2K
1
2
3
4
5
1.8V
WAKEUP
RFIN
1.8V
Ex: FC-135 with 12.5pF
load capacitance
16
1PPS
17
WAKEUP
18
GND
19
GND
20
50 ohm
GPS passive
antenna
32.768KHz
VCC
GPIO4
OUT
GND
IN
WAKEUP
1uF
DU
4
3
2
1
CL=12.5pF
18pF
22pF
100nF
S4-0606
I2C_CLK
I2C_SDA
ST M24M01
5
SDA GND
6
SCL
E2
1.8V 7 /WC
E1
8
1.8V
Keep alive to get
10K
hot start and CGEE
(for I2C)
CGEE data can also be stored
into the host CPU’s memory to
save this EEPROM
Micro processor
Fig 3-6 Use I2C interface to communicate with S4-0606.
Page 5/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
4
GPS receiver
Chip
SiRF Star IV, GSD4e 9302 or 9312
Frequency
L1 1575.42MHz, C/A code
Channels
48
Update rate
1Hz
Sensitivity
Acquisition Time
Tracking
-160dBm, up to -163dBm (with external LNA)
Navigation
-157dBm, up to -160dBm (with external LNA)
Cold start
-145dBm, up to -148dBm (with external LNA)
Hot start (Open Sky)
< 1s (typical)
Hot start (Indoor)
< 15s
Cold Start (Open Sky)
32s (typical)
< 15s (typical), CGEE-start
Position Accuracy
Autonomous
3m (2D RMS)
SBAS
2.5m (depends on accuracy of correction data)
Max. Altitude
< 18,000 m
Max. Velocity
< 515 m/s
4800 bps (1), 8 data bits, no parity, 1 stop bits (default)
Protocol Support
NMEA 0183 ver 3.0
1Hz: GGA, GSA, RMC
0.2Hz: GSV
OSP Binary
115200 bps, 8 data bits, no parity, 1 stop bits
Note 1: Both baud rate and output message rate are configurable.
5
Software interface
5.1 NMEA output message
Table 5.1-1 NMEA output message
NMEA record
Description
GGA
Global positioning system fixed data
GLL
Geographic position - latitude/longitude
GSA
GNSS DOP and active satellites
GSV
GNSS satellites in view
RMC
Recommended minimum specific GNSS data
VTG
Course over ground and ground speed
GGA--- Global Positioning System Fixed Data
Table 5.1-2 contains the values for the following example:
$GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64
Page 6/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
Table5.1- 2 GGA Data Format
Name
Example
Units
Message ID
$GPGGA
GGA protocol header
UTC Time
053740.000
hhmmss.sss
Latitude
2503.6319
ddmm.mmmm
N/S indicator
N
N=north or S=south
Longitude
12136.0099
dddmm.mmmm
E/W Indicator
E
E=east or W=west
Position Fix Indicator
1
See Table 5.1-3
Satellites Used
08
Range 0 to 12
HDOP
1.1
Horizontal Dilution of Precision
MSL Altitude
63.8
mters
Units
M
mters
Geoid Separation
15.2
mters
Units
M
mters
Age of Diff. Corr.
second
Diff. Ref. Station ID
0000
Checksum
*64
<CR> <LF>
Description
Null fields when DGPS is not used
End of message termination
Table 5.1-3 Position Fix Indicators
Value
Description
0
Fix not available or invalid
1
GPS SPS Mode, fix valid
2
Differential GPS, SPS Mode, fix valid
3-5
Not supported
6
Dead Reckoning Mode, fix valid
GLL--- Geographic Position – Latitude/Longitude
Table 5.1-4 contains the values for the following example:
$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52
Table 5.1-4 GLL Data Format
Name
Example
Units
Description
Message ID
$GPGLL
GLL protocol header
Latitude
2503.6319
ddmm.mmmm
N/S indicator
N
N=north or S=south
Longitude
12136.0099
dddmm.mmmm
Page 7/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
E/W indicator
E
E=east or W=west
UTC Time
053740.000
hhmmss.sss
Status
A
A=data valid or V=data not valid
Mode
A
A=autonomous, D=DGPS, E=DR
Checksum
*52
<CR> <LF>
End of message termination
GSA---GNSS DOP and Active Satellites
Table 5.1-5 contains the values for the following example:
$GPGSA,A,3,24,07,17,11,28,08,20,04,,,,,2.0,1.1,1.7*35
Table 5.1-5 GSA Data Format
Name
Example
Units
Description
Message ID
$GPGSA
GSA protocol header
Mode 1
A
See Table 5.1-6
Mode 2
3
See Table 5.1-7
ID of satellite used
24
Sv on Channel 1
ID of satellite used
07
Sv on Channel 2
….
….
ID of satellite used
Sv on Channel 12
PDOP
2.0
Position Dilution of Precision
HDOP
1.1
Horizontal Dilution of Precision
VDOP
1.7
Vertical Dilution of Precision
Checksum
*35
<CR> <LF>
End of message termination
Table 5.1-6 Mode 1
Value
Description
M
Manual- forced to operate in 2D or 3D mode
A
Automatic-allowed to automatically switch 2D/3D
Table 5.1-7 Mode 2
Value
Description
1
Fix not available
2
2D
3
3D
GSV---GNSS Satellites in View
Table 5.1-8 contains the values for the following example:
$GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73
Page 8/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
$GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75
$GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B
Table 5.1-8 GSV Data Format
Name
Example
Message ID
$GPGSV
Units
GSV protocol header
Total number of messages1 3
Message number
1
Description
Range 1 to 3
1
Range 1 to 3
Satellites in view
12
Satellite ID
28
Elevation
81
degrees
Channel 1 (Range 00 to 90)
Azimuth
285
degrees
Channel 1 (Range 000 to 359)
SNR (C/No)
42
dB-Hz
Channel 1 (Range 00 to 99, null when not tracking)
Satellite ID
20
Elevation
51
degrees
Channel 4 (Range 00 to 90)
Azimuth
077
degrees
Channel 4 (Range 000 to 359)
SNR (C/No)
46
dB-Hz
Channel 4 (Range 00 to 99, null when not tracking)
Checksum
*73
Channel 1 (Range 01 to 32)
Channel 4 (Range 01 to 32)
<CR> <LF>
End of message termination
1. Depending on the number of satellites tracked multiple messages of GSV data may be required.
RMC---Recommended Minimum Specific GNSS Data
Table 5.1-9 contains the values for the following example:
$GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53
Table 5.1-9 RMC Data Format
Name
Example
Message ID
$GPRMC
RMC protocol header
UTC Time
053740.000
hhmmss.sss
Status
A
A=data valid or V=data not valid
Latitude
2503.6319
ddmm.mmmm
N/S Indicator
N
N=north or S=south
Longitude
12136.0099
dddmm.mmmm
E/W Indicator
E
E=east or W=west
Speed over ground
2.69
knots
Course over ground
79.65
degrees
Date
100106
Magnetic variation
Variation sense
Units
Description
True
ddmmyy
degrees
E=east or W=west (Not shown)
Page 9/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
Mode
A
Checksum
*53
A=autonomous, D=DGPS, E=DR
<CR> <LF>
End of message termination
VTG---Course Over Ground and Ground Speed
Table 5.1-10 contains the values for the following example:
$GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38
Table 5.1-10 VTG Data Format
Name
Example
Message ID
$GPVTG
Course over ground
79.65
Reference
T
Units
Description
VTG protocol header
degrees
Measured heading
True
degrees
Course over ground
Measured heading
Reference
M
Magnetic
Speed over ground
2.69
Units
N
Speed over ground
5.0
Units
K
Kilometer per hour
Mode
A
A=autonomous, D=DGPS, E=DR
Checksum
*38
knots
Measured speed
Knots
km/hr
<CR> <LF>
Measured speed
End of message termination
5.2 Proprietary NMEA input message
Table 5.2-1 Message Parameters
Start Sequence
Payload
Checksum
End Sequence
$PSRF<MID>1
Data2
*CKSUM3
<CR><LF>4
1.
Message Identifier consisting of three numeric characters. Input messages begin at MID 100.
2.
Message specific data. Refer to a specific message section for <data>…<data> definition.
3.
CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183Standard For
Interfacing Marine Electronic Devices. Use of checksums is required on all input messages.
4.
Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex 0D0A. Because
\r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the
message and cause the receiver to process that input message.
Note: All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma
delimited.
Table 5.2-2 Proprietary NMEA input messages
Page 10/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
MID1
Message
Description
SetSerialPort
100
Set PORT A parameters and protocol
NavigationInitialization
101
Parameters required for start using X/Y/Z2
SetDGPSPort
102
Set PORT B parameters for DGPS input
Query/Rate Control
103
Query standard NMEA message and/or set output rate
LLANavigationInitialization
104
Parameters required for start using Lat/Lon/Alt3
Development Data On/Off
105
Development Data messages On/Off
Select Datum
106
Selection of datum to be used for coordinate transformations
1.
Message Identification (MID).
2.
Input coordinates must be WGS84.
3.
Input coordinates must be WGS84
100---SetSerialPort
This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud,
data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode
where a more extensive command message set is available. When a valid message is received, the parameters are stored
in battery-backed SRAM and the Evaluation Receiver restarts using the saved parameters.
Table 5.2-3 contains the input values for the following example:
Switch to SiRF binary protocol at 9600,8,N,1
$PSRF100,0,9600,8,1,0*0C
Table 5.2-3 Set Serial Port Data Format
Name
Example
Units
Message ID
$PSRF100
PSRF100 protocol header
Protocol
0
0=SiRF binary, 1=NMEA
Baud
9600
4800,9600,19200,38400,57600,115200
DataBits
8
8,71
StopBits
1
0,1
Parity
0
0=None, 1=Odd, 2=Even
Checksum
*0C
<CR><LF>
Description
End of message termination
1. SiRF protocol is only valid for 8 data bits, 1 stop bit, and no parity.
101---NavigationInitialization
This command is used to initialize the Evaluation Receiver by providing current position (in X, Y, Z coordinates), clock
offset, and time. This enables the Evaluation Receiver to search for the correct satellite signals at the correct signal
parameters. Correct initialization parameters enable the Evaluation Receiver to acquire signals quickly.
Table 5.2-4 contains the input values for the following example:
Start using known position and time
Page 11/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*1C
Table 5.2-4 Navigation Initialization Data Format
Name
Example
Units
Description
Message ID
$PSRF101
ECEF X
-2686700
meters
X coordinate position
ECEF Y
-4304200
meters
Y coordinate position
ECEF Z
3851624
meters
Z coordinate position
ClkOffset
96000
Hz
Clock Offset of the Evaluation Receiver1
TimeOfWeek
497260
seconds
GPS Time Of Week
WeekNo
921
GPS Week Number
ChannelCount
12
Range 1 to 12
ResetCfg
3
See Table 5.2-5
Checksum
*1C
PSRF101 protocol header
<CR><LF>
End of message termination
1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used.
Table 5.2-5 Reset Configuration
Hex
Description
0x01
Hot Start – All data valid
0x02
Warm Start – Ephemeris cleared
0x03
Warm Start (with Init) – Ephemeris cleared, initialization data loaded
0x04
Cold Start – Clears all data in memory
0x08
Clear Memory – Clears all data in memory and resets the receiver back to factory defaults
102---SetDGPSPort
This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may
output corrections using different communication parameters. If a DGPS receiver is used that has different
communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message
is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters.
Table 5.2-6 contains the input values for the following example:
Set DGPS Port to be 9600,8,N,1.
$PSRF102,9600,8,1,0*12
Table 5.2-6 Set GPS Port Data Format
Name
Example
Units
Description
Message ID
$PSRF102
PSRF102 protocol header
Baud
9600
4800,9600,19200,38400
DataBits
8
8,7
Page 12/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
StopBits
1
0,1
Parity
0
0=None, 1=Odd, 2=Even
Checksum
*12
<CR><LF>
End of message termination
Note: RTCM is not supported.
103---Query/Rate Control
This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG.
Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums
may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in
battery-backed memory for each entry when the message is accepted.
Table 5.2-7 contains the input values for the following example:
1. Query the GGA message with checksum enabled
$PSRF103,00,01,00,01*25
2. Enable VTG message for a 1 Hz constant output with checksum enabled
$PSRF103,05,00,01,01*20
3. Disable VTG message
$PSRF103,05,00,00,01*21
Table 5.2-7 Query/Rate Control Data Format (See example 1)
Name
Example
Message ID
$PSRF103
PSRF103 protocol header
Msg
00
See Table 5.2-8
Mode
01
0=SetRate, 1=Query
Rate
00
CksumEnable
01
Checksum
*25
Units
seconds
Description
Output – off=0, max=255
0=Disable Checksum, 1=Enable Checksum
<CR><LF>
End of message termination
Table 5.2-8 Messages
Value
Description
0
GGA
1
GLL
2
GSA
3
GSV
4
RMC
5
VTG
Page 13/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
6
MSS (If internal beacon is supported)
7
Not defined
8
ZDA (if 1PPS output is supported)
9
Not defined
104---LLANavigationInitialization
This command is used to initialize the Evaluation Receiver by providing current position (in latitude, longitude, and
altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the
correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.
Table 5.2-9 contains the input values for the following example:
Start using known position and time.
$PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1*07
Table 5.2-9 LLA Navigation Initialization Data Format
Name
Example
Units
Description
Message ID
$PSRF104
Lat
37.3875111
degrees
Latitude position (Range 90 to –90)
Lon
-121.97232
degrees
Longitude position (Range 180 to –180)
Alt
0
meters
Altitude position
ClkOffset
96000
Hz
Clock Offset of the Evaluation Receiver1
TimeOfWeek
237759
seconds
GPS Time Of Week
WeekNo
1946
Extended GPS Week Number (1024 added)
ChannelCount
12
Range 1 to 12
ResetCfg
1
See Table 5.2-10
Checksum
*07
PSRF104 protocol header
<CR><LF>
End of message termination
1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used.
Table 5.2-10 Messages
Hex
Description
0x01
Hot Start – All data valid
0x02
Warm Start – Ephemeris cleared
0x03
0x04
0x08
Warm Start (with Init) – Ephemeris cleared,
initialization data loaded
Cold Start – Clears all data in memory
Clear Memory – Clears all data in memory
and resets receiver back to factory defaults
Page 14/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
105---Development Data On/Off
Use this command to enable development data information if you are having trouble getting commands accepted. Invalid
commands generate debug information that enables you to determine the source of the command rejection. Common
reasons for input command rejection are invalid checksum or parameter out of specified range.
Table 5.2-11 contains the input values for the following example:
1. Debug On
$PSRF105,1*3E
2. Debug Off
$PSRF105,0*3F
Table 5.2-11 Development Data On/Off Data Format
Name
Example
Units
Message ID
$PSRF105
PSRF105 protocol header
Debug
1
0=Off, 1=On
Checksum
*3E
<CR><LF>
Description
End of message termination
106---Select Datum
$PSGPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF)
coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum
is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into
local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid
worldwide.)
Table 5.2-12 contains the input values for the following example:
Datum select TOKYO_MEAN
$PSRF106,178*32
Table 5.2-12 Development Data On/Off Data Format
Name
Example
Message ID
$PSRF106
PSRF106 protocol header
Datum
178
21=WGS84
Units
Description
178=TOKYO_MEAN
179=TOKYO_JAPAN
180=TOKYO_KOREA
181=TOKYO_OKINAWA
Checksum
*32
<CR><LF>
End of message termination
117---System Turn Off
This message requests that the GPS receiver perform an orderly shutdown and switch to hibernate mode.
Page 15/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
Table 5.2-13 contains the values for the following example:
$PSRF117,16*0B
Table 5.2-13 System Turn Off
Name
Example
Message ID
$PSRF117
PSRF117 protocol header
Sub ID
16
16: System turn off
Checksum
*0B
<CR><LF>
Units
Description
End of message termination
Page 16/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
5.3 Supply voltage control and sequencing
5.3.1 Initial power up
When power is first applied, the module goes into a low-power mode while RTC starts. The
host is not required to control /RESET pin (pin 8 of GPS module) since the module’s internal
reset circuitry handles detection of application of power. After that, the module is in
“ready-to-start” state and awaits an ON_OFF input pulse to start.
Since RTC startup time is variable, detection of when the module is ready to accept an
ON_OFF pulse requires the host to either wait for a fixed interval or to monitor a pulse on
WAKEUP output (pin 9 of GPS module) to assert a pulse on the ON_OFF input. An example
flow chart is shown below.
Start
First provide power
to GPS module
Wait for
≧1 second
≧ 3 RTC cycles
Assert an ON_OFF
pulse to GPS module
No
Receive UART
messages from GPS
module within 1
second?
ON_OFF pulse
Yes
GPS module starts to
work in full-power
mode
End
Page 17/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
5.3.2 Procedure for removing power of GPS module
Abrupt, uncontrolled removal of power while GPS module is operating carries the risk of
data corruption. The consequences of corruption range from longer TimeToFirstFix to complete
system failure. The appropriate procedure to remove power is shown as below.
Start
Via software
“
Via ON_OFF pin
”
Assert an ON_OFF pulse
when GPS module is in
full-power mode
Send system turn off
message to GPS module
(refer to table 5.2-13)
≧
Wait for 1 second to
let GPS module go into
hibernate mode
Remove power of GPS
module for a period
longer than 10 s
Restart GPS
module?
Note: All BBRAM contents and
RTC time of GPS module will
be lost resulting in a factory
reset.
Yes
Follow the procedure of
section 5.3.1
No
End
6
Communication interface
6.1 UART
The GPS module has a 4-wire UART port. The hardware flow control, CTS and RTS, is default
disabled. The default baud rate is 4800bps, 8-N-1.
6.2 SPI
The SPI interface of the GPS module is slave mode SPI. The transmitter and receiver each have
independent 1024-byte FIFO buffers and individual software-defined 2-byte idle patterns of 0xA7 0xB4.
Page 18/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
The maximum clock is 6.8MHz.
6.3 I2C
The I2C interface of the GPS module has default address 0x60 for receiving and 0x62 for
transmitting. The operation speed is up to 400kbps with individual transmit and receive FIFO of 64
bytes. The I2C bus is a multi-master bus which means any number of master nodes can be present.
Additionally, master and slave roles may be changed between messages (after a STOP is sent). For
example, when GPS module detects the bus is idle, it seizes the I2C bus and starts to transmit data by
sending a start bit followed by the 7-bit address, i.e. 0x62. When another master seizes bus and transmits
GPS module’s receiving address, i.e. 0x60, GPS module operates as a slave.
7
Pin assignment and descriptions
Table 6-1 Pin descriptions
Pin # Name
Type Description
1
GND
P
Ground
2
GND
P
Ground
3
GND
P
Ground
4
CLK_CTS
I/O
CTS: clear to send, active low
SPI_CLK: slave SPI clock input
Note
1,2
Page 19/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
5
TX: UART data transmit
I/O SPI_DO: Slave SPI data output
DO_TX
1
I2C_CLK: I2C bus clock
RX: UART data receive
I/O SPI_DI: Slave SPI data input
I2C_SDA: I2C bus data
6
DI_RX
7
ON_OFF
I
Power control pin.
1,3
8
VCC
P
DC supply voltage
4
9
CS_RTS
RTS: UART ready to send, active low
SPI_CS: slave SPI chip select, active low
1,2
10
GND
11
GPIO4
12
RTC_XI
13
RTC_XO
14
GPIO1
I/O
General purpose I/O
Please connect a 2.2KΩ pull-up resistor to VCC
1
15
GPIO0
I/O
General purpose I/O
Please connect a 2.2KΩ pull-up resistor to VCC
1
16
1PPS
O
Pulse per second (200ms pulse/sec)
17
I/O
P
1
Ground
I/O General purpose I/O or external interrupt input
I
RTC crystal or CMOS RTC clock input
1
5
RTC crystal or open if no crystal
WAKEUP
O
Wake up output.
A high on this output indicates that GPS module is in
operational mode. A low on this output indicates that GPS
module is in low power state (standby, hibernate and
ready-to-start). User can also use this pin to control
external power supply or LNA.
18
GND
P
Ground
19
GND
P
Ground
20
RFIN
I
GPS RF signal input
<Note>
1. Input voltage is 3.6V tolerant.
2. CLK_CTS and CS_RTS are used to select communication interface at system reset.
CLK_CTS
CS_RTS
External pull-up 10K ohm resistor
Not connect
SPI
Not connect
Not connect
I2C
Not connect
External pull-down 10K ohm resistor
Interface
UART
3. Input pulse to start the module, and switch the module between different power modes.
ON_OFF pulse requires a rising edge and high level that persists for three cycles of the RTC clock
Page 20/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
in order to be detected. Resetting the ON_OFF detector requires that ON_OFF goes to logic low for
at least three cycles of the RTC clock.
If the module is first powered, i.e. in “ready-to-start” state, an ON_OFF pulse will start the module.
If the module is in hibernate state, an ON_OFF pulse will move it to full-power mode.
If the module is in MicroPower mode, an ON_OFF pulse will move it to full-power mode.
If the module is in AdvancedPower mode, an ON_OFF pulse will initiate one AdvancedPower cycle.
If the module is in TricklePower mode, an ON_OFF pulse will initiate one TricklePower cycle.
If the module is in Push-To-Fix mode, an ON_OFF pulse will initiate one Push-To-Fix cycle.
If the module is already in full-power mode, an ON_OFF pulse will initiate orderly shutdown.
4. The input voltage to the GPS module must be additionally filtered and decoupled. The allowable ripple is
54mV below 3MHz frequency and 15mV above 3MHz frequency.
5. Please refer to Fig 3-5 for using RTC clock. The logic high level of RTC clock can be from 1.2V to 3.3V.
RTC clock must be continuously running in order for the GPS module to start-up and to perform
power-cycling correctly.
8
Ordering information
Model
S4-0606-0
S4-0606-1
9302
9312
SBAS
No
Yes
Micro Power Mode
No
Yes
GPS chip
9
DC & Temperature characteristics
9.1 Absolute maximum ratings
Parameter
Symbol
Ratings
Units
DC Supply Voltage
VCC
1.95
V
I/O Pin Voltage
VIO
3.6
Operating Temperature Range
Topr
-40 ~ 85
V
℃
Storage Temperature Range
Tstg
-40 ~ 85
℃
9.2 DC Electrical characteristics
Parameter
DC Supply Voltage
Symbol
Conditions
VCC
Min.
Typ.
Max.
Units
1.71
1.8
1.89
V
80
mA
VIN = 1.8V
Peak
Supply Current
Iss
Acquisition
Tracking
Standby(1)
Hibernate
53
35
67
mA
mA
uA
14
uA
Page 21/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
Ready-to-start(2)
MPM(3)
8
500
uA
uA
High Level Input Voltage
VI H
0.7*VCC
3.6
V
Low Level Input Voltage
VI L
-0.4
0.45
V
High Level Output Voltage
VOH
0.75*VCC
VCC
V
Low Level Output Voltage
VOL
0.4
V
High Level Output Current
IOH
2
mA
Low Level Output Current
IOL
2
mA
Input Capacitance
C IN
5
pF
Load Capacitance
C LOAD
8
pF
<Note>
1. Transitional state when GPS module is in TricklePower mode.
2. When power is first applied, the module goes into a “ready-to-start” state. Please refer to the section 5.3.
3. MicroPowerMode. MPM average current reduces by approximately 50% when there is valid ephemeris.
9.3 Temperature characteristics
Parameter
Symbol
Min.
Typ.
Max.
Operating Temperature
Topr
-30
-
85
Units
℃
Storage Temperature
Tstg
-40
25
85
℃
Page 22/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
10 Mechanical specification
10.1 Outline dimensions
10.2 Recommended land pattern dimensions
Page 23/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
11 Reel Packing information
Page 24/25
© 2010 LOCOSYS Technology Inc.
LOCOSYS Technology Inc.
20F.-13, No.79, Sec. 1, Xintai 5th Rd.,
Xizhi City, Taipei County 221, Taiwan
℡ 886-2-8698-3698
886-2-8698-3699
www.locosystech.com/
Document change list
Revision 1.0
First release on June 1, 2011.
Page 25/25
© 2010 LOCOSYS Technology Inc.
Similar pages