DATASHEET

EL5123, EL5223, EL5323, EL5423
IGNS
EW DES
N
R
O
F
NDED
EM ENT
C OM M E
REPL AC
D
E
NO T R E
r at
D
N
E
OMM
Data
Sheet l Support Cente c August 31, 2010
NO REC
a
m/ts
nic
our Tech r www.intersil.co
t
c
ta
n
o
c
o
TERSIL
1-888-IN
12MHz 4-, 8-, 10- and 12-Channel
Rail-to-Rail Input-Output Buffers
FN7176.3
Features
• 12MHz -3dB bandwidth
The EL5123, EL5223, EL5323, and EL5423 are low power,
high voltage rail-to-rail input/output buffers designed
primarily for use in reference voltage buffering applications
for TFT-LCDs. They are available in quad (EL5123), octal
(EL5223), 10-Channel (EL5323), and 12-Channel (EL5423)
topologies. All buffers feature a -3dB bandwidth of 12MHz
and operate from just 600µA per buffer. This family also
features fast slewing and settling times, as well as a
continuous output drive capability of 30mA (sink and
source).
The quad channel EL5123 is available in the 10 Ld MSOP
package. The 8-Channel EL5223 is available in both the
20 Ld TSSOP and 24 Ld QFN packages, the 10-Channel
EL5323 in the 24 Ld TSSOP and 24 Ld QFN packages, and
the 12-Channel EL5423 in the 28 Ld TSSOP and 32 Ld QFN
packages. All buffers are specified for operation over the full
-40°C to +85°C temperature range.
• Supply voltage = 4.5V to 16.5V
• Low supply current (per buffer) = 600µA
• High slew rate = 15V/µs
• Rail-to-rail input/output swing
• Ultra-small packages
• Pb-Free Available (RoHS Compliant)
Applications
• TFT-LCD drive circuits
• Electronics notebooks
• Electronic games
• Touch-screen displays
• Personal communication devices
• Personal digital assistants (PDA)
• Portable instrumentation
• Sampling ADC amplifiers
• Wireless LANs
• Office automation
• Active filters
• ADC/DAC buffers
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 2002-2004, 2007, 2010. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
EL5123, EL5223, EL5323, EL5423
Pinouts
20 VOUT2
21 VOUT1*
22 NC
23 VIN1*
24 VIN2
VIN3 1
19 VOUT3
VIN4 2
18 VOUT4
VIN5 3
17 VOUT5
THERMAL
PAD**
VS+ 4
10 VOUT1
VIN1 1
20 VOUT1
VIN2 2
9 VOUT2
VIN2 2
19 VOUT2
8 VS-
VIN3 3
18 VOUT3
VIN3 4
7 VOUT3
VIN4 4
17 VOUT4
VIN4 5
6 VOUT4
VS+ 5
16 VS-
VS+ 6
15 VS-
VS+ 3
VIN8 7
13 VOUT8
VOUT9 12
14 VOUT7
VOUT10* 11
VIN7 6
NC 10
15 VOUT6
CVIN10* 9
VIN1 1
16 VS-
VIN6 5
VIN9 8
EL5223
(20 LD TSSOP)
TOP VIEW
EL5123
(10 LD MSOP)
TOP VIEW
EL5223, EL5323
(24 LD QFN)
TOP VIEW
VIN5 7
14 VOUT5
VIN6 8
13 VOUT6
VIN7 9
12 VOUT7
VIN8 10
11 VOUT8
* NOT AVAILABLE IN EL5223
* *THERMAL PAD CONNECTS TO VS-
26 VOUT2
27 VOUT1
28 NC
29 NC
30 NC
31 VIN1
32 VIN2
VIN3 1
25 VOUT3
VIN4 2
24 VOUT4
VIN5 3
23 VOUT5
VIN6 4
22 VOUT6
THERMAL
PAD**
VS+ 5
21 VS-
VIN10 9
17 VOUT10
VOUT11 16
18 VOUT9
VOUT12 15
VIN9 8
NC 14
19 VOUT8
NC 13
VIN8 7
NC 12
20 VOUT7
VIN12 11
VIN7 6
VIN11 10
EL5323
(24 LD TSSOP)
TOP VIEW
EL5423
(28 LD TSSOP)
TOP VIEW
EL5423
(32 LD QFN)
TOP VIEW
* *THERMAL PAD CONNECTS TO VS-
2
VIN1 1
28 VOUT1
VIN1 1
24 VOUT1
VIN2 2
27 VOUT2
VIN2 2
23 VOUT2
VIN3 3
26 VOUT3
VIN3 3
22 VOUT3
VIN4 4
25 VOUT4
VIN4 4
21 VOUT4
VIN5 5
24 VOUT5
VIN5 5
20 VOUT5
VIN6 6
23 VOUT6
VS+ 6
19 VS-
VS+ 7
22 VS-
VS+ 7
18 VS-
VS+ 8
21 VS-
VIN6 8
17 VOUT6
VIN7 9
20 VOUT7
VIN7 9
16 VOUT7
VIN8 10
19 VOUT8
VIN8 10
15 VOUT8
VIN9 11
18 VOUT9
VIN9 11
14 VOUT9
VIN10 12
17 VOUT10
VIN10 12
13 VOUT10
VIN11 13
16 VOUT11
VIN12 14
15 VOUT12
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Ordering Information
PART NUMBER
PART MARKING
PACKAGE
PKG. DWG. #
EL5123CY
P
10 Ld MSOP (3.0mm)
MDP0043
EL5123CY-T7*
P
10 Ld MSOP (3.0mm)
MDP0043
EL5123CY-T13*
P
10 Ld MSOP (3.0mm)
MDP0043
EL5123CYZ (Note)
BAAAT
10 Ld MSOP (3.0mm) (Pb-free)
MDP0043
EL5123CYZ-T7* (Note)
BAAAT
10 Ld MSOP (3.0mm) (Pb-free)
MDP0043
EL5123CYZ-T13* (Note)
BAAAT
10 Ld MSOP (3.0mm) (Pb-free)
MDP0043
EL5223CL
5223CL
24 Ld QFN (4mmx5mm)
MDP0046
EL5223CL-T7*
5223CL
24 Ld QFN (4mmx5mm)
MDP0046
EL5223CL-T13*
5223CL
24 Ld QFN (4mmx5mm)
MDP0046
EL5223CLZ (Note)
5223CLZ
24 Ld QFN (4mmx5mm) (Pb-free)
MDP0046
EL5223CLZ-T7* (Note)
5223CLZ
24 Ld QFN (4mmx5mm) (Pb-free)
MDP0046
EL5223CLZ-T13* (Note)
5223CLZ
24 Ld QFN (4mmx5mm) (Pb-free)
MDP0046
EL5223CR
5223CR
20 Ld TSSOP (4.4mm)
MDP0044
EL5223CR-T7*
5223CR
20 Ld TSSOP (4.4mm)
MDP0044
EL5223CR-T13*
5223CR
20 Ld TSSOP (4.4mm)
MDP0044
EL5223CRZ (Note)
5223CRZ
20 Ld TSSOP (4.4mm) (Pb-free)
M20.173
EL5223CRZ-T7* (Note)
5223CRZ
20-Ld TSSOP (4.4mm) (Pb-free)
M20.173
EL5223CRZ-T13* (Note)
5223CRZ
20 Ld TSSOP (4.4mm) (Pb-free)
M20.173
EL5323CL
5323CL
24 Ld QFN (4mmx5mm)
MDP0046
EL5323CL-T7*
5323CL
24 Ld QFN (4mmx5mm)
MDP0046
EL5323CL-T13*
5323CL
24 Ld QFN (4mmx5mm)
MDP0046
EL5323CLZ (Note)
5323CLZ
24 Ld QFN (4mmx5mm) (Pb-free)
MDP0046
EL5323CLZ-T7* (Note)
5323CLZ
24 Ld QFN (4mmx5mm) (Pb-free)
MDP0046
EL5323CLZ-T13* (Note)
5323CLZ
24 Ld QFN (4mmx5mm) (Pb-free)
MDP0046
EL5323CR
5323CR
24 Ld TSSOP (4.4mm)
MDP0044
EL5323CR-T13*
5323CR
24 Ld TSSOP (4.4mm)
MDP0044
EL5323CRZ (Note)
5323CRZ
24 Ld TSSOP (4.4mm) (Pb-free)
MDP0044
EL5323CRZ-T7* (Note)
5323CRZ
24 Ld TSSOP (4.4mm) (Pb-free)
MDP0044
EL5323CRZ-T13* (Note)
5323CRZ
24 Ld TSSOP (4.4mm) (Pb-free)
MDP0044
EL5423CL
5423CL
32 Ld QFN (5mmx6mm)
MDP0046
EL5423CL-T7*
5323CL
32 Ld QFN (5mmx6mm)
MDP0046
EL5423CL-T13*
5423CL
32 Ld QFN (5mmx6mm)
MDP0046
EL5423CLZ (Note)
5423CLZ
32 Ld QFN (5mmx6mm) (Pb-free)
MDP0046
EL5423CLZ-T7* (Note)
5423CLZ
32 Ld QFN (5mmx6mm) (Pb-free)
MDP0046
EL5423CLZ-T13* (Note)
5423CLZ
32 Ld QFN (5mmx6mm) (Pb-free)
MDP0046
3
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Ordering Information (Continued)
PART NUMBER
PART MARKING
PACKAGE
PKG. DWG. #
EL5423CR
5423CR
28 Ld TSSOP (4.4mm)
MDP0044
EL5423CR-T7*
5423CR
28 Ld TSSOP (4.4mm)
MDP0044
EL5423CR-T13*
5423CR
28 Ld TSSOP (4.4mm)
MDP0044
EL5423CRZ (Note)
5423CRZ
28 Ld TSSOP (4.4mm) (Pb-free)
MDP0044
EL5423CRZ-T7* (Note)
5423CRZ
28 Ld TSSOP (4.4mm) (Pb-free)
MDP0044
EL5423CRZ-T13* (Note)
5423CRZ
28 Ld TSSOP (4.4mm) (Pb-free)
MDP0044
*Please refer to TB347 for details on reel specifications.
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations).
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J
STD-020.
4
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Absolute Maximum Ratings (TA = +25°C)
Thermal Information
Supply Voltage between VS+ and VS- . . . . . . . . . . . . . . . . . . . .+18V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . VS- -0.5V, VS +0.5V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 30mA
ESD Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests
are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
NOTES:
1. Measured over operating temperature range.
2. Instantaneous peak current.
3. Slew rate is measured on rising and falling edges
Electrical Specifications
PARAMETER
VS+ = +5V, VS- = -5V, RL = 10k and CL = 10pF to 0V, TA = +25°C, Unless Otherwise Specified.
DESCRIPTION
CONDITION
MIN
TYP
MAX
UNIT
0.5
12
mV
INPUT CHARACTERISTICS
VOS
Input Offset Voltage
VCM = 0V
TCVOS
Average Offset Voltage Drift
(Note 1)
5
IB
Input Bias Current
VCM = 0V
2
RIN
Input Impedance
1
G
CIN
Input Capacitance
1.35
pF
AV
Voltage Gain
-4.5V  VOUT  4.5V
0.99
µV/°C
50
nA
1.01
V/V
-4.85
V
OUTPUT CHARACTERISTICS
VOL
Output Swing Low
IL = -5mA
VOH
Output Swing High
IL = +5mA
IOUT (max)
Output Current (Note 2)
RL = 10
-4.95
4.85
4.95
V
±120
mA
80
dB
POWER SUPPLY PERFORMANCE
PSRR
Power Supply Rejection Ratio
VS is moved from ±2.25V to ±7.75V
IS
Supply Current
No load (EL5123)
2.4
3.4
mA
No load (EL5223)
5.5
6.8
mA
No load (EL5323)
6
8.5
mA
No load (EL5423)
7.45
10.1
mA
55
DYNAMIC PERFORMANCE
SR
Slew Rate (Note 3)
-4.0V VOUT 4.0V, 20% to 80%
tS
Settling to +0.1% (AV = +1)
BW
CS
15
V/µs
(AV = +1), VO = 2V step
250
ns
-3dB Bandwidth
RL = 10k, CL = 10pF
12
MHz
Channel Separation
f = 5MHz
75
dB
5
7
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Electrical Specifications
PARAMETER
VS+ =+5V, VS- = 0V, RL = 10k and CL = 10pF to 2.5V, TA = +25°C, Unless Otherwise Specified.
DESCRIPTION
CONDITION
MIN
TYP
MAX
UNIT
0.5
12
mV
INPUT CHARACTERISTICS
VOS
Input Offset Voltage
VCM = 2.5V
TCVOS
Average Offset Voltage Drift
(Note 1)
5
IB
Input Bias Current
VCM = 2.5V
2
RIN
Input Impedance
1
G
CIN
Input Capacitance
1.35
pF
AV
Voltage Gain
0.5V  VOUT  4.5V
0.99
µV/°C
50
nA
1.01
V/V
150
mV
OUTPUT CHARACTERISTICS
VOL
Output Swing Low
IL = -2.5mA
VOH
Output Swing High
IL = +2.5mA
IOUT (max)
Output Current (Note 2)
RL = 10
80
4.85
4.92
V
±120
mA
80
dB
POWER SUPPLY PERFORMANCE
PSRR
Power Supply Rejection Ratio
VS is moved from 4.5V to 15.5V
IS
Supply Current
No load (EL5123)
2.4
3.2
mA
No load (EL5223)
5.2
6.5
mA
No load (EL5323)
5.8
8
mA
No load (EL5423)
7.2
9.7
mA
55
DYNAMIC PERFORMANCE
SR
Slew Rate (Note 3)
1V VOUT 4V, 20% to 80%
12
V/µs
tS
Settling to +0.1% (AV = +1)
(AV = +1), VO = 2V step
250
ns
BW
-3dB Bandwidth
RL = 10k, CL = 10pF
12
MHz
CS
Channel Separation
f = 5MHz
75
dB
Electrical Specifications
PARAMETER
VS+ = +15V, VS- = 0V, RL = 10k and CL = 10pF to 7.5V, TA = +25°C, Unless Otherwise Specified.
DESCRIPTION
CONDITION
MIN
TYP
MAX
UNIT
0.5
14
mV
INPUT CHARACTERISTICS
VOS
Input Offset Voltage
VCM = 7.5V
TCVOS
Average Offset Voltage Drift
(Note 1)
5
IB
Input Bias Current
VCM = 7.5V
2
RIN
Input Impedance
1
G
CIN
Input Capacitance
1.35
pF
AV
Voltage Gain
0.5V  VOUT  14.5V
0.99
µV/°C
50
nA
1.01
V/V
150
mV
OUTPUT CHARACTERISTICS
VOL
Output Swing Low
IL = -7.5mA
VOH
Output Swing High
IL = +7.5mA
IOUT (max)
Output Current (Note 2)
RL = 10
6
80
14.85
14.95
V
120
200
mA
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Electrical Specifications
PARAMETER
VS+ = +15V, VS- = 0V, RL = 10k and CL = 10pF to 7.5V, TA = +25°C, Unless Otherwise Specified.
DESCRIPTION
CONDITION
MIN
TYP
55
80
MAX
UNIT
POWER SUPPLY PERFORMANCE
PSRR
Power Supply Rejection Ratio
VS is moved from 4.5V to 15.5V
IS
Supply Current
No load (EL5123)
2.4
3.7
mA
No load (EL5223)
5.7
7.1
mA
No load (EL5323)
6.2
8.7
mA
No load (EL5423)
7.8
10.4
mA
dB
DYNAMIC PERFORMANCE
SR
Slew Rate (Note 3)
1V VOUT 14V, 20% to 80%
18
V/µs
tS
Settling to +0.1% (AV = +1)
(AV = +1), VO = 2V step
250
ns
BW
-3dB Bandwidth
RL = 10k, CL = 10pF
12
MHz
CS
Channel Separation
f = 5MHz
75
dB
7
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Typical Performance Curves
0.018
10
0.016
THD + NOISE (%)
12
VOP-P (V)
8
6
4
2
0.014
0.012
0.01
0.008
VS = ±5V
RL = 10k
0
10k
VS = ±5V
RL = 10k
VIN = 2VP-P
100k
1M
0.006
1k
10M
10k
FREQUENCY (Hz)
FIGURE 1. OUTPUT SWING vs FREQUENCY
OVERSHOOT (%)
70
60
FIGURE 2. TOTAL HARMONIC DISTORTION + NOISE vs
FREQUENCY
10
VS = ±5V
RL = 10k
VIN = 100mV
6
STEP SIZE (V)
80
100k
FREQUENCY (Hz)
50
40
30
20
VS = ±5V
RL = 10k
CL = 12pF
2
-2
-6
10
0
10
100
-10
200 250 300 350 400 450 500 550 600 650
1k
CAPACITANCE (pF)
SETTLING TIME (ns)
FIGURE 3. OVERSHOOT vs LOAD CAPACITANCE
20
VS = ±5V
RL = 10k
NORMALIZED MAGNITUDE (dB)
NORMALIZED MAGNITUDE (dB)
20
1000pF
10
100pF
0
12pF
47pF
-10
-20
-30
100k
FIGURE 4. SETTLING TIME vs STEP SIZE
1M
10M
100M
FREQUENCY (Hz)
FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS CL
8
VS = ±5V
CL = 10pF
10
1k
10k
0
-10
562
-20
-30
100k
150
1M
10M
100M
FREQUENCY (Hz)
FIGURE 6. FREQUENCY RESPONSE FOR VARIOUS RL
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Typical Performance Curves (Continued)
100
600
OUTPUT IMPEDANCE ()
PSRR+
PSRR (dB)
80
60
PSRR-
40
20
0
1k
VS = ±5V
10k
100k
1M
VS = ±5V
TA = +25°C
480
360
240
120
0
100k
10M
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 7. PSRR vs FREQUENCY
FIGURE 8. OUTPUT IMPEDANCE vs FREQUENCY
100
20
% OF BUFFERS
10
15
10
5
FREQUENCY (Hz)
4.955
OUTPUT HIGH VOLTAGE (V)
INPUT BIAS CURRENT (nA)
FIGURE 10. INPUT OFFSET VOLTAGE DISTRIBUTION
VS = ±5V
1.5
0.5
-0.5
-1.5
-2.5
-35
-15
6
INPUT OFFSET VOLTAGE (mV)
FIGURE 9. INPUT NOISE SPECTRAL DENSITY vs FREQUENCY
2.5
4
0
100M
2
10M
0
1M
-2
100k
-4
1
10k
-6
VOLTAGE NOISE (nV/Hz)
25
5
25
45
65
85
TEMPERATURE (°C)
FIGURE 11. INPUT BIAS CURRENT vs TEMPERATURE
9
4.950
4.945
4.940
4.935
4.930
4.925
VS = ±5V
IOUT = 5mA
-35
-15
5
25
45
65
85
TEMPERATURE (°C)
FIGURE 12. OUTPUT HIGH VOLTAGE vs TEMPERATURE
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Typical Performance Curves (Continued)
15.1
-4.934
OUTPUT LOW VOLTAGE (V)
VS = ±5V
SLEW RATE (V/µs)
14.9
14.7
14.5
14.3
14.1
-35
-15
5
25
45
65
-4.938
-4.942
-4.946
-4.950
-4.954
85
VS = ±5V
IOUT = -5mA
-35
-15
TEMPERATURE (°C)
SUPPLY CURRENT (mA)
VOLTAGE GAIN (V/V)
0.66
1.0010
1.0006
1.0000
0.9998
-15
5
25
45
65
85
85
0.65
0.64
0.63
0.62
-35
-15
5
25
45
65
85
TEMPERATURE (°C)
FIGURE 15. VOLTAGE GAIN vs TEMPERATURE
SUPPLY CURRENT (mA)
65
VS = ±5V
TEMPERATURE (°C)
0.71
45
FIGURE 14. OUTPUT LOW VOLTAGE vs TEMPERATURE
VS = ±5V
-35
25
TEMPERATURE (°C)
FIGURE 13. SLEW RATE vs TEMPERATURE
1.0014
5
FIGURE 16. SUPPLY CURRENT PER CHANNEL vs
TEMPERATURE
TA = +25°C
VS = ±5V
RL = 10k
CL = 12pF
0.69
0.67
50mV/DIV
0.65
0.63
4
6
8
10
12
14
16
18
SUPPLY VOLTAGE (V)
FIGURE 17. SUPPLY CURRENT PER CHANNEL vs SUPPLY
VOLTAGE
10
200ns/DIV
FIGURE 18. SMALL SIGNAL TRANSIENT RESPONSE
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Typical Performance Curves (Continued)
POWER DISSIPATION (W)
3.0
1V/DIV
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD, QFN EXPOSED
DIEPAD SOLDERED TO PCB PER JESD51-5
2.857W
2.5 2.703W
2.0
QFN24
JA = +37°C/W
1.5
QFN32
JA = +35°C/W
1.0
0.5
0
1µs/DIV
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE (°C)
FIGURE 19. LARGE SIGNAL TRANSIENT RESPONSE
JEDEC JESD51-3 AND SEMI G42-88
(SINGLE LAYER) TEST BOARD
758mW
0.7
POWER DISSIPATION (W)
1.4
714mW
0.6
0.5
QFN24
JA = +140°C/W
0.4
POWER DISSIPATION (W)
0.8
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
QFN32
JA = +132°C/W
0.3
0.2
0.1
0
0
25
50
75 85 100
125
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
1.333W
1.2
1.176W
1.0
0.8 870mW
0.6
0.4
MSOP10
JA = +115°C/W
0.2
0
150
TSSOP28
JA = +75°C/W
TSSOP20
JA = +95°C/W
0
25
AMBIENT TEMPERATURE (°C)
50
75 85 100
125
150
AMBIENT TEMPERATURE (°C)
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
0.9
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT
TEMPERATURE
JEDEC JESD51-3 LOW EFFECTIVE THERMAL
CONDUCTIVITY TEST BOARD
833mW
781mW
0.8
POWER DISSIPATION (W)
TSSOP24
JA = +85°C/W
1.111W
0.7
TSSOP24
JA = +128°C/W
714mW
0.6
TSSOP28
JA = +120°C/W
0.5
486mW
0.4
MSOP10
JA = +206°C/W
0.3
0.2
TSSOP20
JA = +140°C/W
0.1
0
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE (°C)
FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE
11
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Applications Information
Output Phase Reversal
Product Description
The EL5123, EL5223, EL5323, and EL5423 unity gain
buffers are fabricated using a high voltage CMOS process. It
exhibits rail-to-rail input and output capability and has low
power consumption (600µA per buffer). These features
make the EL5123, EL5223, EL5323, and EL5423 ideal for a
wide range of general-purpose applications. When driving a
load of 10k and 12pF, the EL5123, EL5223, EL5323, and
EL5423 have a -3dB bandwidth of 12MHz and exhibits
15V/µs slew rate.
The EL5123, EL5223, EL5323, and EL5423 are immune to
phase reversal as long as the input voltage is limited from
VS- -0.5V to VS+ +0.5V. Figure 25 shows a photo of the
output of the device with the input voltage driven beyond the
supply rails. Although the device's output will not change
phase, the input's over-voltage should be avoided. If an input
voltage exceeds supply voltage by more than 0.6V,
electrostatic protection diodes placed in the input stage of
the device begin to conduct and overvoltage damage could
occur.
Operating Voltage, Input, and Output
1V
The EL5123, EL5223, EL5323, and EL5423 are specified
with a single nominal supply voltage from 5V to 15V or a split
supply with its total range from 5V to 15V. Correct operation
is guaranteed for a supply range of 4.5V to 16.5V. Most
EL5123, EL5223, EL5323, and EL5423 specifications are
stable over both the full supply range and operating
temperatures of -40°C to +85°C. Parameter variations with
operating voltage and/or temperature are shown in the
“Typical Performance Curves” on page 8.
The output swings of the EL5123, EL5223, EL5323, and
EL5423 typically extend to within 50mV of positive and
negative supply rails with load currents of 5mA. Decreasing
load currents will extend the output voltage range even closer
to the supply rails. Figure 24 shows the input and output
waveforms for the device. Operation is from ±5V supply with a
10kloadconnected to GND. The input is a 10VP-P sinusoid.
The output voltage is approximately 9.985VP-P.
10µs
VS = ±5V
TA = +25°C
VIN = 10VP-P
OUTPUT
INPUT
5V
5V
1V
10µs
VS=±2.5V
TA=25°C
VIN=6VP-P
FIGURE 25. OPERATION WITH BEYOND-THE-RAILS INPUT
Power Dissipation
With the high-output drive capability of the EL5123, EL5223,
EL5323, and EL5423 buffer, it is possible to exceed the
+125°C “absolute-maximum junction temperature” under
certain load current conditions. Therefore, it is important to
calculate the maximum junction temperature for the
application to determine if load conditions need to be
modified for the buffer to remain in the safe operating area.
The maximum power dissipation allowed in a package is
determined according to Equation 1:
T JMAX – T AMAX
P DMAX = --------------------------------------------d JA
(EQ. 1)
where:
TJMAX = Maximum junction temperature
TAMAX = Maximum ambient temperature
FIGURE 24. OPERATION WITH RAIL-TO-RAIL INPUT AND
OUTPUT
Short Circuit Current Limit
The EL5123, EL5223, EL5323, and EL5423 will limit the
short circuit current to ±120mA if the output is directly
shorted to the positive or the negative supply. If an output is
shorted indefinitely, the power dissipation could easily
increase such that the device may be damaged. Maximum
reliability is maintained if the output continuous current never
exceeds ±30mA. This limit is set by the design of the internal
metal interconnects.
12
JA = Thermal resistance of the package
PDMAX = Maximum power dissipation in the package
The maximum power dissipation actually produced by an IC
is the total quiescent supply current times the total power
supply voltage, plus the power in the IC due to the loads, or:
P DMAX = i  V S  I SMAX +  V S + – V OUT i   I LOAD i 
(EQ. 2)
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
when sourcing, and
P DMAX = i  V S  I SMAX +  V OUT i – V S -   I LOAD i 
(EQ. 3)
when sinking.
where:
i = 1 to Total number of buffers
VS = Total supply voltage
ISMAX = Maximum quiescent current per channel
VOUTi = Maximum output voltage of the application
ILOADi = Load current
Power Supply Bypassing and Printed Circuit
Board Layout
As with any high frequency device, good printed circuit
board layout is necessary for optimum performance. Ground
plane construction is highly recommended, lead lengths
should be as short as possible, and the power supply pins
must be well bypassed to reduce the risk of oscillation. For
normal single supply operation, where the VS- pin is
connected to ground, a 0.1µF ceramic capacitor should be
placed from VS+ pin to ground. A 4.7µF tantalum capacitor
should then be connected from VS+ pin to ground. One
4.7µF capacitor may be used for multiple devices. This same
capacitor combination should be placed at each supply pin
to ground if split supplies are to be used.
If we set the Equations 2 and 3 equal to each other, we can
solve for RLOADi to avoid device overheat. The package
power dissipation curves provide a convenient way to see if
the device will overheat. The maximum safe power
dissipation can be found graphically, based on the package
type and the ambient temperature. By using the previous
equation, it is a simple matter to see if PDMAX exceeds the
device's power derating curves.
Unused Buffers
It is recommended that any unused buffer have the input tied
to the ground plane.
Driving Capacitive Loads
The EL5123, EL5223, EL5323, and EL5423 can drive a wide
range of capacitive loads. As load capacitance increases,
however, the -3dB bandwidth of the device will decrease and
the peaking increase. The buffers drive 10pF loads in
parallel with 10k with just 1.5dB of peaking, and 100pF
with 6.4dB of peaking. If less peaking is desired in these
applications, a small series resistor (usually between 5 and
50) can be placed in series with the output. However, this
will obviously reduce the gain slightly. Another method of
reducing peaking is to add a “snubber” circuit at the output.
A snubber is a shunt load consisting of a resistor in series
with a capacitor. Values of 150 and 10nF are typical. The
advantage of a snubber is that it does not draw any DC load
current or reduce the gain.
13
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Mini SO Package Family (MSOP)
0.25 M C A B
D
MINI SO PACKAGE FAMILY
(N/2)+1
N
E
MDP0043
A
E1
MILLIMETERS
PIN #1
I.D.
1
B
(N/2)
e
H
C
SEATING
PLANE
0.10 C
N LEADS
0.08 M C A B
b
SYMBOL
MSOP8
MSOP10
TOLERANCE
NOTES
A
1.10
1.10
Max.
-
A1
0.10
0.10
±0.05
-
A2
0.86
0.86
±0.09
-
b
0.33
0.23
+0.07/-0.08
-
c
0.18
0.18
±0.05
-
D
3.00
3.00
±0.10
1, 3
E
4.90
4.90
±0.15
-
E1
3.00
3.00
±0.10
2, 3
e
0.65
0.50
Basic
-
L
0.55
0.55
±0.15
-
L1
0.95
0.95
Basic
-
N
8
10
Reference
Rev. D 2/07
NOTES:
1. Plastic or metal protrusions of 0.15mm maximum per side are not
included.
L1
2. Plastic interlead protrusions of 0.25mm maximum per side are
not included.
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
c
SEE DETAIL "X"
A2
GAUGE
PLANE
L
A1
0.25
3° ±3°
DETAIL X
14
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
QFN (Quad Flat No-Lead) Package Family
MDP0046
QFN (QUAD FLAT NO-LEAD) PACKAGE FAMILY
(COMPLIANT TO JEDEC MO-220)
A
MILLIMETERS
D
N
(N-1)
(N-2)
B
1
2
3
PIN #1
I.D. MARK
E
(N/2)
2X
0.075 C
2X
0.075 C
N LEADS
TOP VIEW
0.10 M C A B
(N-2)
(N-1)
N
b
L
SYMBOL QFN44 QFN3
TOLERANCE
NOTES
A
0.90
0.90
0.90
0.90
±0.10
-
A1
0.02
0.02
0.02
0.02
+0.03/-0.02
-
b
0.25
0.25
0.23
0.22
±0.02
-
c
0.20
0.20
0.20
0.20
Reference
-
D
7.00
5.00
8.00
5.00
Basic
-
Reference
8
Basic
-
Reference
8
Basic
-
D2
5.10
3.80
5.80 3.60/2.48
E
7.00
7.00
8.00
1
2
3
6.00
E2
5.10
5.80
5.80 4.60/3.40
e
0.50
0.50
0.80
0.50
L
0.55
0.40
0.53
0.50
±0.05
-
N
44
38
32
32
Reference
4
ND
11
7
8
7
Reference
6
NE
11
12
8
9
Reference
5
MILLIMETERS
PIN #1 I.D.
3
QFN32
SYMBOL QFN28 QFN2
QFN20
QFN16
A
0.90
0.90
0.90
0.90
0.90
±0.10
-
A1
0.02
0.02
0.02
0.02
0.02
+0.03/
-0.02
-
b
0.25
0.25
0.30
0.25
0.33
±0.02
-
c
0.20
0.20
0.20
0.20
0.20
Reference
-
D
4.00
4.00
5.00
4.00
4.00
Basic
-
D2
2.65
2.80
3.70
2.70
2.40
Reference
-
(E2)
(N/2)
NE 5
7
(D2)
BOTTOM VIEW
0.10 C
e
C
SEATING
PLANE
TOLERANCE NOTES
E
5.00
5.00
5.00
4.00
4.00
Basic
-
E2
3.65
3.80
3.70
2.70
2.40
Reference
-
e
0.50
0.50
0.65
0.50
0.65
Basic
-
L
0.40
0.40
0.40
0.40
0.60
±0.05
-
N
28
24
20
20
16
Reference
4
ND
6
5
5
5
4
Reference
6
NE
8
7
5
5
4
Reference
5
Rev 11 2/07
0.08 C
N LEADS
& EXPOSED PAD
SEE DETAIL "X"
NOTES:
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Tiebar view shown is a non-functional feature.
SIDE VIEW
3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.
4. N is the total number of terminals on the device.
(c)
C
5. NE is the number of terminals on the “E” side of the package
(or Y-direction).
2
A
(L)
A1
N LEADS
DETAIL X
6. ND is the number of terminals on the “D” side of the package
(or X-direction). ND = (N/2)-NE.
7. Inward end of terminal may be square or circular in shape with radius
(b/2) as shown.
8. If two values are listed, multiple exposed pad options are available.
Refer to device-specific datasheet.
15
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Thin Shrink Small Outline Plastic Packages (TSSOP)
N
INDEX
AREA
E
0.25(0.010) M
E1
2
INCHES
SYMBOL
3
0.05(0.002)
-A-
20 LEAD THIN SHRINK SMALL OUTLINE PLASTIC
PACKAGE
GAUGE
PLANE
-B1
M20.173
B M
SEATING PLANE
L
A
D
-C-

e
A1
b
0.10(0.004) M
0.25
0.010
A2
c
0.10(0.004)
C A M
B S
NOTES:
1. These package dimensions are within allowable dimensions of
JEDEC MO-153-AC, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
MIN
MAX
MILLIMETERS
MIN
MAX
NOTES
A
-
0.047
-
1.20
-
A1
0.002
0.006
0.05
0.15
-
A2
0.031
0.051
0.80
1.05
-
b
0.0075
0.0118
0.19
0.30
9
c
0.0035
0.0079
0.09
0.20
-
D
0.252
0.260
6.40
6.60
3
E1
0.169
0.177
4.30
4.50
4
e
0.026 BSC
0.65 BSC
-
E
0.246
0.256
6.25
6.50
-
L
0.0177
0.0295
0.45
0.75
6
8o
0o
N

20
0o
20
7
8o
Rev. 1 6/98
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm
(0.006 inch) per side.
4. Dimension “E1” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per
side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “b” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact. (Angles in degrees)
16
FN7176.3
August 31, 2010
EL5123, EL5223, EL5323, EL5423
Thin Shrink Small Outline Package Family (TSSOP)
0.25 M C A B
D
MDP0044
A
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY
(N/2)+1
N
MILLIMETERS
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE
PIN #1 I.D.
E
E1
0.20 C B A
1
(N/2)
B
2X
N/2 LEAD TIPS
TOP VIEW
0.05
e
C
SEATING
PLANE
0.10 M C A B
b
0.10 C
N LEADS
H
A
1.20
1.20
1.20
1.20
1.20
Max
A1
0.10
0.10
0.10
0.10
0.10
±0.05
A2
0.90
0.90
0.90
0.90
0.90
±0.05
b
0.25
0.25
0.25
0.25
0.25
+0.05/-0.06
c
0.15
0.15
0.15
0.15
0.15
+0.05/-0.06
D
5.00
5.00
6.50
7.80
9.70
±0.10
E
6.40
6.40
6.40
6.40
6.40
Basic
E1
4.40
4.40
4.40
4.40
4.40
±0.10
e
0.65
0.65
0.65
0.65
0.65
Basic
L
0.60
0.60
0.60
0.60
0.60
±0.15
L1
1.00
1.00
1.00
1.00
1.00
Reference
Rev. F 2/07
NOTES:
1. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
SIDE VIEW
2. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.25mm per
side.
SEE DETAIL “X”
3. Dimensions “D” and “E1” are measured at dAtum Plane H.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
c
END VIEW
L1
A
A2
GAUGE
PLANE
0.25
L
A1
0° - 8°
DETAIL X
For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
17
FN7176.3
August 31, 2010
Similar pages