Datasheet

Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
TMS320F2837xD Dual-Core Delfino™ Microcontrollers
1 Device Overview
1.1
Features
1
• Dual-Core Architecture
– Two TMS320C28x 32-Bit CPUs
– 200 MHz
– IEEE 754 Single-Precision Floating-Point Unit
(FPU)
– Trigonometric Math Unit (TMU)
– Viterbi/Complex Math Unit (VCU-II)
• Two Programmable Control Law Accelerators
(CLAs)
– 200 MHz
– IEEE 754 Single-Precision Floating-Point
Instructions
– Executes Code Independently of Main CPU
• On-Chip Memory
– 512KB (256KW) or 1MB (512KW) of Flash
(ECC-Protected)
– 172KB (86KW) or 204KB (102KW) of RAM
(ECC-Protected or Parity-Protected)
– Dual-Zone Security Supporting Third-Party
Development
• Clock and System Control
– Two Internal Zero-Pin 10-MHz Oscillators
– On-Chip Crystal Oscillator
– Windowed Watchdog Timer Module
– Missing Clock Detection Circuitry
• 1.2-V Core, 3.3-V I/O Design
• System Peripherals
– Two External Memory Interfaces (EMIFs) With
ASRAM and SDRAM Support
– Dual 6-Channel Direct Memory Access (DMA)
Controllers
– Up to 169 Individually Programmable,
Multiplexed General-Purpose Input/Output
(GPIO) Pins With Input Filtering
– Expanded Peripheral Interrupt Controller (ePIE)
– Multiple Low-Power Mode (LPM) Support With
External Wakeup
• Communications Peripherals
– USB 2.0 (MAC + PHY)
– Support for 12-Pin 3.3 V-Compatible Universal
Parallel Port (uPP) Interface
– Two Controller Area Network (CAN) Modules
(Pin-Bootable)
– Three High-Speed (up to 50-MHz) SPI Ports
(Pin-Bootable)
– Two Multichannel Buffered Serial Ports
(McBSPs)
– Four Serial Communications Interfaces
(SCI/UART) (Pin-Bootable)
– Two I2C Interfaces (Pin-Bootable)
• Analog Subsystem
– Up to Four Analog-to-Digital Converters (ADCs)
• 16-Bit Mode
– 1.1 MSPS Each (up to 4.4-MSPS System
Throughput)
– Differential Inputs
– Up to 12 External Channels
• 12-Bit Mode
– 3.5 MSPS Each (up to 14-MSPS System
Throughput)
– Single-Ended Inputs
– Up to 24 External Channels
• Single Sample-and-Hold (S/H) on Each ADC
• Hardware-Integrated Post-Processing of
ADC Conversions
– Saturating Offset Calibration
– Error From Setpoint Calculation
– High, Low, and Zero-Crossing Compare,
With Interrupt Capability
– Trigger-to-Sample Delay Capture
– Eight Windowed Comparators With 12-Bit
Digital-to-Analog Converter (DAC) References
– Three 12-Bit Buffered DAC Outputs
• Enhanced Control Peripherals
– 24 Pulse Width Modulator (PWM) Channels
With Enhanced Features
– 16 High-Resolution Pulse Width Modulator
(HRPWM) Channels
• High Resolution on Both A and B Channels
of 8 PWM Modules
• Dead-Band Support (on Both Standard and
High Resolution)
– Six Enhanced Capture (eCAP) Modules
– Three Enhanced Quadrature Encoder Pulse
(eQEP) Modules
– Eight Sigma-Delta Filter Module (SDFM) Input
Channels, 2 Parallel Filters per Channel
• Standard SDFM Data Filtering
• Comparator Filter for Fast Action for Out of
Range
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
• Package Options:
– Lead-Free, Green Packaging
– 337-Ball New Fine Pitch Ball Grid Array
(nFBGA) [ZWT Suffix]
– 176-Pin PowerPAD™ Thermally Enhanced LowProfile Quad Flatpack (HLQFP) [PTP Suffix]
– 100-Pin PowerPAD Thermally Enhanced Thin
Quad Flatpack (HTQFP) [PZP Suffix]
1.2
•
•
•
•
• Temperature Options:
– T: –40ºC to 105ºC Junction
– S: –40ºC to 125ºC Junction
– Q: –40ºC to 125ºC Free-Air
(Q100 Qualification for Automotive Applications)
Applications
Industrial Drives
Solar Micro Inverters and Converters
Radar
Digital Power
1.3
www.ti.com
•
•
•
Smart Metering
Automotive Transportation
Power Line Communications
Description
The Delfino™ TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for
advanced closed-loop control applications such as industrial drives and servo motor control; solar
inverters and converters; digital power; transportation; and power line communications. Complete
development packages for digital power and industrial drives are available as part of the powerSUITE and
DesignDRIVE initiatives. While the Delfino product line is not new to the TMS320C2000™ portfolio, the
F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The
integrated analog and control peripherals also let designers consolidate control architectures and eliminate
multiprocessor use in high-end systems.
The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide
200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new
TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in
transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex
math operations common in encoded applications.
The F2837xD microcontroller family features two CLA real-time control co-processors. The CLA is an
independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA
responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel
processing capability can effectively double the computational performance of a real-time control system.
By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such
as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning
between various system tasks. For example, one C28x+CLA core can be used to track speed and
position, while the other C28x+CLA core can be used to control torque and current loops.
The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code
(ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for
code protection.
Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable
system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple
analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM)
works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The
Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when
current limit conditions are exceeded or not met. Other analog and control peripherals include DACs,
PWMs, eCAPs, eQEPs, and other peripherals.
2
Device Overview
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Peripherals such as EMIFs, CAN modules (ISO11898-1/CAN 2.0B-compliant), and a new uPP interface
extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000™ MCUs and
supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly,
a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their
application.
Device Information (1)
PACKAGE
BODY SIZE
TMS320F28379DZWT
PART NUMBER
nFBGA (337)
16.0 mm × 16.0 mm
TMS320F28377DZWT
nFBGA (337)
16.0 mm × 16.0 mm
TMS320F28376DZWT
nFBGA (337)
16.0 mm × 16.0 mm
TMS320F28375DZWT
nFBGA (337)
16.0 mm × 16.0 mm
TMS320F28374DZWT
nFBGA (337)
16.0 mm × 16.0 mm
TMS320F28379DPTP
HLQFP (176)
24.0 mm × 24.0 mm
TMS320F28377DPTP
HLQFP (176)
24.0 mm × 24.0 mm
TMS320F28376DPTP
HLQFP (176)
24.0 mm × 24.0 mm
TMS320F28375DPTP
HLQFP (176)
24.0 mm × 24.0 mm
TMS320F28374DPTP
HLQFP (176)
24.0 mm × 24.0 mm
TMS320F28375DPZP
HTQFP (100)
14.0 mm × 14.0 mm
(1)
For more information on these devices, see Section 9, Mechanical Packaging and Orderable
Information.
Device Overview
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
3
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
1.4
www.ti.com
Functional Block Diagram
Figure 1-1 shows the CPU system and associated peripherals.
PSWD
Dual
Code
Security
Module
+
Emulation
Code
Security
Logic
(ECSL)
Secure Memories
shown in Red
User
Configurable
DCSM
OTP
1K x 16
User
Configurable
DCSM
PSWD
OTP
1K x 16
FLASH
FLASH
256K x 16
Secure
256K x 16
Secure
PUMP
Dual
Code
Security
Module
+
Emulation
Code
Security
Logic
(ECSL)
CPU2.CLA1
OTP/Flash
Wrapper
OTP/Flash
Wrapper
MEMCPU1
MEMCPU2
CPU1.M0 RAM 1Kx16
CPU1.CLA1 to CPU1
128x16 MSG RAM
CPU1 to CPU1.CLA1
128x16 MSG RAM
C28 CPU-1
CPU1.M1 RAM 1Kx16
C28 CPU-2
FPU
VCU-II
TMU
CPU2.M0 RAM 1Kx16
FPU
VCU-II
TMU
CPU2.M1 RAM 1Kx16
CPU1 Local Shared
6x 2Kx16
LS0-LS5 RAMs
CPU1.D1 RAM 2Kx16
WD Timer
NMI-WDT
CPU1.CLA1 Data ROM
(4Kx16)
16-/12-bit ADC
x4
A5:0
A
B
ADC
Result
Regs
D
Config
D5:0
ADCIN14
ADCIN15
Data Bus
Bridge
Comparator
DAC
Subsystem
x3
(CMPSS)
External Crystal or
Oscillator
Secure-ROM 32Kx16
Secure
Aux PLL
AUXCLKIN
Boot-ROM 32Kx16
Nonsecure
ePIE
(up to 192
interrupts)
TRST
TCK
CPU2.DMA
JTAG
TDI
TMS
TDO
GPIO
GPIOn
EMIF2
EM2Dx
EMIF1
EM2Ax
Data Bus
Bridge
EM2CTLx
Data Bus
Bridge
EM1CTLx
UPPAST
UPPACLK
UPPAEN
MFSXx
MFSRx
UPPAWT
RAM
uPP
UPPAD[7:0]
MCLKXx
MCLKRx
MDXx
MRXx
SPISTEx
SPICLKx
SPISIMOx
SPISOMIx
McBSPA/B
Data Bus
Bridge
EM1Dx
SPIA/B/C
(16L FIFO)
Peripheral Frame 2
EM1Ax
CANA/B
(32-MBOX)
CANTXx
USB
Ctrl /
PHY
CANRXx
SDAx
SCITXDx
SDx_Cy
SDx_Dy
EQEPxI
EQEPxS
I2C-A/B
(16L FIFO)
Data Bus
Bridge
USBDP
SCIA/B/C/D
(16L FIFO)
SCLx
SDFM-1/2
Data Bus
Bridge
USBDM
Data Bus Bridge
eQEP-1/2/3
EQEPxB
ECAPx
eCAP1/../6
EXTSYNCOUT
EPWMxB
EXTSYNCIN
EPWMxA
TZ1-TZ6
CPU Timer 0
CPU Timer 1
CPU Timer 2
CPU2 to CPU1
1Kx16 MSG RAM
INTOSC2
CPU2.CLA1 Data ROM
(4Kx16)
CPU2 Buses
EQEPxA
ePWM-1/../12
Main PLL
CPU2.D1 RAM 2Kx16
WD Timer
NMI-WDT
CPU1 Buses
Peripheral Frame 1
HRPWM-1/../8
(CPU1 only)
(up to 192
interrupts)
INTOSC1
CPU2.D0 RAM 2Kx16
CPU1 to CPU2
1Kx16 MSG RAM
ePIE
CPU1.DMA
SCIRXDx
Analog
MUX
C5:2
C
Boot-ROM 32Kx16
Nonsecure
CPU1.CLA1 Bus
B5:0
Watchdog 1/2
CPU2 Local Shared
6x 2Kx16
LS0-LS5 RAMs
Global Shared
16x 4Kx16
GS0-GS15 RAMs
CPU Timer 0
CPU Timer 1
CPU Timer 2
Secure-ROM 32Kx16
Secure
GPIO MUX
CPU2.CLA1 to CPU2
128x16 MSG RAM
Interprocessor
Communication
(IPC)
Module
CPU1.D0 RAM 2Kx16
Low-Power
Mode Control
CPU2 to CPU2.CLA1
128x16 MSG RAM
CPU2.CLA1 Bus
CPU1.CLA1
GPIO MUX, Input X-BAR, Output X-BAR
Copyright © 2016, Texas Instruments Incorporated
Figure 1-1. Functional Block Diagram
4
Device Overview
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table of Contents
1
Device Overview ......................................... 1
6.3
Memory
1.1
Features .............................................. 1
6.4
Identification........................................ 187
1.2
Applications ........................................... 2
6.5
Bus Architecture – Peripheral Connectivity ........ 188
1.3
Description ............................................ 2
6.6
C28x Processor .................................... 189
........................... 4
Revision History ......................................... 6
Device Comparison ..................................... 7
3.1
Related Products ..................................... 9
Terminal Configuration and Functions ............ 10
4.1
Pin Diagrams ........................................ 10
4.2
Signal Descriptions .................................. 16
4.3
Pins With Internal Pullup and Pulldown ............. 38
4.4
Connections for Unused Pins ....................... 39
4.5
Pin Multiplexing...................................... 40
Specifications ........................................... 47
5.1
Absolute Maximum Ratings ........................ 47
5.2
ESD Ratings ........................................ 47
5.3
Recommended Operating Conditions ............... 48
5.4
Power Consumption Summary ...................... 49
5.5
Electrical Characteristics ............................ 53
5.6
Thermal Resistance Characteristics ................ 54
5.7
System .............................................. 56
5.8
Analog Peripherals .................................. 93
5.9
Control Peripherals ................................ 118
5.10 Communications Peripherals ...................... 135
Detailed Description.................................. 177
6.1
Overview ........................................... 177
6.2
Functional Block Diagram ......................... 177
6.7
Control Law Accelerator ........................... 191
6.8
Direct Memory Access ............................. 192
1.4
2
3
4
5
6
Functional Block Diagram
7
8
9
............................................
6.9
Interprocessor Communication Module............ 194
6.10
Boot ROM and Peripheral Booting................. 195
6.11
Dual Code Security Module
6.12
6.13
Timers .............................................. 198
Nonmaskable Interrupt With Watchdog Timer
(NMIWD) ........................................... 198
.......................
..........................................
...................
Applications, Implementation, and Layout ......
7.1
TI Design or Reference Design ....................
Device and Documentation Support ..............
198
6.14
Watchdog
199
6.15
Configurable Logic Block (CLB)
199
200
200
201
8.1
Device and Development Support Tool
Nomenclature ...................................... 201
8.2
Tools and Software ................................ 202
8.3
Documentation Support ............................ 204
8.4
Related Links
8.5
Community Resources............................. 205
8.6
Trademarks ........................................ 205
8.7
Electrostatic Discharge Caution
8.8
Glossary............................................ 205
......................................
...................
205
205
Mechanical Packaging and Orderable
Information ............................................. 206
9.1
Packaging Information ............................. 206
Table of Contents
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
179
5
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from November 9, 2015 to May 6, 2016 (from F Revision (November 2015) to G Revision)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
6
Page
Global: Restructured document. ................................................................................................... 1
Section 1.3 (Description): Removed paragraph about Configurable Logic Block (CLB). ................................... 2
Section 3.1 (Related Products): Added section. ................................................................................. 9
Table 4-1 (Signal Descriptions): Updated DESCRIPTION of VREFHIA, VREFHIB, VREFHIC, VREFHID, and VDDA. ............ 16
Table 5-19 (Flash Wait States): Changed title from "Minimum Required Flash Wait States at Different
Frequencies" to "Flash Wait States." Updated table. ........................................................................... 66
Section 5.7.5.1 (JTAG Electrical Data and Timing): Added section. ........................................................ 70
Table 5-39 (EMIF Asynchronous Memory Timing Requirements): Parameter 14 [tsu(EMOEL-EMWAIT)]: Changed MIN
value from 4E to 4E+20............................................................................................................. 86
Table 5-39: Parameter 28 [tsu(EMWEL-EMWAIT)]: Changed MIN value from 4E to 4E+20. ..................................... 86
Table 5-40 (EMIF Asynchronous Memory Switching Characteristics): Parameter 11 [td(EMWAITH-EMOEH)]: Changed
MIN value from 3E+8 to 4E+10. Changed MAX value from 4E+10 to 5E+15. .............................................. 86
Table 5-40: Parameter 25 [td(EMWAITH-EMWEH)]: Changed MIN value from 3E+8 to 4E+10. Changed MAX value
from 4E+10 to 5E+15. .............................................................................................................. 86
Section 5.9.4 (High-Resolution Pulse Width Modulator (HRPWM)): Removed NOTE about dual-edge highresolution being enabled. ........................................................................................................ 130
Table 5-80 (SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3): Parameter 2
[tw(SPCH)M, clock polarity = 0]: Updated MIN value and MAX value. ......................................................... 155
Table 5-80: Parameter 3 [tw(SPCL)M, clock polarity = 0]: Updated MIN value and MAX value. ........................... 155
Table 5-82 (SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3): Parameter 2
[tw(SPCL)M, clock polarity = 1]: Updated MIN value and MAX value. ......................................................... 158
Table 5-82: Parameter 3 [tw(SPCH)M, clock polarity = 1]: Updated MIN value and MAX value. .......................... 158
Table 5-86 (High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3):
Parameter 2 [tw(SPCH)M, clock polarity = 0]: Updated MIN value and MAX value. ......................................... 163
Table 5-86: Parameter 3 [tw(SPCL)M, clock polarity = 0]: Updated MIN value and MAX value. ........................... 163
Table 5-88 (High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3):
Parameter 2 [tw(SPCL)M, clock polarity = 1]: Updated MIN value and MAX value. ......................................... 166
Table 5-88: Parameter 3 [tw(SPCH)M, clock polarity = 1]: Updated MIN value and MAX value. .......................... 166
Section 6.1 (Overview): Removed paragraph about Configurable Logic Block (CLB). .................................. 177
Table 6-5 (Peripheral Registers Memory Map): Added PROTECTED column and associated footnote. ............. 182
Table 6-9 (Device Identification Registers): Added UID_UNIQUE. ........................................................ 187
Table 6-10 (Bus Master Peripheral Access): Peripheral Frame 2: Separated SPI and McBSP from uPP
Configuration. ...................................................................................................................... 188
Section 6.15 (Configurable Logic Block (CLB)): Updated section. ......................................................... 199
Section 8 (Device and Documentation Support): Updated and restructured section. ................................... 201
Section 8.2 (Tools and Software): Added section. ........................................................................... 202
Section 8.3 (Documentation Support): Updated section. .................................................................... 204
Section 9.1 (Packaging Information): Updated section. ...................................................................... 206
Revision History
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
3 Device Comparison
Table 3-1 lists the features of each 2837xD device.
Table 3-1. Device Comparison
28379D
FEATURE(1)
Package Type
(ZWT is an nFBGA package.
PTP is an HLQFP package.
PZP is an HTQFP package.)
337-Ball
ZWT
28377D
176-Pin
PTP
337-Ball
ZWT
28376D
176-Pin
PTP
337-Ball
ZWT
28375D
176-Pin
PTP
337-Ball
ZWT
176-Pin
PTP
28374D
100-Pin
PZP
337-Ball
ZWT
176-Pin
PTP
Processor and Accelerators
Number
C28x
2
Frequency (MHz)
200
Floating-Point Unit (FPU)
Yes
VCU-II
Yes
TMU – Type 0
Yes
Number
2
CLA – Type 1
Frequency (MHz)
200
6-Channel DMA – Type 0
2
Memory
1MB (512KW)
[512KB (256KW)
per CPU]
Flash (16-bit words)
1MB (512KW)
[512KB (256KW)
per CPU]
1MB (512KW)
[512KB (256KW) per CPU]
512KB (256KW)
[256KB (128KW)
per CPU]
72KB (36KW)
[36KB (18KW) per CPU]
Dedicated and Local Shared RAM
Global Shared RAM
512KB (256KW)
[256KB (128KW)
per CPU]
128KB (64KW)
128KB (64KW)
96KB (48KW)
128KB (64KW)
96KB (48KW)
204KB (102KW)
172KB (86KW)
RAM (16-bit words)
4KB (2KW)
[2KB (1KW) per CPU]
Message RAM
Total RAM
204KB (102KW)
204KB (102KW)
172KB (86KW)
Code security for on-chip flash, RAM, and OTP blocks
Yes
Boot ROM
Yes
System
Configurable Logic Block (CLB)
Yes
No
32-bit CPU timers
6 (3 per CPU)
Watchdog timers
2 (1 per CPU)
Nonmaskable Interrupt Watchdog (NMIWD) timers
2 (1 per CPU)
Crystal oscillator/External clock input
1
0-pin internal oscillator
I/O pins (shared)
2
GPIO
169
97
169
97
169
External interrupts
97
169
97
41
169
97
5
EMIF1 (16-bit or 32-bit)
1
1
–
1
EMIF
EMIF2 (16-bit)
1
–
1
–
1
–
1
–
–
1
–
Analog Peripherals
MSPS
1.1
ADC 16-bit mode
–
915
(2)
Conversion Time (ns)
–
Input pins
24
20
24
20
24
20
–
Channels (differential)
12
9
12
9
12
9
–
MSPS
3.5
290
Conversion Time (ns)(2)
ADC 12-bit mode
Input pins
24
20
24
20
24
20
24
20
14
24
20
Channels
(single-ended)
24
20
24
20
24
20
24
20
14
24
20
Number of 16-bit or 12-bit ADCs
4
Number of 12-bit only ADCs
–
Temperature sensor
CMPSS (each CMPSS has two comparators and two
internal DACs)
Buffered DAC
–
4
2
4
8
4
8
1
8
3
Device Comparison
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
7
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 3-1. Device Comparison (continued)
28379D
FEATURE(1)
Package Type
(ZWT is an nFBGA package.
PTP is an HLQFP package.
PZP is an HTQFP package.)
337-Ball
ZWT
28377D
176-Pin
PTP
337-Ball
ZWT
28376D
176-Pin
PTP
337-Ball
ZWT
28375D
176-Pin
PTP
337-Ball
ZWT
176-Pin
PTP
28374D
100-Pin
PZP
337-Ball
ZWT
176-Pin
PTP
Control Peripherals(3)
eCAP inputs – Type 0
6
Enhanced Pulse Width Modulator (ePWM) channels –
Type 4
24
24
15
24
eQEP modules – Type 0
3
3
2
3
High-resolution ePWM channels – Type 4
16
16
9
16
SDFM channels – Type 0
8
8
6
8
4
3
4
Yes
No
Yes
(3)
Communication Peripherals
Controller Area Network (CAN) – Type 0(4)
2
Inter-Integrated Circuit (I2C) – Type 0
2
Multichannel Buffered Serial Port (McBSP) – Type 1
2
SCI – Type 0
4
Serial Peripheral Interface (SPI) – Type 2
3
USB – Type 0
1
uPP – Type 0
1
Temperature and Qualification
T: –40°C to 105°C
Junction
Temperature (TJ)
Free-Air
Temperature (TA)
Yes
S: –40°C to 125°C
Yes
Q: –40°C to 150°C(5)
No
Yes
No
(5)
No
Yes
No
Q: –40°C to 125°C
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor
differences between devices that do not affect the basic functionality of the module. For more information, see the C2000 Real-Time
Control Peripherals Reference Guide.
(2) Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.
(3) For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to
the largest package offered within a part number. See Section 4 to identify which peripheral instances are accessible on pins in the
smaller package.
(4) The CAN module uses the IP known as D_CAN. This document uses the names CAN and D_CAN interchangeably to reference this
peripheral.
(5) The letter Q refers to Q100 qualification for automotive applications.
8
Device Comparison
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
3.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Related Products
For information about other devices in this family of products, see the following links:
TMS320F2837xS Delfino™ Microcontrollers
The Delfino™ TMS320F2837xS is a powerful 32-bit floating-point microcontroller unit (MCU) designed for
advanced closed-loop control applications such as industrial drives and servo motor control; solar
inverters and converters; digital power; transportation; and power line communications. Complete
development packages for digital power and industrial drives are available as part of the powerSUITE and
DesignDRIVE initiatives.
TMS320F2807x Piccolo™ Microcontrollers
The TMS320F2807x microcontroller platform is part of the Piccolo™ family and is suited for advanced
closed-loop control applications such as industrial drives and servo motor control; solar inverters and
converters; digital power; transportation; and power line communications. Complete development
packages for digital power and industrial drives are available as part of the powerSUITE and
DesignDRIVE initiatives.
TMS320F2833x Digital Signal Controllers (DSCs)
The TMS320F28335, TMS320F28334, and TMS320F28332 devices, members of the TMS320C28x/
Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control
applications.
TMS320F2823x Digital Signal Controllers (DSCs)
The TMS320F28235, TMS320F28234, and TMS320F28232 devices, members of the TMS320C28x/
Delfino™ DSC/MCU generation, are highly integrated, high-performance solutions for demanding control
applications.
TMS320C2834x Delfino Microcontrollers
The TMS320C2834x (C2834x) Delfino™ microcontroller unit (MCU) devices build on TI's existing F2833x
high-performance floating-point microcontrollers. The C2834x delivers up to 300 MHz of floating-point
performance, and has up to 516KB of on-chip RAM. Designed for real-time control applications, the
C2834x is based on the C28x core, making it code-compatible with all C28x microcontrollers. The on-chip
peripherals and low-latency core make the C2834x an excellent solution for performance-hungry real-time
control applications.
Device Comparison
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
9
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
4 Terminal Configuration and Functions
4.1
Pin Diagrams
Figure 4-1 to Figure 4-4 show the terminal assignments on the 337-ball ZWT New Fine Pitch Ball Grid
Array. Each figure shows a quadrant of the terminal assignments. Figure 4-5 shows the pin assignments
on the 176-pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack. Figure 4-6 shows the pin
assignments on the 100-pin PZP PowerPAD Thermally Enhanced Thin Quad Flatpack.
1
2
3
4
5
6
7
8
9
10
W
VSSA
ADCINB1
ADCINB3
ADCINB5
VREFHIB
VREFLOD
VSS
VDDIO
GPIO128
GPIO116
W
V
VREFHIA
ADCINB0
ADCINB2
ADCINB4
VREFHID
VREFLOB
VSSA
GPIO124
GPIO127
GPIO131
V
U
ADCINA0
ADCINA2
ADCINA4
ADCIN15
ADCIND1
ADCIND3
ADCIND5
GPIO123
GPIO126
GPIO130
U
T
ADCINA1
ADCINA3
ADCINA5
ADCIN14
ADCIND0
ADCIND2
ADCIND4
GPIO122
GPIO125
GPIO129
T
R
VREFHIC
VREFLOA
ADCINC2
ADCINC4
VSSA
VDDA
VSS
VSS
VDDIO
VDD
R
P
VSSA
VREFLOC
ADCINC3
ADCINC5
VSSA
VDDA
VSS
VSS
VDDIO
VDD
P
7
8
9
10
N
VSS
GPIO109
GPIO114
GPIO113
VSS
VSS
N
M
VDDIO
GPIO110
GPIO112
GPIO111
VDDIO
VDDIO
M
VSS
VSS
VSS
M
L
GPIO27
GPIO106
GPIO107
GPIO108
VSS
VSS
L
VSS
VSS
VSS
L
K
GPIO26
GPIO25
GPIO24
GPIO23
VDD
VDD
K
VSS
VSS
VSS
K
1
2
3
4
5
6
8
9
10
A.
Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name.
Figure 4-1. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant A]
10
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
A.
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
11
12
13
14
15
16
17
18
19
W
GPIO29
FLT1
TDI
TMS
TDO
GPIO121
GPIO39
GPIO132
VSS
W
V
GPIO28
GPIO115
FLT2
TRST
TCK
GPIO36
GPIO40
GPIO134
VDDIO
V
U
GPIO31
GPIO117
GPIO32
GPIO34
GPIO120
GPIO37
GPIO41
GPIO135
ERRORSTS
U
T
GPIO30
GPIO118
GPIO33
GPIO35
GPIO119
GPIO38
GPIO136
GPIO137
GPIO138
T
R
VDD3VFL
VDD3VFL
VDD
VSS
VSS
GPIO48
GPIO49
GPIO50
GPIO51
R
P
VSS
VSS
VDD
VSS
VSS
GPIO52
GPIO53
GPIO54
GPIO55
P
11
12
13
N
VDDIO
VDDIO
GPIO56
GPIO58
GPIO57
GPIO139
N
M
VSS
VSS
M
VSS
VSS
GPIO59
GPIO60
GPIO141
GPIO140
M
L
VSS
VSS
L
VDDIO
VDDIO
GPIO61
GPIO64
VSS
GPIO142
L
K
VSS
VSS
K
VSS
VSS
GPIO65
GPIO66
GPIO44
GPIO45
K
11
12
14
15
16
17
18
19
Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name.
Figure 4-2. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant B]
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
11
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
A.
www.ti.com
14
15
16
17
18
19
J
VDD
VDD
GPIO63
GPIO62
VREGENZ
X2
J
H
VSS
VSS
VDDOSC
VDDOSC
VSSOSC
VSSOSC
H
G
VDD
VDD
VSS
VSS
GPIO133
X1
G
VDDIO
VSS
VSS
VDDIO
GPIO144
GPIO143
XRS
F
VSS
VDDIO
VSS
VSS
VDDIO
GPIO145
GPIO47
GPIO46
E
GPIO87
GPIO156
GPIO152
GPIO148
GPIO80
GPIO75
GPIO147
GPIO146
GPIO42
D
C
GPIO86
GPIO155
GPIO151
GPIO83
GPIO79
GPIO76
GPIO74
GPIO68
GPIO43
C
B
GPIO85
GPIO154
GPIO150
GPIO82
GPIO78
GPIO72
GPIO71
GPIO69
GPIO67
B
A
GPIO84
GPIO153
GPIO149
GPIO81
GPIO77
GPIO73
GPIO70
VDDIO
VSS
A
11
12
13
14
15
16
17
18
19
11
12
J
VSS
VSS
H
VSS
VSS
11
12
13
F
VDD
VSS
E
VDD
D
Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name.
Figure 4-3. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant C]
12
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
8
9
10
J
VSS
VSS
VSS
J
VDDIO
H
VSS
VSS
VSS
H
VDDIO
G
7
8
9
10
1
2
3
4
5
6
J
GPIO103
GPIO104
GPIO105
GPIO22
VSS
VSS
H
GPIO100
GPIO101
GPIO102
NC
VDDIO
G
GPIO99
GPIO8
GPIO9
VDDIO
VDDIO
F
GPIO98
GPIO20
GPIO21
VDDIO
VSS
VSS
VDDIO
VSS
VDD
VDDIO
F
E
GPIO16
GPIO17
GPIO18
GPIO19
VSS
VSS
VDDIO
VSS
VDD
VDDIO
E
D
GPIO13
GPIO14
GPIO15
GPIO168
GPIO166
GPIO89
GPIO5
GPIO1
GPIO162
GPIO159
D
C
GPIO11
GPIO12
GPIO96
GPIO167
GPIO165
GPIO88
GPIO4
GPIO0
GPIO161
GPIO158
C
B
VDDIO
GPIO10
GPIO95
GPIO93
GPIO91
GPIO7
GPIO3
GPIO164
GPIO160
GPIO157
B
A
VSS
GPIO97
GPIO94
GPIO92
GPIO90
GPIO6
GPIO2
GPIO163
VDDIO
VSS
A
1
2
3
4
5
6
7
8
9
10
A.
Only the GPIO function is shown on GPIO terminals. See Table 4-1 for the complete, muxed signal name.
Figure 4-4. 337-Ball ZWT New Fine Pitch Ball Grid Array (Bottom View) – [Quadrant D]
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
13
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
GPIO67
GPIO43
GPIO42
GPIO47
GPIO46
VDDIO
VDD
VDDOSC
XRS
X1
VSSOSC
X2
VDDOSC
VREGENZ
GPIO133
VDD
VDDIO
GPIO45
VDDIO
GPIO44
GPIO66
GPIO65
GPIO64
GPIO63
GPIO62
GPIO61
VDDIO
GPIO60
GPIO59
GPIO58
GPIO57
GPIO56
GPIO55
VDDIO
GPIO54
GPIO53
GPIO52
GPIO51
GPIO50
GPIO49
ERRORSTS
VDDIO
GPIO48
GPIO41
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
VDDIO
GPIO40
GPIO39
GPIO38
GPIO37
GPIO36
VDDIO
TCK
TMS
TRST
TDO
TDI
VDD
VDDIO
FLT2
FLT1
VDD3VFL
GPIO35
GPIO34
GPIO33
VDDIO
GPIO32
GPIO31
GPIO29
GPIO28
GPIO30
VDDIO
VDD
ADCIND4
ADCIND3
ADCIND2
ADCIND1
ADCIND0
VREFHID
VDDA
VREFHIB
VSSA
VREFLOD
VREFLOB
ADCINB3
ADCINB2
ADCINB1
ADCINB0
ADCIN15
GPIO10
GPIO11
VDDIO
GPIO12
GPIO13
GPIO14
GPIO15
GPIO16
GPIO17
GPIO18
VDDIO
GPIO19
GPIO20
GPIO21
VDDIO
VDD
GPIO99
GPIO8
GPIO9
VDDIO
VDD
GPIO22
GPIO23
GPIO24
GPIO25
VDDIO
GPIO26
GPIO27
ADCINC4
ADCINC3
ADCINC2
VREFLOC
VREFLOA
VSSA
VREFHIC
VDDA
VREFHIA
ADCINA5
ADCINA4
ADCINA3
ADCINA2
ADCINA1
ADCINA0
ADCIN14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
GPIO68
GPIO69
GPIO70
GPIO71
VDD
VDDIO
GPIO72
GPIO73
GPIO74
GPIO75
GPIO76
GPIO77
GPIO78
GPIO79
VDDIO
GPIO80
GPIO81
GPIO82
GPIO83
VDDIO
VDD
GPIO84
GPIO85
GPIO86
GPIO87
VDD
VDDIO
GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
VDDIO
VDD
GPIO88
GPIO89
GPIO90
GPIO91
GPIO92
GPIO93
GPIO94
A.
Only the GPIO function is shown on GPIO pins. See Table 4-1 for the complete, muxed signal name.
Figure 4-5. 176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (Top View)
14
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
GPIO60
GPIO59
GPIO58
GPIO41
54
53
52
51
56
55
GPIO62
GPIO61
VDDIO
57
GPIO64
GPIO63
59
58
GPIO66
GPIO65
60
VDDIO
62
61
VREGENZ
VDD
64
63
X2
VDDOSC
66
X1
VSSOSC
65
XRS
69
68
67
VDD
VDDOSC
71
72
70
GPIO43
GPIO42
VDDIO
73
GPIO69
GPIO70
76
50
TCK
GPIO71
VDD
77
49
TMS
78
48
TRST
VDDIO
79
47
TDO
GPIO72
80
46
GPIO73
81
45
TDI
VDD
GPIO78
VDDIO
82
44
VDDIO
83
43
FLT2
VDD
84
42
GPIO84
85
41
FLT1
VDD3VFL
GPIO85
86
40
VDDIO
GPIO86
87
39
VDD
GPIO87
VDD
88
38
VDDA
89
37
VREFHIB
21
22
23
24
25
ADCINA4
ADCINA3
ADCINA2
ADCINA1
ADCINA0
19
20
VREFHIA
ADCINA5
3
GPIO12
14
2
GPIO11
VDDIO
17
ADCIN14
18
26
VDDA
100
VSSA/VREFLOA
ADCIN15
GPIO10
16
27
VDD
99
15
ADCINB0
GPIO92
GPIO99
VDDIO
28
12
98
13
ADCINB1
GPIO91
GPIO21
29
GPIO20
97
11
ADCINB2
GPIO90
10
ADCINB3
30
GPIO19
31
GPIO89
95
96
9
ADCINB4
VDD
GPIO18
VDDIO
32
7
ADCINB5
94
8
VREFLOB
33
GPIO16
34
93
GPIO17
92
GPIO4
VDDIO
6
GPIO3
GPIO15
VSSA
4
VSSA
35
5
36
91
GPIO14
90
GPIO13
VDDIO
GPIO2
1
A.
74
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
75
www.ti.com
Only the GPIO function is shown on GPIO pins. See Table 4-1 for the complete, muxed signal name.
Figure 4-6. 100-Pin PZP PowerPAD HTQFP (Top View)
NOTE
PCB footprints and schematic symbols are available for download in a vendor-neutral format,
which can be exported to the leading EDA CAD/CAE design tools. See the CAD/CAE
Symbols section in the product folder for each device, under the Packaging section. These
footprints and symbols can also be searched for at http://webench.ti.com/cad/.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
15
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
4.2
www.ti.com
Signal Descriptions
Table 4-1 describes the signals. The GPIO function is the default at reset, unless otherwise mentioned.
The peripheral signals that are listed under them are alternate functions. Some peripheral functions may
not be available in all devices. See Table 3-1 for details. All GPIO pins are I/O/Z and have an internal
pullup, which can be selectively enabled or disabled on a per-pin basis. This feature only applies to the
GPIO pins. The pullups are not enabled at reset.
Table 4-1. Signal Descriptions
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
ADC, DAC, AND COMPARATOR SIGNALS
VREFHIA
VREFHIB
VREFHIC
V1
W5
R1
37
53
35
19
37
–
I
ADC-A high reference. Place at least a 1-µF capacitor
on this pin for the 12-bit mode, or at least a 22-µF
capacitor for the 16-bit mode. This capacitor should be
placed as close to the device as possible between the
VREFHIA and VREFLOA pins.
NOTE: Do not load this pin externally.
I
ADC-B high reference. Place at least a 1-µF capacitor
on this pin for the 12-bit mode, or at least a 22-µF
capacitor for the 16-bit mode. This capacitor should be
placed as close to the device as possible between the
VREFHIB and VREFLOB pins.
NOTE: Do not load this pin externally.
I
ADC-C high reference. Place at least a 1-µF capacitor
on this pin for the 12-bit mode, or at least a 22-µF
capacitor for the 16-bit mode. This capacitor should be
placed as close to the device as possible between the
VREFHIC and VREFLOC pins.
NOTE: Do not load this pin externally.
VREFHID
V5
55
–
I
ADC-D high reference. Place at least a 1-µF capacitor
on this pin for the 12-bit mode, or at least a 22-µF
capacitor for the 16-bit mode. This capacitor should be
placed as close to the device as possible between the
VREFHID and VREFLOD pins.
NOTE: Do not load this pin externally.
VREFLOA
R2
33
17
I
ADC-A low reference.
On the PZP package, pin 17 is double-bonded to VSSA
and VREFLOA. On the PZP package, pin 17 must be
connected to VSSA on the system board.
VREFLOB
V6
50
34
I
ADC-B low reference
VREFLOC
P2
32
–
I
ADC-C low reference
VREFLOD
W6
51
–
I
ADC-D low reference
I
Input 14 to all ADCs. This pin can be used as a generalpurpose ADCIN pin or it can be used to calibrate all
ADCs together (either single-ended or differential) from
an external reference.
CMPIN4P
I
Comparator 4 positive input
ADCIN15
I
Input 15 to all ADCs. This pin can be used as a generalpurpose ADCIN pin or it can be used to calibrate all
ADCs together (either single-ended or differential) from
an external reference.
CMPIN4N
I
Comparator 4 negative input
ADCINA0
I
ADC-A input 0. There is a 50-kΩ internal pulldown on
this pin in both an ADC input or DAC output mode which
cannot be disabled.
O
DAC-A output
ADCIN14
T4
U4
U1
DACOUTA
16
Terminal Configuration and Functions
44
45
43
26
27
25
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
I
ADC-A input 1. There is a 50-kΩ internal pulldown on
this pin in both an ADC input or DAC output mode which
cannot be disabled.
DACOUTB
O
DAC-B output
ADCINA2
I
ADC-A input 2
I
Comparator 1 positive input
I
ADC-A input 3
I
Comparator 1 negative input
I
ADC-A input 4
I
Comparator 2 positive input
I
ADC-A input 5
I
Comparator 2 negative input
I
ADC-B input 0. There is a 100-pF capacitor to VSSA on
this pin in both ADC input or DAC reference mode which
cannot be disabled. If this pin is being used as a
reference for the on-chip DACs, place at least a 1-µF
capacitor on this pin.
I
Optional external reference voltage for on-chip DACs.
There is a 100-pF capacitor to VSSA on this pin in both
ADC input or DAC reference mode which cannot be
disabled. If this pin is being used as a reference for the
on-chip DACs, place at least a 1-µF capacitor on this
pin.
I
ADC-B input 1. There is a 50-kΩ internal pulldown on
this pin in both an ADC input or DAC output mode which
cannot be disabled.
O
DAC-C output
I
ADC-B input 2
I
Comparator 3 positive input
I
ADC-B input 3
NAME
MUX
POSITION
ADCINA1
T1
CMPIN1P
ADCINA3
CMPIN1N
ADCINA4
CMPIN2P
ADCINA5
CMPIN2N
U2
42
41
24
23
T2
40
22
U3
39
21
T3
38
20
ADCINB0
VDAC
V2
46
28
W2
47
29
ADCINB1
DACOUTC
ADCINB2
CMPIN3P
ADCINB3
V3
48
30
W3
49
31
I
Comparator 3 negative input
ADCINB4
V4
–
32
I
ADC-B input 4
ADCINB5
W4
–
33
I
ADC-B input 5
I
ADC-C input 2
I
Comparator 6 positive input
I
ADC-C input 3
I
Comparator 6 negative input
I
ADC-C input 4
I
Comparator 5 positive input
I
ADC-C input 5
I
Comparator 5 negative input
I
ADC-D input 0
I
Comparator 7 positive input
I
ADC-D input 1
I
Comparator 7 negative input
I
ADC-D input 2
I
Comparator 8 positive input
I
ADC-D input 3
I
Comparator 8 negative input
CMPIN3N
ADCINC2
CMPIN6P
ADCINC3
CMPIN6N
ADCINC4
CMPIN5P
ADCINC5
CMPIN5N
ADCIND0
CMPIN7P
ADCIND1
CMPIN7N
ADCIND2
CMPIN8P
ADCIND3
CMPIN8N
R3
31
–
P3
30
–
R4
29
–
P4
T5
U5
–
56
57
–
–
–
T6
58
–
U6
59
–
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
17
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
ADCIND4
T7
60
–
I
ADC-D input 4
ADCIND5
U7
–
–
I
ADC-D input 5
NAME
MUX
POSITION
DESCRIPTION
GPIO AND PERIPHERAL SIGNALS
GPIO0
0, 4, 8, 12
EPWM1A
1
C8
160
–
I/O
General-purpose input/output 0
O
Enhanced PWM1 output A (HRPWM-capable)
SDAA
6
I/OD
GPIO1
0, 4, 8, 12
I/O
General-purpose input/output 1
EPWM1B
1
O
Enhanced PWM1 output B (HRPWM-capable)
MFSRB
3
I/O
McBSP-B receive frame synch
SCLA
6
I/OD
GPIO2
0, 4, 8, 12
I/O
General-purpose input/output 2
O
Enhanced PWM2 output A (HRPWM-capable)
O
Output 1 of the output XBAR
D8
161
–
I2C-A data open-drain bidirectional port
I2C-A clock open-drain bidirectional port
EPWM2A
1
OUTPUTXBAR1
5
SDAB
6
I/OD
GPIO3
0, 4, 8, 12
I/O
General-purpose input/output 3
EPWM2B
1
O
Enhanced PWM2 output B (HRPWM-capable)
OUTPUTXBAR2
2
O
Output 2 of the output XBAR
MCLKRB
3
I/O
McBSP-B receive clock
OUTPUTXBAR2
5
O
Output 2 of the output XBAR
SCLB
6
I/OD
GPIO4
0, 4, 8, 12
I/O
General-purpose input/output 4
O
Enhanced PWM3 output A (HRPWM-capable)
O
Output 3 of the output XBAR
A7
B7
162
163
91
92
I2C-B data open-drain bidirectional port
I2C-B clock open-drain bidirectional port
EPWM3A
1
OUTPUTXBAR3
5
CANTXA
6
O
CAN-A transmit
0, 4, 8, 12
I/O
General-purpose input/output 5
GPIO5
EPWM3B
1
MFSRA
2
OUTPUTXBAR3
3
CANRXA
C7
D7
164
165
93
–
O
Enhanced PWM3 output B (HRPWM-capable)
I/O
McBSP-A receive frame synch
O
Output 3 of the output XBAR
CAN-A receive
6
I
0, 4, 8, 12
I/O
General-purpose input/output 6
EPWM4A
1
O
Enhanced PWM4 output A (HRPWM-capable)
OUTPUTXBAR4
2
O
Output 4 of the output XBAR
EXTSYNCOUT
3
O
External ePWM synch pulse output
EQEP3A
5
I
Enhanced QEP3 input A
CANTXB
6
O
CAN-B transmit
GPIO6
GPIO7
A6
166
–
0, 4, 8, 12
I/O
General-purpose input/output 7
EPWM4B
1
O
Enhanced PWM4 output B (HRPWM-capable)
MCLKRA
2
I/O
McBSP-A receive clock
OUTPUTXBAR5
3
O
Output 5 of the output XBAR
EQEP3B
5
I
Enhanced QEP3 input B
CANRXB
6
I
CAN-B receive
18
B6
Terminal Configuration and Functions
167
–
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO8
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
0, 4, 8, 12
I/O
General-purpose input/output 8
EPWM5A
1
O
Enhanced PWM5 output A (HRPWM-capable)
CANTXB
2
O
CAN-B transmit
ADCSOCAO
3
O
ADC start-of-conversion A output for external ADC
EQEP3S
5
I/O
Enhanced QEP3 strobe
SCITXDA
G2
18
–
6
O
SCI-A transmit data
0, 4, 8, 12
I/O
General-purpose input/output 9
EPWM5B
1
O
Enhanced PWM5 output B (HRPWM-capable)
SCITXDB
2
O
SCI-B transmit data
OUTPUTXBAR6
3
O
Output 6 of the output XBAR
EQEP3I
5
I/O
Enhanced QEP3 index
GPIO9
SCIRXDA
G3
19
–
6
I
0, 4, 8, 12
I/O
General-purpose input/output 10
EPWM6A
1
O
Enhanced PWM6 output A (HRPWM-capable)
CANRXB
2
I
CAN-B receive
ADCSOCBO
3
O
ADC start-of-conversion B output for external ADC
EQEP1A
5
I
Enhanced QEP1 input A
SCITXDB
6
O
SCI-B transmit data
UPP-WAIT
15
I/O
Universal parallel port wait. Receiver asserts to request
a pause in transfer.
GPIO10
GPIO11
B2
1
100
SCI-A receive data
0, 4, 8, 12
I/O
General-purpose input/output 11
EPWM6B
1
O
Enhanced PWM6 output B (HRPWM-capable)
SCIRXDB
2, 6
I
SCI-B receive data
O
Output 7 of the output XBAR
5
I
Enhanced QEP1 input B
15
I/O
Universal parallel port start. Transmitter asserts at start
of DMA line.
0, 4, 8, 12
I/O
General-purpose input/output 12
EPWM7A
1
O
Enhanced PWM7 output A (HRPWM-capable)
CANTXB
2
O
CAN-B transmit
MDXB
3
O
McBSP-B transmit serial data
EQEP1S
5
I/O
Enhanced QEP1 strobe
OUTPUTXBAR7
3
EQEP1B
UPP-START
GPIO12
C1
C2
2
4
1
3
SCITXDC
6
O
SCI-C transmit data
UPP-ENA
15
I/O
Universal parallel port enable. Transmitter asserts while
data bus is active.
GPIO13
0, 4, 8, 12
I/O
General-purpose input/output 13
EPWM7B
1
O
Enhanced PWM7 output B (HRPWM-capable)
CANRXB
2
I
CAN-B receive
MDRB
3
I
McBSP-B receive serial data
EQEP1I
5
I/O
SCIRXDC
6
I
UPP-D7
15
I/O
D1
5
4
Enhanced QEP1 index
SCI-C receive data
Universal parallel port data line 7
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
19
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO14
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
0, 4, 8, 12
I/O
General-purpose input/output 14
EPWM8A
1
O
Enhanced PWM8 output A (HRPWM-capable)
SCITXDB
2
O
SCI-B transmit data
MCLKXB
3
I/O
McBSP-B transmit clock
OUTPUTXBAR3
6
O
Output 3 of the output XBAR
UPP-D6
15
I/O
Universal parallel port data line 6
GPIO15
0, 4, 8, 12
I/O
General-purpose input/output 15
EPWM8B
1
O
Enhanced PWM8 output B (HRPWM-capable)
SCIRXDB
2
I
SCI-B receive data
MFSXB
3
OUTPUTXBAR4
D2
D3
6
7
5
6
I/O
McBSP-B transmit frame synch
6
O
Output 4 of the output XBAR
UPP-D5
15
I/O
Universal parallel port data line 5
GPIO16
0, 4, 8, 12
I/O
General-purpose input/output 16
SPISIMOA
1
I/O
SPI-A slave in, master out
CANTXB
2
O
CAN-B transmit
OUTPUTXBAR7
3
O
Output 7 of the output XBAR
EPWM9A
5
O
Enhanced PWM9 output A
SD1_D1
7
I
Sigma-Delta 1 channel 1 data input
UPP-D4
15
I/O
Universal parallel port data line 4
GPIO17
0, 4, 8, 12
I/O
General-purpose input/output 17
SPISOMIA
1
I/O
SPI-A slave out, master in
CANRXB
2
OUTPUTXBAR8
3
EPWM9B
SD1_C1
E1
8
7
I
CAN-B receive
O
Output 8 of the output XBAR
5
O
Enhanced PWM9 output B
7
I
Sigma-Delta 1 channel 1 clock input
UPP-D3
15
I/O
Universal parallel port data line 3
GPIO18
0, 4, 8, 12
I/O
General-purpose input/output 18
SPICLKA
1
I/O
SPI-A clock
SCITXDB
2
O
SCI-B transmit data
CANRXA
3
I
CAN-A receive
EPWM10A
5
O
Enhanced PWM10 output A
Sigma-Delta 1 channel 2 data input
E2
E3
9
10
8
9
SD1_D2
7
I
UPP-D2
15
I/O
Universal parallel port data line 2
GPIO19
0, 4, 8, 12
I/O
General-purpose input/output 19
SPISTEA
1
I/O
SPI-A slave transmit enable
SCIRXDB
2
CANTXA
3
EPWM10B
5
E4
12
11
I
SCI-B receive data
O
CAN-A transmit
O
Enhanced PWM10 output B
Sigma-Delta 1 channel 2 clock input
SD1_C2
7
I
UPP-D1
15
I/O
20
Terminal Configuration and Functions
Universal parallel port data line 1
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
I/O
DESCRIPTION
GPIO20
0, 4, 8, 12
EQEP1A
1
I
Enhanced QEP1 input A
MDXA
2
O
McBSP-A transmit serial data
CANTXB
3
O
CAN-B transmit
EPWM11A
5
O
Enhanced PWM11 output A
Sigma-Delta 1 channel 3 data input
F2
13
12
General-purpose input/output 20
SD1_D3
7
I
UPP-D0
15
I/O
Universal parallel port data line 0
GPIO21
0, 4, 8, 12
I/O
General-purpose input/output 21
EQEP1B
1
I
Enhanced QEP1 input B
MDRA
2
I
McBSP-A receive serial data
CANRXB
3
I
CAN-B receive
EPWM11B
5
O
Enhanced PWM11 output B
SD1_C3
7
I
Sigma-Delta 1 channel 3 clock input
UPP-CLK
15
I/O
Universal parallel port transmit clock
GPIO22
0, 2, 4, 8
I/O
General-purpose input/output 22
EQEP1S
1
I/O
Enhanced QEP1 strobe
MCLKXA
2
I/O
McBSP-A transmit clock
SCITXDB
3
O
SCI-B transmit data
EPWM12A
5
O
Enhanced PWM12 output A
SPICLKB
6
I/O
SPI-B clock
SD1_D4
7
I
GPIO23
0, 2, 4, 8
I/O
General-purpose input/output 23
EQEP1I
1
I/O
Enhanced QEP1 index
MFSXA
2
I/O
McBSP-A transmit frame synch
SCIRXDB
3
EPWM12B
SPISTEB
F3
J4
K4
14
22
23
13
–
–
Sigma-Delta 1 channel 4 data input
I
SCI-B receive data
5
O
Enhanced PWM12 output B
6
I/O
SPI-B slave transmit enable
SD1_C4
7
I
GPIO24
Sigma-Delta 1 channel 4 clock input
0, 4, 8, 12
I/O
General-purpose input/output 24
OUTPUTXBAR1
1
O
Output 1 of the output XBAR
EQEP2A
2
I
Enhanced QEP2 input A
MDXB
3
O
McBSP-B transmit serial data
SPISIMOB
6
I/O
SPI-B slave in, master out
SD2_D1
7
I
GPIO25
0, 4, 8, 12
I/O
General-purpose input/output 25
OUTPUTXBAR2
1
O
Output 2 of the output XBAR
EQEP2B
2
I
Enhanced QEP2 input B
MDRB
3
I
McBSP-B receive serial data
SPISOMIB
6
I/O
SD2_C1
7
I
K3
K2
24
25
–
–
Sigma-Delta 2 channel 1 data input
SPI-B slave out, master in
Sigma-Delta 2 channel 1 clock input
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
21
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO26
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
0, 4, 8, 12
I/O/Z(1)
DESCRIPTION
I/O
General-purpose input/output 26
OUTPUTXBAR3
1
O
Output 3 of the output XBAR
EQEP2I
2
I/O
Enhanced QEP2 index
MCLKXB
3
I/O
McBSP-B transmit clock
OUTPUTXBAR3
5
O
Output 3 of the output XBAR
SPICLKB
6
I/O
SPI-B clock
SD2_D2
7
I
GPIO27
0, 4, 8, 12
I/O
General-purpose input/output 27
K1
27
–
Sigma-Delta 2 channel 2 data input
OUTPUTXBAR4
1
O
Output 4 of the output XBAR
EQEP2S
2
I/O
Enhanced QEP2 strobe
MFSXB
3
I/O
McBSP-B transmit frame synch
OUTPUTXBAR4
5
O
Output 4 of the output XBAR
SPISTEB
6
I/O
SPI-B slave transmit enable
SD2_C2
7
I
GPIO28
0, 4, 8, 12
I/O
L1
28
–
Sigma-Delta 2 channel 2 clock input
General-purpose input/output 28
SCIRXDA
1
I
SCI-A receive data
EM1CS4
2
O
External memory interface 1 chip select 4
OUTPUTXBAR5
5
O
Output 5 of the output XBAR
EQEP3A
6
I
Enhanced QEP3 input A
SD2_D3
7
I
Sigma-Delta 2 channel 3 data input
GPIO29
0, 4, 8, 12
I/O
General-purpose input/output 29
SCITXDA
1
O
SCI-A transmit data
EM1SDCKE
2
O
External memory interface 1 SDRAM clock enable
OUTPUTXBAR6
5
O
Output 6 of the output XBAR
EQEP3B
6
I
Enhanced QEP3 input B
Sigma-Delta 2 channel 3 clock input
V11
W11
64
65
–
–
SD2_C3
7
I
GPIO30
0, 4, 8, 12
I/O
CANRXA
1
I
CAN-A receive
EM1CLK
2
O
External memory interface 1 clock
OUTPUTXBAR7
5
O
Output 7 of the output XBAR
EQEP3S
6
I/O
Enhanced QEP3 strobe
T11
63
–
General-purpose input/output 30
SD2_D4
7
I
GPIO31
0, 4, 8, 12
I/O
General-purpose input/output 31
CANTXA
1
O
CAN-A transmit
EM1WE
2
O
External memory interface 1 write enable
OUTPUTXBAR8
5
O
Output 8 of the output XBAR
EQEP3I
6
I/O
Enhanced QEP3 index
SD2_C4
7
I
GPIO32
0, 4, 8, 12
SDAA
1
EM1CS0
2
GPIO33
0, 4, 8, 12
SCLA
1
EM1RNW
2
22
U11
66
–
I/O
U13
T13
Terminal Configuration and Functions
67
69
–
–
I/OD
Sigma-Delta 2 channel 4 data input
Sigma-Delta 2 channel 4 clock input
General-purpose input/output 32
I2C-A data open-drain bidirectional port
O
External memory interface 1 chip select 0
I/O
General-purpose input/output 33
I/OD
O
I2C-A clock open-drain bidirectional port
External memory interface 1 read not write
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO34
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
0, 4, 8, 12
I/O/Z(1)
I/O
General-purpose input/output 34
O
Output 1 of the output XBAR
O
External memory interface 1 chip select 2
OUTPUTXBAR1
1
EM1CS2
2
SDAB
6
I/OD
0, 4, 8, 12
I/O
GPIO35
U14
70
–
SCIRXDA
1
EM1CS3
2
SCLB
6
I/OD
GPIO36
T14
71
–
DESCRIPTION
I2C-B data open-drain bidirectional port
General-purpose input/output 35
I
SCI-A receive data
O
External memory interface 1 chip select 3
I2C-B clock open-drain bidirectional port
0, 4, 8, 12
I/O
General-purpose input/output 36
SCITXDA
1
O
SCI-A transmit data
EM1WAIT
2
I
External memory interface 1 Asynchronous SRAM WAIT
CAN-A receive
V16
83
–
CANRXA
6
I
GPIO37
0, 4, 8, 12
I/O
General-purpose input/output 37
OUTPUTXBAR2
1
O
Output 2 of the output XBAR
EM1OE
2
O
External memory interface 1 output enable
U16
84
–
CANTXA
6
O
CAN-A transmit
GPIO38
0, 4, 8, 12
I/O
General-purpose input/output 38
EM1A0
2
O
External memory interface 1 address line 0
SCITXDC
5
O
SCI-C transmit data
CANTXB
6
O
CAN-B transmit
GPIO39
0, 4, 8, 12
I/O
General-purpose input/output 39
EM1A1
2
O
External memory interface 1 address line 1
SCIRXDC
5
I
SCI-C receive data
CANRXB
6
I
CAN-B receive
GPIO40
0, 4, 8, 12
I/O
General-purpose input/output 40
EM1A2
2
O
External memory interface 1 address line 2
SDAB
6
I/OD
0, 4, 8, 12
I/O
General-purpose input/output 41. For applications using
the Hibernate low-power mode, this pin serves as the
GPIOHIBWAKE signal. For details, see the Low Power
Modes section of the System Control chapter in the
TMS320F2837xD Dual-Core Delfino Microcontrollers
Technical Reference Manual.
External memory interface 1 address line 3
GPIO41
T16
W17
V17
U17
85
86
87
89
–
–
–
51
EM1A3
2
O
SCLB
6
I/OD
0, 4, 8, 12
I/O
GPIO42
SDAA
6
SCITXDA
15
USB0DM
Analog
GPIO43
D19
130
73
I/OD
I2C-A data open-drain bidirectional port
SCI-A transmit data
USB PHY differential data
General-purpose input/output 43
I/O
6
I/OD
SCIRXDA
15
74
General-purpose input/output 42
I/O
0, 4, 8, 12
131
I2C-B clock open-drain bidirectional port
O
SCLA
C19
I2C-B data open-drain bidirectional port
I
I2C-A clock open-drain bidirectional port
SCI-A receive data
USB0DP
Analog
I/O
USB PHY differential data
GPIO44
0, 4, 8, 12
I/O
General-purpose input/output 44
EM1A4
2
O
External memory interface 1 address line 4
K18
113
–
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
23
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO45
MUX
POSITION
0, 4, 8, 12
EM1A5
2
GPIO46
0, 4, 8, 12
EM1A6
2
SCIRXDD
6
GPIO47
0, 4, 8, 12
EM1A7
2
SCITXDD
GPIO48
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
K19
115
–
E19
128
–
I/O/Z(1)
DESCRIPTION
I/O
General-purpose input/output 45
O
External memory interface 1 address line 5
I/O
General-purpose input/output 46
O
External memory interface 1 address line 6
I
SCI-D receive data
I/O
General-purpose input/output 47
O
External memory interface 1 address line 7
6
O
SCI-D transmit data
E18
129
–
0, 4, 8, 12
I/O
General-purpose input/output 48
OUTPUTXBAR3
1
O
Output 3 of the output XBAR
EM1A8
2
O
External memory interface 1 address line 8
SCITXDA
6
O
SCI-A transmit data
SD1_D1
7
I
Sigma-Delta 1 channel 1 data input
GPIO49
0, 4, 8, 12
I/O
General-purpose input/output 49
OUTPUTXBAR4
1
O
Output 4 of the output XBAR
EM1A9
2
O
External memory interface 1 address line 9
SCIRXDA
6
I
SCI-A receive data
SD1_C1
7
I
Sigma-Delta 1 channel 1 clock input
GPIO50
0, 4, 8, 12
I/O
EQEP1A
1
I
Enhanced QEP1 input A
EM1A10
2
O
External memory interface 1 address line 10
SPISIMOC
6
I/O
SPI-C slave in, master out
SD1_D2
7
I
GPIO51
0, 4, 8, 12
I/O
EQEP1B
1
I
Enhanced QEP1 input B
EM1A11
2
O
External memory interface 1 address line 11
SPISOMIC
6
I/O
SPI-C slave out, master in
SD1_C2
7
I
GPIO52
0, 4, 8, 12
I/O
General-purpose input/output 52
EQEP1S
1
I/O
Enhanced QEP1 strobe
EM1A12
2
O
External memory interface 1 address line 12
SPICLKC
6
I/O
SPI-C clock
SD1_D3
7
I
GPIO53
0, 4, 8, 12
I/O
General-purpose input/output 53
EQEP1I
1
I/O
Enhanced QEP1 index
EM1D31
2
I/O
External memory interface 1 data line 31
EM2D15
3
I/O
External memory interface 2 data line 15
SPISTEC
6
I/O
SPI-C slave transmit enable
SD1_C3
7
I
24
R16
R17
R18
R19
P16
P17
Terminal Configuration and Functions
90
93
94
95
96
97
–
–
–
–
–
–
General-purpose input/output 50
Sigma-Delta 1 channel 2 data input
General-purpose input/output 51
Sigma-Delta 1 channel 2 clock input
Sigma-Delta 1 channel 3 data input
Sigma-Delta 1 channel 3 clock input
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO54
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
0, 4, 8, 12
I/O
General-purpose input/output 54
SPISIMOA
1
I/O
SPI-A slave in, master out
EM1D30
2
I/O
External memory interface 1 data line 30
EM2D14
3
I/O
External memory interface 2 data line 14
EQEP2A
5
I
Enhanced QEP2 input A
SCITXDB
6
O
SCI-B transmit data
SD1_D4
7
I
Sigma-Delta 1 channel 4 data input
GPIO55
0, 4, 8, 12
I/O
General-purpose input/output 55
SPISOMIA
1
I/O
SPI-A slave out, master in
EM1D29
2
I/O
External memory interface 1 data line 29
EM2D13
3
I/O
External memory interface 2 data line 13
EQEP2B
5
I
Enhanced QEP2 input B
SCIRXDB
6
I
SCI-B receive data
SD1_C4
7
I
Sigma-Delta 1 channel 4 clock input
GPIO56
0, 4, 8, 12
I/O
General-purpose input/output 56
SPICLKA
1
I/O
SPI-A clock
EM1D28
2
I/O
External memory interface 1 data line 28
EM2D12
3
I/O
External memory interface 2 data line 12
EQEP2S
5
I/O
Enhanced QEP2 strobe
SCITXDC
6
O
SCI-C transmit data
SD2_D1
7
I
Sigma-Delta 2 channel 1 data input
GPIO57
P18
P19
N16
98
100
101
–
–
–
0, 4, 8, 12
I/O
General-purpose input/output 57
SPISTEA
1
I/O
SPI-A slave transmit enable
EM1D27
2
I/O
External memory interface 1 data line 27
EM2D11
3
I/O
External memory interface 2 data line 11
EQEP2I
5
I/O
Enhanced QEP2 index
SCIRXDC
6
I
SCI-C receive data
SD2_C1
7
I
Sigma-Delta 2 channel 1 clock input
GPIO58
0, 4, 8, 12
I/O
General-purpose input/output 58
MCLKRA
1
I/O
McBSP-A receive clock
EM1D26
2
I/O
External memory interface 1 data line 26
EM2D10
3
I/O
External memory interface 2 data line 10
OUTPUTXBAR1
5
O
Output 1 of the output XBAR
SPICLKB
6
I/O
SPI-B clock
SD2_D2
7
I
SPISIMOA
15
I/O
SPI-A slave in, master out(2)
GPIO59
0, 4, 8, 12
I/O
General-purpose input/output 59(3)
MFSRA
1
I/O
McBSP-A receive frame synch
EM1D25
2
I/O
External memory interface 1 data line 25
EM2D9
3
I/O
External memory interface 2 data line 9
OUTPUTXBAR2
5
O
Output 2 of the output XBAR
SPISTEB
6
I/O
SPI-B slave transmit enable
SD2_C2
7
I
SPISOMIA
15
I/O
N18
N17
M16
102
103
104
–
52
53
Sigma-Delta 2 channel 2 data input
Sigma-Delta 2 channel 2 clock input
SPI-A slave out, master in(2)
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
25
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
GPIO60
0, 4, 8, 12
I/O
General-purpose input/output 60
MCLKRB
1
I/O
McBSP-B receive clock
EM1D24
2
I/O
External memory interface 1 data line 24
EM2D8
3
I/O
External memory interface 2 data line 8
OUTPUTXBAR3
5
O
Output 3 of the output XBAR
SPISIMOB
6
I/O
SPI-B slave in, master out
SD2_D3
7
I
SPICLKA
15
I/O
SPI-A clock(2)
GPIO61
0, 4, 8, 12
I/O
General-purpose input/output 61(3)
MFSRB
1
I/O
McBSP-B receive frame synch
EM1D23
2
I/O
External memory interface 1 data line 23
EM2D7
3
I/O
External memory interface 2 data line 7
OUTPUTXBAR4
5
O
Output 4 of the output XBAR
SPISOMIB
6
I/O
SPI-B slave out, master in
SD2_C3
7
I
SPISTEA
15
I/O
SPI-A slave transmit enable(2)
General-purpose input/output 62
GPIO62
M17
L16
105
107
54
56
Sigma-Delta 2 channel 3 data input
Sigma-Delta 2 channel 3 clock input
0, 4, 8, 12
I/O
SCIRXDC
1
I
EM1D22
2
EM2D6
3
EQEP3A
5
I
Enhanced QEP3 input A
CANRXA
6
I
CAN-A receive
SD2_D4
7
I
Sigma-Delta 2 channel 4 data input
GPIO63
0, 4, 8, 12
I/O
General-purpose input/output 63
SCITXDC
1
O
SCI-C transmit data
EM1D21
2
I/O
External memory interface 1 data line 21
EM2D5
3
I/O
External memory interface 2 data line 5
EQEP3B
5
CANTXA
SD2_C4
SPISIMOB
J17
J16
108
109
57
58
SCI-C receive data
I/O
External memory interface 1 data line 22
I/O
External memory interface 2 data line 6
I
Enhanced QEP3 input B
6
O
CAN-A transmit
7
I
Sigma-Delta 2 channel 4 clock input
15
I/O
SPI-B slave in, master out(2)
GPIO64
0, 4, 8, 12
I/O
General-purpose input/output 64(3)
EM1D20
2
I/O
External memory interface 1 data line 20
EM2D4
3
I/O
External memory interface 2 data line 4
EQEP3S
5
I/O
Enhanced QEP3 strobe
L17
110
59
SCIRXDA
6
I
SPISOMIB
15
I/O
SPI-B slave out, master in(2)
GPIO65
0, 4, 8, 12
I/O
General-purpose input/output 65
EM1D19
2
I/O
External memory interface 1 data line 19
EM2D3
3
I/O
External memory interface 2 data line 3
EQEP3I
5
I/O
Enhanced QEP3 index
K16
111
60
SCI-A receive data
SCITXDA
6
O
SCI-A transmit data
SPICLKB
15
I/O
SPI-B clock(2)
26
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
I/O
General-purpose input/output 66(3)
I/O
External memory interface 1 data line 18
I/O
External memory interface 2 data line 2
6
I/OD
I2C-B data open-drain bidirectional port
15
I/O
SPI-B slave transmit enable(2)
I/O
General-purpose input/output 67
I/O
External memory interface 1 data line 17
I/O
External memory interface 2 data line 1
I/O
General-purpose input/output 68
I/O
External memory interface 1 data line 16
GPIO66
0, 4, 8, 12
EM1D18
2
EM2D2
3
SDAB
SPISTEB
K17
112
61
GPIO67
0, 4, 8, 12
EM1D17
2
EM2D1
3
GPIO68
0, 4, 8, 12
EM1D16
2
EM2D0
3
I/O
External memory interface 2 data line 0
GPIO69
0, 4, 8, 12
I/O
General-purpose input/output 69
EM1D15
2
I/O
External memory interface 1 data line 15
SCLB
6
I/OD
I2C-B clock open-drain bidirectional port
SPISIMOC
15
I/O
SPI-C slave in, master out(2)
GPIO70
0, 4, 8, 12
I/O
General-purpose input/output 70(3)
EM1D14
2
I/O
External memory interface 1 data line 14
CANRXA
5
B19
C18
B18
A17
132
133
134
135
–
–
75
76
I
CAN-A receive
SCITXDB
6
O
SCI-B transmit data
SPISOMIC
15
I/O
SPI-C slave out, master in(2)
GPIO71
0, 4, 8, 12
I/O
General-purpose input/output 71
EM1D13
2
I/O
External memory interface 1 data line 13
CANTXA
5
O
CAN-A transmit
SCIRXDB
6
I
SCI-B receive data
SPICLKC
15
I/O
SPI-C clock(2)
0, 4, 8, 12
I/O
General-purpose input/output 72.(3) This is the factory
default boot mode select pin 1.
I/O
External memory interface 1 data line 12
GPIO72
EM1D12
B17
136
77
2
B16
139
80
CANTXB
5
O
CAN-B transmit
SCITXDC
6
O
SCI-C transmit data
SPISTEC
15
I/O
SPI-C slave transmit enable(2)
GPIO73
0, 4, 8, 12
I/O
General-purpose input/output 73
EM1D11
2
I/O
External memory interface 1 data line 11
XCLKOUT
3
O/Z
External clock output. This pin outputs a divided-down
version of a chosen clock signal from within the device.
The clock signal is chosen using the
CLKSRCCTL3.XCLKOUTSEL bit field while the divide
ratio is chosen using the
XCLKOUTDIVSEL.XCLKOUTDIV bit field.
A16
140
81
CANRXB
5
I
CAN-B receive
SCIRXDC
6
I
SCI-C receive
0, 4, 8, 12
I/O
General-purpose input/output 74
I/O
External memory interface 1 data line 10
I/O
General-purpose input/output 75
I/O
External memory interface 1 data line 9
GPIO74
EM1D10
2
GPIO75
0, 4, 8, 12
EM1D9
2
C17
D16
141
142
–
–
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
27
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
GPIO76
0, 4, 8, 12
EM1D8
2
SCITXDD
6
GPIO77
0, 4, 8, 12
EM1D7
2
SCIRXDD
ZWT
BALL
NO.
C16
A15
PTP
PIN
NO.
143
144
PZP
PIN
NO.
–
–
I/O/Z(1)
DESCRIPTION
I/O
General-purpose input/output 76
I/O
External memory interface 1 data line 8
O
SCI-D transmit data
I/O
General-purpose input/output 77
I/O
External memory interface 1 data line 7
6
I
GPIO78
0, 4, 8, 12
I/O
General-purpose input/output 78
EM1D6
2
I/O
External memory interface 1 data line 6
B15
145
82
SCI-D receive data
EQEP2A
6
I
GPIO79
0, 4, 8, 12
I/O
General-purpose input/output 79
EM1D5
2
I/O
External memory interface 1 data line 5
C15
146
–
Enhanced QEP2 input A
EQEP2B
6
I
GPIO80
0, 4, 8, 12
I/O
General-purpose input/output 80
EM1D4
2
I/O
External memory interface 1 data line 4
EQEP2S
6
I/O
Enhanced QEP2 strobe
GPIO81
0, 4, 8, 12
I/O
General-purpose input/output 81
EM1D3
2
I/O
External memory interface 1 data line 3
EQEP2I
6
I/O
Enhanced QEP2 index
GPIO82
0, 4, 8, 12
I/O
General-purpose input/output 82
EM1D2
2
I/O
External memory interface 1 data line 2
GPIO83
0, 4, 8, 12
I/O
General-purpose input/output 83
EM1D1
2
I/O
External memory interface 1 data line 1
GPIO84
0, 4, 8, 12
I/O
General-purpose input/output 84. This is the factory
default boot mode select pin 0.
O
SCI-A transmit data
SCITXDA
5
D15
A14
B14
C14
A11
148
149
150
151
154
–
–
–
–
85
Enhanced QEP2 input B
MDXB
6
O
McBSP-B transmit serial data
MDXA
15
O
McBSP-A transmit serial data
GPIO85
0, 4, 8, 12
I/O
General-purpose input/output 85
EM1D0
2
I/O
External memory interface 1 data line 0
SCIRXDA
5
MDRB
MDRA
B11
I
SCI-A receive data
6
I
McBSP-B receive serial data
15
I
McBSP-A receive serial data
GPIO86
0, 4, 8, 12
I/O
General-purpose input/output 86
EM1A13
2
O
External memory interface 1 address line 13
EM1CAS
3
O
External memory interface 1 column address strobe
SCITXDB
5
O
SCI-B transmit data
MCLKXB
6
I/O
McBSP-B transmit clock
MCLKXA
15
I/O
McBSP-A transmit clock
GPIO87
0, 2, 4, 8
I/O
General-purpose input/output 87
EM1A14
2
O
External memory interface 1 address line 14
EM1RAS
3
O
External memory interface 1 row address strobe
SCIRXDB
5
I
SCI-B receive data
C11
D11
155
156
157
86
87
88
MFSXB
6
I/O
McBSP-B transmit frame synch
MFSXA
15
I/O
McBSP-A transmit frame synch
28
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
GPIO88
0, 2, 4, 8
EM1A15
2
EM1DQM0
3
GPIO89
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
I/O
General-purpose input/output 88
O
External memory interface 1 address line 15
O
External memory interface 1 Input/output mask for byte 0
0, 2, 4, 8
I/O
General-purpose input/output 89
EM1A16
2
O
External memory interface 1 address line 16
EM1DQM1
3
O
External memory interface 1 Input/output mask for byte 1
SCITXDC
6
O
SCI-C transmit data
GPIO90
0, 2, 4, 8
I/O
General-purpose input/output 90
EM1A17
2
O
External memory interface 1 address line 17
EM1DQM2
3
O
External memory interface 1 Input/output mask for byte 2
SCIRXDC
6
I
SCI-C receive data
GPIO91
0, 2, 4, 8
I/O
General-purpose input/output 91
EM1A18
2
O
External memory interface 1 address line 18
EM1DQM3
3
O
External memory interface 1 Input/output mask for byte 3
SDAA
6
I/OD
GPIO92
0, 2, 4, 8
I/O
General-purpose input/output 92
EM1A19
2
O
External memory interface 1 address line 19
EM1BA1
3
O
External memory interface 1 bank address 1
SCLA
C6
D6
A5
B5
A4
170
171
172
173
174
–
96
97
98
99
I2C-A data open-drain bidirectional port
6
I/OD
GPIO93
0, 2, 4, 8
I/O
General-purpose input/output 93
EM1BA0
3
O
External memory interface 1 bank address 0
6
O
SCI-D transmit data
0, 2, 4, 8
I/O
General-purpose input/output 94
SCITXDD
GPIO94
SCIRXDD
6
GPIO95
0, 2, 4, 8
GPIO96
0, 2, 4, 8
EM2DQM1
3
EQEP1A
5
GPIO97
0, 2, 4, 8
EM2DQM0
3
EQEP1B
5
GPIO98
0, 2, 4, 8
EM2A0
3
EQEP1S
B4
175
–
A3
176
–
B3
–
–
C3
–
–
A2
–
–
I
I2C-A clock open-drain bidirectional port
SCI-D receive data
I/O
General-purpose input/output 95
I/O
General-purpose input/output 96
O
External memory interface 2 Input/output mask for byte 1
I
Enhanced QEP1 input A
I/O
General-purpose input/output 97
O
External memory interface 2 Input/output mask for byte 0
I
Enhanced QEP1 input B
I/O
General-purpose input/output 98
O
External memory interface 2 address line 0
5
I/O
Enhanced QEP1 strobe
GPIO99
0, 2, 4, 8
I/O
General-purpose input/output 99
EM2A1
3
O
External memory interface 2 address line 1
EQEP1I
5
I/O
Enhanced QEP1 index
GPIO100
0, 4, 8, 12
I/O
General-purpose input/output 100
O
External memory interface 2 address line 2
I
Enhanced QEP2 input A
F1
G1
–
17
–
14
EM2A2
3
EQEP2A
5
SPISIMOC
6
I/O
SPI-C slave in, master out
GPIO101
H1
–
–
0, 4, 8, 12
I/O
General-purpose input/output 101
EM2A3
3
O
External memory interface 2 address line 3
EQEP2B
5
I
Enhanced QEP2 input B
SPISOMIC
6
H2
–
–
I/O
SPI-C slave out, master in
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
29
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO102
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
0, 4, 8, 12
EM2A4
3
EQEP2S
5
SPICLKC
GPIO103
I/O/Z(1)
DESCRIPTION
I/O
General-purpose input/output 102
O
External memory interface 2 address line 4
I/O
Enhanced QEP2 strobe
6
I/O
SPI-C clock
0, 4, 8, 12
I/O
General-purpose input/output 103
EM2A5
3
EQEP2I
5
SPISTEC
6
GPIO104
H3
J1
–
–
–
–
O
External memory interface 2 address line 5
I/O
Enhanced QEP2 index
I/O
SPI-C slave transmit enable
General-purpose input/output 104
0, 4, 8, 12
I/O
SDAA
1
I/OD
EM2A6
3
EQEP3A
SCITXDD
GPIO105
J2
External memory interface 2 address line 6
5
I
Enhanced QEP3 input A
6
O
SCI-D transmit data
0, 4, 8, 12
I/O
General-purpose input/output 105
SCLA
1
I/OD
EM2A7
3
O
External memory interface 2 address line 7
EQEP3B
5
I
Enhanced QEP3 input B
SCIRXDD
6
I
SCI-D receive data
GPIO106
–
–
I2C-A data open-drain bidirectional port
O
J3
–
–
I2C-A clock open-drain bidirectional port
0, 4, 8, 12
I/O
General-purpose input/output 106
EM2A8
3
O
External memory interface 2 address line 8
EQEP3S
5
I/O
Enhanced QEP3 strobe
L2
–
–
SCITXDC
6
O
SCI-C transmit data
GPIO107
0, 4, 8, 12
I/O
General-purpose input/output 107
EM2A9
3
O
External memory interface 2 address line 9
EQEP3I
5
I/O
Enhanced QEP3 index
L3
–
–
SCIRXDC
6
I
GPIO108
0, 4, 8, 12
I/O
General-purpose input/output 108
EM2A10
3
O
External memory interface 2 address line 10
GPIO109
0, 4, 8, 12
I/O
General-purpose input/output 109
EM2A11
3
O
External memory interface 2 address line 11
GPIO110
0, 4, 8, 12
I/O
General-purpose input/output 110
EM2WAIT
3
GPIO111
0, 4, 8, 12
EM2BA0
3
GPIO112
0, 4, 8, 12
EM2BA1
3
GPIO113
0, 4, 8, 12
EM2CAS
3
GPIO114
0, 4, 8, 12
EM2RAS
3
GPIO115
0, 4, 8, 12
EM2CS0
3
GPIO116
0, 4, 8, 12
EM2CS2
3
30
L4
–
–
N2
–
–
M2
M4
M3
–
–
–
–
–
–
N4
–
–
N3
–
–
V12
W10
Terminal Configuration and Functions
–
–
–
–
I
SCI-C receive data
External memory interface 2 Asynchronous SRAM WAIT
I/O
General-purpose input/output 111
O
External memory interface 2 bank address 0
I/O
General-purpose input/output 112
O
External memory interface 2 bank address 1
I/O
General-purpose input/output 113
O
External memory interface 2 column address strobe
I/O
General-purpose input/output 114
O
External memory interface 2 row address strobe
I/O
General-purpose input/output 115
O
External memory interface 2 chip select 0
I/O
General-purpose input/output 116
O
External memory interface 2 chip select 2
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO117
MUX
POSITION
0, 4, 8, 12
EM2SDCKE
3
GPIO118
0, 4, 8, 12
EM2CLK
3
GPIO119
0, 4, 8, 12
EM2RNW
3
GPIO120
0, 4, 8, 12
EM2WE
3
USB0PFLT
GPIO121
EM2OE
GPIO122
PTP
PIN
NO.
PZP
PIN
NO.
U12
–
–
T12
T15
–
–
–
–
I/O/Z(1)
I/O
General-purpose input/output 117
O
External memory interface 2 SDRAM clock enable
I/O
General-purpose input/output 118
O
External memory interface 2 clock
I/O
General-purpose input/output 119
O
External memory interface 2 read not write
General-purpose input/output 120
O
External memory interface 2 write enable
15
I/O
USB external regulator power fault indicator
0, 4, 8, 12
I/O
General-purpose input/output 121
O
External memory interface 2 output enable
15
I/O
USB external regulator enable
0, 4, 8, 12
I/O
General-purpose input/output 122
I/O
SPI-C slave in, master out
SPISIMOC
6
SD1_D1
7
GPIO123
0, 4, 8, 12
U15
W16
T8
–
–
–
–
–
–
I
SPI-C slave out, master in
7
GPIO124
0, 4, 8, 12
SPICLKC
6
SD1_D2
7
GPIO125
0, 4, 8, 12
SPISTEC
6
SD1_C2
7
I
GPIO126
0, 4, 8, 12
I/O
7
0, 4, 8, 12
SD1_C3
7
GPIO128
0, 4, 8, 12
SD1_D4
7
GPIO129
0, 4, 8, 12
SD1_C4
7
GPIO130
0, 4, 8, 12
SD2_D1
7
GPIO131
0, 4, 8, 12
SD2_C1
7
GPIO132
0, 4, 8, 12
SD2_D2
7
I
V8
–
–
T9
U9
–
–
–
–
V9
–
–
W9
–
–
T10
U10
V10
W18
–
–
–
–
–
–
–
–
0, 4, 8, 12
General-purpose input/output 124
I/O
SPI-C clock
7
Sigma-Delta 1 channel 2 data input
I/O
General-purpose input/output 125
I/O
SPI-C slave transmit enable
I
I/O
I
I/O
I
I/O
I
I/O
I
I/O
I
I/O
I
I/O
118
Sigma-Delta 1 channel 1 clock input
I/O
I
G18
SD2_C2
–
General-purpose input/output 123
SD1_C1
GPIO127
–
I/O
6
SD1_D3
U8
Sigma-Delta 1 channel 1 data input
I/O
SPISOMIC
GPIO133/AUXCLKIN
DESCRIPTION
I/O
3
USB0EPEN
ZWT
BALL
NO.
–
I
Sigma-Delta 1 channel 2 clock input
General-purpose input/output 126
Sigma-Delta 1 channel 3 data input
General-purpose input/output 127
Sigma-Delta 1 channel 3 clock input
General-purpose input/output 128
Sigma-Delta 1 channel 4 data input
General-purpose input/output 129
Sigma-Delta 1 channel 4 clock input
General-purpose input/output 130
Sigma-Delta 2 channel 1 data input
General-purpose input/output 131
Sigma-Delta 2 channel 1 clock input
General-purpose input/output 132
Sigma-Delta 2 channel 2 data input
General-purpose input/output 133. The AUXCLKIN
function of this GPIO pin could be used to provide a
single-ended 3.3-V level clock signal to the Auxiliary
Phase-Locked Loop (AUXPLL), whose output is used for
the USB module. The AUXCLKIN clock may also be
used for the CAN module.
Sigma-Delta 2 channel 2 clock input
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
31
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO134
MUX
POSITION
0, 4, 8, 12
SD2_D3
7
GPIO135
0, 4, 8, 12
SCITXDA
6
SD2_C3
7
GPIO136
0, 4, 8, 12
SCIRXDA
6
SD2_D4
7
GPIO137
0, 4, 8, 12
SCITXDB
6
SD2_C4
7
GPIO138
0, 4, 8, 12
SCIRXDB
6
GPIO139
0, 4, 8, 12
SCIRXDC
6
GPIO140
0, 4, 8, 12
SCITXDC
6
GPIO141
0, 4, 8, 12
SCIRXDD
6
GPIO142
0, 4, 8, 12
SCITXDD
6
GPIO143
GPIO144
GPIO145
0, 4, 8, 12
EPWM1A
1
GPIO146
0, 4, 8, 12
EPWM1B
1
GPIO147
0, 4, 8, 12
PTP
PIN
NO.
PZP
PIN
NO.
V18
–
–
U18
–
–
I/O/Z(1)
I/O
I
T18
T19
–
–
–
–
–
–
N19
–
–
M19
–
–
M18
–
–
General-purpose input/output 134
Sigma-Delta 2 channel 3 data input
I/O
General-purpose input/output 135
O
SCI-A transmit data
I
Sigma-Delta 2 channel 3 clock input
I/O
T17
DESCRIPTION
General-purpose input/output 136
I
SCI-A receive data
I
Sigma-Delta 2 channel 4 data input
I/O
General-purpose input/output 137
O
SCI-B transmit data
I
Sigma-Delta 2 channel 4 clock input
I/O
I
I/O
I
General-purpose input/output 138
SCI-B receive data
General-purpose input/output 139
SCI-C receive data
I/O
General-purpose input/output 140
O
SCI-C transmit data
I/O
General-purpose input/output 141
I
SCI-D receive data
I/O
General-purpose input/output 142
O
SCI-D transmit data
L19
–
–
0, 4, 8, 12
F18
–
–
I/O
General-purpose input/output 143
0, 4, 8, 12
F17
–
–
I/O
General-purpose input/output 144
I/O
General-purpose input/output 145
O
Enhanced PWM1 output A (HRPWM-capable)
I/O
General-purpose input/output 146
O
Enhanced PWM1 output B (HRPWM-capable)
I/O
General-purpose input/output 147
EPWM2A
1
GPIO148
0, 4, 8, 12
EPWM2B
1
GPIO149
0, 4, 8, 12
EPWM3A
1
GPIO150
0, 4, 8, 12
EPWM3B
1
GPIO151
0, 4, 8, 12
EPWM4A
1
GPIO152
0, 4, 8, 12
EPWM4B
1
GPIO153
0, 4, 8, 12
EPWM5A
1
GPIO154
0, 4, 8, 12
EPWM5B
1
GPIO155
0, 4, 8, 12
EPWM6A
1
32
ZWT
BALL
NO.
E17
–
–
D18
–
–
D17
–
–
D14
–
–
A13
–
–
B13
–
–
C13
–
–
D13
–
–
A12
–
–
B12
–
–
C12
Terminal Configuration and Functions
–
–
O
Enhanced PWM2 output A (HRPWM-capable)
I/O
General-purpose input/output 148
O
Enhanced PWM2 output B (HRPWM-capable)
I/O
General-purpose input/output 149
O
Enhanced PWM3 output A (HRPWM-capable)
I/O
General-purpose input/output 150
O
Enhanced PWM3 output B (HRPWM-capable)
I/O
General-purpose input/output 151
O
Enhanced PWM4 output A (HRPWM-capable)
I/O
General-purpose input/output 152
O
Enhanced PWM4 output B (HRPWM-capable)
I/O
General-purpose input/output 153
O
Enhanced PWM5 output A (HRPWM-capable)
I/O
General-purpose input/output 154
O
Enhanced PWM5 output B (HRPWM-capable)
I/O
General-purpose input/output 155
O
Enhanced PWM6 output A (HRPWM-capable)
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
GPIO156
MUX
POSITION
0, 4, 8, 12
EPWM6B
1
GPIO157
0, 4, 8, 12
EPWM7A
1
GPIO158
0, 4, 8, 12
EPWM7B
1
GPIO159
0, 4, 8, 12
EPWM8A
1
GPIO160
0, 4, 8, 12
EPWM8B
1
GPIO161
0, 4, 8, 12
EPWM9A
1
GPIO162
0, 4, 8, 12
EPWM9B
1
GPIO163
0, 4, 8, 12
EPWM10A
GPIO164
EPWM10B
GPIO165
EPWM11A
GPIO166
EPWM11B
GPIO167
EPWM12A
GPIO168
EPWM12B
1
0, 4, 8, 12
1
0, 4, 8, 12
1
0, 4, 8, 12
1
0, 4, 8, 12
1
0, 4, 8, 12
1
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
D12
–
–
B10
C10
–
–
–
–
D10
–
–
B9
–
–
C9
D9
A8
–
–
–
–
–
–
B8
–
–
C5
–
–
D5
C4
D4
–
–
–
I/O/Z(1)
–
–
–
DESCRIPTION
I/O
General-purpose input/output 156
O
Enhanced PWM6 output B (HRPWM-capable)
I/O
General-purpose input/output 157
O
Enhanced PWM7 output A (HRPWM-capable)
I/O
General-purpose input/output 158
O
Enhanced PWM7 output B (HRPWM-capable)
I/O
General-purpose input/output 159
O
Enhanced PWM8 output A (HRPWM-capable)
I/O
General-purpose input/output 160
O
Enhanced PWM8 output B (HRPWM-capable)
I/O
General-purpose input/output 161
O
Enhanced PWM9 output A
I/O
General-purpose input/output 162
O
Enhanced PWM9 output B
I/O
General-purpose input/output 163
O
Enhanced PWM10 output A
I/O
General-purpose input/output 164
O
Enhanced PWM10 output B
I/O
General-purpose input/output 165
O
Enhanced PWM11 output A
I/O
General-purpose input/output 166
O
Enhanced PWM11 output B
I/O
General-purpose input/output 167
O
Enhanced PWM12 output A
I/O
General-purpose input/output 168
O
Enhanced PWM12 output B
RESET
XRS
F19
124
69
I/OD
Device Reset (in) and Watchdog Reset (out). The
devices have a built-in power-on reset (POR) circuit.
During a power-on condition, this pin is driven low by the
device. An external circuit may also drive this pin to
assert a device reset. This pin is also driven low by the
MCU when a watchdog reset or NMI watchdog reset
occurs. During watchdog reset, the XRS pin is driven low
for the watchdog reset duration of 512 OSCCLK cycles.
A resistor with a value from 2.2 kΩ to 10 kΩ should be
placed between XRS and VDDIO. If a capacitor is placed
between XRS and VSS for noise filtering, it should be
100 nF or smaller. These values will allow the watchdog
to properly drive the XRS pin to VOL within 512 OSCCLK
cycles when the watchdog reset is asserted. The output
buffer of this pin is an open drain with an internal pullup.
CLOCKS
X1
G19
123
68
I
On-chip crystal-oscillator input. To use this oscillator, a
quartz crystal must be connected across X1 and X2. If
this pin is not used, it must be tied to GND.
This pin can also be used to feed a single-ended 3.3-V
level clock. In this case, X2 is a No Connect (NC).
X2
J19
121
66
O
On-chip crystal-oscillator output. A quartz crystal may be
connected across X1 and X2. If X2 is not used, it must
be left unconnected.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
33
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
NO CONNECT
No connect. BGA ball is electrically open and not
connected to the die.
NC
H4
–
–
TCK
V15
81
50
I
JTAG test clock with internal pullup (see Section 5.5)
TDI
W13
77
46
I
JTAG test data input (TDI) with internal pullup. TDI is
clocked into the selected register (instruction or data) on
a rising edge of TCK.
TDO
W15
78
47
O/Z
JTAG scan out, test data output (TDO). The contents of
the selected register (instruction or data) are shifted out
of TDO on the falling edge of TCK.(3)
TMS
W14
80
49
I
JTAG test-mode select (TMS) with internal pullup. This
serial control input is clocked into the TAP controller on
the rising edge of TCK.
I
JTAG test reset with internal pulldown. TRST, when
driven high, gives the scan system control of the
operations of the device. If this signal is driven low, the
device operates in its functional mode, and the test reset
signals are ignored. NOTE: TRST must be maintained
low at all times during normal device operation. An
external pulldown resistor is required on this pin. The
value of this resistor should be based on drive strength
of the debugger pods applicable to the design. A 2.2-kΩ
or smaller resistor generally offers adequate protection.
The value of the resistor is application-specific. TI
recommends that each target board be validated for
proper operation of the debugger and the application.
This pin has an internal 50-ns (nominal) glitch filter.
JTAG
TRST
V14
79
48
INTERNAL VOLTAGE REGULATOR CONTROL
VREGENZ
J18
119
64
I
Internal voltage regulator enable with internal pulldown.
The internal VREG is not supported and must be
disabled. Connect VREGENZ to VDDIO.
ANALOG, DIGITAL, AND I/O POWER
VDD
VDD3VFL
VDDA
34
E9
16
16
E11
21
39
F9
61
45
F11
76
63
G14
117
71
G15
126
78
J14
137
84
J15
153
89
K5
158
95
K6
169
–
P10
–
–
P13
–
–
R10
–
–
R13
–
–
R11
72
41
R12
–
–
P6
36
18
R6
54
38
Terminal Configuration and Functions
1.2-V digital logic power pins. TI recommends placing a
decoupling capacitor near each VDD pin with a minimum
total capacitance of approximately 20 uF. The exact
value of the decoupling capacitance should be
determined by your system voltage regulation solution.
3.3-V Flash power pin. Place a minimum 0.1-µF
decoupling capacitor on each pin.
3.3-V analog power pins. Place a minimum 2.2-µF
decoupling capacitor to VSSA on each pin.
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
VDDIO
VDDOSC
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
A9
3
2
A18
11
10
B1
15
15
E7
20
40
E10
26
44
E13
62
55
E16
68
62
F4
75
72
F7
82
79
F10
88
83
F13
91
90
F16
99
94
G4
106
–
G5
114
–
G6
116
–
H5
127
–
H6
138
–
L14
147
–
L15
152
–
M1
159
–
M5
168
–
M6
–
–
N14
–
–
N15
–
–
P9
–
–
R9
–
–
V19
–
–
W8
–
–
H16
120
65
H17
125
70
I/O/Z(1)
DESCRIPTION
3.3-V digital I/O power pins. Place a minimum 0.1-µF
decoupling capacitor on each pin. The exact value of the
decoupling capacitance should be determined by your
system voltage regulation solution.
Power pins for the 3.3-V on-chip crystal oscillator (X1
and X2) and the two zero-pin internal oscillators
(INTOSC). Place a 0.1-μF (minimum) decoupling
capacitor on each pin.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
35
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
PWR
PAD
PWR
PAD
I/O/Z(1)
DESCRIPTION
A1
A10
A19
E5
E6
E8
E12
E14
E15
F5
F6
F8
F12
F14
F15
G16
G17
H8
H9
H10
VSS
H11
H12
Analog and digital ground. For Quad Flatpacks (QFPs),
the PowerPAD on the bottom of the package must be
soldered to the ground plane of the PCB.
H14
H15
J5
J6
J8
J9
J10
J11
J12
K8
K9
K10
K11
K12
K14
K15
L5
L6
L8
L9
36
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
PWR
PAD
PWR
PAD
H18
122
67
H19
–
–
P1
34
17
P5
52
35
R5
–
36
V7
–
–
W1
–
–
I/O/Z(1)
DESCRIPTION
L10
L11
L12
L18
M8
M9
M10
M11
M12
M14
M15
N1
VSS
N5
N6
Analog and digital ground. For Quad Flatpacks (QFPs),
the PowerPAD on the bottom of the package must be
soldered to the ground plane of the PCB.
P7
P8
P11
P12
P14
P15
R7
R8
R14
R15
W7
W19
VSSOSC
VSSA
Crystal oscillator (X1 and X2) ground pin. When using an
external crystal, do not connect this pin to the board
ground. Instead, connect it to the ground reference of the
external crystal oscillator circuit.
If an external crystal is not used, this pin may be
connected to the board ground.
Analog module ground pins.
On the PZP package, pin 17 is double-bonded to VSSA
and VREFLOA. This pin must be connect to VSSA.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
37
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NAME
MUX
POSITION
ZWT
BALL
NO.
PTP
PIN
NO.
PZP
PIN
NO.
I/O/Z(1)
DESCRIPTION
SPECIAL FUNCTIONS
ERRORSTS
U19
92
–
O
Error status output. This pin has an internal pulldown.
TEST PINS
FLT1
W12
73
42
I/O
Flash test pin 1. Reserved for TI. Must be left
unconnected.
FLT2
V13
74
43
I/O
Flash test pin 2. Reserved for TI. Must be left
unconnected.
(1) I = Input, O = Output, OD = Open Drain, Z = High Impedance
(2) High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in
SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).
(3) This pin has output impedance that can be as low as 22 Ω. This output could have fast edges and ringing depending on the system
PCB characteristics. If this is a concern, the user should take precautions such as adding a 39Ω (10% tolerance) series termination
resistor or implement some other termination scheme. It is also recommended that a system-level signal integrity analysis be performed
with the provided IBIS models. The termination is not required if this pin is used for input function.
4.3
Pins With Internal Pullup and Pulldown
Some pins on the device have internal pullups or pulldowns. Table 4-2 lists the pull direction and when it
is active. The pullups on GPIO pins are disabled by default and can be enabled through software. In order
to avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are
not bonded out in a particular package. Other pins noted in Table 4-2 with pullups and pulldowns are
always on and cannot be disabled.
Table 4-2. Pins With Internal Pullup and Pulldown
RESET
(XRS = 0)
DEVICE BOOT
APPLICATION SOFTWARE
Pullup disabled
Pullup disabled (1)
Pullup enable is applicationdefined
PIN
GPIOx
TRST
Pulldown active
TCK
Pullup active
TMS
Pullup active
TDI
Pullup active
XRS
Pullup active
VREGENZ
Pulldown active
ERRORSTS
Other pins
(1)
38
Pulldown active
No pullup or pulldown present
Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
4.4
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Connections for Unused Pins
For applications that do not need to use all functions of the device, Table 4-3 lists acceptable conditioning
for any unused pins. When multiple options are listed in Table 4-3, any are acceptable. Pins not listed in
Table 4-3 must be connected according to Table 4-1.
Table 4-3. Connections for Unused Pins
SIGNAL NAME
ACCEPTABLE PRACTICE
Analog
VREFHIx
Tie to VDDA
VREFLOx
Tie to VSSA
ADCINx
•
•
No Connect
Tie to VSSA
Digital
GPIOx
•
•
•
Input mode with internal pullup enabled
Input mode with external pullup or pulldown resistor
Output mode with internal pullup disabled
X1
Tie to VSS
X2
No Connect
TCK
•
•
No Connect
Pullup resistor
TDI
•
•
No Connect
Pullup resistor
TDO
No Connect
TMS
No Connect
TRST
Pulldown resistor (2.2 kΩ or smaller)
VREGENZ
Tie to VDDIO
ERRORSTS
No Connect
FLT1
No Connect
FLT2
No Connect
VDD
All VDD pins must be connected per Table 4-1.
VDDA
If a separate analog supply is not used, tie to VDDIO.
VDDIO
All VDDIO pins must be connected per Table 4-1.
VDD3VFL
Must be tied to VDDIO
VDDOSC
Must be tied to VDDIO
VSS
All VSS pins must be connected to board ground.
VSSA
If a separate analog ground is not used, tie to VSS.
VSSOSC
If an external crystal is not used, this pin may be connected to the board ground.
Power and Ground
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
39
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
4.5
www.ti.com
Pin Multiplexing
4.5.1
GPIO Muxed Pins
Table 4-4 shows the GPIO muxed pins. The default for each pin is the GPIO function, secondary functions
can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The
GPyGMUXn register should be configured prior to the GPyMUXn to avoid transient pulses on GPIO's from
alternate mux selections. Columns not shown and blank cells are reserved GPIO Mux settings.
Table 4-4. GPIO Muxed Pins (1) (2)
GPIO Mux Selection
GPIO Index
0, 4, 8, 12
GPyGMUXn.
GPIOz =
00b, 01b,
10b, 11b
GPyMUXn.
GPIOz =
(1)
(2)
40
00b
1
2
3
5
6
00b
01b
7
15
01b
10b
11b
01b
10b
11b
11b
11b
GPIO0
EPWM1A (O)
SDAA (I/OD)
GPIO1
EPWM1B (O)
GPIO2
EPWM2A (O)
GPIO3
EPWM2B (O)
GPIO4
EPWM3A (O)
GPIO5
EPWM3B (O)
MFSRA (I/O)
OUTPUTXBAR3 (O)
GPIO6
EPWM4A (O)
OUTPUTXBAR4 (O)
EXTSYNCOUT (O)
GPIO7
EPWM4B (O)
MCLKRA (I/O)
OUTPUTXBAR5 (O)
EQEP3B (I)
CANRXB (I)
GPIO8
EPWM5A (O)
CANTXB (O)
ADCSOCAO (O)
EQEP3S (I/O)
SCITXDA (O)
GPIO9
EPWM5B (O)
SCITXDB (O)
OUTPUTXBAR6 (O)
EQEP3I (I/O)
SCIRXDA (I)
GPIO10
EPWM6A (O)
CANRXB (I)
ADCSOCBO (O)
EQEP1A (I)
SCITXDB (O)
UPP-WAIT (I/O)
GPIO11
EPWM6B (O)
SCIRXDB (I)
OUTPUTXBAR7 (O)
EQEP1B (I)
SCIRXDB (I)
UPP-START (I/O)
GPIO12
EPWM7A (O)
CANTXB (O)
MDXB (O)
EQEP1S (I/O)
SCITXDC (O)
UPP-ENA (I/O)
GPIO13
EPWM7B (O)
CANRXB (I)
MDRB (I)
EQEP1I (I/O)
SCIRXDC (I)
UPP-D7 (I/O)
GPIO14
EPWM8A (O)
SCITXDB (O)
MCLKXB (I/O)
OUTPUTXBAR3 (O)
UPP-D6 (I/O)
GPIO15
EPWM8B (O)
SCIRXDB (I)
MFSXB (I/O)
OUTPUTXBAR4 (O)
GPIO16
SPISIMOA (I/O)
CANTXB (O)
OUTPUTXBAR7 (O)
EPWM9A (O)
SD1_D1 (I)
UPP-D4 (I/O)
GPIO17
SPISOMIA (I/O)
CANRXB (I)
OUTPUTXBAR8 (O)
EPWM9B (O)
SD1_C1 (I)
UPP-D3 (I/O)
GPIO18
SPICLKA (I/O)
SCITXDB (O)
CANRXA (I)
EPWM10A (O)
SD1_D2 (I)
UPP-D2 (I/O)
GPIO19
SPISTEA (I/O)
SCIRXDB (I)
CANTXA (O)
EPWM10B (O)
SD1_C2 (I)
UPP-D1 (I/O)
GPIO20
EQEP1A (I)
MDXA (O)
CANTXB (O)
EPWM11A (O)
SD1_D3 (I)
UPP-D0 (I/O)
GPIO21
EQEP1B (I)
MDRA (I)
CANRXB (I)
EPWM11B (O)
SD1_C3 (I)
UPP-CLK (I/O)
GPIO22
EQEP1S (I/O)
MCLKXA (I/O)
SCITXDB (O)
EPWM12A (O)
SPICLKB (I/O)
SD1_D4 (I)
GPIO23
EQEP1I (I/O)
MFSXA (I/O)
SCIRXDB (I)
EPWM12B (O)
SPISTEB (I/O)
SD1_C4 (I)
GPIO24
OUTPUTXBAR1 (O)
EQEP2A (I)
MDXB (O)
SPISIMOB (I/O)
SD2_D1 (I)
GPIO25
OUTPUTXBAR2 (O)
EQEP2B (I)
MDRB (I)
SPISOMIB (I/O)
SD2_C1 (I)
GPIO26
OUTPUTXBAR3 (O)
EQEP2I (I/O)
MCLKXB (I/O)
OUTPUTXBAR3 (O)
SPICLKB (I/O)
SD2_D2 (I)
GPIO27
OUTPUTXBAR4 (O)
EQEP2S (I/O)
MFSXB (I/O)
OUTPUTXBAR4 (O)
SPISTEB (I/O)
SD2_C2 (I)
GPIO28
SCIRXDA (I)
EM1CS4 (O)
OUTPUTXBAR5 (O)
EQEP3A (I)
SD2_D3 (I)
GPIO29
SCITXDA (O)
EM1SDCKE (O)
OUTPUTXBAR6 (O)
EQEP3B (I)
SD2_C3 (I)
GPIO30
CANRXA (I)
EM1CLK (O)
OUTPUTXBAR7 (O)
EQEP3S (I/O)
SD2_D4 (I)
GPIO31
CANTXA (O)
EM1WE (O)
OUTPUTXBAR8 (O)
EQEP3I (I/O)
SD2_C4 (I)
GPIO32
SDAA (I/OD)
EM1CS0 (O)
GPIO33
SCLA (I/OD)
EM1RNW (O)
GPIO34
OUTPUTXBAR1 (O)
EM1CS2 (O)
SDAB (I/OD)
GPIO35
SCIRXDA (I)
EM1CS3 (O)
SCLB (I/OD)
GPIO36
SCITXDA (O)
EM1WAIT (I)
CANRXA (I)
GPIO37
OUTPUTXBAR2 (O)
EM1OE (O)
CANTXA (O)
MFSRB (I/O)
SCLA (I/OD)
OUTPUTXBAR1 (O)
OUTPUTXBAR2 (O)
MCLKRB (I/O)
SDAB (I/OD)
OUTPUTXBAR2 (O)
SCLB (I/OD)
OUTPUTXBAR3 (O)
CANTXA (O)
EQEP3A (I)
CANTXB (O)
CANRXA (I)
GPIO38
EM1A0 (O)
SCITXDC (O)
CANTXB (O)
GPIO39
EM1A1 (O)
SCIRXDC (I)
CANRXB (I)
UPP-D5 (I/O)
I = Input, O = Output, OD = Open Drain
GPIO Index settings of 9, 10, 11, 13, and 14 are reserved.
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-4. GPIO Muxed Pins(1)(2) (continued)
GPIO Mux Selection
GPIO Index
0, 4, 8, 12
GPyGMUXn.
GPIOz =
00b, 01b,
10b, 11b
GPyMUXn.
GPIOz =
00b
1
2
3
00b
01b
10b
GPIO40
EM1A2 (O)
GPIO41
EM1A3 (O)
6
7
01b
11b
01b
10b
15
11b
11b
11b
SDAB (I/OD)
SCLB (I/OD)
GPIO42
SDAA (I/OD)
SCITXDA (O)
GPIO43
SCLA (I/OD)
SCIRXDA (I)
GPIO44
EM1A4 (O)
GPIO45
EM1A5 (O)
GPIO46
EM1A6 (O)
SCIRXDD (I)
GPIO47
EM1A7 (O)
SCITXDD (O)
GPIO48
OUTPUTXBAR3 (O)
EM1A8 (O)
SCITXDA (O)
SD1_D1 (I)
GPIO49
OUTPUTXBAR4 (O)
EM1A9 (O)
SCIRXDA (I)
SD1_C1 (I)
GPIO50
EQEP1A (I)
EM1A10 (O)
SPISIMOC (I/O)
SD1_D2 (I)
GPIO51
EQEP1B (I)
EM1A11 (O)
SPISOMIC (I/O)
SD1_C2 (I)
GPIO52
EQEP1S (I/O)
EM1A12 (O)
SPICLKC (I/O)
SD1_D3 (I)
GPIO53
EQEP1I (I/O)
EM1D31 (I/O)
EM2D15 (I/O)
SPISTEC (I/O)
SD1_C3 (I)
GPIO54
SPISIMOA (I/O)
EM1D30 (I/O)
EM2D14 (I/O)
EQEP2A (I)
SCITXDB (O)
SD1_D4 (I)
GPIO55
SPISOMIA (I/O)
EM1D29 (I/O)
EM2D13 (I/O)
EQEP2B (I)
SCIRXDB (I)
SD1_C4 (I)
GPIO56
SPICLKA (I/O)
EM1D28 (I/O)
EM2D12 (I/O)
EQEP2S (I/O)
SCITXDC (O)
SD2_D1 (I)
GPIO57
SPISTEA (I/O)
EM1D27 (I/O)
EM2D11 (I/O)
EQEP2I (I/O)
SCIRXDC (I)
SD2_C1 (I)
GPIO58
MCLKRA (I/O)
EM1D26 (I/O)
EM2D10 (I/O)
OUTPUTXBAR1 (O)
SPICLKB (I/O)
SD2_D2 (I)
SPISIMOA (3) (I/O)
GPIO59
MFSRA (I/O)
EM1D25 (I/O)
EM2D9 (I/O)
OUTPUTXBAR2 (O)
SPISTEB (I/O)
SD2_C2 (I)
SPISOMIA (3) (I/O)
GPIO60
MCLKRB (I/O)
EM1D24 (I/O)
EM2D8 (I/O)
OUTPUTXBAR3 (O)
SPISIMOB (I/O)
SD2_D3 (I)
SPICLKA (3) (I/O)
GPIO61
MFSRB (I/O)
EM1D23 (I/O)
EM2D7 (I/O)
OUTPUTXBAR4 (O)
SPISOMIB (I/O)
SD2_C3 (I)
SPISTEA (3) (I/O)
GPIO62
SCIRXDC (I)
EM1D22 (I/O)
EM2D6 (I/O)
EQEP3A (I)
CANRXA (I)
SD2_D4 (I)
GPIO63
SCITXDC (O)
EM1D21 (I/O)
EM2D5 (I/O)
EQEP3B (I)
CANTXA (O)
SD2_C4 (I)
GPIO64
EM1D20 (I/O)
EM2D4 (I/O)
EQEP3S (I/O)
SCIRXDA (I)
SPISOMIB (3) (I/O)
GPIO65
EM1D19 (I/O)
EM2D3 (I/O)
EQEP3I (I/O)
SCITXDA (O)
SPICLKB (3) (I/O)
GPIO66
EM1D18 (I/O)
EM2D2 (I/O)
SDAB (I/OD)
SPISTEB (3) (I/O)
GPIO67
EM1D17 (I/O)
EM2D1 (I/O)
GPIO68
EM1D16 (I/O)
EM2D0 (I/O)
GPIO69
EM1D15 (I/O)
SCLB (I/OD)
SPISIMOC (3) (I/O)
GPIO70
EM1D14 (I/O)
CANRXA (I)
SCITXDB (O)
SPISOMIC (3) (I/O)
GPIO71
EM1D13 (I/O)
CANTXA (O)
SCIRXDB (I)
SPICLKC (3) (I/O)
GPIO72
EM1D12 (I/O)
CANTXB (O)
SCITXDC (O)
SPISTEC (3) (I/O)
GPIO73
EM1D11 (I/O)
CANRXB (I)
SCIRXDC (I)
GPIO74
EM1D10 (I/O)
GPIO75
EM1D9 (I/O)
GPIO76
EM1D8 (I/O)
SCITXDD (O)
GPIO77
EM1D7 (I/O)
SCIRXDD (I)
GPIO78
EM1D6 (I/O)
EQEP2A (I)
GPIO79
EM1D5 (I/O)
EQEP2B (I)
GPIO80
EM1D4 (I/O)
EQEP2S (I/O)
GPIO81
EM1D3 (I/O)
EQEP2I (I/O)
GPIO82
EM1D2 (I/O)
GPIO83
EM1D1 (I/O)
XCLKOUT (O)
GPIO84
(3)
5
SPISIMOB (3) (I/O)
SCITXDA (O)
MDXB (O)
SCIRXDA (I)
MDRB (I)
MDRA (I)
EM1CAS (O)
SCITXDB (O)
MCLKXB (I/O)
MCLKXA (I/O)
EM1A14 (O)
EM1RAS (O)
SCIRXDB (I)
MFSXB (I/O)
MFSXA (I/O)
EM1A15 (O)
EM1DQM0 (O)
EM1A16 (O)
EM1DQM1 (O)
GPIO85
EM1D0 (I/O)
GPIO86
EM1A13 (O)
GPIO87
GPIO88
GPIO89
MDXA (O)
SCITXDC (O)
High-Speed SPI-enabled GPIO mux option. This pin mux option is required when using the SPI in High-Speed Mode (HS_MODE = 1 in
SPICCR). This mux option is still available when not using the SPI in High-Speed Mode (HS_MODE = 0 in SPICCR).
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
41
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 4-4. GPIO Muxed Pins(1)(2) (continued)
GPIO Mux Selection
GPIO Index
0, 4, 8, 12
GPyGMUXn.
GPIOz =
00b, 01b,
10b, 11b
GPyMUXn.
GPIOz =
00b
1
2
3
5
6
00b
01b
01b
10b
11b
GPIO90
EM1A17 (O)
EM1DQM2 (O)
SCIRXDC (I)
GPIO91
EM1A18 (O)
EM1DQM3 (O)
SDAA (I/OD)
GPIO92
EM1A19 (O)
EM1BA1 (O)
SCLA (I/OD)
EM1BA0 (O)
SCITXDD (O)
GPIO93
7
01b
10b
GPIO94
15
11b
11b
11b
SCIRXDD (I)
GPIO95
GPIO96
EM2DQM1 (O)
GPIO97
EM2DQM0 (O)
EQEP1A (I)
EQEP1B (I)
GPIO98
EM2A0 (O)
EQEP1S (I/O)
GPIO99
EM2A1 (O)
EQEP1I (I/O)
GPIO100
EM2A2 (O)
EQEP2A (I)
SPISIMOC (I/O)
GPIO101
EM2A3 (O)
EQEP2B (I)
SPISOMIC (I/O)
GPIO102
EM2A4 (O)
EQEP2S (I/O)
SPICLKC (I/O)
GPIO103
EM2A5 (O)
EQEP2I (I/O)
SPISTEC (I/O)
SCITXDD (O)
GPIO104
SDAA (I/OD)
EM2A6 (O)
EQEP3A (I)
GPIO105
SCLA (I/OD)
EM2A7 (O)
EQEP3B (I)
SCIRXDD (I)
EM2A8 (O)
EQEP3S (I/O)
SCITXDC (O)
GPIO107
EM2A9 (O)
EQEP3I (I/O)
SCIRXDC (I)
GPIO108
EM2A10 (O)
GPIO106
GPIO109
EM2A11 (O)
GPIO110
EM2WAIT (I)
GPIO111
EM2BA0 (O)
GPIO112
EM2BA1 (O)
GPIO113
EM2CAS (O)
GPIO114
EM2RAS (O)
GPIO115
EM2CS0 (O)
GPIO116
EM2CS2 (O)
GPIO117
EM2SDCKE (O)
GPIO118
EM2CLK (O)
GPIO119
EM2RNW (O)
GPIO120
EM2WE (O)
USB0PFLT
GPIO121
EM2OE (O)
USB0EPEN
GPIO122
SPISIMOC (I/O)
SD1_D1 (I)
GPIO123
SPISOMIC (I/O)
SD1_C1 (I)
GPIO124
SPICLKC (I/O)
SD1_D2 (I)
GPIO125
SPISTEC (I/O)
SD1_C2 (I)
GPIO126
SD1_D3 (I)
GPIO127
SD1_C3 (I)
GPIO128
SD1_D4 (I)
GPIO129
SD1_C4 (I)
GPIO130
SD2_D1 (I)
GPIO131
SD2_C1 (I)
GPIO132
SD2_D2 (I)
GPIO133/
AUXCLKIN
SD2_C2 (I)
GPIO134
42
SD2_D3 (I)
GPIO135
SCITXDA (O)
SD2_C3 (I)
GPIO136
SCIRXDA (I)
SD2_D4 (I)
GPIO137
SCITXDB (O)
SD2_C4 (I)
GPIO138
SCIRXDB (I)
GPIO139
SCIRXDC (I)
GPIO140
SCITXDC (O)
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 4-4. GPIO Muxed Pins(1)(2) (continued)
GPIO Mux Selection
GPIO Index
0, 4, 8, 12
GPyGMUXn.
GPIOz =
00b, 01b,
10b, 11b
GPyMUXn.
GPIOz =
00b
1
2
3
5
00b
01b
10b
6
7
01b
11b
01b
10b
GPIO141
SCIRXDD (I)
GPIO142
SCITXDD (O)
15
11b
11b
11b
GPIO143
GPIO144
GPIO145
EPWM1A (O)
GPIO146
EPWM1B (O)
GPIO147
EPWM2A (O)
GPIO148
EPWM2B (O)
GPIO149
EPWM3A (O)
GPIO150
EPWM3B (O)
GPIO151
EPWM4A (O)
GPIO152
EPWM4B (O)
GPIO153
EPWM5A (O)
GPIO154
EPWM5B (O)
GPIO155
EPWM6A (O)
GPIO156
EPWM6B (O)
GPIO157
EPWM7A (O)
GPIO158
EPWM7B (O)
GPIO159
EPWM8A (O)
GPIO160
EPWM8B (O)
GPIO161
EPWM9A (O)
GPIO162
EPWM9B (O)
GPIO163
EPWM10A (O)
GPIO164
EPWM10B (O)
GPIO165
EPWM11A (O)
GPIO166
EPWM11B (O)
GPIO167
EPWM12A (O)
GPIO168
EPWM12B (O)
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
43
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
4.5.2
www.ti.com
Input X-BAR
The Input X-BAR is used to route any GPIO input to the ADC, eCAP, and ePWM peripherals as well as to
external interrupts (XINT) (see Figure 4-7). Table 4-5 shows the input X-BAR destinations. For details on
configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2837xD Dual-Core
Delfino Microcontrollers Technical Reference Manual.
Asynchronous
Synchronous
Sync. + Qual.
Input X-BAR
INPUT14
INPUT13
GPIOx
CPU PIE
CLA
INPUT7
INPUT8
INPUT9
INPUT10
INPUT11
INPUT12
eCAP1
eCAP2
eCAP3
eCAP4
eCAP5
eCAP6
INPUT6
INPUT5
INPUT4
INPUT3
INPUT2
INPUT1
GPIO0
TZ1,TRIP1
TZ2,TRIP2
TZ3,TRIP3
XINT5
XINT4
XINT3
XINT2
XINT1
TRIP4
TRIP5
ePWM
Modules
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
ePWM
X-BAR
TRIP6
ADCEXTSOC
ADC
EXTSYNCIN1
EXTSYNCIN2
ePWM and eCAP
Sync Chain
Output X-BAR
Figure 4-7. Input X-BAR
Table 4-5. Input X-BAR Destinations
INPUT
44
DESTINATIONS
INPUT1
EPWM[TZ1,TRIP1], EPWM X-BAR, Output X-BAR
INPUT2
EPWM[TZ2,TRIP2], EPWM X-BAR, Output X-BAR
INPUT3
EPWM[TZ3,TRIP3], EPWM X-BAR, Output X-BAR
INPUT4
XINT1, EPWM X-BAR, Output X-BAR
INPUT5
XINT2, ADCEXTSOC, EXTSYNCIN1, EPWM X-BAR, Output X-BAR
INPUT6
XINT3, EPWM[TRIP6], EXTSYNCIN2, EPWM X-BAR, Output X-BAR
INPUT7
ECAP1
INPUT8
ECAP2
INPUT9
ECAP3
INPUT10
ECAP4
INPUT11
ECAP5
INPUT12
ECAP6
INPUT13
XINT4
INPUT14
XINT5
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
4.5.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Output X-BAR and ePWM X-BAR
The Output X-BAR has eight outputs which can be selected on the GPIO mux as OUTPUTXBARx. The
ePWM X-BAR has eight outputs which are connected to the TRIPx inputs of the ePWM. The sources for
both the Output X-BAR and ePWM X-BAR are shown in Figure 4-8. For details on the Output X-BAR and
ePWM X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F2837xD Dual-Core Delfino
Microcontrollers Technical Reference Manual.
CTRIPOUTH
CTRIPOUTL
(Output X-BAR only)
CMPSSx
CTRIPH
CTRIPL
ePWM and eCAP
Sync Chain
EXTSYNCOUT
ADCSOCAO
Select Ckt
ADCSOCAO
ADCSOCBO
Select Ckt
ADCSOCBO
eCAPx
ECAPxOUT
ADCx
Output
X-BAR
EVT1
EVT2
EVT3
EVT4
INPUT1
INPUT2
INPUT3
Input X-Bar
(ePWM X-BAR only)
OUTPUT1
OUTPUT2
OUTPUT3
OUTPUT4
OUTPUT5
OUTPUT6
OUTPUT7
OUTPUT8
GPIO
Mux
TRIP4
TRIP5
ePWM
X-BAR
INPUT4
INPUT5
INPUT6
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
All
ePWM
Modules
OTHER DESTINATIONS
(see Input X-BAR)
FLT1.COMPH
X-BAR Flags
(shared)
FLT1.COMPL
SDFMx
FLT4.COMPH
FLT4.COMPL
Figure 4-8. Output X-BAR and ePWM X-BAR
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
45
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
4.5.4
www.ti.com
USB Pin Muxing
Table 4-6 shows assignment of the alternate USB function mapping. These can be configured with the
GPBAMSEL register.
Table 4-6. Alternate USB Function
4.5.5
GPIO
GPBAMSEL SETTING
USB FUNCTION
GPIO42
GPBAMSEL[10] = 1b
USB0DM
GPIO43
GPBAMSEL[11] = 1b
USB0DP
High-Speed SPI Pin Muxing
The SPI module on this device has a high-speed mode. To achieve the highest possible speed, a special
GPIO configuration is used on a single GPIO mux option for each SPI. These GPIOs may also be used by
the SPI when not in high-speed mode (HS_MODE = 0).
To select the mux options that enable the SPI high-speed mode, configure the GPyGMUX and GPyMUX
registers as shown in Table 4-7.
Table 4-7. GPIO Configuration for High-Speed SPI
GPIO
SPI SIGNAL
MUX CONFIGURATION
SPIA
GPIO58
SPISIMOA
GPBGMUX2[21:20]=11b
GPBMUX2[21:20]=11b
GPIO59
SPISOMIA
GPBGMUX2[23:22]=11b
GPBMUX2[23:22]=11b
GPIO60
SPICLKA
GPBGMUX2[25:24]=11b
GPBMUX2[25:24]=11b
GPIO61
SPISTEA
GPBGMUX2[27:26]=11b
GPBMUX2[27:26]=11b
GPIO63
SPISIMOB
GPBGMUX2[31:30]=11b
GPBMUX2[31:30]=11b
GPIO64
SPISOMIB
GPCGMUX1[1:0]=11b
GPCMUX1[1:0]=11b
GPIO65
SPICLKB
GPCGMUX1[3:2]=11b
GPCMUX1[3:2]=11b
GPIO66
SPISTEB
GPCGMUX1[5:4]=11b
GPCMUX1[5:4]=11b
SPIB
SPIC
46
GPIO69
SPISIMOC
GPCGMUX1[11:10]=11b
GPCMUX1[11:10]=11b
GPIO70
SPISOMIC
GPCGMUX1[13:12]=11b
GPCMUX1[13:12]=11b
GPIO71
SPICLKC
GPCGMUX1[15:14]=11b
GPCMUX1[15:14]=11b
GPIO72
SPISTEC
GPCGMUX1[17:16]=11b
GPCMUX1[17:16]=11b
Terminal Configuration and Functions
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5 Specifications
Absolute Maximum Ratings (1) (2)
5.1
over operating free-air temperature range (unless otherwise noted)
Supply voltage
MIN
MAX
VDDIO with respect to VSS
–0.3
4.6
VDD3VFL with respect to VSS
–0.3
4.6
VDDOSC with respect to VSS
–0.3
4.6
UNIT
V
VDD with respect to VSS
–0.3
1.5
Analog voltage
VDDA with respect to VSSA
–0.3
4.6
V
Input voltage
VIN (3.3 V)
–0.3
4.6
V
Output voltage
VO
–0.3
4.6
V
Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO)
–20
20
Analog input (per pin), IIKANALOG
(VIN < VSSA or VIN > VDDA)
–20
20
Total for all inputs, IIKTOTAL
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)
–20
20
Output current
Digital output (per pin), IOUT
–20
20
mA
Free-Air temperature
TA
–40
125
°C
Operating junction temperature
TJ
–40
150
°C
Tstg
–65
150
°C
Input clamp current
Storage temperature
(1)
(2)
(3)
(3)
mA
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.3 is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to VSS, unless otherwise noted.
Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life.
For additional information, see Semiconductor and IC Package Thermal Metrics.
5.2
ESD Ratings
VALUE
UNIT
TMS320F2837xD in 337-ball ZWT package
V(ESD)
Electrostatic discharge
Human body model (HBM), per
AEC Q100-002 (1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner balls on 337-ball ZWT:
A1, A19, W1, W19
±750
Human body model (HBM), per
AEC Q100-002 (1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 176-pin PTP:
1, 44, 45, 88, 89, 132, 133, 176
±750
Human body model (HBM), per
AEC Q100-002 (1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 100-pin PZP:
1, 25, 26, 50, 51, 75, 76, 100
±750
V
TMS320F2837xD in 176-pin PTP package
V(ESD)
Electrostatic discharge
V
TMS320F2837xD in 100-pin PZP package
V(ESD)
(1)
Electrostatic discharge
V
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
47
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.3
www.ti.com
Recommended Operating Conditions
MIN
NOM
MAX
UNIT
Device supply voltage, I/O, VDDIO (1)
3.14
3.3
3.47
V
Device supply voltage, VDD
1.14
1.2
1.26
V
Supply ground, VSS
0
Analog supply voltage, VDDA
3.14
Analog ground, VSSA
S version (2)
Q version (Q100 qualification)
Free-Air temperature, TA
(1)
(2)
48
V
3.47
0
T version
Junction temperature, TJ
3.3
Q version (Q100 qualification)
(2)
V
V
–40
105
–40
125
–40
150
–40
125
°C
°C
VDDIO, VDD3VFL, and VDDOSC should be maintained within 0.3 V of each other.
Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded
Processors for more information.
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.4
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Power Consumption Summary
Current values listed in this section are representative for the test conditions given and not the absolute
maximum possible. The actual device currents in an application will vary with application code and pin
configurations. Table 5-1 shows the device current consumption at 200-MHz SYSCLK.
Table 5-1. Device Current Consumption at 200-MHz SYSCLK
MODE
TEST CONDITIONS
Flash
Erase/Program
TYP (2)
MAX (3)
13 mA
20 mA
33 mA
40 mA
210 mA
3 mA
10 mA
10 µA
150 µA
10 µA
150 µA
•
•
Both CPU1 and CPU2 are in
STANDBY mode.
Flash is powered down.
XCLKOUT is turned off.
30 mA
135 mA
3 mA
10 mA
5 µA
150 µA
10 µA
150 µA
•
•
•
CPU1 watchdog is running.
Flash is powered down.
XCLKOUT is turned off.
1.5 mA
110 mA
750 µA
2 mA
5 µA
150 µA
10 µA
150 µA
•
CPU1.M0 and CPU1.M1 RAMs are in
low-power data retention mode.
CPU2.M0 and CPU2.M1 RAMs are in
low-power data retention mode.
300 µA
4 mA
750 µA
2 mA
5 µA
75 µA
1 µA
50 µA
CPU1 is running from RAM.
CPU2 is running from Flash.
All I/O pins are left unconnected.
Peripheral clocks are disabled.
CPU1 is performing Flash Erase and
Programming.
CPU2 is accessing Flash locations to
keep bank active.
XCLKOUT is turned off.
242 mA
360 mA
3 mA
10 mA
10 µA
150 µA
53 mA
65 mA
•
•
•
•
•
•
•
(5)
(6)
MAX (3)
105 mA
•
(1)
(2)
(3)
(4)
IDD3VFL
TYP (2)
Both CPU1 and CPU2 are in IDLE
mode.
Flash is powered down.
XCLKOUT is turned off.
•
HIBERNATE (6)
IDDA
MAX (3)
30 mA
•
•
HALT (5)
TYP (2)
440 mA
•
STANDBY
MAX
325 mA
•
•
IDLE
TYP
(3)
Code is running out of RAM. (4)
All I/O pins are left unconnected.
Peripherals not active have their
clocks disabled.
FLASH is read and in active state.
XCLKOUT is enabled at SYSCLK/4.
•
•
•
Operational
(RAM)
IDDIO (1)
IDD
(2)
IDDIO current is dependent on the electrical loading on the I/O pins.
TYP: Vnom, 30°C
MAX: Vmax, 125°C
The following is executed in a loop on CPU1:
• All of the communication peripherals are exercised in loop-back mode: CAN-A to CAN-B; SPI-A to SPI-C; SCI-A to SCI-D; I2C-A to
I2C-B; McBSP-A to McBSP-B; USB
• SDFM1 to SDFM4 active
• ePWM1 to ePWM12 generate 400-kHz PWM output on 24 pins
• CPU TIMERs active
• DMA does 32-bit burst transfers
• CLA1 does multiply-accumulate tasks
• All ADCs perform continuous conversion
• All DACs ramp voltage up/down at 150 kHz
• CMPSS1 to CMPSS8 active
The following is executed in a loop on CPU2:
• CPU TIMERs active
• CLA1 does multiply-accumulate tasks
• VCU does complex multiply/accumulate with parallel load
• TMU calculates a cosine
• FPU does multiply/accumulate with parallel load
CPU2 must go into IDLE mode before CPU1 enters HALT mode.
CPU2 must go into reset/IDLE/STANDBY mode before CPU1 enters HIBERNATE mode.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
49
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.4.1
www.ti.com
Current Consumption Graphs
Figure 5-1 and Figure 5-2 are a typical representation of the relationship between frequency and current
consumption/power on the device. The operational test from Table 5-1 was run across frequency at Vmax
and high temperature. Actual results will vary based on the system implementation and conditions.
0.5
0.45
0.4
0.35
Current (A)
0.3
0.25
0.2
0.15
0.1
0.05
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
170
180
190
200
SYSCLK (MHz)
VDD
VDDIO
VDDA
VDD3VFL
Figure 5-1. Operational Current Versus Frequency
1
0.9
0.8
0.7
Power (W)
0.6
0.5
0.4
0.3
0.2
0.1
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
SYSCLK (MHz)
Power
Figure 5-2. Power Versus Frequency
50
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Leakage current will increase with operating temperature in a nonlinear manner. The difference in VDD
current between TYP and MAX conditions can be seen in Figure 5-3. The current consumption in HALT
mode is primarily leakage current as there is no active switching if the internal oscillator has been powered
down.
Figure 5-3 shows the typical leakage current across temperature. The device was placed into HALT mode
under nominal voltage conditions.
Figure 5-3. IDD Leakage Current Versus Temperature
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
51
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.4.2
www.ti.com
Reducing Current Consumption
The F2837xD devices provide some methods to reduce the device current consumption:
• Any one of the four low-power modes—IDLE, STANDBY, HALT, and HIBERNATE—could be entered
during idle periods in the application.
• The flash module may be powered down if the code is run from RAM.
• Disable the pullups on pins that assume an output function.
• Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be
achieved by turning off the clock to any peripheral that is not used in a given application. Table 5-2
indicates the typical current reduction that may be achieved by disabling the clocks using the
PCLKCRx register.
Table 5-2. Current on VDD Supply by Various
Peripherals (at 200 MHz) (1)
PERIPHERAL
MODULE (2)
IDD CURRENT
REDUCTION (mA)
ADC (3)
3.3
CAN
3.3
CLA
1.4
CMPSS (3)
1.4
CPUTIMER
0.3
DAC
(3)
0.6
DMA
2.9
eCAP
0.6
EMIF1
2.9
EMIF2
2.6
ePWM1 to ePWM4 (4)
ePWM5 to ePWM12
(1)
(2)
(3)
(4)
52
Specifications
(4)
4.5
1.7
HRPWM (4)
1.7
I2C
1.3
McBSP
1.6
SCI
0.9
SDFM
2
SPI
0.5
uPP
7.3
USB and AUXPLL at 60 MHz
23.8
At Vmax and 125°C.
All peripherals are disabled upon reset. Use the PCLKCRx register
to individually enable peripherals. For peripherals with multiple
instances, the current quoted is for a single module.
This number represents the current drawn by the digital portion of
the ADC, CMPSS, and DAC modules.
The ePWM is at /2 of SYSCLK.
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.5
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
VOH
High-level output voltage
VOL
Low-level output voltage
IOH
High-level output source current for all output
pins
IOL
Low-level output sink current for all output pins
VIH
GPIO0–GPIO7,
High-level input voltage GPIO42–GPIO43,
GPIO46–GPIO47
(3.3 V)
VIL
Low-level input voltage (3.3 V)
IOH = IOH MIN
VDDIO * 0.8
IOH = –100 μA
VDDIO – 0.2
0.2
–4
Ipullup
Input current
Digital inputs with
pullup enabled (1)
VDDIO = 3.3 V
VIN = 0 V
Digital
Pullups disabled
0 V ≤ VIN ≤ VDDIO
CI
(1)
(2)
V
mA
4
Input current
UNIT
V
IOL = 100 µA
Ipulldown
Analog (except
ADCINB0 or
DACOUTx)
MAX
0.4
Digital inputs with
pulldown (1)
Pin leakage
TYP
IOL = IOL MAX
All other pins
ILEAK
MIN
VDDIO * 0.7
VDDIO + 0.3
2.0
VDDIO + 0.3
VSS – 0.3
0.8
mA
V
V
VDDIO = 3.3 V
VIN = VDDIO
120
µA
150
µA
2
2
0 V ≤ VIN ≤ VDDA
ADCINB0
2
DACOUTx
66
Input capacitance
µA
11 (2)
2
pF
See Table 4-2 for a list of pins with a pullup or pulldown.
The MAX input leakage shown on ADCINB0 is at high temperature.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
53
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.6
www.ti.com
Thermal Resistance Characteristics
5.6.1
ZWT Package
°C/W (1)
AIR FLOW (lfm) (2)
RΘJC
Junction-to-case thermal resistance
8.3
N/A
RΘJB
Junction-to-board thermal resistance
11.6
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
21.5
0
19.0
150
17.8
250
16.5
500
0.2
0
0.3
150
0.4
250
0.5
500
RΘJMA
Junction-to-moving air thermal resistance
PsiJT
Junction-to-package top
PsiJB
(1)
(2)
Junction-to-board
11.4
0
11.3
150
11.2
250
11.0
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
5.6.2
PTP Package
°C/W (1)
AIR FLOW (lfm) (2)
RΘJC
Junction-to-case thermal resistance
6.97
N/A
RΘJB
Junction-to-board thermal resistance
6.05
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
17.8
0
12.8
150
11.4
250
10.1
500
RΘJMA
Junction-to-moving air thermal resistance
PsiJT
Junction-to-package top
PsiJB
(1)
(2)
54
Junction-to-board
0.11
0
0.24
150
0.33
250
0.42
500
6.1
0
5.5
150
5.4
250
5.3
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.6.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
PZP Package
°C/W (1)
AIR FLOW (lfm) (2)
RΘJC
Junction-to-case thermal resistance
4.3
N/A
RΘJB
Junction-to-board thermal resistance
5.9
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
19.1
0
14.3
150
RΘJMA
Junction-to-moving air thermal resistance
12.8
250
11.4
500
PsiJT
PsiJB
(1)
(2)
Junction-to-package top
Junction-to-board
0.03
0
0.09
150
0.12
250
0.20
500
6.0
0
5.5
150
5.5
250
5.3
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
55
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7
5.7.1
www.ti.com
System
Power Sequencing
An external power supply must be used to supply 3.3 V to VDDIO, VDD3VFL, VDDOSC, and VDDA and to
provide 1.2 V to VDD. The internal VREG is not supported; therefore, the VREGENZ pin must be tied high
to 3.3 V. The supplies should ramp to full rail within 10 ms. Table 5-3 shows the supply ramp rate.
Table 5-3. Supply Ramp Rate
Supply ramp rate
VDDIO, VDD, VDDA, VDD3VFL, VDDOSC with respect to VSS
MIN
MAX
330
5
10
UNIT
V/s
The voltage on VDDIO should be greater than VDD or no less than 0.3 V below VDD at all times. VDDIO,
VDD3VFL, VDDOSC, and VDDA should be powered up together and be kept within 0.3 V of each other during
operation. Before powering the device, no voltage larger than 0.3 V above VDDIO should be applied to any
digital pin, and no voltage larger than 0.3 V above VDDA should be applied to any analog pin.
An internal power-on-reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance
state during power up. External supply voltage supervisors (SVS) can be used to monitor the voltage on
the 3.3-V and 1.2-V rails and drive XRS low should supplies fall outside operational specifications.
5.7.2
Reset Timing
XRS is the device reset pin. It functions as an input and open-drain output. The device has a built-in
power-on reset (POR). During power up, the POR circuit drives the XRS pin low. A watchdog or NMI
watchdog reset also drives the pin low. An external circuit may drive the pin to assert a device reset.
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. A capacitor should
be placed between XRS and VSS for noise filtering; the capacitance should be 100 nF or smaller. These
values will allow the watchdog to properly drive the XRS pin to VOL within 512 OSCCLK cycles when the
watchdog reset is asserted. Figure 5-4 shows the recommended reset circuit.
VDDIO
2.2 kW – 10 kW
XRS
£100 nF
Figure 5-4. Reset Circuit
56
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.2.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Reset Sources
The following reset sources exist on this device: XRS, WDRS, NMIWDRS, SYSRS, SCCRESET, and
HIBRESET. See the Reset Signals table in the System Control chapter of the TMS320F2837xD Dual-Core
Delfino Microcontrollers Technical Reference Manual.
The parameter th(boot-mode) must account for a reset initiated from any of these sources.
CAUTION
Some reset sources are internally driven by the device. Some of these sources
will drive XRS low. Use this to disable any other devices driving the boot pins.
The SCCRESET and debugger reset sources do not drive XRS; therefore, the
pins used for boot mode should not be actively driven by other devices in the
system. The boot configuration has a provision for changing the boot pins in
OTP; for more details, see the TMS320F2837xD Dual-Core Delfino
Microcontrollers Technical Reference Manual.
5.7.2.2
Reset Electrical Data and Timing
Table 5-4 shows the reset (XRS) timing requirements. Table 5-5 shows the reset (XRS) switching
characteristics. Figure 5-5 shows the power-on reset. Figure 5-6 shows the warm reset.
Table 5-4. Reset (XRS) Timing Requirements
MIN
MAX
UNIT
th(boot-mode)
Hold time for boot-mode pins
1.5
ms
tw(RSL2)
Pulse duration, XRS low on warm reset
3.2
µs
Table 5-5. Reset (XRS) Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(RSL1)
Pulse duration, XRS driven low by device after supplies are
stable
tw(WDRS)
Pulse duration, reset pulse generated by watchdog
MIN
TYP
MAX
UNIT
100
512tc(OSCCLK)
µs
cycles
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
57
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
VDDIO, VDDA
(3.3 V)
VDD (1.2 V)
tw(RSL1)
XRS
(A)
Boot ROM
CPU
Execution
Phase
User-code
th(boot-mode)(B)
Boot-Mode
Pins
User-code dependent
GPIO pins as input
Boot-ROM execution starts
Peripheral/GPIO function
Based on boot code
GPIO pins as input (pullups are disabled)
I/O Pins
User-code dependent
A.
B.
The XRS pin can be driven externally by a supervisor or an external pullup resistor, see Table 4-1. On-chip POR logic
will hold this pin low until the supplies are in a valid range.
After reset from any source (see Section 5.7.2.1), the boot ROM code samples Boot Mode pins. Based on the status
of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code
executes after power-on conditions (in debugger environment), the boot code execution time is based on the current
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.
Figure 5-5. Power-on Reset
tw(RSL2)
XRS
User Code
CPU
Execution
Phase
User Code
Boot ROM
Boot-ROM execution starts
(initiated by any reset source)
Boot-Mode
Pins
Peripheral/GPIO Function
GPIO Pins as Input
th(boot-mode)(A)
Peripheral/GPIO Function
User-Code Execution Starts
I/O Pins
User-Code Dependent
GPIO Pins as Input (Pullups are Disabled)
User-Code Dependent
A.
After reset from any source (see Section 5.7.2.1), the Boot ROM code samples BOOT Mode pins. Based on the
status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code
executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current
SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled.
Figure 5-6. Warm Reset
58
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Clock Specifications
5.7.3.1
Clock Sources
Table 5-6 lists four possible clock sources. Figure 5-7 provides an overview of the device's clocking
system.
Table 5-6. Possible Reference Clock Sources
CLOCK SOURCE
MODULES CLOCKED
COMMENTS
INTOSC1
Can be used to provide clock for:
•
Watchdog block
•
Main PLL
•
CPU-Timer 2
Internal oscillator 1.
Zero-pin overhead 10-MHz internal oscillator.
INTOSC2 (1)
Can be used to provide clock for:
•
Main PLL
•
Auxiliary PLL
•
CPU-Timer 2
Internal oscillator 2.
Zero-pin overhead 10-MHz internal oscillator.
XTAL
Can be used to provide clock for:
•
Main PLL
•
Auxiliary PLL
•
CPU-Timer 2
External crystal or resonator connected between the X1 and X2 pins
or single-ended clock connected to the X1 pin.
AUXCLKIN
Can be used to provide clock for:
•
Auxiliary PLL
•
CPU-Timer 2
Single-ended 3.3-V level clock source. GPIO133/AUXCLKIN pin
should be used to provide the input clock.
(1)
On reset, internal oscillator 2 (INTOSC2) is the default clock source for both system PLL (OSCCLK) and auxiliary PLL (AUXOSCCLK).
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
59
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
INTOSC1
WDCLK
CLKSRCCTL1
INTOSC2
SYSPLLCTL1
SYSCLKDIVSEL
SYSCLK
Divider
OSCCLK
X1 (XTAL)
System PLL
To watchdog timers
PLLRAWCLK
PLLSYSCLK
To GS RAMs, GPIOs,
NMIWDs, and IPC
CPU1.SYSCLK
CPU1
CPU1.CPUCLK
To local memories
CPU2.SYSCLK
CPU2
CPU2.CPUCLK
To local memories
CPU1.SYSCLK
CPU2.SYSCLK
To ePIEs, LS RAMs,
CLA message RAMs,
and DCSMs
PERx.SYSCLK
To peripherals
PERx.LSPCLK
To SCIs, SPIs, and
McBSPs
EPWMCLK
To ePWMs
One per SYSCLK peripheral
CPUSELx
CPU1.PCLKCRx
CPU2.PCLKCRx
One per LSPCLK peripheral
LOSPCP
CPUSELx
CPU1.PCLKCRx
LSP
Divider
CPU2.PCLKCRx
One per ePWM
EPWMCLKDIV
PLLSYSCLK
CPU1.PCLKCRx
CPUSELx
/1
/2
CPU2.PCLKCRx
HRPWM
CPU1.PCLKCRx
HRPWMCLK
To HRPWM Registers
CAN Bit Clock
To CANs
AUXPLLCLK
To USB bit clock
One per CAN module
CPUSELx
CLKSRCCTL2
AUXCLKIN
CLKSRCCTL2
AUXPLLCTL1
AUXOSCCLK
Auxiliary PLL
AUXPLLRAWCLK
AUXCLKDIVSEL
AUXCLK
Divider
Figure 5-7. Clocking System
60
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.3.2
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Clock Frequencies, Requirements, and Characteristics
This section provides the frequencies and timing requirements of the input clocks, PLL lock times,
frequencies of the internal clocks, and the frequency and switching characteristics of the output clock.
5.7.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
Table 5-7 shows the frequency requirements for the input clocks. Table 5-16 shows the crystal equivalent
series resistance requirements. Table 5-8 shows the X1 input level characteristics when using an external
clock source. Table 5-9 and Table 5-10 show the timing requirements for the input clocks. Table 5-11
shows the PLL lock times for the Main PLL and the USB PLL.
Table 5-7. Input Clock Frequency
f(XTAL)
MIN
MAX
UNIT
10
20
MHz
Frequency, X1/X2, from external crystal or resonator
f(X1)
f(AUXI)
Frequency, X1, from external oscillator (PLL enabled)
2
20
MHz
Frequency, X1, from external oscillator (PLL disabled)
2
100
MHz
Frequency, AUXCLKIN, from external oscillator
2
60
MHz
Table 5-8. X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal)
over recommended operating conditions (unless otherwise noted)
PARAMETER
X1 VIL
Valid low-level input voltage
X1 VIH
Valid high-level input voltage
MIN
MAX
UNIT
–0.3
0.3 * VDDIO
V
0.7 * VDDIO
VDDIO + 0.3
V
Table 5-9. X1 Timing Requirements
MIN
MAX
UNIT
tf(X1)
Fall time, X1
6
ns
tr(X1)
Rise time, X1
6
ns
tw(X1L)
Pulse duration, X1 low as a percentage of tc(X1)
45%
55%
tw(X1H)
Pulse duration, X1 high as a percentage of tc(X1)
45%
55%
MIN
MAX
Table 5-10. AUXCLKIN Timing Requirements
UNIT
tf(AUXI)
Fall time, AUXCLKIN
6
ns
tr(AUXI)
Rise time, AUXCLKIN
6
ns
tw(AUXL)
Pulse duration, AUXCLKIN low as a percentage of tc(XCI)
45%
55%
tw(AUXH)
Pulse duration, AUXCLKIN high as a percentage of tc(XCI)
45%
55%
NOM
MAX
Table 5-11. PLL Lock Times
MIN
µs
µs
t(PLL)
Lock time, Main PLL (X1, from external oscillator)
50 µs + 2500 * tc(OSCCLK)
t(USB)
Lock time, USB PLL (AUXCLKIN, from external oscillator)
50 µs + 2500 * tc(OSCCLK) (1)
(1)
UNIT
(1)
The PLL lock time here includes the two required PLL lock sequences. Cycle count includes code execution of the PLL initialization
routine, which could vary depending on compiler optimizations and flash wait states.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
61
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.7.3.2.2 Internal Clock Frequencies
Table 5-12 provides the clock frequencies for the internal clocks.
Table 5-12. Internal Clock Frequencies
MAX
UNIT
f(SYSCLK)
Frequency, device (system) clock
MIN
2
200
MHz
tc(SYSCLK)
Period, device (system) clock
5
500
ns
f(PLLRAWCLK)
Frequency, system PLL output (before SYSCLK
divider)
120
400
MHz
f(AUXPLLRAWCLK)
Frequency, auxiliary PLL output (before AUXCLK
divider)
120
400
MHz
f(AUXPLL)
Frequency, AUXPLLCLK
60
60
MHz
f(PLL)
Frequency, PLLSYSCLK
2
200
MHz
2
200
MHz
5
500
ns
(1)
f(LSP)
Frequency, LSPCLK
tc(LSPCLK)
Period, LSPCLK
f(OSCCLK)
Frequency, OSCCLK (INTOSC1 or INTOSC2 or
XTAL or X1)
f(EPWM)
Frequency, EPWMCLK (2)
f(HRPWM)
Frequency, HRPWMCLK
(1)
(2)
NOM
See respective clock
MHz
60
100
MHz
100
MHz
Lower LSPCLK will reduce device power consumption. The default at reset is SYSCLK/4.
For SYSCLK above 100 MHz, the EPWMCLK must be half of SYSCLK.
5.7.3.2.3 Output Clock Frequency and Switching Characteristics
Table 5-13 provides the frequency of the output clock. Table 5-14 shows the switching characteristics of
the output clock, XCLKOUT.
Table 5-13. Output Clock Frequency
MIN
f(XCO)
MAX
UNIT
50
MHz
Frequency, XCLKOUT
Table 5-14. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) (1) (2)
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
MAX
UNIT
tf(XCO)
Fall time, XCLKOUT
tr(XCO)
Rise time, XCLKOUT
tw(XCOL)
Pulse duration, XCLKOUT low
H–2
tw(XCOH)
Pulse duration, XCLKOUT high
H–2
H+2
ns
(1)
(2)
62
5
ns
5
ns
H+2
ns
A load of 40 pF is assumed for these parameters.
H = 0.5tc(XCO)
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.3.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Input Clocks and PLLs
In addition to the internal 0-pin oscillators, multiple external clock source options are available. Figure 5-8
shows the recommended methods of connecting crystals, resonators, and oscillators to pins X1/X2 (also
referred to as XTAL) and AUXCLKIN.
X1
vssosc
X2
X1
vssosc
X2
RESONATOR
CRYSTAL
RD
C L2
C L1
X1
vssosc
X2
GPIO133/AUXCLKIN
NC
3.3V
CLK
VDD
OUT
3.3V
CLK
VDD
OUT
GND
3.3V OSCILLATOR
GND
3.3V OSCILLATOR
Figure 5-8. Connecting Input Clocks to a 2837xD Device
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
63
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.3.4
www.ti.com
Crystal Oscillator
When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to
prevent over-driving the crystal (drive level can be found in the crystal data sheet). In higher-frequency
applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should
be as small as possible because the size of the resistance affects start-up time (smaller RD = faster startup time). TI recommends that the crystal manufacturer characterize the crystal with the application board.
Table 5-15 shows the crystal oscillator parameters. Table 5-16 shows the crystal equivalent series
resistance (ESR) requirements. Table 5-17 shows the crystal oscillator electrical characteristics.
Table 5-15. Crystal Oscillator Parameters
CL1, CL2
Load capacitance
C0
Crystal shunt capacitance
MIN
MAX
12
24
UNIT
pF
7
pF
Table 5-16. Crystal Equivalent Series Resistance (ESR) Requirements (1) (2)
CRYSTAL FREQUENCY (MHz)
MAXIMUM ESR (Ω)
(CL1 = CL2 = 12 pF)
MAXIMUM ESR (Ω)
(CL1 = CL2 = 24 pF)
10
55
110
12
50
95
14
50
90
16
45
75
18
45
65
20
45
50
(1)
(2)
Crystal shunt capacitance (C0) should be less than or equal to 7 pF.
ESR = Negative Resistance/3
Table 5-17. Crystal Oscillator Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
Start-up time (1)
Crystal drive level (DL)
(1)
64
TEST CONDITIONS
f = 20 MHz
ESR MAX = 50 Ω
CL1 = CL2 = 24 pF
C0 = 7 pF
MIN
TYP
MAX
2
UNIT
ms
1
mW
Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the
application with the chosen crystal.
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.3.5
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Internal Oscillators
To reduce production board costs and application development time, all F2837xD devices contain two
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, both oscillators are
enabled at power up. INTOSC2 is set as the source for the system reference clock (OSCCLK) and
INTOSC1 is set as the backup clock source. INTOSC1 can also be manually configured as the system
reference clock (OSCCLK). Table 5-18 provides the electrical characteristics of the internal oscillators to
determine if this module meets the clocking requirements of the application.
Table 5-18 provides the electrical characteristics of the two internal oscillators.
NOTE
This oscillator cannot be used as the PLL source if the PLLSYSCLK is configured to
frequencies above 194 MHz.
Table 5-18. Internal Oscillator Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
f(INTOSC)
Frequency, INTOSC1 and INTOSC2
Frequency stability at room temperature
tOSCST
TEST CONDITIONS
Start-up and settling time
MIN
TYP
9.7
30°C
MAX
UNIT
10.3
MHz
±0.1%
22
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
µs
65
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.4
www.ti.com
Flash Parameters
The on-chip flash memory is tightly integrated to the CPU, allowing code execution directly from flash
through 128-bit-wide prefetch reads and a pipeline buffer. Flash performance for sequential code is equal
to execution from RAM. Factoring in discontinuities, most applications will run with an efficiency of
approximately 80% relative to code executing from RAM. This flash efficiency lets designers realize a 2×
improvement in performance when migrating from the previous generation Delfino MCUs.
This device also has an OTP (One-Time-Programmable) sector used for the dual code security module
(DCSM), which cannot be erased after it is programmed.
Table 5-19 shows the minimum required flash wait states at different frequencies. Table 5-20 shows the
flash parameters at 200 MHz. Table 5-21 shows the flash/OTP endurance. Table 5-22 shows the flash
data retention duration.
Table 5-19. Flash Wait States
CPUCLK (MHz)
MINIMUM WAIT STATES
EXTERNAL OSCILLATOR OR CRYSTAL
INTOSC1 OR INTOSC2
150 < CPUCLK ≤ 200
145 < CPUCLK ≤ 194
3
100 < CPUCLK ≤ 150
97 < CPUCLK ≤ 145
2
50 < CPUCLK ≤ 100
48 < CPUCLK ≤ 97
1
CPUCLK ≤ 50
CPUCLK ≤ 48
0
(1)
(1)
Minimum required FRDCNTL[RWAIT].
Table 5-20. Flash Parameters at 200 MHz (1)
PARAMETER
TYP
MAX
UNIT
40
300
µs
8KW sector
90
180
ms
32KW sector
360
720
ms
Erase Time
at < 25 cycles
8KW sector
25
50
32KW sector
30
55
Erase Time (3)
at 50k cycles
8KW sector
105
4000
32KW sector
110
4000
128 data bits + 16 ECC bits
Program Time
(3)
(1)
(2)
(3)
66
(2)
MIN
ms
ms
The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required
before programming, when programming the device for the first time. However, the erase operation is needed on all subsequent
programming operations.
Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM:
• Code that uses flash API to program the flash
• Flash API itself
• Flash data to be programmed
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for
programming. The transfer time will significantly vary depending on the speed of the emulator used.
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.
Erase time includes Erase verify by the CPU and does not involve any data transfer.
Erase time includes Erase verify by the CPU.
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 5-21. Flash/OTP Endurance
Nf
Flash endurance for the array (write/erase cycles)
MIN
TYP
20000
50000
MAX
UNIT
cycles
Table 5-22. Flash Data Retention Duration
PARAMETER
tretention
Data retention duration
TEST CONDITIONS
TJ = 85°C
MIN
MAX
20
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
UNIT
years
67
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.5
www.ti.com
Emulation/JTAG
The JTAG port has five dedicated pins: TRST, TMS, TDI, TDO, and TCK. The TRST signal should always
be pulled down through a 2.2-kΩ pulldown resistor on the board. This MCU does not support the EMU0
and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should always
be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to
4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used.
See Figure 5-9 to see how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 5-10
shows how to connect to the 20-pin header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4
are not used and should be grounded.
The PD (Power Detect) terminal of the emulator header should be connected to the board 3.3-V supply.
Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should also
be connected to board ground. The JTAG clock should be looped from the header TCK output terminal
back to the RTCK input terminal of the header (to sense clock continuity by the emulator). Header terminal
RESET is an open-drain output from the emulator header that enables board components to be reset
through emulator commands (available only through the 20-pin header).
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the
JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain.
Otherwise, each signal should be buffered. Additionally, for most emulator operations at 10 MHz, no
series resistors are needed on the JTAG signals. However, if high emulation speeds are expected
(35 MHz or so), 22-Ω resistors should be placed in series on each JTAG signal.
See the XDS Target Connection Guide for more information about JTAG emulation.
Distance between the header and the target
should be less than 6 inches (15.24 cm).
2.2 kW
TRST
GND
1
TMS
3
TDI
100 W
MCU
3.3 V
5
7
TDO
9
11
TCK
4.7 kW
3.3 V
13
TMS
TRST
TDI
TDIS
PD
KEY
2
4
6
TDO
GND
8
RTCK
GND
10
TCK
GND
12
EMU1
14
EMU0
GND
4.7 kW
3.3 V
Figure 5-9. Connecting to the 14-Pin JTAG Header
68
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Distance between the header and the target
should be less than 6 inches (15.24 cm).
2.2 kW
TRST
GND
1
TMS
3
TDI
100 W
MCU
5
3.3V
7
TDO
9
11
TCK
TMS
TRST
TDI
TDIS
PD
KEY
TDO
GND
RTCK
GND
TCK
GND
2
4
GND
6
8
10
12
4.7 kW
4.7 kW
13
3.3 V
15
open
drain
A low pulse from the emulator
can be tied with other reset
sources to reset the board.
17
19
EMU0
EMU1
RESET
GND
EMU2
EMU3
EMU4
GND
GND
14
3.3 V
16
18
20
GND
Figure 5-10. Connecting to the 20-Pin JTAG Header
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
69
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.5.1
www.ti.com
JTAG Electrical Data and Timing
Table 5-23 lists the JTAG timing requirements. Table 5-24 lists the JTAG switching characteristics.
Figure 5-11 shows the JTAG timing.
Table 5-23. JTAG Timing Requirements
NO.
MIN
MAX
UNIT
1
tc(TCK)
Cycle time, TCK
66.66
ns
1a
tw(TCKH)
Pulse duration, TCK high (40% of tc)
26.66
ns
1b
tw(TCKL)
Pulse duration, TCK low (40% of tc)
26.66
ns
tsu(TDI-TCKH)
Input setup time, TDI valid to TCK high
13
ns
tsu(TMS-TCKH)
Input setup time, TMS valid to TCK high
13
ns
th(TCKH-TDI)
Input hold time, TDI valid from TCK high
7
ns
th(TCKH-TMS)
Input hold time, TMS valid from TCK high
7
ns
3
4
Table 5-24. JTAG Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
2
PARAMETER
td(TCKL-TDO)
Delay time, TCK low to TDO valid
MIN
MAX
6
25
UNIT
ns
1
1a
1b
TCK
2
TDO
3
4
TDI/TMS
Figure 5-11. JTAG Timing
70
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.6
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
GPIO Electrical Data and Timing
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO
pins are configured as inputs. For specific inputs, the user can also select the number of input qualification
cycles to filter unwanted noise glitches.
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed
to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an
Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADC(s),
eCAP(s), ePWM(s), and external interrupts. For more details, see the X-BAR chapter in the
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual.
5.7.6.1
GPIO - Output Timing
Table 5-25 shows the general-purpose output switching characteristics. Figure 5-12 shows the generalpurpose output timing.
Table 5-25. General-Purpose Output Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
MAX
UNIT
tr(GPO)
Rise time, GPIO switching low to high
All GPIOs
8 (1)
ns
tf(GPO)
Fall time, GPIO switching high to low
All GPIOs
8 (1)
ns
tfGPO
Toggling frequency, GPO pins
25
MHz
(1)
Rise time and fall time vary with load. These values assume a 40-pF load.
GPIO
tf(GPO)
tr(GPO)
Figure 5-12. General-Purpose Output Timing
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
71
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.6.2
www.ti.com
GPIO - Input Timing
Table 5-26 shows the general-purpose input timing requirements. Figure 5-13 shows the sampling mode.
Table 5-26. General-Purpose Input Timing Requirements
MIN
tw(SP)
Sampling period
tw(IQSW)
Input qualifier sampling window
tw(GPI)
(1)
(2)
(2)
UNIT
1tc(SYSCLK)
cycles
QUALPRD ≠ 0
2tc(SYSCLK) * QUALPRD
cycles
tw(SP) * (n (1) – 1)
cycles
2tc(SYSCLK)
cycles
tw(IQSW) + tw(SP) + 1tc(SYSCLK)
cycles
Synchronous mode
Pulse duration, GPIO low/high
MAX
QUALPRD = 0
With input qualifier
"n" represents the number of qualification samples as defined by GPxQSELn register.
For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.
(A)
GPIO Signal
GPxQSELn = 1,0 (6 samples)
1
1
0
0
0
0
0
0
0
1
tw(SP)
0
0
0
1
1
1
1
Sampling Window
1
1
1
1
Sampling Period determined
by GPxCTRL[QUALPRD]
tw(IQSW)
1
(SYSCLK cycle * 2 * QUALPRD) * 5
(B)
(C)
SYSCLK
QUALPRD = 1
(SYSCLK/2)
(D)
Output From
Qualifier
A.
B.
C.
D.
This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n",
the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be
sampled).
The qualification period selected through the GPxCTRL register applies to groups of 8 GPIO pins.
The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is
used.
In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or
greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLK cycles. This would ensure
5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide
pulse ensures reliable recognition.
Figure 5-13. Sampling Mode
72
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.6.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Sampling Window Width for Input Signals
The following section summarizes the sampling window width for input signals for various input qualifier
configurations.
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.
Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0
Sampling frequency = SYSCLK, if QUALPRD = 0
Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0
In the above equations, SYSCLK cycle indicates the time period of SYSCLK.
Sampling period = SYSCLK cycle, if QUALPRD = 0
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of
the signal. This is determined by the value written to GPxQSELn register.
Case 1:
Qualification using 3 samples
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0
Case 2:
Qualification using 6 samples
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0
Figure 5-14 shows the general-purpose input timing.
SYSCLK
GPIOxn
tw(GPI)
Figure 5-14. General-Purpose Input Timing
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
73
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.7
www.ti.com
Interrupts
Figure 5-15 provides a high-level view of the interrupt architecture.
As shown in Figure 5-15, the devices support five external interrupts (XINT1 to XINT5) that can be
mapped onto any of the GPIO pins.
In this device, 16 ePIE block interrupts are grouped into 1 CPU interrupt. In total, there are 12 CPU
interrupt groups, with 16 interrupts per group.
CPU1.TIMER0
LPM Logic
CPU1.WD
CPU1.LPMINT
CPU1.TINT0
CPU1.W AKEINT
CPU1.NMIWD
NMI
CPU1.W DINT
CPU1
GPIO0
GPIO1
...
...
GPIOx
INPUTXBAR4
Input
X-BAR
INPUTXBAR5
INPUTXBAR6
INPUTXBAR13
INPUTXBAR14
CPU1.XINT1 Control
CPU1.XINT2 Control
CPU1.XINT3 Control
CPU1.XINT4 Control
CPU1.XINT5 Control
INT1
to
INT12
CPU1.
ePIE
CPU1.TIMER1
CPU1.TIMER2
IPC
4 Interrupts
CPU1.TINT1
CPU1.TINT2
INT13
INT14
Peripherals
CPU1.NMIWD
CPU2.XINT1 Control
CPU2.XINT2 Control
CPU2.XINT3 Control
CPU2.XINT4 Control
CPU2.XINT5 Control
LPM Logic
CPU2.WD
CPU2
INT1
to
INT12
CPU2
ePIE
CPU2.TIMER1
CPU2 .LPMINT
CPU2.W AKEINT
CPU2.TIMER2
CPU2.W DINT
CPU2.TIMER0
NMI
CPU2.TINT1
CPU2.TINT2
INT13
INT14
CPU2.TINT0
Figure 5-15. External and ePIE Interrupt Sources
74
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.7.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
External Interrupt (XINT) Electrical Data and Timing
Table 5-27 lists the external interrupt timing requirements. Table 5-28 lists the external interrupt switching
characteristics. Figure 5-16 shows the external interrupt timing.
Table 5-27. External Interrupt Timing Requirements (1)
MIN
tw(INT)
(1)
Pulse duration, INT input low/high
MAX
UNIT
Synchronous
2tc(SYSCLK)
cycles
With qualifier
tw(IQSW) + tw(SP) + 1tc(SYSCLK)
cycles
For an explanation of the input qualifier parameters, see Table 5-26.
Table 5-28. External Interrupt Switching Characteristics (1)
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(INT) Delay time, INT low/high to interrupt-vector fetch (2)
(1)
(2)
MIN
MAX
UNIT
tw(IQSW) + 14tc(SYSCLK)
tw(IQSW) + tw(SP) + 14tc(SYSCLK)
cycles
For an explanation of the input qualifier parameters, see Table 5-26.
This assumes that the ISR is in a single-cycle memory.
tw(INT)
XINT1, XINT2, XINT3,
XINT4, XINT5
td(INT)
Address bus
(internal)
Interrupt Vector
Figure 5-16. External Interrupt Timing
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
75
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.8
www.ti.com
Low-Power Modes
This device has three clock-gating low-power modes and a special power-gating mode.
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the
Low Power Modes section of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical
Reference Manual.
5.7.8.1
Clock-Gating Low-Power Modes
IDLE, STANDBY, and HALT modes on this device are similar to those on other C28x devices. Table 5-29
describes the effect on the system when any of the clock-gating low-power modes are entered.
Table 5-29. Effect of Clock-Gating Low-Power Modes on the Device
MODULES/
CLOCK DOMAIN
CPU1 IDLE
CPU1 STANDBY
CPU2 IDLE
CPU2 STANDBY
HALT
CPU1.CLKIN
Active
Gated
N/A
N/A
Gated
CPU1.SYSCLK
Active
Gated
N/A
N/A
Gated
CPU1.CPUCLK
Gated
Gated
N/A
N/A
Gated
CPU2.CLKIN
N/A
N/A
Active
Gated
Gated
CPU2.SYSCLK
N/A
N/A
Active
Gated
Gated
CPU2.CPUCLK
N/A
N/A
Gated
Gated
Gated
Clock to modules
Connected to
PERx.SYSCLK
Active
Gated if
CPUSEL.PERx =
CPU1
Active
Gated if
CPUSEL.PERx =
CPU2
Gated
CPU1.WDCLK
Active
Active
N/A
N/A
Gated if
CLKSRCCTL1.WDHALTI = 0
CPU2.WDCLK
N/A
N/A
Active
Active
Gated
Active
Active
Active
Active
Gated
PLL
Powered
Powered
Powered
Powered
Software must power down PLL
before entering HALT
INTOSC1
Powered
Powered
Powered
Powered
Powered down if
CLKSRCCTL1.WDHALTI = 0
INTOSC2
Powered
Powered
Powered
Powered
Powered down if
CLKSRCCTL1.WDHALTI = 0
Flash
Powered
Powered
Powered
Powered
Software-Controlled
X1/X2 Crystal
Oscillator
Powered
Powered
Powered
Powered
Powered-Down
AUXPLLCLK
5.7.8.2
Power-Gating Low-Power Modes
HIBERNATE mode is the lowest power mode on this device. It is a global low-power mode that gates the
supply voltages to most of the system. HIBERNATE is essentially a controlled power-down with remote
wakeup capability, and can be used to save power during long periods of inactivity. Table 5-30 describes
the effects on the system when the HIBERNATE mode is entered.
Table 5-30. Effect of Power-Gating Low-Power Mode on the Device
MODULES/POWER DOMAINS
HIBERNATE
M0 and M1 memories
●
●
CPU1, CPU2, digital peripherals
Powered down
Dx, LSx, GSx memories
Power down, memory contents are lost
IOs
On with output state preserved
Oscillators, PLL, analog
peripherals, Flash
Enters Low-Power Mode
76
Specifications
Remain on with memory retention if LPMCR.M0M1MODE = 0x00
Are off when LPMCR.M0M1MODE = 0x01
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.8.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Low-Power Mode Wakeup Timing
Table 5-31 shows the IDLE mode timing requirements, Table 5-32 shows the switching characteristics,
and Figure 5-17 shows the timing diagram for IDLE mode.
Table 5-31. IDLE Mode Timing Requirements (1)
MIN
tw(WAKE)
(1)
Pulse duration, external wake-up signal
Without input qualifier
With input qualifier
MAX
2tc(SYSCLK)
UNIT
cycles
2tc(SYSCLK) + tw(IQSW)
For an explanation of the input qualifier parameters, see Table 5-26.
Table 5-32. IDLE Mode Switching Characteristics (1)
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Delay time, external wake signal to program execution resume
td(WAKE-IDLE)
MIN
MAX
•
Wakeup from Flash
– Flash module in active state
Without input qualifier
•
Wakeup from Flash
– Flash module in sleep state
Without input qualifier
40tc(SYSCLK)
With input qualifier
With input qualifier
40tc(SYSCLK) + tw(WAKE)
6700tc(SYSCLK) (3)
(1)
(2)
(3)
Wakeup from RAM
cycles
6700tc(SYSCLK) (3) + tw(WAKE)
Without input qualifier
•
UNIT
(2)
With input qualifier
25tc(SYSCLK)
25tc(SYSCLK) + tw(WAKE)
For an explanation of the input qualifier parameters, see Table 5-26.
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up signal) involves additional latency.
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD
Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3,
and FPAC1[PSLEEP] is 0x860.
td(WAKE-IDLE)
Address/Data
(internal)
XCLKOUT
tw(WAKE)
WAKE
A.
(A)
WAKE can be any enabled interrupt, WDINT or XRS. After the IDLE instruction is executed, a delay of five OSCCLK
cycles (minimum) is needed before the wake-up signal could be asserted.
Figure 5-17. IDLE Entry and Exit Timing Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
77
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-33 shows the STANDBY mode timing requirements, Table 5-34 shows the switching
characteristics, and Figure 5-18 shows the timing diagram for STANDBY mode.
Table 5-33. STANDBY Mode Timing Requirements
MIN
Pulse duration, external
wake-up signal
tw(WAKE-INT)
(1)
QUALSTDBY = 0 | 2tc(OSCCLK)
3tc(OSCCLK)
QUALSTDBY > 0 |
(2 + QUALSTDBY)tc(OSCCLK) (1)
(2 + QUALSTDBY) * tc(OSCCLK)
MAX
UNIT
cycles
QUALSTDBY is a 6-bit field in the LPMCR register.
Table 5-34. STANDBY Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
Delay time, IDLE instruction executed to
XCLKOUT stop
td(IDLE-XCOS)
MAX
UNIT
16tc(INTOSC1)
cycles
Delay time, external wake signal to
program execution resume (1)
•
Wakeup from flash
– Flash module in active state
•
Wakeup from flash
– Flash module in sleep state
•
Wakeup from RAM
td(WAKE-STBY)
(1)
(2)
78
175tc(SYSCLK) + tw(WAKE-INT)
cycles
6700tc(SYSCLK)
(2)
+ tw(WAKE-INT)
3tc(OSC) + 15tc(SYSCLK) +
tw(WAKE-INT)
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up signal) involves additional latency.
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD
Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3,
and FPAC1[PSLEEP] is 0x860.
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
(C)
(A)
(B)
Device
Status
(F)
(D)(E)
STANDBY
STANDBY
(G)
Normal Execution
Flushing Pipeline
Wake-up
Signal
tw(WAKE-INT)
td(WAKE-STBY)
OSCCLK
XCLKOUT
td(IDLE-XCOS)
A.
B.
C.
D.
E.
F.
G.
IDLE instruction is executed to put the device into STANDBY mode.
The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before
being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.
Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in
STANDBY mode. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before
the wake-up signal could be asserted.
The external wake-up signal is driven active.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the
device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses.
After a latency period, the STANDBY mode is exited.
Normal execution resumes. The device will respond to the interrupt (if enabled).
Figure 5-18. STANDBY Entry and Exit Timing Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
79
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-35 shows the HALT mode timing requirements, Table 5-36 shows the switching characteristics,
and Figure 5-19 shows the timing diagram for HALT mode.
Table 5-35. HALT Mode Timing Requirements
MIN
MAX
UNIT
tw(WAKE-GPIO)
Pulse duration, GPIO wake-up signal (1)
toscst + 2tc(OSCCLK)
cycles
tw(WAKE-XRS)
Pulse duration, XRS wake-up signal (1)
toscst + 8tc(OSCCLK)
cycles
(1)
For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on
circuit/layout external to the device. See Table 5-17 for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK,
see Section 5.7.3.5 for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is
powered externally to the device.
Table 5-36. HALT Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(IDLE-XCOS)
Delay time, IDLE instruction executed to XCLKOUT stop
MIN
MAX
UNIT
16tc(INTOSC1)
cycles
Delay time, external wake signal end to CPU1 program
execution resume
•
Wakeup from flash
– Flash module in active state
•
Wakeup from flash
– Flash module in sleep state
•
Wakeup from RAM
td(WAKE-HALT)
(1)
80
75tc(OSCCLK)
cycles
17500tc(OSCCLK)
(1)
75tc(OSCCLK)
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP]. For more information, see the Flash and OTP Power-Down Modes and Wakeup section of the TMS320F2837xD
Dual-Core Delfino Microcontrollers Technical Reference Manual. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3,
and FPAC1[PSLEEP] is 0x860.
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
(C)
(A)
(F)
(B)
Device
Status
(D)(E)
HALT
(G)
HALT
Flushing Pipeline
Normal
Execution
GPIOn
td(WAKE-HALT)
tw(WAKE-GPIO)
OSCCLK
Oscillator Start-up Time
XCLKOUT
td(IDLE-XCOS)
A.
B.
C.
D.
E.
F.
G.
H.
IDLE instruction is executed to put the device into HALT mode.
The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being
turned off. This delay enables the CPU pipeline and any other pending operations to flush properly.
Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very
little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in
HALT MODE. This is done by writing a 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay
of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator
wakeup sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables
the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin
asynchronously begins the wakeup procedure, care should be taken to maintain a low noise environment prior to
entering and during HALT mode.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the
device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses.
When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The
HALT mode is now exited.
Normal operation resumes.
The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.
Figure 5-19. HALT Entry and Exit Timing Diagram
NOTE
CPU2 should enter IDLE mode before CPU1 puts the device into HALT mode. CPU1 should
verify that CPU2 has entered IDLE mode using the LPMSTAT register before calling the
IDLE instruction to enter HALT.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
81
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-37 shows the HIBERNATE mode timing requirements, Table 5-38 shows the switching
characteristics, and Figure 5-20 shows the timing diagram for HIBERNATE mode.
Table 5-37. HIBERNATE Mode Timing Requirements
MIN
MAX
UNIT
tw(HIBWAKE)
Pulse duration, HIBWAKE signal
40
µs
tw(WAKEXRS)
Pulse duration, XRS wake-up signal
40
µs
Table 5-38. HIBERNATE Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(IDLE-XCOS)
Delay time, IDLE instruction executed to XCLKOUT stop
td(WAKE-HIB)
Delay time, external wake signal to lORestore function start
82
Specifications
MIN
MAX
UNIT
30tc(SYSCLK)
cycles
1.5
ms
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
(A)
(B)
(C)
(D)
(F)
(G)(H)
(I)(J)
(E)
CPU1 IDLE
Instruction
CPU1 HIB
config
Device Status Device Active
CPU1 Boot ROM
HIBERNATE
IoRestore() or Application Specific Operation
Td(WAKE-HIB)
GPIOHIBWAKEn,
XRSn
tw(HIBWAKEn),
tw(XRSn)
I/O Isolation
PLLs
Bypassed &
Powered -Down
Enabled
INTOSC1,INTOSC2,
X1/X2
Powered Down
On
XCLKCOUT
Application SpecificOperation
Powering up
On
Inactive
Application Specific Operation
td(IDLE-XCOS)
A.
B.
C.
D.
E.
F.
G.
H.
I.
J.
CPU1 does necessary application-specific context save to M0/M1 memories if required. This includes GPIO state if
using I/O Isolation. Configures the LPMCR register of CPU1 for HIBERNATE mode. Powers down Flash Pump/Bank,
USB-PHY, CMPSS, DAC, and ADC using their register configurations. The application should also power down the
PLL and peripheral clocks before entering HIBERNATE. In dual-core applications, CPU1 should confirm that CPU2
has entered IDLE/STANDBY using the LPMSTAT register.
IDLE instruction is executed to put the device into HIBERNATE mode.
The device is now in HIBERNATE mode. If configured, I/O isolation is turned on, M0 and M1 memories are retained.
CPU1 and CPU2 are powered down. Digital peripherals are powered down. The oscillators, PLLs, analog peripherals,
and Flash are in their software-controlled Low-Power modes. Dx, LSx, and GSx memories are also powered down,
and their memory contents lost.
A falling edge on the GPIOHIBWAKEn pin will drive the wakeup of the devices clock sources INTOSC1, INTOSC2,
and X1/X2 OSC. The wakeup source must keep the GPIOHIBWAKEn pin low long enough to ensure full power-up of
these clock sources.
After the clock sources are powered up, the GPIOHIBWAKEn must be driven high to trigger the wakeup sequence of
the remainder of the device.
The BootROM will then begin to execute. The BootROM can distinguish a HIBERNATE wakeup by reading the
CPU1.REC.HIBRESETn bit. After the TI OTP trims are loaded, the BootROM code will branch to the user-defined
IoRestore function if it has been configured.
At this point, the device is out of HIBERNATE mode, and the application may continue.
The IoRestore function is a user-defined function where the application may reconfigure GPIO states, disable I/O
isolation, reconfigure the PLL, restore peripheral configurations, or branch to application code. This is up to the
application requirements.
If the application has not branched to application code, the BootROM will continue after completing IoRestore. It will
disable I/O isolation automatically if it was not taken care of inside of IoRestore. CPU2 will be brought out of reset at
this point as well.
BootROM will then boot as determined by the HIBBOOTMODE register. Refer to the ROM Code and Peripheral
Booting chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more
information.
Figure 5-20. HIBERNATE Entry and Exit Timing Diagram
NOTE
1. If the IORESTOREADDR is configured as the default value, the BootROM will continue
its execution to boot as determined by the HIBBOOTMODE register. Refer to the ROM
Code and Peripheral Booting chapter of the TMS320F2837xD Dual-Core Delfino
Microcontrollers Technical Reference Manual for more information.
2. The user may choose to disable I/O Isolation at any point in the IoRestore function.
Regardless if the user has disabled Isolation in the IoRestore function or if IoRestore is
not defined, the BootROM will automatically disable isolation before booting as
determined by the HIBBOOTMODE register.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
83
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
NOTE
For applications using both CPU1 and CPU2, TI recommends that the application puts CPU2
in either IDLE or STANDBY before entering HIBERNATE mode. If any GPIOs are used and
the state is to be preserved, data can be stored in M0/M1 memory of CPU1 to be
reconfigured upon wakeup. This should be done before step A of Figure 5-20.
84
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.7.9
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
External Memory Interface (EMIF)
The EMIF provides a means of connecting the CPU to various external storage devices like asynchronous
memories (SRAM, NOR flash) or synchronous memory (SDRAM).
5.7.9.1
Asynchronous Memory Support
The EMIF supports asynchronous memories:
• SRAMs
• NOR Flash memories
There is an external wait input that allows slower asynchronous memories to extend the memory access.
The EMIF module supports up to three chip selects (EMIF_CS[4:2]). Each chip select has the following
individually programmable attributes:
• Data bus width
• Read cycle timings: setup, hold, strobe
• Write cycle timings: setup, hold, strobe
• Bus turnaround time
• Extended wait option with programmable time-out
• Select strobe option
5.7.9.2
Synchronous DRAM Support
The EMIF memory controller is compliant with the JESD21-C SDR SDRAMs that use a 32-bit or 16-bit
data bus. The EMIF has a single SDRAM chip select (EMIF_CS[0]).
The address space of the EMIF, for the synchronous memory (SDRAM), lies beyond the 22-bit range of
the program address bus and can only be accessed through the data bus, which places a restriction on
the C compiler being able to work effectively on data in this space. Therefore, when using SDRAM, the
user is advised to copy data (using the DMA) from external memory to RAM before working on it. See the
examples in controlSUITE™ (CONTROLSUITE) and the TMS320F2837xD Dual-Core Delfino
Microcontrollers Technical Reference Manual.
SDRAM configurations supported are:
• One-bank, two-bank, and four-bank SDRAM devices
• Devices with 8-, 9-, 10-, and 11-column addresses
• CAS latency of two or three clock cycles
• 16-bit/32-bit data bus width
• 3.3-V LVCMOS interface
Additionally, the EMIF supports placing the SDRAM in self-refresh and power-down modes. Self-refresh
mode allows the SDRAM to be put in a low-power state while still retaining memory contents because the
SDRAM will continue to refresh itself even without clocks from the microcontroller. Power-down mode
achieves even lower power, except the microcontroller must periodically wake up and issue refreshes if
data retention is required. The EMIF module does not support mobile SDRAM devices.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
85
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.7.9.3
www.ti.com
EMIF Electrical Data and Timing
5.7.9.3.1 Asynchronous RAM
Table 5-39 shows the EMIF asynchronous memory timing requirements. Table 5-40 shows the EMIF
asynchronous memory switching characteristics. Figure 5-21 through Figure 5-24 show the EMIF
asynchronous memory timing diagrams.
Table 5-39. EMIF Asynchronous Memory Timing Requirements
NO.
MIN
MAX
UNIT
Reads and Writes
E
EMIF clock period
2
tw(EM_WAIT)
Pulse duration, EMxWAIT assertion and
deassertion
12
tsu(EMDV-EMOEH)
Setup time, EMxD[y:0] valid before EMxOE high
13
th(EMOEH-EMDIV)
Hold time, EMxD[y:0] valid after EMxOE high
14
tsu(EMOEL-EMWAIT)
Setup Time, EMxWAIT asserted before end of
Strobe Phase (1)
tc(SYSCLK)
ns
2E
ns
15
ns
0
ns
4E+20
ns
4E+20
ns
Reads
Writes
28
(1)
tsu(EMWEL-EMWAIT)
Setup Time, EMxWAIT asserted before end of
Strobe Phase (1)
Setup before end of STROBE phase (if no extended wait states are inserted) by which EMxWAIT must be asserted to add extended
wait states. Figure 5-22 and Figure 5-24 describe EMIF transactions that include extended wait states inserted during the STROBE
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where
the HOLD phase would begin if there were no extended wait cycles.
Table 5-40. EMIF Asynchronous Memory Switching Characteristics (1) (2) (3)
NO.
PARAMETER
MIN
MAX
UNIT
(TA)*E–3
(TA)*E+2
ns
EMIF read cycle time (EW = 0)
(RS+RST+RH+2)*E–3
(RS+RST+RH+2)*E+2
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+2+
(EWC*16))*E–3
(RS+RST+RH+2+
(EWC*16))*E+2
ns
Output setup time, EMxCS[y:2] low
to EMxOE low (SS = 0)
(RS)*E–3
(RS)*E+2
ns
Output setup time, EMxCS[y:2] low
to EMxOE low (SS = 1)
–3
2
ns
Output hold time, EMxOE high to
EMxCS[y:2] high (SS = 0)
(RH)*E–3
(RH)*E
ns
Output hold time, EMxOE high to
EMxCS[y:2] high (SS = 1)
–3
0
ns
Reads and Writes
1
td(TURNAROUND)
Turn around time
Reads
3
4
5
(1)
(2)
(3)
86
tc(EMRCYCLE)
tsu(EMCEL-EMOEL)
th(EMOEH-EMCEH)
6
tsu(EMBAV-EMOEL)
Output setup time, EMxBA[y:0]
valid to EMxOE low
(RS)*E–3
(RS)*E+2
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMxOE high to
EMxBA[y:0] invalid
(RH)*E–3
(RH)*E
ns
8
tsu(EMAV-EMOEL)
Output setup time, EMxA[y:0] valid
to EMxOE low
(RS)*E–3
(RS)*E+2
ns
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed through the Asynchronous Bank and Asynchronous Wait
Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–4], RH[8–1], WS[16–1],
WST[64–1], WH[8–1], and MEWC[1–256]. See the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual
for more information.
E = EMxCLK period in ns.
EWC = external wait cycles determined by EMxWAIT input signal. EWC supports the following range of values. EWC[256–1]. The
maximum wait time before time-out is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information.
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 5-40. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued)
NO.
PARAMETER
Output hold time, EMxOE high to
EMxA[y:0] invalid
9
th(EMOEH-EMAIV)
10
tw(EMOEL)
11
td(EMWAITH-EMOEH)
Delay time from EMxWAIT
deasserted to EMxOE high
29
tsu(EMDQMV-EMOEL)
30
th(EMOEH-EMDQMIV)
MIN
MAX
UNIT
(RH)*E–3
(RH)*E
ns
EMxOE active low width (EW = 0)
(RST)*E–1
(RST)*E+1
ns
EMxOE active low width (EW = 1)
(RST+(EWC*16))*E–1
(RST+(EWC*16))*E+1
ns
4E+10
5E+15
ns
Output setup time, EMxDQM[y:0]
valid to EMxOE low
(RS)*E–3
(RS)*E+2
ns
Output hold time, EMxOE high to
EMxDQM[y:0] invalid
(RH)*E–3
(RH)*E
ns
EMIF write cycle time (EW = 0)
(WS+WST+WH+2)*E–3
(WS+WST+WH+2)*E+1
ns
EMIF write cycle time (EW = 1)
(WS+WST+WH+2+
(EWC*16))*E–3
(WS+WST+WH+2+
(EWC*16))*E+1
ns
Output setup time, EMxCS[y:2] low
to EMxWE low (SS = 0)
(WS)*E–3
(WS)*E+1
ns
Output setup time, EMxCS[y:2] low
to EMxWE low (SS = 1)
–3
1
ns
Output hold time, EMxWE high to
EMxCS[y:2] high (SS = 0)
(WH)*E–3
(WH)*E
ns
Output hold time, EMxWE high to
EMxCS[y:2] high (SS = 1)
–3
0
ns
Writes
15
16
17
tc(EMWCYCLE)
tsu(EMCEL-EMWEL)
th(EMWEH-EMCEH)
18
tsu(EMDQMV-EMWEL)
Output setup time, EMxDQM[y:0]
valid to EMxWE low
(WS)*E–3
(WS)*E+1
ns
19
th(EMWEH-EMDQMIV)
Output hold time, EMxWE high to
EMxDQM[y:0] invalid
(WH)*E–3
(WH)*E
ns
20
tsu(EMBAV-EMWEL)
Output setup time, EMxBA[y:0]
valid to EMxWE low
(WS)*E–3
(WS)*E+1
ns
21
th(EMWEH-EMBAIV)
Output hold time, EMxWE high to
EMxBA[y:0] invalid
(WH)*E–3
(WH)*E
ns
22
tsu(EMAV-EMWEL)
Output setup time, EMxA[y:0] valid
to EMxWE low
(WS)*E–3
(WS)*E+1
ns
23
th(EMWEH-EMAIV)
Output hold time, EMxWE high to
EMxA[y:0] invalid
(WH)*E–3
(WH)*E
ns
EMxWE active low width
(EW = 0)
(WST)*E–1
(WST)*E+1
ns
EMxWE active low width
(EW = 1)
(WST+(EWC*16))*E–1
(WST+(EWC*16))*E+1
ns
4E+10
5E+15
ns
24
tw(EMWEL)
25
td(EMWAITH-EMWEH)
Delay time from EMxWAIT
deasserted to EMxWE high
26
tsu(EMDV-EMWEL)
Output setup time, EMxD[y:0] valid
to EMxWE low
(WS)*E–3
(WS)*E+1
ns
27
th(EMWEH-EMDIV)
Output hold time, EMxWE high to
EMxD[y:0] invalid
(WH)*E–3
(WH)*E
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
87
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
3
1
EMxCS[y:2]
EMxBA[y:0]
EMxA[y:0]
EMxDQM[y:0]
4
8
5
9
6
29
7
30
10
EMxOE
13
12
EMxD[y:0]
EMxWE
Figure 5-21. Asynchronous Memory Read Timing
SETUP
Extended Due to EMxWAIT
STROBE
STROBE HOLD
EMxCS[y:2]
EMxBA[y:0]
EMxA[y:0]
EMxD[y:0]
14
11
EMxOE
2
EMxWAIT
Asserted
2
Deasserted
Figure 5-22. EMxWAIT Read Timing Requirements
88
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
15
1
EMxCS[y:2]
EMxBA[y:0]
EMxA[y:0]
EMxDQM[y:0]
16
17
18
19
20
21
24
22
23
EMxWE
27
26
EMxD[y:0]
EMxOE
Figure 5-23. Asynchronous Memory Write Timing
SETUP
Extended Due to EMxWAIT
STROBE
STROBE HOLD
EMxCS[y:2]
EMxBA[y:0]
EMxA[y:0]
EMxD[y:0]
28
25
EMxWE
2
Asserted
EMxWAIT
2
Deasserted
Figure 5-24. EMxWAIT Write Timing Requirements
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
89
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.7.9.3.2 Synchronous RAM
Table 5-41 shows the EMIF synchronous memory timing requirements. Table 5-42 shows the EMIF
synchronous memory switching characteristics. Figure 5-25 and Figure 5-26 show the synchronous
memory timing diagrams.
Table 5-41. EMIF Synchronous Memory Timing Requirements
NO.
MIN
19
tsu(EMIFDV-EM_CLKH)
Input setup time, read data valid on EMxD[y:0] before EMxCLK rising
20
th(CLKH-DIV)
Input hold time, read data valid on EMxD[y:0] after EMxCLK rising
MAX
UNIT
2
ns
1.5
ns
Table 5-42. EMIF Synchronous Memory Switching Characteristics
NO.
90
PARAMETER
MIN
1
tc(CLK)
Cycle time, EMIF clock EMxCLK
10
ns
2
tw(CLK)
Pulse width, EMIF clock EMxCLK high or low
3
ns
3
td(CLKH-CSV)
Delay time, EMxCLK rising to EMxCS[y:2] valid
4
toh(CLKH-CSIV)
Output hold time, EMxCLK rising to EMxCS[y:2] invalid
5
td(CLKH-DQMV)
Delay time, EMxCLK rising to EMxDQM[y:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMxCLK rising to EMxDQM[y:0] invalid
7
td(CLKH-AV)
Delay time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] valid
8
toh(CLKH-AIV)
Output hold time, EMxCLK rising to EMxA[y:0] and EMxBA[y:0] invalid
9
td(CLKH-DV)
Delay time, EMxCLK rising to EMxD[y:0] valid
10
toh(CLKH-DIV)
Output hold time, EMxCLK rising to EMxD[y:0] invalid
11
td(CLKH-RASV)
Delay time, EMxCLK rising to EMxRAS valid
12
toh(CLKH-RASIV)
Output hold time, EMxCLK rising to EMxRAS invalid
13
td(CLKH-CASV)
Delay time, EMxCLK rising to EMxCAS valid
14
toh(CLKH-CASIV)
Output hold time, EMxCLK rising to EMxCAS invalid
15
td(CLKH-WEV)
Delay time, EMxCLK rising to EMxWE valid
16
toh(CLKH-WEIV)
Output hold time, EMxCLK rising to EMxWE invalid
17
td(CLKH-DHZ)
Delay time, EMxCLK rising to EMxD[y:0] tri-stated
18
toh(CLKH-DLZ)
Output hold time, EMxCLK rising to EMxD[y:0] driving
Specifications
MAX
8
1
ns
ns
8
1
ns
ns
8
1
ns
ns
8
1
ns
ns
8
1
ns
ns
8
1
ns
ns
8
1
ns
ns
8
1
UNIT
ns
ns
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
BASIC SDRAM
READ OPERATION
1
2
2
EMxCLK
4
3
EMxCS[y:2]
6
5
EMxDQM[y:0]
7
8
7
8
EMxBA[y:0]
EMxA[y:0]
19
2 EM_CLK Delay
17
20
18
EMxD[y:0]
11
12
EMxRAS
13
14
EMxCAS
EMxWE
Figure 5-25. Basic SDRAM Read Operation
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
91
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
BASIC SDRAM
WRITE OPERATION
1
2
2
EMxCLK
4
3
EMxCS[y:2]
6
5
EMxDQM[y:0]
7
8
7
8
EMxBA[y:0]
EMxA[y:0]
9
10
EMxD[y:0]
11
12
EMxRAS
13
EMxCAS
15
16
EMxWE
Figure 5-26. Basic SDRAM Write Operation
92
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.8
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Analog Peripherals
This analog subsystem module is described in this section.
The analog modules on this device include the ADC, temperature sensor, buffered DAC, and CMPSS.
The analog subsystem has the following features:
• Flexible voltage references
– VREFHIA and VREFLOA, VREFHIB and VREFLOB, VREFHIC and VREFLOC, and VREFHID and VREFLOD externally
supplied reference voltage pins
• Selectable by ADCs and buffered DACs
– VDAC externally supplied reference voltage pin
• Selectable by buffered DACs and comparator subsystem DACs
• Low reference is VSSA
• Flexible pin usage
– Buffered DAC and comparator subsystem functions multiplexed with ADC inputs
• Internal connection to VREFLO on all ADCs for offset self-calibration
Figure 5-27 shows the Analog Subsystem Block Diagram for the 337-ball ZWT package. Figure 5-28
shows the Analog Subsystem Block Diagram for the 176-pin PTP package. Figure 5-29 shows the Analog
Subsystem Block Diagram for the 100-pin PZP package.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
93
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
VREFLOA
VREFLOA
TEMP SENSOR
CMPIN4P/ADCIN14
CMPIN4N/ADCIN15
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
VREFHIA
VDAC
DACREFSEL
ADC-A
16-bits
or
12-bits
(selectable)
VDDA or VDAC
Digital
Filter
CTRIP1H
CTRIPOUT1H
Digital
Filter
CTRIP1L
CTRIPOUT1L
DAC12
DAC12
VSSA
VDAC
DACREFSEL
VREFLOA
Comparator Subsystem 1
CMPIN1N
VREFHIA
REFLO
CMPIN1P
12-bit
Buffered
DAC
DACOUTB
DACOUTA/ADCINA0
DACOUTB/ADCINA1
CMPIN1P/ADCINA2
CMPIN1N/ADCINA3
CMPIN2P/ADCINA4
CMPIN2N/ADCINA5
DACOUTA
VREFHIA
12-bit
Buffered
DAC
CMPIN2P
Comparator Subsystem 2
VDDA or VDAC
Digital
Filter
CTRIP2H
CTRIPOUT2H
Digital
Filter
CTRIP2L
CTRIPOUT2L
DAC12
DAC12
CMPIN2N
VREFHIB
VSSA
VREFLOB
VREFLOB
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
CMPIN3P
VREFHIB
VDAC
DACREFSEL
ADC-B
16-bits
or
12-bits
(selectable)
12-bit
Buffered
DAC
DACOUTC
VDAC/ADCINB0
DACOUTC/ADCINB1
CMPIN3P/ADCINB2
CMPIN3N/ADCINB3
ADCINB4
ADCINB5
Comparator Subsystem 3
VDDA or VDAC
DAC12
CMPIN4P
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
VDDA or VDAC
Digital
Filter
CTRIP4H
CTRIPOUT4H
Digital
Filter
CTRIP4L
CTRIPOUT4L
DAC12
REFLO
DAC12
VREFLOB
CTRIP3H
CTRIPOUT3H
DAC12
CMPIN3N
VSSA
Digital
Filter
CMPIN4N
VREFHIC
CMPIN6P/ADCINC2
CMPIN6N/ADCINC3
CMPIN5P/ADCINC4
CMPIN5N/ADCINC5
VREFLOC
VREFLOC
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
CMPIN5P
Comparator Subsystem 5
VDDA or VDAC
Digital
Filter
CTRIP5H
CTRIPOUT5H
Digital
Filter
CTRIP5L
CTRIPOUT5L
DAC12
ADC-C
16-bits
or
12-bits
(selectable)
DAC12
CMPIN5N
CMPIN6P
Comparator Subsystem 6
VDDA or VDAC
CTRIP6H
CTRIPOUT6H
Digital
Filter
CTRIP6L
CTRIPOUT6L
DAC12
REFLO
DAC12
VREFLOC
Digital
Filter
CMPIN6N
VREFHID
CMPIN7P/ADCIND0
CMPIN7N/ADCIND1
CMPIN8P/ADCIND2
CMPIN8N/ADCIND3
ADCIND4
ADCIND5
VREFLOD
VREFLOD
VREFLOD
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
CMPIN7P
Comparator Subsystem 7
VDDA or VDAC
Digital
Filter
CTRIP7H
CTRIPOUT7H
Digital
Filter
CTRIP7L
CTRIPOUT7L
DAC12
ADC-D
16-bits
or
12-bits
(selectable)
DAC12
CMPIN7N
CMPIN8P
Comparator Subsystem 8
VDDA or VDAC
Digital
Filter
CTRIP8H
CTRIPOUT8H
Digital
Filter
CTRIP8L
CTRIPOUT8L
DAC12
REFLO
DAC12
CMPIN8N
Figure 5-27. Analog Subsystem Block Diagram (337-Ball ZWT)
94
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
TEMP SENSOR
CMPIN4P/ADCIN14
CMPIN4N/ADCIN15
REFHI
VREFHIA
VDAC
DACREFSEL
ADC-A
16-bits
or
12-bits
(selectable)
VREFLOB
VREFLOB
Digital
Filter
CTRIP1H
CTRIPOUT1H
DAC12
Digital
Filter
CTRIP1L
CTRIPOUT1L
VSSA
VDAC
12-bit
Buffered
DAC
VREFHIB
VDAC/ADCINB0
DACOUTC/ADCINB1
CMPIN3P/ADCINB2
CMPIN3N/ADCINB3
VDDA or VDAC
DAC12
DACREFSEL
VREFLOA
Comparator Subsystem 1
CMPIN1N
VREFHIA
REFLO
CMPIN1P
12-bit
Buffered
DAC
DACOUTB
VREFLOA
VREFLOA
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CMPIN2P
Comparator Subsystem 2
VDDA or VDAC
Digital
Filter
CTRIP2H
CTRIPOUT2H
Digital
Filter
CTRIP2L
CTRIPOUT2L
DAC12
DAC12
CMPIN2N
VSSA
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
CMPIN3P
VREFHIB
DACOUTC
DACOUTA/ADCINA0
DACOUTB/ADCINA1
CMPIN1P/ADCINA2
CMPIN1N/ADCINA3
CMPIN2P/ADCINA4
CMPIN2N/ADCINA5
DACOUTA
VREFHIA
VDAC
DACREFSEL
ADC-B
16-bits
or
12-bits
(selectable)
Comparator Subsystem 3
VDDA or VDAC
CMPIN3N
VSSA
CMPIN4P
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
VDDA or VDAC
Digital
Filter
CTRIP4H
CTRIPOUT4H
Digital
Filter
CTRIP4L
CTRIPOUT4L
DAC12
REFLO
DAC12
VREFLOB
CTRIP3H
CTRIPOUT3H
DAC12
DAC12
12-bit
Buffered
DAC
Digital
Filter
CMPIN4N
VREFHIC
CMPIN6P/ADCINC2
CMPIN6N/ADCINC3
CMPIN5P/ADCINC4
VREFLOC
VREFLOC
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
CMPIN5P
Comparator Subsystem 5
VDDA or VDAC
Digital
Filter
CTRIP5H
CTRIPOUT5H
Digital
Filter
CTRIP5L
CTRIPOUT5L
DAC12
ADC-C
DAC12
16-bits
or
12-bits
(selectable)
CMPIN6P
Comparator Subsystem 6
VDDA or VDAC
CTRIP6H
CTRIPOUT6H
Digital
Filter
CTRIP6L
CTRIPOUT6L
DAC12
REFLO
DAC12
VREFLOC
Digital
Filter
CMPIN6N
VREFHID
CMPIN7P/ADCIND0
CMPIN7N/ADCIND1
CMPIN8P/ADCIND2
CMPIN8N/ADCIND3
ADCIND4
VREFLOD
VREFLOD
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
CMPIN7P
Comparator Subsystem 7
VDDA or VDAC
Digital
Filter
CTRIP7H
CTRIPOUT7H
Digital
Filter
CTRIP7L
CTRIPOUT7L
DAC12
ADC-D
16-bits
or
12-bits
(selectable)
DAC12
CMPIN7N
CMPIN8P
Comparator Subsystem 8
VDDA or VDAC
CTRIP8H
CTRIPOUT8H
Digital
Filter
CTRIP8L
CTRIPOUT8L
DAC12
REFLO
DAC12
VREFLOD
Digital
Filter
CMPIN8N
Figure 5-28. Analog Subsystem Block Diagram (176-Pin PTP)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
95
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
TEMP SENSOR
CMPIN4P/ADCIN14
CMPIN4N/ADCIN15
REFHI
VREFHIA
VDAC
DACREFSEL
ADC-A
16-bits
or
12-bits
(selectable)
VREFLOA
VREFLOB
VREFLOB
VREFLOB
VDDA or VDAC
DAC12
CMPIN1N
Digital
Filter
CTRIP1H
CTRIPOUT1H
Digital
Filter
CTRIP1L
CTRIPOUT1L
VSSA
VREFHIA
VDAC
CMPIN2P
Comparator Subsystem 2
VDDA or VDAC
Digital
Filter
CTRIP2H
CTRIPOUT2H
Digital
Filter
CTRIP2L
CTRIPOUT2L
DAC12
12-bit
Buffered
DAC
VREFHIB
VDAC/ADCINB0
DACOUTC/ADCINB1
CMPIN3P/ADCINB2
CMPIN3N/ADCINB3
ADCINB4
ADCINB5
Comparator Subsystem 1
DAC12
DACREFSEL
REFLO
CMPIN1P
12-bit
Buffered
DAC
DACOUTB
VREFLOA
VREFLOA
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
DAC12
CMPIN2N
VSSA
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFHI
VREFHIB
VDAC
DACREFSEL
ADC-B
16-bits
or
12-bits
(selectable)
12-bit
Buffered
DAC
DACOUTC
DACOUTA/ADCINA0
DACOUTB/ADCINA1
CMPIN1P/ADCINA2
CMPIN1N/ADCINA3
CMPIN2P/ADCINA4
CMPIN2N/ADCINA5
DACOUTA
VREFHIA
CMPIN3P
Comparator Subsystem 3
VDDA or VDAC
Digital
Filter
CTRIP3H
CTRIPOUT3H
Digital
Filter
CTRIP3L
CTRIPOUT3L
DAC12
DAC12
CMPIN3N
VSSA
CMPIN4P
Comparator Subsystem 4
VDDA or VDAC
Digital
Filter
CTRIP4H
CTRIPOUT4H
Digital
Filter
CTRIP4L
CTRIPOUT4L
DAC12
REFLO
DAC12
CMPIN4N
Figure 5-29. Analog Subsystem Block Diagram (100-Pin PZP)
96
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.8.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Analog-to-Digital Converter (ADC)
The ADCs on this device are successive approximation (SAR) style ADCs with selectable resolution of
either 16 bits or 12 bits. There are multiple ADC modules which allow simultaneous sampling. The ADC
wrapper is start-of-conversion (SOC) based [see the SOC Principle of Operation section of the
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual.
Each ADC has the following features:
• Selectable resolution of 16 bits or 12 bits
• Ratiometric external reference set by VREFHI and VREFLO
• Differential signal conversions (16-bit mode only)
• Single-ended signal conversions (12-bit mode only)
• Input multiplexer with up to 16 channels (single-ended) or 8 channels (differential)
• 16 configurable SOCs
• 16 individually addressable result registers
• Multiple trigger sources
– Software immediate start
– All ePWMs
– GPIO XINT2
– CPU timers
– ADCINT1 or 2
• Four flexible PIE interrupts
• Burst mode
• Four post-processing blocks, each with:
– Saturating offset calibration
– Error from setpoint calculation
– High, low, and zero-crossing compare, with interrupt and ePWM trip capability
– Trigger-to-sample delay capture
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
97
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Figure 5-30 shows the ADC module block diagram.
Analog to Digital Core
Analog to Digital Wrapper Logic
SIGNALMODE
RESOLUTION
RESOLUTION
CHSEL
ADCIN0
ADCIN1
ADCIN2
ADCIN3
ADCIN4
ADCIN5
ADCIN6
ADCIN7
ADCIN8
ADCIN9
ADCIN10
ADCIN11
ADCIN12
ADCIN13
ADCIN14
ADCIN15
[15:0]
ADCSOC
0
1
SOC
Arbitration
& Control
SOCx (0-15)
[15:0]
ACQPS
[15:0]
CHSEL
u
DOUT1
8
xV
2 IN-
9
10
11
12
13
14
S/H Circuit
EOCx[15:0]
xV1IN+
7
ADCCOUNTER
ADCRESULT
0–15 Regs
+
-
S
Trigger
Timestamp
ADCPPBxOFFCAL
saturate
ADCPPBxOFFREF
-
+
S
VREFHI
CONFIG
VREFLO
Reference Voltage Levels
TRIGGER[15:0]
SOC Delay
Timestamp
Converter
RESULT
15
...
5
6
...
4
SOCxSTART[15:0]
2
3
TRIGSEL
Triggers
Input Circuit
SIGNALMODE
ADCPPBxRESULT
Event
Logic
ADCEVT
ADCEVTINT
Post Processing Block (1-4)
Interrupt Block (1-4)
ADCINT1-4
Figure 5-30. ADC Module Block Diagram
98
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.8.1.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
ADC Electrical Data and Timing
Table 5-43 shows the ADC operating conditions for 16-bit differential mode. Table 5-44 shows the ADC
characteristics for 16-bit differential mode. Table 5-45 shows the ADC operating conditions for 12-bit
single-ended mode. Table 5-46 shows the ADC characteristics for 12-bit single-ended mode. Table 5-47
shows the ADCEXTSOC timing requirements.
Table 5-43. ADC Operating Conditions (16-Bit Differential Mode)
over recommended operating conditions (unless otherwise noted)
MIN
ADCCLK (derived from PERx.SYSCLK)
TYP
5
MAX
UNIT
50
MHz
320
Sample window duration (set by ACQPS and PERx.SYSCLK)
ns
1
ADCCLK
VREFHI
2.4
2.5 or 3.0
VDDA
V
VREFLO
VSSA
0
VSSA
V
2.4
VDDA
V
VREFLO
VREFHI
VREFHI – VREFLO
ADC input conversion range
ADC input signal common mode voltage (1)
(1)
VREFCM – 50
VREFCM
VREFCM + 50
V
mV
VREFCM = (VREFHI + VREFLO)/2
NOTE
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input
exceeds this level, the VREF internal to the device may be disturbed, which can impact results
for other ADC or DAC inputs using the same VREF.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
99
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-44. ADC Characteristics (16-Bit Differential Mode)
over recommended operating conditions (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
ADC conversion cycles (2)
MIN
TYP
29.6
Power-up time (after setting
ADCPWDNZ to first conversion)
MAX
UNIT
31
ADCCLKs
500
µs
Gain error
–64
±9
64
LSBs
Offset error (3)
–16
±9
16
LSBs
Channel-to-channel gain error
±6
LSBs
Channel-to-channel offset error
±3
LSBs
±6
LSBs
ADC-to-ADC gain error
Identical VREFHI and VREFLO for all ADCs
ADC-to-ADC offset error
Identical VREFHI and VREFLO for all ADCs
DNL (4)
INL
±3
LSBs
> –1
±0.5
1
LSBs
–3
±1.5
3
LSBs
(5) (6)
VREFHI = 2.5 V, fin = 10 kHz
87.6
dB
THD (5) (6)
VREFHI = 2.5 V, fin = 10 kHz
–93.5
dB
SFDR (5) (6)
VREFHI = 2.5 V, fin = 10 kHz
95.4
dB
SINAD (5) (6)
VREFHI = 2.5 V, fin = 10 kHz
86.6
dB
VREFHI = 2.5 V, fin = 10 kHz,
single ADC (7)
14.1
VREFHI = 2.5 V, fin = 10 kHz,
synchronous ADCs (8)
14.1
VREFHI = 2.5 V, fin = 10 kHz,
asynchronous ADCs (9)
Not
supported
PSRR
VDDA = 3.3-V DC + 200 mV
DC up to Sine at 1 kHz
77
dB
PSRR
VDDA = 3.3-V DC + 200 mV
Sine at 800 kHz
74
dB
CMRR
DC to 1 MHz
60
dB
SNR
ENOB (5) (6)
VREFHI input current
190
VREFHI = 2.5 V, synchronous ADCs (8)
ADC-to-ADC isolation (6) (10) (11)
bits
VREFHI = 2.5 V, asynchronous ADCs (9)
–2
µA
2
Not
supported
LSBs
(1)
Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with
VREFHI = 2.5 V and VREFLO = 0 V.
(2) See Section 5.8.1.1.2.
(3) Difference from conversion result 32768 when ADCINp = ADCINn = VREFCM.
(4) No missing codes.
(5) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source
for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip
Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source.
(6) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and
crosstalk.
(7) One ADC operating while all other ADCs are idle.
(8) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution.
(9) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution.
(10) Maximum DC code deviation due to operation of multiple ADCs simultaneously.
(11) Value based on characterization.
100
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 5-45. ADC Operating Conditions (12-Bit Single-Ended Mode)
over recommended operating conditions (unless otherwise noted)
MIN
ADCCLK (derived from PERx.SYSCLK)
TYP
5
Sample window duration (set by ACQPS and PERx.SYSCLK)
MAX
UNIT
50
MHz
75
ns
1
ADCCLK
VREFHI
2.4
2.5 or 3.0
VDDA
V
VREFLO
VSSA
0
VSSA
V
2.4
VDDA
V
VREFLO
VREFHI
V
VREFHI – VREFLO
ADC input conversion range
NOTE
The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input
exceeds this level, the VREF internal to the device may be disturbed, which can impact results
for other ADC or DAC inputs using the same VREF.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
101
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-46. ADC Characteristics (12-Bit Single-Ended Mode)
over recommended operating conditions (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
MIN
ADC conversion cycles (2)
TYP
10.1
MAX
11
Power-up time
500
UNIT
ADCCLKs
µs
Gain error
–5
±3
5
LSBs
Offset error
–4
±2
4
LSBs
Channel-to-channel gain error
Channel-to-channel offset error
±4
LSBs
±2
LSBs
ADC-to-ADC gain error
Identical VREFHI and VREFLO for all ADCs
±4
LSBs
ADC-to-ADC offset error
Identical VREFHI and VREFLO for all ADCs
±2
LSBs
DNL
(3)
INL
> –1
±0.5
1
LSBs
–2
±1.0
2
LSBs
SNR (4) (5)
VREFHI = 2.5 V, fin = 100 kHz
68.8
dB
(4) (5)
THD
VREFHI = 2.5 V, fin = 100 kHz
–78.4
dB
SFDR (4) (5)
VREFHI = 2.5 V, fin = 100 kHz
79.2
dB
SINAD (4) (5)
VREFHI = 2.5 V, fin = 100 kHz
68.4
dB
VREFHI = 2.5 V, fin = 100 kHz,
single ADC (6), all packages
11.1
VREFHI = 2.5 V, fin = 100 kHz,
synchronous ADCs (7), all packages
11.1
ENOB
(4) (5)
VREFHI = 2.5 V, fin = 100 kHz,
asynchronous ADCs (8),
100-pin PZP package
Not
supported
VREFHI = 2.5 V, fin = 100 kHz,
asynchronous ADCs (8),
176-pin PTP package
9.7
VREFHI = 2.5 V, fin = 100 kHz,
asynchronous ADCs (8),
337-ball ZWT package
10.9
PSRR
VDDA = 3.3-V DC + 200 mV
DC up to Sine at 1 kHz
PSRR
VDDA = 3.3-V DC + 200 mV
Sine at 800 kHz
bits
60
dB
57
dB
(7)
VREFHI = 2.5 V, synchronous ADCs ,
all packages
ADC-to-ADC isolation
VREFHI input current
(5) (9) (10)
–1
VREFHI = 2.5 V, asynchronous ADCs (8),
100-pin PZP package
1
Not
supported
LSBs
VREFHI = 2.5 V, asynchronous ADCs (8),
176-pin PTP package
–9
9
VREFHI = 2.5 V, asynchronous ADCs (8),
337-ball ZWT package
–2
2
130
µA
(1)
Typical values are measured with VREFHI = 2.5 V and VREFLO = 0 V. Minimum and Maximum values are tested or characterized with
VREFHI = 2.5 V and VREFLO = 0 V.
(2) See Section 5.8.1.1.2.
(3) No missing codes.
(4) AC parameters will be impacted by clock source accuracy and jitter, this should be taken into account when selecting the clock source
for the system. The clock source used for these parameters was a high-accuracy external clock fed through the PLL. The on-chip
Internal Oscillator has higher jitter than an external crystal and these parameters will degrade if it is used as a clock source.
(5) IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and
crosstalk.
(6) One ADC operating while all other ADCs are idle.
(7) All ADCs operating with identical ADCCLK, S+H durations, triggers, and resolution.
(8) Any ADCs operating with heterogeneous ADCCLK, S+H durations, triggers, or resolution.
(9) Maximum DC code deviation due to operation of multiple ADCs simultaneously.
(10) Value based on characterization.
102
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 5-47. ADCEXTSOC Timing Requirements (1)
MIN
tw(INT)
(1)
Pulse duration, INT input low/high
MAX
UNIT
Synchronous
2tc(SYSCLK)
cycles
With qualifier
tw(IQSW) + tw(SP) + 1tc(SYSCLK)
cycles
For an explanation of the input qualifier parameters, see Table 5-26.
5.8.1.1.1 ADC Input Models
NOTE
ADC channels ADCINA0, ADCINA1, and ADCINB1 have a 50-kΩ pulldown resistor to VSSA.
For single-ended operation, the ADC input characteristics are given by Table 5-48 and Figure 5-31.
Table 5-48. Single-Ended Input Model Parameters
DESCRIPTION
Cp
Parasitic input capacitance
Ron
Sampling switch resistance
Ch
Sampling capacitor
Rs
Nominal source impedance
VALUE (12-BIT MODE)
See Table 5-50
425 Ω
14.5 pF
50 Ω
ADC
ADCINx
Rs
Switch
AC
Ron
Cp
Ch
VREFLO
Figure 5-31. Single-Ended Input Model
For differential operation, the ADC input characteristics are given by Table 5-49 and Figure 5-32.
Table 5-49. Differential Input Model Parameters
DESCRIPTION
VALUE (16-BIT MODE)
Cp
Parasitic input capacitance
See Table 5-50
Ron
Sampling switch resistance
700 Ω
Ch
Sampling capacitor
Rs
Nominal source impedance
16.5 pF
50 Ω
ADC
ADCINxP
Rs
Cp
Switch
Ron
Ch
VSSA
AC
Cp
ADCINxN
Switch
Ron
Rs
Figure 5-32. Differential Input Model
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
103
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-50 shows the parasitic capacitance on each channel. Also, enabling a comparator adds
approximately 1.4 pF of capacitance on positive comparator inputs and 2.5 pF of capacitance on negative
comparator inputs.
Table 5-50. Per-Channel Parasitic Capacitance
ADC CHANNEL
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
ADCINA0
12.9
N/A
ADCINA1
10.3
N/A
ADCINA2
5.9
7.3
ADCINA3
6.3
8.8
ADCINA4
5.9
7.3
ADCINA5
6.3
8.8
ADCINB0
117.0
N/A
ADCINB1
10.6
N/A
ADCINB2
5.9
7.3
ADCINB3
6.2
8.7
ADCINB4
5.2
N/A
ADCINB5
5.1
N/A
ADCINC2
5.5
6.9
ADCINC3
5.8
8.3
ADCINC4
5.0
6.4
ADCINC5
5.3
7.8
ADCIND0
5.3
6.7
ADCIND1
5.7
8.2
ADCIND2
5.3
6.7
ADCIND3
5.6
8.1
ADCIND4
4.3
N/A
ADCIND5
4.3
N/A
ADCIN14
8.6
10.0
ADCIN15
9.0
11.5
These input models should be used along with actual signal source impedance to determine the
acquisition window duration. See the Choosing an Acquisition Window Duration section of the
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more information.
The user should analyze the ADC input setting assuming worst-case initial conditions on Ch. This will
require assuming that Ch could start the S+H window completely charged to VREFHI or completely
discharged to VREFLO. When the ADC transitions from an odd-numbered channel to an even-numbered
channel, or vice-versa, the actual initial voltage on Ch will be close to being completely discharged to
VREFLO. For even-to-even or odd-to-odd channel transitions, the initial voltage on Ch will be close to the
voltage of the previously converted channel.
104
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.8.1.1.2 ADC Timing Diagrams
Table 5-51 shows the ADC timings in 12-bit mode (SYSCLK cycles). Table 5-52 shows the ADC timings in
16-bit mode. Figure 5-33 and Figure 5-34 show the ADC conversion timings for two SOCs given the
following assumptions:
• SOC0 and SOC1 are configured to use the same trigger.
• No other SOCs are converting or pending when the trigger occurs.
• The round robin pointer is in a state that causes SOC0 to convert first.
• ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE
module).
The following parameters are identified in the timing diagrams:
• The parameter tSH is the duration of the S+H window. At the end of this window, the value on the S+H
capacitor becomes the voltage to be converted into a digital value. The duration is given by (ACQPS +
1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so tSH will not necessarily be
the same for different SOCs.
• The parameter tLAT is the time from the end of the S+H window until the ADC conversion results latch
in the ADCRESULTx register. If the ADCRESULTx register is read before this time, the previous
conversion results will be returned.
• The parameter tEOC is the time from the end of the S+H window until the next ADC conversion S+H
window can begin. In 16-bit mode, this will coincide with the latching of the conversion results, while in
12-bit mode, the subsequent sample can start before the conversion results are latched.
• The parameter tINT is the time from the end of the S+H window until an ADCINT flag is set (if
configured). If the INTPULSEPOS bit in the ADCCTL1 register is set, this will coincide with the
conversion results being latched into the result register. If the bit is cleared, this will coincide with the
end of the S+H window.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
105
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-51. ADC Timings in 12-Bit Mode (SYSCLK Cycles)
ADCCLK PRESCALE
ADCCTL2
[PRESCALE]
ADCCLK
CYCLES
SYSCLK CYCLES
RATIO
ADCCLK:SYSCLK
tEOC
tLAT
0
1
11
13
1
1.5
2
2
21
23
3
2.5
26
4
3
31
5
3.5
6
tINT(EARLY)
tINT(LATE)
tEOC
1
11
11.0
1
21
10.5
28
1
26
10.4
34
1
31
10.3
36
39
1
36
10.3
4
41
44
1
41
10.3
7
4.5
46
49
1
46
10.2
8
5
51
55
1
51
10.2
9
5.5
56
60
1
56
10.2
10
6
61
65
1
61
10.2
11
6.5
66
70
1
66
10.2
12
7
71
76
1
71
10.1
13
7.5
76
81
1
76
10.1
14
8
81
86
1
81
10.1
15
8.5
86
91
1
86
10.1
Invalid
Sample n
Input on SOC0.CHSEL
Input on SOC1.CHSEL
Sample n+1
ADC S+H
SOC0
SOC1
SYSCLK
ADCCLK
ADCTRIG
ADCSOCFLG.SOC0
ADCSOCFLG.SOC1
ADCRESULT0
(old data)
ADCRESULT1
(old data)
Sample n
Sample n+1
ADCINTFLG.ADCINTx
tSH
tLAT
tEOC
tINT
Figure 5-33. ADC Timings for 12-Bit Mode
106
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 5-52. ADC Timings in 16-Bit Mode
ADCCLK PRESCALE
ADCCTL2
[PRESCALE]
ADCCLK
CYCLES
SYSCLK CYCLES
RATIO
ADCCLK:SYSCLK
tEOC
tLAT
0
1
31
32
1
1.5
2
2
60
61
3
2.5
75
4
3
90
5
3.5
6
tINT(EARLY)
tINT(LATE)
tEOC
1
31
31.0
1
60
30.0
75
1
75
30.0
91
1
90
30.0
104
106
1
104
29.7
4
119
120
1
119
29.8
7
4.5
134
134
1
134
29.8
8
5
149
150
1
149
29.8
9
5.5
163
165
1
163
29.6
10
6
178
179
1
178
29.7
11
6.5
193
193
1
193
29.7
12
7
208
209
1
208
29.7
13
7.5
222
224
1
222
29.6
14
8
237
238
1
237
29.6
15
8.5
252
252
1
252
29.6
Invalid
Sample n
Input on SOC0.CHSEL
Input on SOC1.CHSEL
Sample n+1
ADC S+H
SOC0
SOC1
SYSCLK
ADCCLK
ADCTRIG
ADCSOCFLG.SOC0
ADCSOCFLG.SOC1
ADCRESULT0
(old data)
ADCRESULT1
(old data)
Sample n
Sample n+1
ADCINTFLG.ADCINTx
tSH
tLAT
tEOC
tINT
Figure 5-34. ADC Timings for 16-Bit Mode
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
107
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.8.1.2
www.ti.com
Temperature Sensor Electrical Data and Timing
The temperature sensor can be used to measure the device junction temperature. The temperature
sensor is sampled through an internal connection to the ADC and translated into a temperature through
TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in
Table 5-53.
Table 5-53. Temperature Sensor Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
Temperature accuracy
Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor)
ADC acquisition time
108
Specifications
TYP
MAX
UNIT
±15
°C
500
µs
700
ns
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.8.2
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Comparator Subsystem (CMPSS)
Each CMPSS module includes two comparators, two internal voltage reference DACs (CMPSS DACs),
two digital glitch filters, and one ramp generator. There are two inputs, CMPINxP and CMPINxN. Each of
these inputs will be internally connected to an ADCIN pin. The CMPINxP pin is always connected to the
positive input of the CMPSS comparators. CMPINxN can be used instead of the DAC output to drive the
negative comparator inputs. There are two comparators, and therefore two outputs from the CMPSS
module, which are connected to the input of a digital filter module before being passed on to the
Comparator TRIP crossbar and either PWM modules or directly to a GPIO pin. Figure 5-35 shows the
CMPSS connectivity on the 337-ball ZWT and 176-pin PTP packages. Figure 5-36 shows CMPSS
connectivity on the 100-pin PZP package.
CMPIN1P Pin
Comparator Subsystem 1
VDDA or VDAC
Digital
Filter
CTRIP1H
CTRIPOUT1H
DAC12
DAC12
CMPIN1N Pin
CMPIN2P Pin
Digital
Filter
CTRIP1L
CTRIPOUT1L
Comparator Subsystem 2
VDDA or VDAC
Digital
Filter
CTRIP2H
CTRIPOUT2H
Digital
Filter
CTRIP2L
CTRIPOUT2L
CTRIP1H
CTRIP1L
CTRIP2H
CTRIP2L
ePWM X-BAR
ePWMs
Output X-BAR
GPIO Mux
CTRIP8H
CTRIP8L
DAC12
DAC12
CMPIN2N Pin
CMPIN8P Pin
Comparator Subsystem 8
VDDA or VDAC
Digital
Filter
CTRIP8H
CTRIPOUT8H
CTRIPOUT8H
CTRIPOUT8L
DAC12
DAC12
CMPIN8N Pin
CTRIPOUT1H
CTRIPOUT1L
CTRIPOUT2H
CTRIPOUT2L
Digital
Filter
CTRIP8L
CTRIPOUT8L
Figure 5-35. CMPSS Connectivity (337-Ball ZWT and 176-Pin PTP)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
109
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Comparator Subsystem 1
CMPIN1P Pin
VDDA or VDAC
Digital
Filter
CTRIP1H
CTRIPOUT1H
DAC12
DAC12
CMPIN1N Pin
Digital
Filter
CTRIP1L
CTRIPOUT1L
Comparator Subsystem 2
CMPIN2P Pin
VDDA or VDAC
Digital
Filter
CTRIP2H
CTRIPOUT2H
Digital
Filter
CTRIP2L
CTRIPOUT2L
CTRIP1H
CTRIP1L
CTRIP2H
CTRIP2L
CTRIP3H
CTRIP3L
CTRIP4H
CTRIP4L
ePWM X-BAR
ePWMs
CTRIPOUT1H
CTRIPOUT1L
CTRIPOUT2H
CTRIPOUT2L
CTRIPOUT3H
CTRIPOUT3L
CTRIPOUT4H
CTRIPOUT4L
Output X-BAR
GPIO Mux
DAC12
DAC12
CMPIN2N Pin
Comparator Subsystem 3
CMPIN3P Pin
VDDA or VDAC
Digital
Filter
CTRIP3H
CTRIPOUT3H
Digital
Filter
CTRIP3L
CTRIPOUT3L
DAC12
DAC12
CMPIN3N Pin
Comparator Subsystem 4
CMPIN4P Pin
VDDA or VDAC
Digital
Filter
CTRIP4H
CTRIPOUT4H
Digital
Filter
CTRIP4L
CTRIPOUT4L
DAC12
DAC12
CMPIN4N Pin
Figure 5-36. CMPSS Connectivity (100-Pin PZP)
110
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.8.2.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
CMPSS Electrical Data and Timing
Table 5-54 shows the comparator electrical characteristics. Figure 5-37 shows the CMPSS comparator
input referred offset. Figure 5-38 shows the CMPSS comparator hysteresis.
Table 5-54. Comparator Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
Power-up time (from COMPCTL[COMPDACE] to
comparator ready)
Input referred offset error
Response time (delay from CMPINx input change
to output on ePWM X-BAR or Output X-BAR)
(1)
UNIT
10
Comparator input (CMPINxx) range
Hysteresis (1)
MAX
0
VDDA
–20
20
1x
12
2x
24
3x
36
4x
48
Step response
21
Ramp response (1.65 V/µs)
26
Ramp response (8.25 mV/µs)
30
µs
V
mV
CMPSS
DAC LSB
60
ns
Hysteresis will scale with the CMPSS reference voltage.
NOTE
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If
a CMPSS input exceeds this level, an internal blocking circuit will isolate the internal
comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V.
During this time, the internal comparator input will be floating and can decay below VDDA
within approximately 0.5 µs. After this time, the comparator could begin to output an incorrect
result depending on the value of the other comparator input.
Input Referred Offset
CTRIPx
Logic Level
CTRIPx = 1
CTRIPx = 0
0
COMPINxP
Voltage
CMPINxN or
DACxVAL
Figure 5-37. CMPSS Comparator Input Referred Offset
Hysteresis
CTRIPx
Logic Level
CTRIPx = 1
CTRIPx = 0
0
CMPINxN or
DACxVAL
COMPINxP
Voltage
Figure 5-38. CMPSS Comparator Hysteresis
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
111
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-55 shows the CMPSS DAC static electrical characteristics. Figure 5-39 shows the CMPSS DAC
static offset. Figure 5-40 shows the CMPSS DAC static gain. Figure 5-41 shows the CMPSS DAC static
linearity.
Table 5-55. CMPSS DAC Static Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Internal reference
0
VDDA
External reference
0
VDAC
Static offset error (1)
–25
25
mV
Static gain error (1)
–2
2
% of FSR
CMPSS DAC output range
V
Static DNL
Endpoint corrected
>–1
4
LSB
Static INL
Endpoint corrected
–16
16
LSB
Settling time
Settling to 1 LSB after full-scale output
change
1
µs
Resolution
12
CMPSS DAC output disturbance (2)
Error induced by comparator trip or
CMPSS DAC code change within the
same CMPSS module
–100
CMPSS DAC disturbance time (2)
100
200
VDAC reference voltage
When VDAC is reference
VDAC load (3)
When VDAC is reference
(1)
(2)
(3)
bits
2.4
2.5 or 3.0
LSB
ns
VDDA
6
V
kΩ
Includes comparator input referred errors.
Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.
Per active CMPSS module.
Offset Error
Figure 5-39. CMPSS DAC Static Offset
112
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Ideal Gain
Actual Gain
Actual Linear Range
Figure 5-40. CMPSS DAC Static Gain
Linearity Error
Figure 5-41. CMPSS DAC Static Linearity
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
113
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.8.3
www.ti.com
Buffered Digital-to-Analog Converter (DAC)
The buffered DAC module consists of an internal reference DAC and an analog output buffer that is
capable of driving an external load. An integrated pulldown resistor on the DAC output helps to provide a
known pin voltage when the output buffer is disabled. This pulldown resistor cannot be disabled and
remains as a passive component on the pin, even for other shared pin mux functions. Software writes to
the DAC value register can take effect immediately or can be synchronized with PWMSYNC events.
Each buffered DAC has the following features:
• 12-bit programmable internal DAC
• Selectable reference voltage
• Pulldown resistor on output
• Ability to synchronize with PWMSYNC
The block diagram for the buffered DAC is shown in Figure 5-42.
DACCTL[DACREFSEL]
VDAC 0
VREFHI 1
SYSCLK
DACVALS
>
D Q
DACCTL[LOADMODE]
0
DACVALA
D Q
PWMSYNC1 0
PWMSYNC2 1
PWMSYNC3 2
...
…
PWMSYNCn n-1
>
VDDA
1
12-bit
DAC
Buffer
RPD
VSSA
VSSA
DACCTL[SYNCSEL]
Figure 5-42. DAC Module Block Diagram
114
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.8.3.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Buffered DAC Electrical Data and Timing
Table 5-56 shows the buffered DAC electrical characteristics. Figure 5-43 shows the buffered DAC offset.
Figure 5-44 shows the buffered DAC gain. Figure 5-45 shows the buffered DAC linearity.
Table 5-56. Buffered DAC Electrical Characteristics
over recommended operating conditions (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
MIN
TYP
Power-up time (DACOUTEN to DAC
output valid)
Trimmed offset error
MAX
UNIT
10
Midpoint
Gain error (2)
µs
–10
10
mV
–2.5
2.5
% of FSR
DNL (3)
Endpoint corrected
> –1
1
LSB
INL
Endpoint corrected
–5
5
LSB
DACOUTx settling time
Settling to 2 LSBs after 0.3V-to-3V
transition
2
Resolution
µs
12
Voltage output range (4)
0.3
Capacitive load
Output drive capability
Resistive load
Output drive capability
bits
VDDA – 0.3
V
100
pF
5
RPD
kΩ
50
kΩ
Reference voltage (5)
VDAC or VREFHI
Reference load (6)
VDAC or VREFHI
170
Integrated noise from 100 Hz to 100 kHz
500
µVrms
Noise density at 10 kHz
711
nVrms/√Hz
1.5
V-ns
Output noise
2.4
Glitch energy
PSRR (7)
2.5 or 3.0
DC up to 1 kHz
70
100 kHz
30
VDDA
V
kΩ
dB
SNR
1020 Hz
67
dB
THD
1020 Hz
–63
dB
SFDR
(1)
(2)
(3)
(4)
(5)
(6)
(7)
1020 Hz, including harmonics and spurs
1020 Hz, including only spurs
66
104
dBc
Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V unless otherwise noted. Minimum and Maximum values are tested
or characterized with VREFHI = 2.5 V and VREFLO = 0 V.
Gain error is calculated for linear output range.
The DAC output is monotonic.
This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear
due to the buffer.
For best PSRR performance, VDAC or VREFHI should be less than VDDA.
Per active Buffered DAC module.
VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.
NOTE
The VDAC pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the
VDAC pin exceeds this level, a blocking circuit may activate, and the internal value of VDAC
may float to 0 V internally, giving improper DAC output.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
115
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Offset Error
Code 2048
Figure 5-43. Buffered DAC Offset
Actual Gain
Ideal Gain
Code 3722
Code 373
Linear Range
(3.3-V Reference)
Figure 5-44. Buffered DAC Gain
116
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Linearity Error
Code 3722
Code 373
Linear Range
(3.3-V Reference)
Figure 5-45. Buffered DAC Linearity
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
117
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.9
www.ti.com
Control Peripherals
NOTE
For the actual number of each peripheral on a specific device, see Table 3-1.
5.9.1
Enhanced Capture (eCAP)
The eCAP module can be used in systems where accurate timing of external events is important.
Applications for eCAP include:
• Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall
sensors)
• Elapsed time measurements between position sensor pulses
• Period and duty cycle measurements of pulse train signals
• Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors
The eCAP module includes the following features:
• 4-event time-stamp registers (each 32 bits)
• Edge-polarity selection for up to four sequenced time-stamp capture events
• Interrupt on either of the four events
• Single shot capture of up to four event timestamps
• Continuous mode capture of timestamps in a four-deep circular buffer
• Absolute time-stamp capture
• Difference (Delta) mode time-stamp capture
• All of the above resources dedicated to a single input pin
• When not used in capture mode, the eCAP module can be configured as a single-channel PWM output
(APWM).
The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to
GPIO pins through the Output X-BAR to OUTPUTx positions in the GPIO mux. See Section 4.5.2 and
Section 4.5.3.
Figure 5-46 shows the block diagram of an eCAP module.
118
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
SYNC
www.ti.com
SYNCIn
CTRPHS
(phase register−32 bit)
SYNCOut
TSCTR
(counter−32 bit)
APWM mode
OVF
RST
CTR_OVF
Delta−mode
CTR [0−31]
PRD [0−31]
CMP [0−31]
PWM
compare
logic
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
32
CAP1
(APRD active)
APRD
shadow
32
LD
LD1
MODE SELECT
PRD [0−31]
Polarity
select
32
CMP [0−31]
32
CAP2
(ACMP active)
32
LD
LD2
Polarity
select
Event
qualifier
ACMP
shadow
32
CAP3
(APRD shadow)
LD
32
CAP4
(ACMP shadow)
LD
eCAPx
Event
Prescale
Polarity
select
LD3
LD4
Polarity
select
4
Capture events
4
CEVT[1:4]
to PIE
Interrupt
Trigger
and
Flag
control
CTR_OVF
Continuous /
Oneshot
Capture Control
CTR=PRD
CTR=CMP
Copyright © 2016, Texas Instruments Incorporated
Figure 5-46. eCAP Block Diagram
The eCAP module is clocked by PERx.SYSCLK.
The clock enable bits (ECAP1–ECAP6) in the PCLKCR3 register turn off the eCAP module individually
(for low-power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock
is off.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
119
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.9.1.1
www.ti.com
eCAP Electrical Data and Timing
Table 5-57 shows the eCAP timing requirement and Table 5-58 shows the eCAP switching characteristics.
Table 5-57. eCAP Timing Requirement (1)
MIN
Asynchronous
tw(CAP)
Capture input pulse width
Synchronous
With input qualifier
(1)
MAX
UNIT
2tc(SYSCLK)
cycles
2tc(SYSCLK)
cycles
1tc(SYSCLK) + tw(IQSW)
cycles
For an explanation of the input qualifier parameters, see Table 5-26.
Table 5-58. eCAP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(APWM)
120
Pulse duration, APWMx output high/low
Specifications
MIN
MAX
20
UNIT
ns
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.9.2
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Enhanced Pulse Width Modulator (ePWM)
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module
include complex waveform generation, dead-band generation, a flexible synchronization scheme,
advanced trip-zone functionality, and global register reload capabilities.
Figure 5-47 shows the signal interconnections with the ePWM. Figure 5-48 shows the ePWM trip input
connectivity.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
121
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
TBCTL2[SYNCOSELX]
Time-Base (TB)
Disable
CTR=CPMC
CTR=CPMD
Rsvd
TBPRD Shadow (24)
TBPRDHR (8)
TBPRD Active (24)
8
CTR=PRD
00
01
10
11
CTR=ZERO
CTR=CMPB
TBCTL[SWFSYNC]
Sync
Out
Select
EPWMxSYNCO
EPWMxSYNCI
TBCTL[PHSEN]
TBCTL[SYNCOSEL]
Counter
Up/Down
(16 Bit)
(A)
DCAEVT1.sync
(A)
DCBEVT1.sync
CTR=ZERO
TBCTR
Active (16)
CTR_Dir
CTR=PRD
TBPHSHR (8)
16
8
TBPHS Active (24)
EPWMxINT
CTR=ZERO
CTR=PRD or ZERO
Phase
Control
CTR=CMPA
CTR=CMPB
CTR=CMPC
CTR=CMPD
Counter Compare (CC)
CTR=CMPA
Event
Trigger
and
Interrupt
(ET)
EPWMxSOCA
EPWMxSOCB
ADCSOCOUTSEL
CTR_Dir
Action
Qualifier
(AQ)
DCAEVT1.soc
DCBEVT1.soc
CMPAHR (8)
Select and pulse stretch
for external ADC
(A)
(A)
EPWMSOCAO
EPWMSOCBO
16
CMPA Active (24)
CMPA Shadow (24)
ePWMxA
EPWMA
Dead
Band
(DB)
CMPBHR (8)
16
HiRes PWM (HRPWM)
CMPAHR (8)
CTR=CMPB
On-chip
ADC
PWM
Chopper
(PC)
Trip
Zone
(TZ)
ePWMxB
EPWMB
CMPB Active (24)
CMPB Shadow (24)
CMPBHR (8)
EPWMxTZINT
TBCNT(16)
CTR=CMPC
CMPC[15-0]
16
CMPC Active (16)
CMPC Shadow (16)
TZ1 to TZ3
CTR=ZERO
DCAEVT1.inter
DCBEVT1.inter
DCAEVT2.inter
DCBEVT2.inter
EMUSTOP
CLOCKFAIL
EQEPxERR
DCAEVT1.force
DCAEVT2.force
DCBEVT1.force
DCBEVT2.force
TBCNT(16)
(A)
(A)
(A)
(A)
CTR=CMPD
CMPD[15-0]
16
CMPD Active (16)
CMPD Shadow (16)
Copyright © 2016, Texas Instruments Incorporated
A.
These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.
Figure 5-47. ePWM Submodules and Critical Internal Signal Interconnects
122
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
PIE(s),
CLA(s)
XINT5
XINT4
INPUT14
INPUT13
Input X-Bar
INPUT1
INPUT2
INPUT3
INPUT4
INPUT5
INPUT6
GPIOx
Async/
Sync/
Sync+Filter
INPUT7
INPUT8
INPUT9
INPUT10
INPUT11
INPUT12
GPIO0
eCAP6
eCAP5
PIE(s),
CLA(s)
XINT1
eCAP4
XINT2
eCAP3
XINT3
eCAP2
eCAP1
ADC
EXTSYNCIN1
Wrapper(s)
TZ1
TZ2
TZ3
TRIP1
TRIP2
TRIP3
TRIP6
ePWM
X-Bar
Reserved
ECCERR
CPU1.PIEVECTERROR
CPU2.PIEVECTERROR
CPU1.EMUSTOP
CPU2.EMUSTOP
ePWM and eCAP
Sync Chain
EXTSYNCIN2
EQEPERR
CLKFAIL
EPWMn.EMUSTOP
TRIP4
TRIP5
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
TRIP13
TRIP14
TRIP15
TZ4
TZ5
TZ6
EPWMINT
TZINT
PIE(s),
CLA(s)
EPWMx.EPWMCLK
EPWMENCLK
TBCLKSYNC
ADCSOCAO Select Ckt
ADCSOCBO Select Ckt
All
ePWM
Modules
SOCA
ADC
Wrapper(s)
SOCB
PWM11.CMPC
PWM11.CMPD
Filter-Reset
SD1
FLT1
FLT1
FLT1
FLT1
Filter-Reset
Filter-Reset
FLT1
FLT1
FLT1
FLT1
PWM12.CMPC
PWM12.CMPD Filter-Reset
CPUSEL0.EPWMx
SD2
Copyright © 2016, Texas Instruments Incorporated
Figure 5-48. ePWM Trip Input Connectivity
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
123
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.9.2.1
www.ti.com
Control Peripherals Synchronization
The ePWM and eCAP synchronization chain on the device provides flexibility in partitioning the ePWM
and eCAP modules between CPU1 and CPU2 and allows localized synchronization within the modules
belonging to the same CPU. Like the other peripherals, the partitioning of the ePWM and eCAP modules
needs to be done using the CPUSELx registers. Figure 5-49 shows the synchronization chain architecture.
EXTSYNCIN1
EXTSYNCIN2
EPWM1
EPWM1SYNCOUT
EPWM2
EPWM4
EPWM3
EXTSYNCOUT
EPWM4SYNCOUT
Pulse-Stretched
(8 PLLSYSCLK
Cycles)
EPWM5
SYNCSEL.EPWM4SYNCIN
EPWM6
EPWM7
EPWM7SYNCOUT
EPWM8
SYNCSEL.EPWM7SYNCIN
EPWM9
EPWM10
EPWM10SYNCOUT
EPWM11
SYNCSEL.EPWM10SYNCIN
EPWM12
ECAP1
ECAP1SYNCOUT
SYNCSEL.SYNCOUT
SYNCSEL.ECAP1SYNCIN
ECAP2
ECAP3
SYNCSEL.ECAP4SYNCIN
ECAP4
ECAP5
ECAP6
Figure 5-49. Synchronization Chain Architecture
124
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.9.2.2
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
ePWM Electrical Data and Timing
Table 5-59 shows the PWM timing requirements and Table 5-60 shows the PWM switching
characteristics.
Table 5-59. ePWM Timing Requirements (1)
MIN
Asynchronous
tw(SYNCIN)
Sync input pulse width
(1)
UNIT
cycles
2tc(EPWMCLK)
cycles
1tc(EPWMCLK) + tw(IQSW)
cycles
Synchronous
With input qualifier
MAX
2tc(EPWMCLK)
For an explanation of the input qualifier parameters, see Table 5-26.
Table 5-60. ePWM Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(PWM)
Pulse duration, PWMx output high/low
tw(SYNCOUT)
Sync output pulse width
td(TZ-PWM)
Delay time, trip input active to PWM forced high
Delay time, trip input active to PWM forced low
Delay time, trip input active to PWM Hi-Z
MIN
MAX
UNIT
20
ns
8tc(SYSCLK)
cycles
25
ns
5.9.2.2.1 Trip-Zone Input Timing
Table 5-61 shows the trip-zone input timing requirements. Figure 5-50 shows the PWM Hi-Z
characteristics.
Table 5-61. Trip-Zone Input Timing Requirements (1)
MIN
tw(TZ)
Pulse duration, TZx input low
UNIT
Asynchronous
1tc(EPWMCLK)
cycles
Synchronous
2tc(EPWMCLK)
cycles
1tc(EPWMCLK) + tw(IQSW)
cycles
With input qualifier
(1)
MAX
For an explanation of the input qualifier parameters, see Table 5-26.
EPWMCLK
tw(TZ)
(A)
TZ
td(TZ-PWM)
(B)
PWM
A.
B.
TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM
recovery software.
Figure 5-50. PWM Hi-Z Characteristics
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
125
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.9.2.3
www.ti.com
External ADC Start-of-Conversion Electrical Data and Timing
Table 5-62 shows the external ADC start-of-conversion switching characteristics. Figure 5-51 shows the
ADCSOCAO or ADCSOCBO timing.
Table 5-62. External ADC Start-of-Conversion Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(ADCSOCL)
MIN
Pulse duration, ADCSOCxO low
MAX
32tc(SYSCLK)
UNIT
cycles
tw(ADCSOCL)
ADCSOCAO
or
ADCSOCBO
Figure 5-51. ADCSOCAO or ADCSOCBO Timing
126
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.9.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Enhanced Quadrature Encoder Pulse (eQEP)
The eQEP module interfaces directly with linear or rotary incremental encoders to obtain position,
direction, and speed information from rotating machines used in high-performance motion and positioncontrol systems.
Each eQEP peripheral comprises five major functional blocks:
• Quadrature Capture Unit (QCAP)
• Position Counter/Control Unit (PCCU)
• Quadrature Decoder Unit (QDU)
• Unit Time Base for speed and frequency measurement (UTIME)
• Watchdog timer for detecting stalls (QWDOG)
The eQEP peripherals are clocked by PERx.SYSCLK. Figure 5-52 shows the eQEP block diagram.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
127
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
System Control
Registers
To CPU
EQEPxENCLK
Data Bus
SYSCLK
QCPRD
QCAPCTL
QCTMR
16
16
16
Quadrature
Capture
Unit
(QCAP)
QCTMRLAT
QCPRDLAT
Registers
Used by
Multiple Units
QUTMR
QWDTMR
QUPRD
QWDPRD
32
16
QEPCTL
QEPSTS
UTIME
QFLG
UTOUT
QWDOG
QDECCTL
16
WDTOUT
PIE
EQEPxAIN
QCLK
EQEPxINT
16
QPOSLAT
EQEPxIIN
QI
Position Counter/
Control Unit
(PCCU)
QS Quadrature
Decoder
PHE
(QDU)
PCSOUT
QPOSSLAT
QPOSILAT
QPOSCNT
QPOSINIT
QPOSMAX
32
QPOSCMP
EQEPxB/XDIR
EQEPxIOUT
EQEPxIOE
GPIO
MUX
EQEPxI
EQEPxSIN
EQEPxSOUT
EQEPxSOE
32
EQEPxA/XCLK
EQEPxBIN
QDIR
EQEPxS
16
QEINT
QFRC
QCLR
QPOSCTL
eQEP Peripheral
Copyright © 2016, Texas Instruments Incorporated
Figure 5-52. eQEP Block Diagram
128
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.9.3.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
eQEP Electrical Data and Timing
Table 5-63 lists the eQEP timing requirement and Table 5-64 lists the eQEP switching characteristics.
Table 5-63. eQEP Timing Requirements (1)
MIN
tw(QEPP)
Synchronous
QEP input period
tw(INDEXH)
With input qualifier
QEP Index Input High time
tw(INDEXL)
QEP Index Input Low time
cycles
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
cycles
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
cycles
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
cycles
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
cycles
Synchronous
tw(STROBH)
QEP Strobe High time
tw(STROBL)
QEP Strobe Input Low time
(1)
2[1tc(SYSCLK) + tw(IQSW)]
Synchronous
With input qualifier
With input qualifier
Synchronous
With input qualifier
UNIT
cycles
Synchronous
With input qualifier
MAX
2tc(SYSCLK)
For an explanation of the input qualifier parameters, see Table 5-26.
Table 5-64. eQEP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
MAX
UNIT
td(CNTR)xin
Delay time, external clock to counter increment
PARAMETER
MIN
4tc(SYSCLK)
cycles
td(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync output
6tc(SYSCLK)
cycles
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
129
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.9.4
www.ti.com
High-Resolution Pulse Width Modulator (HRPWM)
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using
a dedicated calibration delay line. For each ePWM module, there are two HR outputs:
• HR Duty and Deadband control on Channel A
• HR Duty and Deadband control on Channel B
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:
• Significantly extends the time resolution capabilities of conventionally derived digital PWM
• This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual
edge control for frequency/period modulation.
• Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,
phase, period and deadband registers of the ePWM module.
NOTE
The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz.
5.9.4.1
HRPWM Electrical Data and Timing
Table 5-65 lists the high-resolution PWM switching characteristics.
Table 5-65. High-Resolution PWM Characteristics
PARAMETER
Micro Edge Positioning (MEP) step size (1)
(1)
130
MIN
TYP
MAX
UNIT
150
310
ps
Maximum MEP step size is based on worst-case process, maximum temperature and minimum voltage. MEP step size will increase
with low voltage and high temperature and decrease with voltage and cold temperature.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLK period dynamically while the HRPWM is in operation.
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.9.5
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Sigma-Delta Filter Module (SDFM)
The SDFM is a four-channel digital filter designed specifically for current measurement and resolver
position decoding in motor control applications. Each channel can receive an independent sigma-delta
(ΣΔ) modulated bit stream. The bit streams are processed by four individually programmable digital
decimation filters. The filter set includes a fast comparator for immediate digital threshold comparisons for
overcurrent and undercurrent monitoring. Figure 5-53 shows a block diagram of the SDFMs.
SDFM features include:
• Eight external pins per SDFM module:
– Four sigma-delta data input pins per SDFM module (SDx_Dy, where x = 1 to 2 and y = 1 to 4)
– Four sigma-delta clock input pins per SDFM module (SDx_Cy, where x = 1 to 2 and y = 1 to 4)
• Four different configurable modulator clock modes:
– Modulator clock rate equals modulator data rate
– Modulator clock rate running at half the modulator data rate
– Modulator data is Manchester encoded. Modulator clock not required.
– Modulator clock rate is double that of modulator data rate
• Four independent configurable comparator units:
– Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available
– Ability to detect over-value and under-value conditions
– Comparator Over-Sampling Ratio (COSR) value for comparator programmable from 1 to 32
• Four independent configurable data filter units:
– Four different filter type selection (Sinc1/Sinc2/Sincfast/Sinc3) options available
– Data filter Over-Sampling Ratio (DOSR) value for data filter unit programmable from 1 to 256
– Ability to enable or disable individual filter module
– Ability to synchronize all four independent filters of a SDFM module using the Master Filter Enable
(MFE) bit or the PWM signals.
• Filter data can be 16-bit or 32-bit representation
• PWMs can be used to generate modulator clock for sigma-delta modulators
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
131
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
SDFM- Sigma Delta Filter Module
G4
Streams
Filter Channel 1
R
Comparator filter
SD1_D1
Input
Ctrl
SD1_C1
Data filter
SD1INT
IEL
IEH
Interrupt
Unit
SD2INT
PIE
R
FILRES
PWM11.CMPC
Filter Channel 2
SD1_D2
SD1_C2
FILRES
SD1_D3
Filter Channel 3
Register
Map
Data bus
SD1_C3
FILRES
PWM11.CMPD
SD1_D4
SD1_C4
Filter Channel 4
SD1FLT1.IEH
SD1FLT1.IEL
SD1FLT2.IEH
SD1FLT2.IEL
FILRES
GPIO
MUX
SDFM- Sigma Delta Filter Module
G4
Streams
Output
XBar
Filter Channel 1
R
Comparator filter
SD2_D1
SD2_C1
SD1FLT3.IEH
SD1FLT3.IEL
SD1FLT4.IEH
SD1FLT4.IEL
Input
Ctrl
Data filter
Data filter
IEL
IEH
SD2FLT1.IEH
SD2FLT1.IEL
SD2FLT2.IEH
SD2FLT2.IEL
Interrupt
Unit
R
FILRES
SD2FLT3.IEH
SD2FLT3.IEL
SD2FLT4.IEH
SD2FLT4.IEL
PWM12.CMPC
SD2_D2
SD2_C2
Filter Channel 2
FILRES
SD2_D3
SD2_C3
Filter Channel 3
PWM12.CMPD
Register
Map
Data bus
FILRES
SD2_D4
SD2_C4
Filter Channel 4
FILRES
Figure 5-53. SDFM Block Diagram
132
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
5.9.5.1
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
SDFM Electrical Data and Timing
Table 5-66 shows the SDFM timing requirements. Figure 5-54 through Figure 5-57 show the SDFM timing
diagrams.
Table 5-66. SDFM Timing Requirements
MIN
MAX
UNIT
Mode 0
tc(SDC)M0
Cycle time, SDx_Cy
40
256 * SYSCLK period
ns
tw(SDCH)M0
Pulse duration, SDx_Cy high
10
tc(SDC)M0 – 10
ns
tsu(SDDV-SDCH)M0
Setup time, SDx_Dy valid before SDx_Cy goes
high
5
ns
th(SDCH-SDD)M0
Hold time, SDx_Dy wait after SDx_Cy goes high
5
ns
Mode 1
tc(SDC)M1
Cycle time, SDx_Cy
80
256 * SYSCLK period
ns
tw(SDCH)M1
Pulse duration, SDx_Cy high
10
tc(SDC)M1 – 10
ns
tsu(SDDV-SDCL)M1
Setup time, SDx_Dy valid before SDx_Cy goes low
5
ns
tsu(SDDV-SDCH)M1
Setup time, SDx_Dy valid before SDx_Cy goes
high
5
ns
th(SDCL-SDD)M1
Hold time, SDx_Dy wait after SDx_Cy goes low
5
ns
th(SDCH-SDD)M1
Hold time, SDx_Dy wait after SDx_Cy goes high
5
ns
Mode 2
tc(SDD)M2
Cycle time, SDx_Dy
tw(SDDH)M2
Pulse duration, SDx_Dy high
8 * tc(SYSCLK)
20 * tc(SYSCLK)
10
ns
ns
Mode 3
tc(SDC)M3
Cycle time, SDx_Cy
40
256 * SYSCLK period
ns
tw(SDCH)M3
Pulse duration, SDx_Cy high
10
tc(SDC)M3 – 5
ns
tsu(SDDV-SDCH)M3
Setup time, SDx_Dy valid before SDx_Cy goes
high
5
ns
th(SDCH-SDD)M3
Hold time, SDx_Dy wait after SDx_Cy goes high
5
ns
Mode 0
tw(SDCH)M0
tc(SDC)M0
SDx_Cy
tsu(SDDV-SDCH)M0
th(SDCH-SDD)M0
SDx_Dy
Figure 5-54. SDFM Timing Diagram – Mode 0
Mode 1
tw(SDCH)M1
tc(SDC)M1
SDx_Cy
tsu(SDDV-SDCL)M1
tsu(SDDV-SDCH)M1
SDx_Dy
th(SDCL-SDD)M1
th(SDCH-SDD)M1
Figure 5-55. SDFM Timing Diagram – Mode 1
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
133
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Mode 2
(Manchester-encoded bit stream)
tc(SDD)M2
Modulator
internal clock
tw(SDDH)M2
Modulator
internal data
1
0
1
1
1
0
0
1
1
SDx-Dy
Figure 5-56. SDFM Timing Diagram – Mode 2
Mode 3
(CLKx is driven externally)
tc(SDC)M3
tw(SDCH)M3
SDx_Cy
tsu(SDDV-SDCH)M3
th(SDCH-SDD)M3
SDx_Dy
Figure 5-57. SDFM Timing Diagram – Mode 3
134
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10 Communications Peripherals
NOTE
For the actual number of each peripheral on a specific device, see Table 3-1.
5.10.1 Controller Area Network (CAN)
NOTE
The CAN module uses the IP known as D_CAN. This document uses the names CAN and
D_CAN interchangeably to reference this peripheral.
The CAN module implements the following features:
• Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)
• Bit rates up to 1 Mbps
• Multiple clock sources
• 32 message objects, each with the following properties:
– Configurable as receive or transmit
– Configurable with standard or extended identifier
– Programmable receive and identifier masks for each object
– Supports data and remote frames
– Holds 0 to 8 bytes of data
– Parity-checked configuration and data RAM
• Individual identifier mask for each message object
• Programmable FIFO mode for receive message objects
• Programmable loop-back modes for self-test operation
• Suspend mode for debug support
• Software module reset
• Automatic bus on after Bus-Off state by a programmable 32-bit timer
• Message RAM parity check mechanism
• Two interrupt lines
• Global power down and wakeup support
NOTE
For a CANx Bit-CLK of 200 MHz, the smallest bit rate possible is 7.8125 kbps.
NOTE
The accuracy of the on-chip zero-pin oscillator is in Table 5-18, Internal Oscillator Electrical
Characteristics. Depending on parameters such as the CAN bit timing settings, bit rate, bus
length, and propagation delay, the accuracy of this oscillator may not meet the requirements
of the CAN protocol. In this situation, an external clock source must be used.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
135
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.2 Inter-Integrated Circuit (I2C)
The I2C module has the following features:
• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):
– Support for 1-bit to 8-bit format transfers
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers
– Support for multiple slave-transmitters and master-receivers
– Combined master transmit/receive and receive/transmit mode
– Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)
• One 16-byte receive FIFO and one 16-byte transmit FIFO
• One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the
following conditions:
– Transmit-data ready
– Receive-data ready
– Register-access ready
– No-acknowledgment received
– Arbitration lost
– Stop condition detected
– Addressed as slave
• An additional interrupt that can be used by the CPU when in FIFO mode
• Module enable/disable capability
• Free data format mode
136
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Figure 5-58 shows how the I2C peripheral module interfaces within the device.
2
I C Module
I2CXSR
I2CDXR
TX FIFO
FIFO Interrupt to
CPU/PIE
SDA
RX FIFO
Peripheral Bus
I2CRSR
SCL
Clock
Synchronizer
I2CDRR
Control/Status
Registers
CPU
Prescaler
Noise Filters
I2C INT
Interrupt to
CPU/PIE
Arbitrator
Figure 5-58. I2C Peripheral Module Interfaces
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
137
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.2.1 I2C Electrical Data and Timing
Table 5-67 shows the I2C timing requirements. Table 5-68 shows the I2C switching characteristics.
Table 5-67. I2C Timing Requirements
MIN
MAX
UNIT
th(SDA-SCL)START
Hold time, START condition, SCL fall delay
after SDA fall
0.6
µs
tsu(SCL-SDA)START
Setup time, Repeated START, SCL rise before
SDA fall delay
0.6
µs
th(SCL-DAT)
Hold time, data after SCL fall
0
µs
tsu(DAT-SCL)
Setup time, data before SCL rise
tr(SDA)
Rise time, SDA
Input tolerance
20
300
ns
tr(SCL)
Rise time, SCL
Input tolerance
20
300
ns
tf(SDA)
Fall time, SDA
Input tolerance
11.4
300
ns
tf(SCL)
Fall time, SCL
Input tolerance
11.4
300
ns
tsu(SCL-SDA)STOP
Setup time, STOP condition, SCL rise before
SDA rise delay
100
ns
0.6
µs
Table 5-68. I2C Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
MAX
UNIT
0
400
kHz
fSCL
SCL clock frequency
tw(SCLL)
Pulse duration, SCL clock low
1.3
µs
tw(SCLH)
Pulse duration, SCL clock high
0.6
µs
tw(SP)
Pulse duration of spikes that will be
suppressed by the input filter
tBUF
Bus free time between STOP and START
conditions
tv(SCL-DAT)
Valid time, data after SCL fall
0.9
µs
tv(SCL-ACK)
Valid time, Acknowledge after SCL fall
0.9
µs
VIL
Valid low-level input voltage
VIH
Valid high-level input voltage
VOL
Low-level output voltage
Sinking 3 mA
II
Input current on pins
0.1 Vbus < Vi < 0.9 Vbus
138
Specifications
0
50
1.3
ns
µs
–0.3
0.3 * VDDIO
V
0.7 * VDDIO
VDDIO + 0.3
V
0
0.4
V
–10
10
µA
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.3 Multichannel Buffered Serial Port (McBSP)
The McBSP module has the following features:
• Compatible with McBSP in TMS320C28x and TMS320F28x DSP devices
• Full-duplex communication
• Double-buffered data registers that allow a continuous data stream
• Independent framing and clocking for receive and transmit
• External shift clock generation or an internal programmable frequency shift clock
• 8-bit data transfer mode can be configured to transmit with LSB or MSB first
• Programmable polarity for both frame synchronization and data clocks
• Highly programmable internal clock and frame generation
• Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially
connected A/D and D/A devices
• Supports AC97, I2S, and SPI protocols
• McBSP clock rate,
CLKG =
CLKSRG
(1 + CLKGDV )
where CLKSRG source could be LSPCLK, CLKX, or CLKR.
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
139
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Figure 5-59 shows the block diagram of the McBSP module.
TX
Interrupt
MXINT
Peripheral Write Bus
TX Interrupt Logic
To CPU
16
16
DXR2 Transmit Buffer
DXR1 Transmit Buffer
McBSP Transmit
Interrupt Select Logic
PERx.LSPCLK
DMA Bus
Bridge
CPU
Peripheral Bus
16
CPU
16
MFSXx
Compand Logic
MCLKXx
XSR2
XSR1
RSR2
RSR1
16
16
Expand Logic
RBR2 Register
RBR1 Register
16
16
MDXx
MDRx
MCLKRx
MFSRx
McBSP Receive
Interrupt Select Logic
MRINT
To CPU
RX Interrupt Logic
RX
Interrupt
DRR2 Receive Buffer
DRR1 Receive Buffer
16
16
Peripheral Read Bus
CPU
Figure 5-59. McBSP Block Diagram
140
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.3.1 McBSP Electrical Data and Timing
5.10.3.1.1 McBSP Transmit and Receive Timing
Table 5-69 shows the McBSP timing requirements. Table 5-70 shows the McBSP switching
characteristics. Figure 5-60 and Figure 5-61 show the McBSP timing diagrams.
Table 5-69. McBSP Timing Requirements (1)
(2)
NO.
MIN
McBSP module cycle time (CLKG, CLKX, CLKR) range
(2)
UNIT
25
MHz
1
McBSP module clock (CLKG, CLKX, CLKR) range
(1)
MAX
kHz
40
ns
1
ms
M11
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
2P
ns
M12
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
P–7
ns
M13
tr(CKRX)
Rise time, CLKR/X
CLKR/X ext
7
ns
M14
tf(CKRX)
Fall time, CLKR/X
CLKR/X ext
7
ns
M15
tsu(FRH-CKRL)
Setup time, external FSR high before CLKR low
M16
th(CKRL-FRH)
Hold time, external FSR high after CLKR low
M17
tsu(DRV-CKRL)
Setup time, DR valid before CLKR low
M18
th(CKRL-DRV)
Hold time, DR valid after CLKR low
M19
tsu(FXH-CKXL)
Setup time, external FSX high before CLKX low
M20
th(CKXL-FXH)
Hold time, external FSX high after CLKX low
CLKR int
18
CLKR ext
2
CLKR int
0
CLKR ext
6
CLKR int
18
CLKR ext
5
CLKR int
0
CLKR ext
3
CLKX int
18
CLKX ext
2
CLKX int
0
CLKX ext
6
ns
ns
ns
ns
ns
ns
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that
signal are also inverted.
2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = CLKSRG / (1 + CLKGDV). CLKSRG can be LSPCLK,
CLKX, CLKR as source. CLKSRG ≤ (SYSCLK/2).
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
141
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-70. McBSP Switching Characteristics (1)
(2)
over recommended operating conditions (unless otherwise noted)
NO.
M1
PARAMETER
tc(CKRX)
MIN
Cycle time, CLKR/X
CLKR/X int
2P
M2
tw(CKRXH)
Pulse duration, CLKR/X high
CLKR/X int
D–5
(3)
M3
tw(CKRXL)
Pulse duration, CLKR/X low
CLKR/X int
C–5
(3)
MAX
ns
D+5
(3)
ns
C+5
(3)
ns
CLKR int
0
4
CLKR ext
3
27
CLKX int
0
4
CLKX ext
3
27
M4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR valid
M5
td(CKXH-FXV)
Delay time, CLKX high to internal FSX valid
M6
tdis(CKXH-DXHZ)
Disable time, CLKX high to DX high impedance
following last data bit
CLKX int
8
CLKX ext
14
Delay time, CLKX high to DX valid.
CLKX int
9
This applies to all bits except the first bit
transmitted.
CLKX ext
28
M7
M8
M9
M10
(1)
(2)
(3)
142
td(CKXH-DXV)
ten(CKXH-DX)
td(FXH-DXV)
ten(FXH-DX)
Delay time, CLKX high to DX
DXENA = 0
valid
CLKX int
8
CLKX ext
14
Only applies to first bit
transmitted when in Data
DXENA = 1
Delay 1 or 2 (XDATDLY=01b
or 10b) modes
CLKX int
P+8
CLKX ext
P + 14
Enable time, CLKX high to
DX driven
CLKX int
DXENA = 0
CLKX ext
6
CLKX int
P
CLKX ext
P+6
Delay time, FSX high to DX
valid
DXENA = 0
FSX int
8
FSX ext
14
Only applies to first bit
transmitted when in Data
Delay 0 (XDATDLY=00b)
mode.
FSX int
P+8
DXENA = 1
FSX ext
P + 14
Enable time, FSX high to DX
driven
DXENA = 0
Only applies to first bit
transmitted when in Data
Delay 0 (XDATDLY=00b)
mode
DXENA = 1
ns
ns
ns
ns
0
Only applies to first bit
transmitted when in Data
DXENA = 1
Delay 1 or 2 (XDATDLY=01b
or 10b) modes
FSX int
UNIT
ns
ns
0
FSX ext
6
FSX int
P
FSX ext
P+6
ns
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that
signal are also inverted.
2P = 1/CLKG in ns.
C = CLKRX low pulse width = P
D = CLKRX high pulse width = P
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
M1, M11
M2, M12
M13
M3, M12
CLKR
M4
M4
M14
FSR (int)
M15
M16
FSR (ext)
M18
M17
DR
(RDATDLY=00b)
Bit (n−1)
(n−2)
(n−3)
M17
(n−4)
M18
DR
(RDATDLY=01b)
Bit (n−1)
(n−2)
(n−3)
M17
M18
DR
(RDATDLY=10b)
Bit (n−1)
(n−2)
Figure 5-60. McBSP Receive Timing
M1, M11
M2, M12
M13
M3, M12
CLKX
M5
M5
FSX (int)
M19
M20
FSX (ext)
M9
M7
M10
DX
(XDATDLY=00b)
Bit 0
Bit (n−1)
(n−2)
(n−3)
M7
M8
DX
(XDATDLY=01b)
Bit 0
Bit (n−1)
M7
M6
DX
(XDATDLY=10b)
(n−2)
M8
Bit 0
Bit (n−1)
Figure 5-61. McBSP Transmit Timing
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
143
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.3.1.2 McBSP as SPI Master or Slave Timing
For CLKSTP = 10b and CLKXP = 0, Table 5-71 shows the timing requirements, Table 5-72 shows the
switching characteristics, and Figure 5-62 shows the timing diagram.
Table 5-71. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) (1)
NO.
M30
tsu(DRV-CKXL)
Setup time, DR valid before CLKX low
M31
th(CKXL-DRV)
Hold time, DR valid after CLKX low
M32
tsu(BFXL-CKXH)
Setup time, FSX low before CLKX high
M33
tc(CKX)
Cycle time, CLKX
(1)
MASTER
SLAVE
MIN
MIN
MAX
MAX
UNIT
30
8P – 10
ns
1
8P – 10
ns
8P + 10
ns
16P
ns
2P (2)
For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =
CLKGDV = 1.
2P = 1/CLKG
(2)
Table 5-72. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating
Conditions (Unless Otherwise Noted) (CLKSTP = 10b, CLKXP = 0)
NO.
MASTER
PARAMETER
MIN
SLAVE
MAX
MIN
MAX
UNIT
M24
th(CKXL-FXL)
Hold time, FSX low after CLKX low
2P (1)
ns
M25
td(FXL-CKXH)
Delay time, FSX low to CLKX high
P
ns
M28
tdis(FXH-DXHZ)
Disable time, DX high impedance following
last data bit from FSX high
6
6P + 6
ns
M29
td(FXL-DXV)
Delay time, FSX low to DX valid
6
4P + 6
ns
(1)
2P = 1/CLKG
M32
LSB
M33
MSB
CLKX
M25
M24
FSX
M28
DX
M29
Bit 0
Bit(n-1)
M30
DR
Bit 0
(n-2)
(n-3)
(n-4)
M31
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 5-62. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0
144
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
For CLKSTP = 11b and CLKXP = 0, Table 5-73 shows the timing requirements, Table 5-74 shows the
switching characteristics, and Figure 5-63 shows the timing diagram.
Table 5-73. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) (1)
MASTER
NO.
MIN
M39
tsu(DRV-CKXH)
Setup time, DR valid before CLKX high
M40
th(CKXH-DRV)
Hold time, DR valid after CLKX high
M41
tsu(FXL-CKXH)
Setup time, FSX low before CLKX high
M42
tc(CKX)
Cycle time, CLKX
(1)
(2)
SLAVE
MAX
MIN
MAX
UNIT
30
8P – 10
ns
1
8P – 10
ns
16P + 10
ns
16P
ns
2P (2)
For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =
CLKGDV = 1.
2P = 1/CLKG
Table 5-74. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating
Conditions (Unless Otherwise Noted) (CLKSTP = 11b, CLKXP = 0)
NO.
(1)
MASTER
PARAMETER
MIN
SLAVE
MAX
MIN
MAX
UNIT
M34
th(CKXL-FXL)
Hold time, FSX low after CLKX low
P
ns
M35
td(FXL-CKXH)
Delay time, FSX low to CLKX high
2P (1)
ns
M37
tdis(CKXL-DXHZ)
Disable time, DX high impedance following last data bit
from CLKX low
P+6
7P + 6
ns
M38
td(FXL-DXV)
Delay time, FSX low to DX valid
6
4P + 6
ns
2P = 1/CLKG
LSB
M42
MSB
M41
CLKX
M34
M35
FSX
M37
DX
M38
Bit 0
Bit(n-1)
M39
DR
Bit 0
(n-2)
(n-3)
(n-4)
M40
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 5-63. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
145
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
For CLKSTP = 10b and CLKXP = 1, Table 5-75 shows the timing requirements, Table 5-76 shows the
switching characteristics, and Figure 5-64 shows the timing diagram.
Table 5-75. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) (1)
NO.
M49
tsu(DRV-CKXH)
Setup time, DR valid before CLKX high
M50
th(CKXH-DRV)
Hold time, DR valid after CLKX high
M51
tsu(FXL-CKXL)
Setup time, FSX low before CLKX low
M52
tc(CKX)
Cycle time, CLKX
(1)
MASTER
SLAVE
MIN
MIN
MAX
MAX
UNIT
30
8P – 10
ns
1
8P – 10
ns
8P + 10
ns
16P
ns
2P (2)
For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =
CLKGDV = 1.
2P = 1/CLKG
(2)
Table 5-76. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating
Conditions (Unless Otherwise Noted) (CLKSTP = 10b, CLKXP = 1)
NO.
PARAMETER
SLAVE
MIN
MIN
MAX
MAX
UNIT
2P (1)
ns
Delay time, FSX low to CLKX low
P
ns
tdis(FXH-DXHZ)
Disable time, DX high impedance following last data bit from
FSX high
6
6P + 6
ns
td(FXL-DXV)
Delay time, FSX low to DX valid
6
4P + 6
ns
M43
th(CKXH-FXL)
Hold time, FSX low after CLKX high
M44
td(FXL-CKXL)
M47
M48
(1)
MASTER
2P = 1/CLKG
M51
LSB
M52
MSB
CLKX
M43
M44
FSX
M47
DX
M48
Bit 0
Bit(n-1)
M49
DR
Bit 0
(n-2)
(n-3)
(n-4)
M50
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 5-64. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1
146
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
For CLKSTP = 11b and CLKXP = 1, Table 5-77 shows the timing requirements, Table 5-78 shows the
switching characteristics, and Figure 5-65 shows the timing diagram.
Table 5-77. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) (1)
MASTER
NO.
MIN
M58 tsu(DRV-CKXL)
Setup time, DR valid before CLKX low
M59 th(CKXL-DRV)
Hold time, DR valid after CLKX low
M60 tsu(FXL-CKXL)
Setup time, FSX low before CLKX low
M61 tc(CKX)
Cycle time, CLKX
(1)
(2)
SLAVE
MAX
MIN
MAX
UNIT
30
8P – 10
ns
1
8P – 10
ns
16P + 10
ns
16P
ns
2P (2)
For all SPI slave modes, CLKX has to be a minimum of 8 CLKG cycles. Furthermore, CLKG should be LSPCLK/2 by setting CLKSM =
CLKGDV = 1.
2P = 1/CLKG
Table 5-78. McBSP as SPI Master or Slave Switching Characteristics Over Recommended Operating
Conditions (Unless Otherwise Noted) (CLKSTP = 11b, CLKXP = 1) (1)
NO.
MASTER (2)
PARAMETER
MIN
M53
th(CKXH-FXL)
Hold time, FSX low after CLKX high
M54
td(FXL-CKXL)
Delay time, FSX low to CLKX low
M55
td(CLKXH-DXV)
Delay time, CLKX high to DX valid
M56
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last
data bit from CLKX high
M57
td(FXL-DXV)
Delay time, FSX low to DX valid
(1)
(2)
SLAVE
MAX
MIN
MAX
UNIT
P
ns
2P (1)
ns
–2
0
3P + 6
5P + 20
ns
P+6
7P + 6
ns
6
4P + 6
ns
2P = 1/CLKG
C = CLKX low pulse width = P
D = CLKX high pulse width = P
M60
LSB
M61
MSB
CLKX
M53
M54
FSX
M56
DX
M55
M57
Bit 0
Bit(n-1)
M58
DR
Bit 0
(n-2)
(n-3)
(n-4)
M59
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 5-65. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
147
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.4 Serial Communications Interface (SCI)
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports
digital communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero (NRZ) format
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and
each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex
communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks
received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to
different speeds through a 16-bit baud-select register. Figure 5-66 shows the SCI block diagram.
Features of the SCI module include:
• Two external pins:
– SCITXD: SCI transmit-output pin
– SCIRXD: SCI receive-input pin
NOTE: Both pins can be used as GPIO if not used for SCI.
– Baud rate programmable to 64K different rates
• Data-word format
– One start bit
– Data-word length programmable from 1 to 8 bits
– Optional even/odd/no parity bit
– 1 or 2 stop bits
• Four error-detection flags: parity, overrun, framing, and break detection
• Two wakeup multiprocessor modes: idle-line and address bit
• Half- or full-duplex operation
• Double-buffered receive and transmit functions
• Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms
with status flags.
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX
EMPTY flag (transmitter-shift register is empty)
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
• Separate enable bits for transmitter and receiver interrupts (except BRKDT)
• NRZ format
• Auto baud-detect hardware logic
• 16-level transmit and receive FIFO
NOTE
All registers in this module are 8-bit registers. When a register is accessed, the register data
is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the
upper byte has no effect.
148
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
SCICTL1.1
Frame Format and Mode
SCITXD
TXSHF
Register
Parity
Even/Odd
TXENA
Enable
TX EMPTY
SCICTL2.6
8
SCICCR.6 SCICCR.5
SCITXD
TXRDY
Transmitter-Data
Buffer Register
TX INT ENA
SCICTL2.7
SCICTL2.0
TXWAKE
8
SCICTL1.3
TX FIFO _0
1
TX FIFO Interrupt
TX FIFO _1
−−−−−
TX Interrupt
Logic
TXINT
To CPU
TX FIFO _15
WUT
SCI TX Interrupt select logic
SCITXBUF.7−0
TX FIFO registers
SCIFFENA
Auto baud detect logic
SCIFFTX.14
SCIHBAUD. 15 − 8
SCIRXD
RXSHF
Baud Rate
MSbyte
Register
SCIRXD
Register
RXWAKE
LSPCLK
SCIRXST.1
SCILBAUD. 7 − 0
RXENA
Baud Rate
LSbyte
Register
8
SCICTL1.0
SCICTL2.1
Receive Data
Buffer register
RXRDY
RX/BK INT ENA
SCIRXST.6
SCIRXBUF.7−0
8
RX FIFO _15
−−−−−
BRKDT
SCIRXST.5
RX FIFO_1
RX FIFO _0
SCIRXBUF.7−0
RX FIFO Interrupt
RX Interrupt
Logic
RXINT
To CPU
RX FIFO registers
SCIRXST.7
RXFFOVF
SCIRXST.4 – 2
SCIFFRX.15
RX Error
FE OE PE
RX Error
RX ERR INT ENA
SCICTL1.6
SCI RX Interrupt select logic
Figure 5-66. SCI Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
149
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
The major elements used in full-duplex operation include:
• A transmitter (TX) and its major registers:
– SCITXBUF register – Transmitter Data Buffer register. Contains data (loaded by the CPU) to be
transmitted
– TXSHF register – Transmitter Shift register. Accepts data from the SCITXBUF register and shifts
data onto the SCITXD pin, 1 bit at a time
• A receiver (RX) and its major registers:
– RXSHF register – Receiver Shift register. Shifts data in from the SCIRXD pin, 1 bit at a time
– SCIRXBUF register – Receiver Data Buffer register. Contains data to be read by the CPU. Data
from a remote processor is loaded into the RXSHF register and then into the SCIRXBUF and
SCIRXEMU registers
• A programmable baud generator
• Data-memory-mapped control and status registers enable the CPU to access the I2C module registers
and FIFOs.
The SCI receiver and transmitter operate independently.
150
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5 Serial Peripheral Interface (SPI)
The SPI is a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of
programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.
The SPI is normally used for communications between the microcontroller and external peripherals or
another controller. Typical applications include external I/O or peripheral expansion through devices such
as shift registers, display drivers, and ADCs. Multidevice communications are supported by the
master/slave operation of the SPI. The port supports 16-level receive and transmit FIFOs for reducing
CPU servicing overhead.
The SPI module features include:
• SPISOMI: SPI slave-output/master-input pin
• SPISIMO: SPI slave-input/master-output pin
• SPISTE: SPI slave transmit-enable pin
• SPICLK: SPI serial-clock pin
• Two operational modes: master and slave
• Baud rate: 125 different programmable rates
• Data word length: 1 to 16 data bits
• Four clocking schemes (controlled by clock polarity and clock phase bits) include:
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
• Simultaneous receive-and-transmit operation (transmit function can be disabled in software)
• Transmitter and receiver operations are accomplished through either interrupt-driven or polled
algorithms.
• 16-level transmit and receive FIFO
• Delayed transmit control
• 3-wire SPI mode
• SPISTE inversion for digital audio interface receive mode on devices with two SPI modules
• DMA support
• High-speed mode for up to 50-MHz full-duplex communication
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
151
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
The SPI operates in master or slave mode. The master initiates data transfer by sending the SPICLK
signal. For both the slave and the master, data is shifted out of the shift registers on one edge of the
SPICLK and latched into the shift register on the opposite SPICLK clock edge. If the CLOCK PHASE bit
(SPICTL.3) is high, data is transmitted and received a half-cycle before the SPICLK transition. As a result,
both controllers send and receive data simultaneously. The application software determines whether the
data is meaningful or dummy data. There are three possible methods for data transmission:
• Master sends data; slave sends dummy data
• Master sends data; slave sends data
• Master sends dummy data; slave sends data
The master can initiate a data transfer at any time because it controls the SPICLK signal. The software,
however, determines how the master detects when the slave is ready to broadcast data.
Figure 5-67 shows the SPI CPU Interface.
PCLKCR8
Low-Speed
Prescaler
SYSCLK
Bit
Clock
CPU
Peripheral Bus
LSPCLK
SYSRS
SPISIMO
GPIO
MUX
SPISOMI
SPICLK
SPI
SPIINT
SPITXINT
PIE
SPIRXDMA
SPITXDMA
DMA
SPISTE
Figure 5-67. SPI CPU Interface
152
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5.1 SPI Electrical Data and Timing
The following sections contain the SPI External Timings in Non-High-Speed Mode:
Section 5.10.5.1.1
Master Mode External Timings Where Clock Phase = 0
Section 5.10.5.1.2
Master Mode External Timings Where Clock Phase = 1
Section 5.10.5.1.3
Slave Mode External Timings Where Clock Phase = 0
Section 5.10.5.1.4
Slave Mode External Timings Where Clock Phase = 1
The following sections contain the SPI External Timings in High-Speed Mode:
Section 5.10.5.1.5
High-Speed Master Mode External Timings Where Clock Phase = 0
Section 5.10.5.1.6
High-Speed Master Mode External Timings Where Clock Phase = 1
Section 5.10.5.1.7
High-Speed Slave Mode External Timings Where Clock Phase = 0
Section 5.10.5.1.8
High-Speed Slave Mode External Timings Where Clock Phase = 1
NOTE
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on
SPICLK, SPISIMO, and SPISOMI.
For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter
of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual.
To use the SPI in High-Speed mode, the application must use the high-speed enabled GPIOs (see
Section 4.5.5).
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
153
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.5.1.1 Master Mode External Timings Where Clock Phase = 0
Table 5-79 shows the SPI master mode external timings where (SPIBRR + 1) is even or SPIBRR = 0 or 2.
Table 5-80 shows the SPI master mode external timings where (SPIBRR + 1) is odd and SPIBRR > 3.
Figure 5-68 shows the SPI master mode external timing where the clock phase = 0.
Table 5-79. SPI Master Mode External Timings Where (SPIBRR + 1) is Even or SPIBRR = 0 or 2
NO.
1
MIN
MAX
4tc(LSPCLK)
128tc(LSPCLK)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
td(SPCH-SIMO)M
Delay time, SPICLK high to SPISIMO valid
(clock polarity = 0)
3
td(SPCL-SIMO)M
Delay time, SPICLK low to SPISIMO valid
(clock polarity = 1)
3
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after SPICLK
low (clock polarity = 0)
0.5tc(SPC)M – 3
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after SPICLK
high (clock polarity = 1)
0.5tc(SPC)M – 3
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK low
(clock polarity = 0)
20
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK high
(clock polarity = 1)
20
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after SPICLK
low (clock polarity = 0)
0
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after SPICLK
high (clock polarity = 1)
0
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK high (clock
polarity = 0)
0.5tc(SPC) – 3
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK low (clock
polarity = 1)
0.5tc(SPC) – 3
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE invalid
(clock polarity = 0)
0.5tc(SPC) – 3
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE invalid
(clock polarity = 1)
0.5tc(SPC) – 3
tc(SPC)M
Cycle time, SPICLK
2
3
4
5
8
9
23
24
154
Specifications
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 5-80. SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3
NO.
1
MIN
MAX
5tc(LSPCLK)
127tc(LSPCLK)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
td(SPCH-SIMO)M
Delay time, SPICLK high to SPISIMO
valid (clock polarity = 0)
3
td(SPCL-SIMO)M
Delay time, SPICLK low to SPISIMO
valid (clock polarity = 1)
3
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 3
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 3
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK
low (clock polarity = 0)
20
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK
high (clock polarity = 1)
20
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after
SPICLK low (clock polarity = 0)
0
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after
SPICLK high (clock polarity = 1)
0
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK
high (clock polarity = 0)
0.5tc(SPC) – 3
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK
low (clock polarity = 1)
0.5tc(SPC) – 3
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE
invalid (clock polarity = 0)
0.5tc(SPC) – 3
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE
invalid (clock polarity = 1)
0.5tc(SPC) – 3
tc(SPC)M
Cycle time, SPICLK
2
3
4
5
8
9
23
24
ns
ns
ns
ns
ns
ns
ns
ns
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
UNIT
155
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
SPISIMO
Master Out Data Is Valid
8
9
Master In Data
Must Be Valid
SPISOMI
23
24
(A)
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-68. SPI Master Mode External Timing (Clock Phase = 0)
156
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5.1.2 Master Mode External Timings Where Clock Phase = 1
Table 5-81 shows the SPI master mode external timings where (SPIBRR + 1) is even or SPIBRR = 0 or 2.
Table 5-82 shows the SPI master mode external timings where (SPIBRR + 1) is odd or SPIBRR > 3.
Figure 5-69 shows the SPI master mode external timing where the clock phase = 1.
Table 5-81. SPI Master Mode External Timings Where (SPIBRR + 1) is Even or SPIBRR = 0 or 2
NO.
1
MIN
MAX
4tc(LSPCLK)
128tc(LSPCLK)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL))M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
td(SIMO-SPCH)M
Delay time, SPISIMO data valid to SPICLK
high (clock polarity = 0)
0.5tc(SPC)M – 3
td(SIMO-SPCL)M
Delay time, SPISIMO data valid to SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 3
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after SPICLK
high (clock polarity = 0)
0.5tc(SPC)M – 3
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after SPICLK
low (clock polarity = 1)
0.5tc(SPC)M – 3
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK high
(clock polarity = 0)
20
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK low
(clock polarity = 1)
20
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after SPICLK
high (clock polarity = 0)
0
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after SPICLK
low (clock polarity = 1)
0
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK high (clock
polarity = 0)
0.5tc(SPC) – 3
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK low (clock
polarity = 1)
0.5tc(SPC) – 3
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE invalid
(clock polarity = 0)
0.5tc(SPC) – 3
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE invalid
(clock polarity = 1)
0.5tc(SPC) – 3
tc(SPC)M
Cycle time, SPICLK
2
3
6
7
10
11
23
24
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
ns
157
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-82. SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3
NO.
1
MIN
MAX
5tc(LSPCLK)
127tc(LSPCLK)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
tw(SPCL))M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
td(SIMO-SPCH)M
Delay time, SPISIMO data valid to
SPICLK high (clock polarity = 0)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3
td(SIMO-SPCL)M
Delay time, SPISIMO data valid to
SPICLK low (clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 3
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 3
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 1)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK
high (clock polarity = 0)
20
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK
low (clock polarity = 1)
20
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after
SPICLK high (clock polarity = 0)
0
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after
SPICLK low (clock polarity = 1)
0
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK
high (clock polarity = 0)
0.5tc(SPC) – 3
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK low
(clock polarity = 1)
0.5tc(SPC) – 3
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE
invalid (clock polarity = 0)
0.5tc(SPC) – 3
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE
invalid (clock polarity = 1)
0.5tc(SPC) – 3
tc(SPC)M
Cycle time, SPICLK
2
3
6
7
10
11
23
24
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
6
7
Master Out Data Is Valid
SPISIMO
10
11
Master In Data Must
Be Valid
SPISOMI
(A)
24
23
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-69. SPI Master Mode External Timing (Clock Phase = 1)
158
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5.1.3 Slave Mode External Timings Where Clock Phase = 0
Table 5-83 and Figure 5-70 show the SPI slave mode external timings where the clock phase = 0.
Table 5-83. SPI Slave Mode External Timings Where Clock Phase = 0
NO.
12
13
14
15
MIN
Cycle time, SPICLK
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
2tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
2tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
2tc(SYSCLK) – 1
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
2tc(SYSCLK) – 1
td(SPCH-SOMI)S
Delay time, SPICLK high to SPISOMI valid (clock polarity = 0)
20
td(SPCL-SOMI)S
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)
20
tv(SPCH-SOMI)S
Valid time, SPISOMI data valid after SPICLK high
(clock polarity = 0)
0
tv(SPCL-SOMI)S
Valid time, SPISOMI data valid after SPICLK low
(clock polarity = 1)
0
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity = 0)
5
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity = 1)
5
th(SPCL-SIMO)S
Hold time, SPISIMO data valid after SPICLK low
(clock polarity = 0)
5
th(SPCH-SIMO)S
Hold time, SPISIMO data valid after SPICLK high
(clock polarity = 1)
5
tsu(STE-SPCH)S
Setup time, SPISTE valid before SPICLK high
(clock polarity = 0)
2tc(SYSCLK)
tsu(STE-SPCL)S
Setup time, SPISTE valid before SPICLK low
(clock polarity = 1)
2tc(SYSCLK)
th(SPCL-STE)S
Hold time, SPISTE invalid after SPICLK low (clock polarity = 0)
2tc(SYSCLK)
th(SPCH-STE)S
Hold time, SPISTE invalid after SPICLK high (clock polarity = 1)
2tc(SYSCLK)
16
19
20
25
26
MAX
tc(SPC)S
4tc(SYSCLK)
ns
ns
ns
ns
ns
ns
ns
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
UNIT
ns
159
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
16
SPISOMI Data Is Valid
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-70. SPI Slave Mode External Timing (Clock Phase = 0)
160
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5.1.4 Slave Mode External Timings Where Clock Phase = 1
Table 5-84 and Figure 5-71 show the SPI slave mode external timings where the clock phase = 1.
Table 5-84. SPI Slave Mode External Timings Where Clock Phase = 1
NO.
12
13
14
17
MIN
Cycle time, SPICLK
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
4tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
4tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
4tc(SYSCLK) – 1
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
4tc(SYSCLK) – 1
td(SPCL-SOMI)S
Delay time, SPICLK low to SPISOMI (clock polarity = 0)
20
td(SPCH-SOMI)S
Delay time, SPICLK high to SPISOMI (clock polarity = 1)
20
tv(SPCL-SOMI)S
Valid time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
0
tv(SPCH-SOMI)S
Valid time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
0
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity = 0)
5
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity = 1)
5
th(SPCH-SIMO)S
Hold time, SPISIMO data valid after SPICLK high
(clock polarity = 0)
5
th(SPCL-SIMO)S
Hold time, SPISIMO data valid after SPICLK low
(clock polarity = 1)
5
tsu(STE-SPCH)S
Setup time, SPISTE valid before SPICLK high (clock polarity = 0)
2tc(SYSCLK)
tsu(STE-SPCL)S
Setup time, SPISTE valid before SPICLK low (clock polarity = 1)
2tc(SYSCLK)
th(STE-SPCL)S
Hold time, SPISTE invalid after SPICLK low (clock polarity = 0)
2tc(SYSCLK)
th(STE-SPCH)S
Hold time, SPISTE invalid after SPICLK high (clock polarity = 1)
2tc(SYSCLK)
18
21
22
25
26
MAX
tc(SPC)S
8tc(SYSCLK)
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
17
SPISOMI
Data Valid
SPISOMI Data Is Valid
Data Valid
18
21
22
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-71. SPI Slave Mode External Timing (Clock Phase = 1)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
161
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.5.1.5 High-Speed Master Mode External Timings Where Clock Phase = 0
Table 5-85 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is even or
SPIBRR = 0 or 2.
Table 5-86 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is odd and
SPIBRR > 3.
Figure 5-72 shows the high-speed SPI master mode external timing where the clock phase = 0.
Table 5-85. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Even or
SPIBRR = 0 or 2
NO.
1
MIN
MAX
4tc(LSPCLK)
128tc(LSPCLK)
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
td(SPCH-SIMO)M
Delay time, SPICLK high to SPISIMO valid
(clock polarity = 0)
1
td(SPCL-SIMO)M
Delay time, SPICLK low to SPISIMO valid
(clock polarity = 1)
1
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after SPICLK
low (clock polarity = 0)
0.5tc(SPC)M – 1
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after SPICLK
high (clock polarity = 1)
0.5tc(SPC)M – 1
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK low
(clock polarity = 0)
1
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK high
(clock polarity = 1)
1
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after SPICLK
low (clock polarity = 0)
5
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after SPICLK
high (clock polarity = 1)
5
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK high (clock
polarity = 0)
0.5tc(SPC) – 1
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK low (clock
polarity = 1)
0.5tc(SPC) – 1
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE invalid
(clock polarity = 0)
0.5tc(SPC) – 1
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE invalid
(clock polarity = 1)
0.5tc(SPC) – 1
tc(SPC)M
Cycle time, SPICLK
tw(SPCH)M
2
3
4
5
8
9
23
24
162
Specifications
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 5-86. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd and SPIBRR > 3
NO.
1
MIN
MAX
5tc(LSPCLK)
127tc(LSPCLK)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
td(SPCH-SIMO)M
Delay time, SPICLK high to SPISIMO
valid (clock polarity = 0)
1
td(SPCL-SIMO)M
Delay time, SPICLK low to SPISIMO
valid (clock polarity = 1)
1
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK
low (clock polarity = 0)
1
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK
high (clock polarity = 1)
1
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after
SPICLK low (clock polarity = 0)
5
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after
SPICLK high (clock polarity = 1)
5
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK
high (clock polarity = 0)
0.5tc(SPC) – 1
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK
low (clock polarity = 1)
0.5tc(SPC) – 1
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE
invalid (clock polarity = 0)
0.5tc(SPC) – 1
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE
invalid (clock polarity = 1)
0.5tc(SPC) – 1
tc(SPC)M
Cycle time, SPICLK
2
3
4
5
8
9
23
24
ns
ns
ns
ns
ns
ns
ns
ns
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
UNIT
163
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
SPISIMO
Master Out Data Is Valid
8
9
Master In Data
Must Be Valid
SPISOMI
23
24
(A)
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-72. High-Speed SPI Master Mode External Timing (Clock Phase = 0)
164
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5.1.6 High-Speed Master Mode External Timings Where Clock Phase = 1
Table 5-87 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is even or
SPIBRR = 0 or 2.
Table 5-88 shows the high-speed SPI master mode external timings where (SPIBRR + 1) is odd or
SPIBRR > 3.
Figure 5-73 shows the high-speed SPI master mode external timing where the clock phase = 1.
Table 5-87. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Even or
SPIBRR = 0 or 2
NO.
1
MIN
MAX
4tc(LSPCLK)
128tc(LSPCLK)
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL))M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
td(SIMO-SPCH)M
Delay time, SPISIMO data valid to SPICLK
high (clock polarity = 0)
0.5tc(SPC)M – 1
td(SIMO-SPCL)M
Delay time, SPISIMO data valid to SPICLK low
(clock polarity = 1)
0.5tc(SPC)M – 1
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after SPICLK
high (clock polarity = 0)
0.5tc(SPC)M – 1
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after SPICLK
low (clock polarity = 1)
0.5tc(SPC)M – 1
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK high
(clock polarity = 0)
1
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK low
(clock polarity = 1)
1
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after SPICLK
high (clock polarity = 0)
5
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after SPICLK
low (clock polarity = 1)
5
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK high (clock
polarity = 0)
0.5tc(SPC) – 1
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK low (clock
polarity = 1)
0.5tc(SPC) – 1
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE invalid
(clock polarity = 0)
0.5tc(SPC) – 1
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE invalid
(clock polarity = 1)
0.5tc(SPC) – 1
tc(SPC)M
Cycle time, SPICLK
tw(SPCH)M
2
3
6
7
10
11
23
24
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
ns
165
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 5-88. High-Speed SPI Master Mode External Timings Where (SPIBRR + 1) is Odd or SPIBRR > 3
NO.
1
MIN
MAX
5tc(LSPCLK)
127tc(LSPCLK)
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 0)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
tw(SPCL))M
Pulse duration, SPICLK low
(clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
tw(SPCL)M
Pulse duration, SPICLK low
(clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M + 0.5tc(LSPCLK) + 1
tw(SPCH)M
Pulse duration, SPICLK high
(clock polarity = 1)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M – 0.5tc(LSPCLK) + 1
td(SIMO-SPCH)M
Delay time, SPISIMO data valid to
SPICLK high (clock polarity = 0)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
td(SIMO-SPCL)M
Delay time, SPISIMO data valid to
SPICLK low (clock polarity = 1)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
tv(SPCH-SIMO)M
Valid time, SPISIMO data valid after
SPICLK high (clock polarity = 0)
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
tv(SPCL-SIMO)M
Valid time, SPISIMO data valid after
SPICLK low (clock polarity = 1)
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
tsu(SOMI-SPCH)M
Setup time, SPISOMI before SPICLK
high (clock polarity = 0)
1
tsu(SOMI-SPCL)M
Setup time, SPISOMI before SPICLK
low (clock polarity = 1)
1
th(SPCH-SOMI)M
Hold time, SPISOMI data valid after
SPICLK high (clock polarity = 0)
5
th(SPCL-SOMI)M
Hold time, SPISOMI data valid after
SPICLK low (clock polarity = 1)
5
td(STE-SPCH)M
Delay time, SPISTE low to SPICLK
high (clock polarity = 0)
0.5tc(SPC) – 1
td(STE-SPCL)M
Delay time, SPISTE low to SPICLK low
(clock polarity = 1)
0.5tc(SPC) – 1
td(SPCL-STE)M
Delay time, SPICLK low to SPISTE
invalid (clock polarity = 0)
0.5tc(SPC) – 1
td(SPCH-STE)M
Delay time, SPICLK high to SPISTE
invalid (clock polarity = 1)
0.5tc(SPC) – 1
tc(SPC)M
Cycle time, SPICLK
2
3
6
7
10
11
23
24
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
6
7
Master Out Data Is Valid
SPISIMO
10
11
Master In Data Must
Be Valid
SPISOMI
23
(A)
24
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and
non-FIFO modes.
Figure 5-73. High-Speed SPI Master Mode External Timing (Clock Phase = 1)
166
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5.1.7 High-Speed Slave Mode External Timings Where Clock Phase = 0
Table 5-89 and Figure 5-74 show the high-speed SPI slave mode external timings where the clock
phase = 0.
Table 5-89. High-Speed SPI Slave Mode External Timings Where Clock Phase = 0
NO.
12
13
14
15
MIN
Cycle time, SPICLK
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
2tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
2tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
2tc(SYSCLK) – 1
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
2tc(SYSCLK) – 1
td(SPCH-SOMI)S
Delay time, SPICLK high to SPISOMI valid (clock polarity = 0)
9
td(SPCL-SOMI)S
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)
9
tv(SPCH-SOMI)S
Valid time, SPISOMI data valid after SPICLK high
(clock polarity = 0)
0
tv(SPCL-SOMI)S
Valid time, SPISOMI data valid after SPICLK low
(clock polarity = 1)
0
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity = 0)
5
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity = 1)
5
th(SPCL-SIMO)S
Hold time, SPISIMO data valid after SPICLK low
(clock polarity = 0)
5
th(SPCH-SIMO)S
Hold time, SPISIMO data valid after SPICLK high
(clock polarity = 1)
5
tsu(STE-SPCH)S
Setup time, SPISTE valid before SPICLK high
(clock polarity = 0)
2tc(SYSCLK)
tsu(STE-SPCL)S
Setup time, SPISTE valid before SPICLK low
(clock polarity = 1)
2tc(SYSCLK)
th(SPCL-STE)S
Hold time, SPISTE invalid after SPICLK low (clock polarity = 0)
2tc(SYSCLK)
th(SPCH-STE)S
Hold time, SPISTE invalid after SPICLK high (clock polarity = 1)
2tc(SYSCLK)
16
19
20
25
26
MAX
tc(SPC)S
4tc(SYSCLK)
ns
ns
ns
ns
ns
ns
ns
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
UNIT
ns
167
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
16
SPISOMI Data Is Valid
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-74. High-Speed SPI Slave Mode External Timing (Clock Phase = 0)
168
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.5.1.8 High-Speed Slave Mode External Timings Where Clock Phase = 1
Table 5-90 and Figure 5-75 show the high-speed SPI slave mode external timings where the clock
phase = 1.
Table 5-90. High-Speed SPI Slave Mode External Timings Where Clock Phase = 1
NO.
12
13
14
17
MIN
Cycle time, SPICLK
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 0)
4tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 1)
4tc(SYSCLK) – 1
tw(SPCL)S
Pulse duration, SPICLK low (clock polarity = 0)
4tc(SYSCLK) – 1
tw(SPCH)S
Pulse duration, SPICLK high (clock polarity = 1)
4tc(SYSCLK) – 1
td(SPCL-SOMI)S
Delay time, SPICLK low to SPISOMI (clock polarity = 0)
9
td(SPCH-SOMI)S
Delay time, SPICLK high to SPISOMI (clock polarity = 1)
9
tv(SPCL-SOMI)S
Valid time, SPISOMI data valid after SPICLK low
(clock polarity = 0)
0
tv(SPCH-SOMI)S
Valid time, SPISOMI data valid after SPICLK high
(clock polarity = 1)
0
tsu(SIMO-SPCH)S
Setup time, SPISIMO before SPICLK high (clock polarity = 0)
5
tsu(SIMO-SPCL)S
Setup time, SPISIMO before SPICLK low (clock polarity = 1)
5
th(SPCH-SIMO)S
Hold time, SPISIMO data valid after SPICLK high
(clock polarity = 0)
5
th(SPCL-SIMO)S
Hold time, SPISIMO data valid after SPICLK low
(clock polarity = 1)
5
tsu(STE-SPCH)S
Setup time, SPISTE valid before SPICLK high (clock polarity = 0)
2tc(SYSCLK)
tsu(STE-SPCL)S
Setup time, SPISTE valid before SPICLK low (clock polarity = 1)
2tc(SYSCLK)
th(STE-SPCL)S
Hold time, SPISTE invalid after SPICLK low (clock polarity = 0)
2tc(SYSCLK)
th(STE-SPCH)S
Hold time, SPISTE invalid after SPICLK high (clock polarity = 1)
2tc(SYSCLK)
18
21
22
25
26
MAX
tc(SPC)S
8tc(SYSCLK)
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
17
SPISOMI
Data Valid
SPISOMI Data Is Valid
Data Valid
18
21
22
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 5-75. High-Speed SPI Slave Mode External Timing (Clock Phase = 1)
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
169
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.6 Universal Serial Bus (USB) Controller
The USB controller operates as a full-speed or low-speed function controller during point-to-point
communications with USB host or device functions.
The USB module has the following features:
• USB 2.0 full-speed (12 Mbps) and low-speed (1.5 Mbps) operation
• Integrated PHY
• Three transfer types: control, interrupt, and bulk
• 32 endpoints
– One dedicated control IN endpoint and one dedicated control OUT endpoint
– 15 configurable IN endpoints and 15 configurable OUT endpoints
• 4KB of dedicated endpoint memory
Figure 5-76 shows the USB block diagram.
Endpoint Control
Transmit
EP0 –31
Control
Receive
CPU Interface
Combine
Endpoints
Host
Transaction
Scheduler
Interrupt
Control
Interrupts
EP Reg.
Decoder
USB PHY
USB FS/LS
PHY
UTM
Synchronization
Packet
Encode/Decode
Data Sync
Packet Encode
HNP/SRP
Packet Decode
Timers
CRC Gen/Check
FIFO RAM
Controller
Rx
Rx
Buff
Buff
Tx
Buff
Common
Regs
CPU Bus
Cycle
Control
Tx
Buff
Cycle Control
FIFO
Decoder
USB DataLines
D+ andD-
Figure 5-76. USB Block Diagram
NOTE
The accuracy of the on-chip zero-pin oscillator (Table 5-18, Internal Oscillator Electrical
Characteristics) will not meet the accuracy requirements of the USB protocol. An external
clock source must be used for applications using USB. For applications using the USB boot
mode, see Section 6.10 (Boot ROM and Peripheral Booting) for clock frequency
requirements.
170
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
5.10.6.1 USB Electrical Data and Timing
Table 5-91 shows the USB input ports DP and DM timing requirements. Table 5-92 shows the USB output
ports DP and DM switching characteristics.
Table 5-91. USB Input Ports DP and DM Timing Requirements
MIN
MAX
V(CM)
Differential input common mode range
0.8
2.5
UNIT
Z(IN)
Input impedance
300
VCRS
Crossover voltage
1.3
VIL
Static SE input logic-low level
0.8
VIH
Static SE input logic-high level
2.0
V
VDI
Differential input voltage
0.2
V
V
kΩ
2.0
V
V
Table 5-92. USB Output Ports DP and DM Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VOH
D+, D– single-ended
USB 2.0 load conditions
VOL
D+, D– single-ended
USB 2.0 load conditions
Z(DRV)
D+, D– impedance
tr
Rise time
tf
Fall time
MIN
MAX
2.8
3.6
UNIT
0
0.3
V
28
44
Ω
Full speed, differential, CL = 50 pF, 10%/90%,
Rpu on D+
4
20
ns
Full speed, differential, CL = 50 pF, 10%/90%,
Rpu on D+
4
20
ns
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
V
171
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.7 Universal Parallel Port (uPP) Interface
The uPP interface is a high-speed parallel interface with dedicated data lines and minimal control signals.
The uPP interface is designed to interface cleanly with high-speed ADCs or DACs with 8-bit data width. It
can also be interconnected with field-programmable gate arrays (FPGAs) or other uPP devices to achieve
high-speed digital data transfer. It can operate in receive mode or transmit mode (simplex mode).
The uPP interface includes an internal DMA controller to maximize throughput and minimize CPU
overhead during high-speed data transmission. All uPP transactions use internal DMA to feed data to or
retrieve data from the I/O channels. Even though there is only one I/O channel, the DMA controller
includes two DMA channels to support data interleave mode, in which all DMA resources service a single
I/O channel.
On this device, the uPP interface is the dedicated resource for the CPU1 subsystem. CPU1, CPU1.CLA1,
and CPU1.DMA have access to this module. Two dedicated 512-byte data RAMs (also known as MSG
RAMs) are tightly coupled with the uPP module (one for each, TX and RX). These data RAMs are used to
store the bulk of data to avoid frequent interruptions to the CPU. Only CPU1 and CPU1.CLA1 have
access to these data RAMs. Figure 5-77 shows the integration of the uPP on this device.
CPU1
Arbi
Arbiter Y
CPU1.CLA1
READ
t
RX-DATARAM
512 Byte
(Dual Port
Memory)
uPP DMA WRITE
CPU1
Arbi
Arbiter X
CPU1.CLA1
0
CPU1.DMA
1
uPP
(Universal
Parallel Port)
t
I/O Interface
uPP DMA READ
SECMSEL.PF2SEL
CPU1
Arbi
Arbiter Y
CPU1.CLA1
WRITE
t
TX-DATARAM
512 Byte
(Dual Port
Memory)
Figure 5-77. uPP Integration
NOTE
On some TI devices, the uPP module is also called the Radio Peripheral Interface (RPI)
module.
172
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
The uPP interface supports the following:
• Mainstream high-speed data converters with parallel conversion interface.
• Mainstream high-speed streaming interface with frame START indication.
• Mainstream high-speed streaming interface with data ENABLE indication.
• Mainstream high-speed streaming interface with synchronization WAIT signal.
• SDR (single-data-rate) or DDR (double-data-rate, interleaved) interface.
• Multiplexing of interleaved data in SDR transmit case.
• Demultiplexing and multiplexing of interleaved data in DDR case.
• I/O interface clock frequency up to 50 MHz for SDR, and 25 MHz for DDR.
• Single-channel 8-bit input receive or output transmit mode.
• Max throughput is 50MB/s for pure read or pure write.
• Available as a DSP to FPGA general-purpose streaming interface.
Figure 5-78 shows the uPP functional block diagram.
uPP
Configuration
I/F
MMR
Transmit Timing
and Control
ENABLE OUT
G
START OUT
P
WAIT IN
ENABLE/GPIOx
I
O
CPU1.SYSCLK
CLK OUT
CLKDIVIDER
CLK IN
START/GPIOx
M
U
ENABLE IN
Control Mux
Interrupt/Trigger
Receive Timing
and Control
X
WAIT/GPIOx
START IN
WAIT OUT
and
CLK/GPIOx
I/O
Arbi
I-FIFO
t
64 Bit
C
O
MEM WR I/F
DATA OUT
Internal
Data Interleaving
DMA
Arbit
(TX/RX)
DATA IN
N
DATA[7:0]/GPIOx
T
R
O
64 Bit
MEM RD I/F
Arbi
Q-FIFO
L
Figure 5-78. uPP Functional Block Diagram
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
173
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
5.10.7.1 uPP Electrical Data and Timing
Table 5-93 shows the uPP timing requirements. Table 5-94 shows the uPP switching characteristics.
Figure 5-79 through Figure 5-82 show the uPP timing diagrams.
Table 5-93. uPP Timing Requirements
NO.
MIN
SDR mode
20
DDR mode
40
MAX UNIT
1
tc(CLK)
Cycle time, CLK
2
tw(CLKH)
Pulse width, CLK high
3
tw(CLKL)
Pulse width, CLK low
4
tsu(STV-CLKH)
Setup time, START valid before CLK high
5
th(CLKH-STV)
Hold time, START valid after CLK high
6
tsu(ENV-CLKH)
Setup time, ENABLE valid before CLK high
7
th(CLKH-ENV)
Hold time, ENABLE valid after CLK high
8
tsu(DV-CLKH)
Setup time, DATA valid before CLK high
4
ns
0.8
ns
4
ns
0.8
ns
20
ns
SDR mode
8
DDR mode
18
SDR mode
8
DDR mode
18
ns
ns
ns
4
ns
0.8
ns
4
ns
0.8
ns
9
th(CLKH-DV)
Hold time, DATA valid after CLK high
10
tsu(DV-CLKL)
Setup time, DATA valid before CLK low
11
th(CLKL-DV)
Hold time, DATA valid after CLK low
19
tsu(WTV-CLKH)
Setup time, WAIT valid before CLK high
SDR mode
20
th(CLKH-WTV)
Hold time, WAIT valid after CLK high
SDR mode
0
ns
21
tsu(WTV-CLKL)
Setup time, WAIT valid before CLK low
DDR mode
20
ns
22
th(CLKL-WTV)
Hold time, WAIT valid after CLK low
DDR mode
0
ns
Table 5-94. uPP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
MIN
SDR mode
20
DDR mode
40
MAX UNIT
12
tc(CLK)
Cycle time, CLK
13
tw(CLKH)
Pulse width, CLK high
14
tw(CLKL)
Pulse width, CLK low
15
td(CLKH-STV)
Delay time, START valid after CLK high
3
12
ns
16
td(CLKH-ENV)
Delay time, ENABLE valid after CLK high
3
12
ns
17
td(CLKH-DV)
Delay time, DATA valid after CLK high
3
12
ns
18
td(CLKL-DV)
Delay time, DATA valid after CLK low
3
12
ns
174
Specifications
SDR mode
8
DDR mode
18
SDR mode
8
DDR mode
18
ns
ns
ns
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
1
2
3
CLK
4
5
START
6
7
ENABLE
WAIT
8
9
DATA[n:0]
Data1
Data2
Data3
Data4
Data5
Data7
Data6
Data8
Data9
Figure 5-79. uPP Single Data Rate (SDR) Receive Timing
1
2
3
CLK
4
5
START
6
7
ENABLE
WAIT
8
DATA[n:0]
I1
Q1
I2
Q2
I3
Q3
10
9
I4
Q4
I5
Q5
I6
Q6
I7
11
Q7
I8
Q8
I9
Q9
Figure 5-80. uPP Double Data Rate (DDR) Receive Timing
Specifications
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
175
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
12
13
14
CLK
15
START
16
ENABLE
19
20
WAIT
17
DATA[n:0]
Data1
Data2
Data3
Data4
Data5
Data6
Data7
Data8
Data9
Figure 5-81. uPP Single Data Rate (SDR) Transmit Timing
12
13
14
CLK
15
START
16
ENABLE
21
22
WAIT
17
DATA[n:0]
I1
18
Q1
I2
Q2
I3
Q3
I4
Q4
I5
Q5
I6
Q6
I7
Q7
I8
Q8
I9
Q9
Figure 5-82. uPP Double Data Rate (DDR) Transmit Timing
176
Specifications
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6 Detailed Description
6.1
Overview
The Delfino TMS320F2837xD is a powerful 32-bit floating-point microcontroller unit (MCU) designed for
advanced closed-loop control applications such as industrial drives and servo motor control; solar
inverters and converters; digital power; transportation; and power line communications. Complete
development packages for digital power and industrial drives are available as part of the powerSUITE and
DesignDRIVE initiatives. While the Delfino product line is not new to the TMS320C2000 portfolio, the
F2837xD supports a new dual-core C28x architecture that significantly boosts system performance. The
integrated analog and control peripherals also let designers consolidate control architectures and eliminate
multiprocessor use in high-end systems.
The dual real-time control subsystems are based on TI’s 32-bit C28x floating-point CPUs, which provide
200 MHz of signal processing performance in each core. The C28x CPUs are further boosted by the new
TMU accelerator, which enables fast execution of algorithms with trigonometric operations common in
transforms and torque loop calculations; and the VCU accelerator, which reduces the time for complex
math operations common in encoded applications.
The F2837xD microcontroller family features two CLA real-time control co-processors. The CLA is an
independent 32-bit floating-point processor that runs at the same speed as the main CPU. The CLA
responds to peripheral triggers and executes code concurrently with the main C28x CPU. This parallel
processing capability can effectively double the computational performance of a real-time control system.
By using the CLA to service time-critical functions, the main C28x CPU is free to perform other tasks, such
as communications and diagnostics. The dual C28x+CLA architecture enables intelligent partitioning
between various system tasks. For example, one C28x+CLA core can be used to track speed and
position, while the other C28x+CLA core can be used to control torque and current loops.
The TMS320F2837xD supports up to 1MB (512KW) of onboard flash memory with error correction code
(ECC) and up to 204KB (102KW) of SRAM. Two 128-bit secure zones are also available on each CPU for
code protection.
Performance analog and control peripherals are also integrated on the F2837xD MCU to further enable
system consolidation. Four independent 16-bit ADCs provide precise and efficient management of multiple
analog signals, which ultimately boosts system throughput. The new sigma-delta filter module (SDFM)
works in conjunction with the sigma-delta modulator to enable isolated current shunt measurements. The
Comparator Subsystem (CMPSS) with windowed comparators allows for protection of power stages when
current limit conditions are exceeded or not met. Other analog and control peripherals include DACs,
PWMs, eCAPs, eQEPs, and other peripherals.
Peripherals such as EMIFs, CAN modules (ISO11898-1/CAN 2.0B-compliant), and a new uPP interface
extend the connectivity of the F2837xD. The uPP interface is a new feature of the C2000 MCUs and
supports high-speed parallel connection to FPGAs or other processors with similar uPP interfaces. Lastly,
a USB 2.0 port with MAC and PHY lets users easily add universal serial bus (USB) connectivity to their
application.
6.2
Functional Block Diagram
Figure 6-1 shows the CPU system and associated peripherals.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
177
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
PSWD
Dual
Code
Security
Module
+
Emulation
Code
Security
Logic
(ECSL)
Secure Memories
shown in Red
User
Configurable
DCSM
OTP
1K x 16
User
Configurable
DCSM
PSWD
OTP
1K x 16
FLASH
FLASH
256K x 16
Secure
256K x 16
Secure
PUMP
Dual
Code
Security
Module
+
Emulation
Code
Security
Logic
(ECSL)
CPU2.CLA1
OTP/Flash
Wrapper
OTP/Flash
Wrapper
MEMCPU1
MEMCPU2
CPU1.M0 RAM 1Kx16
CPU1.CLA1 to CPU1
128x16 MSG RAM
CPU1 to CPU1.CLA1
128x16 MSG RAM
C28 CPU-1
C28 CPU-2
FPU
VCU-II
TMU
CPU2.M0 RAM 1Kx16
FPU
VCU-II
TMU
CPU2.M1 RAM 1Kx16
CPU1 Local Shared
6x 2Kx16
LS0-LS5 RAMs
CPU1.D1 RAM 2Kx16
WD Timer
NMI-WDT
CPU1.CLA1 Data ROM
(4Kx16)
16-/12-bit ADC
x4
A5:0
A
B
ADC
Result
Regs
D
Config
D5:0
ADCIN14
ADCIN15
Data Bus
Bridge
Comparator
DAC
Subsystem
x3
(CMPSS)
INTOSC2
CPU2.CLA1 Data ROM
(4Kx16)
CPU Timer 0
CPU Timer 1
CPU Timer 2
External Crystal or
Oscillator
Secure-ROM 32Kx16
Secure
Aux PLL
AUXCLKIN
Boot-ROM 32Kx16
Nonsecure
ePIE
(up to 192
interrupts)
TRST
TCK
CPU2.DMA
JTAG
TDI
TMS
TDO
CPU2 Buses
GPIO
GPIOn
EMIF2
EM2CTLx
EMIF1
EM2Dx
Data Bus
Bridge
EM2Ax
Data Bus
Bridge
EM1CTLx
UPPACLK
UPPAST
UPPAEN
UPPAD[7:0]
MFSXx
UPPAWT
RAM
uPP
MFSRx
MCLKXx
MCLKRx
MDXx
MRXx
SPISTEx
SPICLKx
SPISIMOx
SPISOMIx
McBSPA/B
Data Bus
Bridge
EM1Dx
SPIA/B/C
(16L FIFO)
Peripheral Frame 2
EM1Ax
CANA/B
(32-MBOX)
CANTXx
USB
Ctrl /
PHY
CANRXx
SCITXDx
SDx_Cy
SDx_Dy
EQEPxI
EQEPxS
I2C-A/B
(16L FIFO)
Data Bus
Bridge
USBDP
SCIA/B/C/D
(16L FIFO)
SCLx
SDFM-1/2
Data Bus
Bridge
USBDM
Data Bus Bridge
eQEP-1/2/3
EQEPxB
ECAPx
eCAP1/../6
EXTSYNCOUT
EPWMxB
EXTSYNCIN
EPWMxA
TZ1-TZ6
Main PLL
CPU1 Buses
EQEPxA
ePWM-1/../12
CPU2.D1 RAM 2Kx16
WD Timer
NMI-WDT
CPU2 to CPU1
1Kx16 MSG RAM
CPU1.DMA
Peripheral Frame 1
HRPWM-1/../8
(CPU1 only)
ePIE
INTOSC1
CPU2.D0 RAM 2Kx16
CPU1 to CPU2
1Kx16 MSG RAM
(up to 192
interrupts)
SDAx
Analog
MUX
Boot-ROM 32Kx16
Nonsecure
SCIRXDx
C5:2
C
Secure-ROM 32Kx16
Secure
CPU1.CLA1 Bus
B5:0
Watchdog 1/2
CPU2 Local Shared
6x 2Kx16
LS0-LS5 RAMs
Global Shared
16x 4Kx16
GS0-GS15 RAMs
CPU Timer 0
CPU Timer 1
CPU Timer 2
GPIO MUX
CPU2.CLA1 to CPU2
128x16 MSG RAM
Interprocessor
Communication
(IPC)
Module
CPU1.D0 RAM 2Kx16
Low-Power
Mode Control
CPU2 to CPU2.CLA1
128x16 MSG RAM
CPU2.CLA1 Bus
CPU1.CLA1
CPU1.M1 RAM 1Kx16
GPIO MUX, Input X-BAR, Output X-BAR
Copyright © 2016, Texas Instruments Incorporated
Figure 6-1. Functional Block Diagram
178
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
6.3
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Memory
6.3.1
C28x Memory Map
Both C28x CPUs on the device have the same memory map except where noted in Table 6-1. The
GSx_RAM (Global Shared RAM) should be assigned to either CPU by the GSxMSEL register. Memories
accessible by the CLA or DMA (direct memory access) are noted as well.
Table 6-1. C28x Memory Map
MEMORY
M0 RAM
SIZE
START ADDRESS
END ADDRESS
1K × 16
0x0000 0000
0x0000 03FF
CLA ACCESS
DMA ACCESS
M1 RAM
1K × 16
0x0000 0400
0x0000 07FF
PieVectTable
512 × 16
0x0000 0D00
0x0000 0EFF
CPUx.CLA1 to CPUx MSGRAM
128 × 16
0x0000 1480
0x0000 14FF
Yes
CPUx to CPUx.CLA1 MSGRAM
128 × 16
0x0000 1500
0x0000 157F
Yes
UPP TX MSG RAM
512 × 16
0x0000 6C00
0x0000 6DFF
Yes
UPP RX MSG RAM
512 × 16
0x0000 6E00
0x0000 6FFF
Yes
LS0 RAM
2K × 16
0x0000 8000
0x0000 87FF
Yes
LS1 RAM
2K × 16
0x0000 8800
0x0000 8FFF
Yes
LS2 RAM
2K × 16
0x0000 9000
0x0000 97FF
Yes
LS3 RAM
2K × 16
0x0000 9800
0x0000 9FFF
Yes
LS4 RAM
2K × 16
0x0000 A000
0x0000 A7FF
Yes
LS5 RAM
2K × 16
0x0000 A800
0x0000 AFFF
Yes
D0 RAM
2K × 16
0x0000 B000
0x0000 B7FF
D1 RAM
2K × 16
0x0000 B800
0x0000 BFFF
GS0 RAM (1)
4K × 16
0x0000 C000
0x0000 CFFF
Yes
GS1 RAM (1)
4K × 16
0x0000 D000
0x0000 DFFF
Yes
GS2 RAM (1)
4K × 16
0x0000 E000
0x0000 EFFF
Yes
GS3 RAM (1)
4K × 16
0x0000 F000
0x0000 FFFF
Yes
GS4 RAM (1)
4K × 16
0x0001 0000
0x0001 0FFF
Yes
GS5 RAM (1)
4K × 16
0x0001 1000
0x0001 1FFF
Yes
GS6 RAM (1)
4K × 16
0x0001 2000
0x0001 2FFF
Yes
GS7 RAM (1)
4K × 16
0x0001 3000
0x0001 3FFF
Yes
GS8 RAM (1)
4K × 16
0x0001 4000
0x0001 4FFF
Yes
GS9 RAM (1)
4K × 16
0x0001 5000
0x0001 5FFF
Yes
(1)
4K × 16
0x0001 6000
0x0001 6FFF
Yes
GS11 RAM (1)
4K × 16
0x0001 7000
0x0001 7FFF
Yes
GS12 RAM (1) (2)
4K × 16
0x0001 8000
0x0001 8FFF
Yes
GS13 RAM (1) (2)
4K × 16
0x0001 9000
0x0001 9FFF
Yes
GS14 RAM (1) (2)
4K × 16
0x0001 A000
0x0001 AFFF
Yes
GS15 RAM (1) (2)
4K × 16
0x0001 B000
0x0001 BFFF
Yes
CPU2 to CPU1 MSGRAM (1)
1K × 16
0x0003 F800
0x0003 FBFF
Yes
CPU1 to CPU2 MSGRAM (1)
1K × 16
0x0003 FC00
0x0003 FFFF
Yes
CAN A Message RAM (1)
2K × 16
0x0004 9000
0x0004 97FF
GS10 RAM
CAN B Message RAM (1)
2K × 16
0x0004 B000
0x0004 B7FF
Flash
256K × 16
0x0008 0000
0x000B FFFF
Secure ROM
32K × 16
0x003F 0000
0x003F 7FFF
Boot ROM
32K × 16
0x003F 8000
0x003F FFBF
64 × 16
0x003F FFC0
0x003F FFFF
Vectors
(1)
(2)
Shared between CPU subsystems.
Available only on F28379D, F28377D, and F28375D.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
179
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.3.2
www.ti.com
Flash Memory Map
On the F28379D, F28377D, and F28375D devices, each CPU has its own flash bank [512KB (256KW)],
the total flash for each device is 1MB (512KW). Only one bank can be programmed or erased at a time
and the code to program the flash should be executed out of RAM. Table 6-2 shows the addresses of
flash sectors on CPU1 and CPU2 for F28379D, F28377D, and F28375D.
Table 6-2. Addresses of Flash Sectors on CPU1 and CPU2 for F28379D, F28377D, and F28375D
SECTOR
SIZE
START ADDRESS
END ADDRESS
0x0007 0000
0x0007 03FF
0x0007 8000
0x0007 83FF
OTP Sectors
TI OTP
1K × 16
User configurable DCSM OTP
1K × 16
Sectors
Sector A
8K × 16
0x0008 0000
0x0008 1FFF
Sector B
8K × 16
0x0008 2000
0x0008 3FFF
Sector C
8K × 16
0x0008 4000
0x0008 5FFF
Sector D
8K × 16
0x0008 6000
0x0008 7FFF
Sector E
32K × 16
0x0008 8000
0x0008 FFFF
Sector F
32K × 16
0x0009 0000
0x0009 7FFF
Sector G
32K × 16
0x0009 8000
0x0009 FFFF
Sector H
32K × 16
0x000A 0000
0x000A 7FFF
Sector I
32K × 16
0x000A 8000
0x000A FFFF
Sector J
32K × 16
0x000B 0000
0x000B 7FFF
Sector K
8K × 16
0x000B 8000
0x000B 9FFF
Sector L
8K × 16
0x000B A000
0x000B BFFF
Sector M
8K × 16
0x000B C000
0x000B DFFF
Sector N
8K ×16
0x000B E000
0x000B FFFF
Flash ECC Locations
TI OTP ECC
128 × 16
0x0107 0000
0x0107 007F
User-configurable DCSM OTP
ECC
128 × 16
0x0107 1000
0x0107 107F
Flash ECC
32K × 16
0x0108 0000
0x0108 7FFF
180
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
On the F28376D and F28374D devices, each CPU has its own flash bank [256KB (128KW)], the total
flash for each device is 512KB (256KW). Only one bank can be programmed or erased at a time and the
code to program the flash should be executed out of RAM. Table 6-3 shows the addresses of flash
sectors on CPU1 and CPU2 for F28376D and F28374D.
Table 6-3. Addresses of Flash Sectors on CPU1 and CPU2 for F28376D and F28374D
SECTOR
SIZE
START ADDRESS
END ADDRESS
OTP Sectors
TI OTP
1K × 16
0x0007 0000
0x0007 03FF
User configurable DCSM OTP
1K × 16
0x0007 8000
0x0007 83FF
Sector A
8K × 16
0x0008 0000
0x0008 1FFF
Sector B
8K × 16
0x0008 2000
0x0008 3FFF
Sector C
8K × 16
0x0008 4000
0x0008 5FFF
Sector D
8K × 16
0x0008 6000
0x0008 7FFF
Sector E
32K × 16
0x0008 8000
0x0008 FFFF
Sectors
Sector F
32K × 16
0x0009 0000
0x0009 7FFF
Sector G
32K × 16
0x0009 8000
0x0009 FFFF
TI OTP ECC
128 × 16
0x0107 0000
0x0107 007F
User-configurable DCSM OTP
ECC
128 × 16
0x0107 1000
0x0107 107F
Flash ECC
16K × 16
0x0108 0000
0x0108 3FFF
Flash ECC Locations
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
181
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.3.3
www.ti.com
EMIF Chip Select Memory Map
The EMIF1 memory map is the same for both CPU subsystems. EMIF2 is available only on the CPU1
subsystem. The EMIF memory map is shown in Table 6-4.
Table 6-4. EMIF Chip Select Memory Map
EMIF CHIP SELECT
SIZE
START ADDRESS
END ADDRESS
256M × 16
0x8000 0000
0x8FFF FFFF
Yes
EMIF1_CS2n - Program + Data
2M × 16
0x0010 0000
0x002F FFFF
Yes
EMIF1_CS3n - Program + Data
512K × 16
0x0030 0000
0x0037 FFFF
Yes
EMIF1_CS4n - Program + Data
393K × 16
0x0038 0000
0x003D FFFF
Yes
EMIF2_CS0n - Data (1)
64M × 16
0x9000 0000
0x93FF FFFF
4K × 16
0x0000 2000
0x0000 2FFF
EMIF1_CS0n - Data
EMIF2_CS2n - Program + Data (1)
(1)
CLA ACCESS
DMA ACCESS
Yes (Data only)
Available only on the CPU1 subsystem.
6.3.4
Peripheral Registers Memory Map
The peripheral registers memory map can be found in Table 6-5. The peripheral registers can be assigned
to either the CPU1 or CPU2 subsystems except where noted in Table 6-5. Registers in the peripheral
frames share a secondary master (CLA or DMA) selection with all other registers within the same
peripheral frame. See the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference
Manual for details on the CPU subsystem and secondary master selection.
Table 6-5. Peripheral Registers Memory Map
REGISTERS
STRUCTURE NAME
START
ADDRESS
END
ADDRESS
CLA
ACCESS
DMA
ACCESS
AdcaResultRegs
ADC_RESULT_REGS
0x0000 0B00
AdcbResultRegs
ADC_RESULT_REGS
0x0000 0B20
0x0000 0B1F
Yes
Yes
0x0000 0B3F
Yes
AdccResultRegs
ADC_RESULT_REGS
Yes
0x0000 0B40
0x0000 0B5F
Yes
AdcdResultRegs
Yes
ADC_RESULT_REGS
0x0000 0B60
0x0000 0B7F
Yes
Yes
(2)
CPUTIMER_REGS
0x0000 0C00
0x0000 0C07
CpuTimer1Regs(2)
CPUTIMER_REGS
0x0000 0C08
0x0000 0C0F
CpuTimer2Regs(2)
CPUTIMER_REGS
0x0000 0C10
0x0000 0C17
PIE_CTRL_REGS
0x0000 0CE0
0x0000 0CFF
Cla1SoftIntRegs
CLA_SOFTINT_REGS
0x0000 0CE0
0x0000 0CFF
DmaRegs(2)
DMA_REGS
0x0000 1000
0x0000 11FF
Cla1Regs(2)
CLA_REGS
0x0000 1400
0x0000 147F
CpuTimer0Regs
(2)
PieCtrlRegs
PROTECTED(1)
Yes –
CLA only,
no CPU
access
Peripheral Frame 1
182
EPwm1Regs
EPWM_REGS
0x0000 4000
0x0000 40FF
Yes
Yes
Yes
EPwm2Regs
EPWM_REGS
0x0000 4100
0x0000 41FF
Yes
Yes
Yes
EPwm3Regs
EPWM_REGS
0x0000 4200
0x0000 42FF
Yes
Yes
Yes
EPwm4Regs
EPWM_REGS
0x0000 4300
0x0000 43FF
Yes
Yes
Yes
EPwm5Regs
EPWM_REGS
0x0000 4400
0x0000 44FF
Yes
Yes
Yes
EPwm6Regs
EPWM_REGS
0x0000 4500
0x0000 45FF
Yes
Yes
Yes
EPwm7Regs
EPWM_REGS
0x0000 4600
0x0000 46FF
Yes
Yes
Yes
EPwm8Regs
EPWM_REGS
0x0000 4700
0x0000 47FF
Yes
Yes
Yes
EPwm9Regs
EPWM_REGS
0x0000 4800
0x0000 48FF
Yes
Yes
Yes
EPwm10Regs
EPWM_REGS
0x0000 4900
0x0000 49FF
Yes
Yes
Yes
EPwm11Regs
EPWM_REGS
0x0000 4A00
0x0000 4AFF
Yes
Yes
Yes
EPwm12Regs
EPWM_REGS
0x0000 4B00
0x0000 4BFF
Yes
Yes
Yes
ECap1Regs
ECAP_REGS
0x0000 5000
0x0000 501F
Yes
Yes
Yes
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Table 6-5. Peripheral Registers Memory Map (continued)
REGISTERS
STRUCTURE NAME
START
ADDRESS
END
ADDRESS
PROTECTED(1)
CLA
ACCESS
DMA
ACCESS
ECap2Regs
ECAP_REGS
0x0000 5020
0x0000 503F
Yes
Yes
Yes
ECap3Regs
ECAP_REGS
0x0000 5040
0x0000 505F
Yes
Yes
Yes
ECap4Regs
ECAP_REGS
0x0000 5060
0x0000 507F
Yes
Yes
Yes
ECap5Regs
ECAP_REGS
0x0000 5080
0x0000 509F
Yes
Yes
Yes
ECap6Regs
ECAP_REGS
0x0000 50A0
0x0000 50BF
Yes
Yes
Yes
EQep1Regs
EQEP_REGS
0x0000 5100
0x0000 513F
Yes
Yes
Yes
EQep2Regs
EQEP_REGS
0x0000 5140
0x0000 517F
Yes
Yes
Yes
EQep3Regs
EQEP_REGS
0x0000 5180
0x0000 51BF
Yes
Yes
Yes
DacaRegs
DAC_REGS
0x0000 5C00
0x0000 5C0F
Yes
Yes
Yes
DacbRegs
DAC_REGS
0x0000 5C10
0x0000 5C1F
Yes
Yes
Yes
DaccRegs
DAC_REGS
0x0000 5C20
0x0000 5C2F
Yes
Yes
Yes
Cmpss1Regs
CMPSS_REGS
0x0000 5C80
0x0000 5C9F
Yes
Yes
Yes
Cmpss2Regs
CMPSS_REGS
0x0000 5CA0
0x0000 5CBF
Yes
Yes
Yes
Cmpss3Regs
CMPSS_REGS
0x0000 5CC0
0x0000 5CDF
Yes
Yes
Yes
Cmpss4Regs
CMPSS_REGS
0x0000 5CE0
0x0000 5CFF
Yes
Yes
Yes
Cmpss5Regs
CMPSS_REGS
0x0000 5D00
0x0000 5D1F
Yes
Yes
Yes
Cmpss6Regs
CMPSS_REGS
0x0000 5D20
0x0000 5D3F
Yes
Yes
Yes
Cmpss7Regs
CMPSS_REGS
0x0000 5D40
0x0000 5D5F
Yes
Yes
Yes
Cmpss8Regs
CMPSS_REGS
0x0000 5D60
0x0000 5D7F
Yes
Yes
Yes
Sdfm1Regs
SDFM_REGS
0x0000 5E00
0x0000 5E7F
Yes
Yes
Yes
Sdfm2Regs
SDFM_REGS
0x0000 5E80
0x0000 5EFF
Yes
Yes
Yes
Peripheral Frame 2
McbspaRegs
MCBSP_REGS
0x0000 6000
0x0000 603F
Yes
Yes
Yes
McbspbRegs
MCBSP_REGS
0x0000 6040
0x0000 607F
Yes
Yes
Yes
SpiaRegs
SPI_REGS
0x0000 6100
0x0000 610F
Yes
Yes
Yes
SpibRegs
SPI_REGS
0x0000 6110
0x0000 611F
Yes
Yes
Yes
SpicRegs
SPI_REGS
0x0000 6120
0x0000 612F
Yes
Yes
Yes
UPP_REGS
0x0000 6200
0x0000 62FF
Yes
Yes
Yes
WdRegs(2)
WD_REGS
0x0000 7000
0x0000 703F
Yes
NmiIntruptRegs(2)
NMI_INTRUPT_REGS
0x0000 7060
0x0000 706F
Yes
XintRegs(2)
XINT_REGS
0x0000 7070
0x0000 707F
Yes
SciaRegs
SCI_REGS
0x0000 7200
0x0000 720F
Yes
ScibRegs
SCI_REGS
0x0000 7210
0x0000 721F
Yes
ScicRegs
SCI_REGS
0x0000 7220
0x0000 722F
Yes
ScidRegs
SCI_REGS
0x0000 7230
0x0000 723F
Yes
I2caRegs
I2C_REGS
0x0000 7300
0x0000 733F
Yes
I2cbRegs
I2C_REGS
0x0000 7340
0x0000 737F
Yes
AdcaRegs
ADC_REGS
0x0000 7400
0x0000 747F
Yes
Yes
AdcbRegs
ADC_REGS
0x0000 7480
0x0000 74FF
Yes
Yes
AdccRegs
ADC_REGS
0x0000 7500
0x0000 757F
Yes
Yes
AdcdRegs
ADC_REGS
0x0000 7580
0x0000 75FF
Yes
Yes
InputXbarRegs(3)
INPUT_XBAR_REGS
0x0000 7900
0x0000 791F
Yes
XbarRegs(3)
XBAR_REGS
0x0000 7920
0x0000 793F
Yes
UppRegs
(3)
(3)
TRIG_REGS
0x0000 7940
0x0000 794F
Yes
DmaClaSrcSelRegs(2)
DMA_CLA_SRC_SEL_REGS
0x0000 7980
0x0000 798F
Yes
EPwmXbarRegs(3)
EPWM_XBAR_REGS
0x0000 7A00
0x0000 7A3F
Yes
TrigRegs
(3)
OUTPUT_XBAR_REGS
0x0000 7A80
0x0000 7ABF
Yes
GpioCtrlRegs(3)
GPIO_CTRL_REGS
0x0000 7C00
0x0000 7D7F
Yes
GpioDataRegs(2)
GPIO_DATA_REGS
0x0000 7F00
0x0000 7F2F
Yes
OutputXbarRegs
Yes
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
183
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
Table 6-5. Peripheral Registers Memory Map (continued)
STRUCTURE NAME
START
ADDRESS
END
ADDRESS
PROTECTED(1)
UsbaRegs(3)
USB_REGS
0x0004 0000
0x0004 0FFF
Yes
Emif1Regs
EMIF_REGS
0x0004 7000
0x0004 77FF
Yes
EMIF_REGS
0x0004 7800
0x0004 7FFF
Yes
REGISTERS
Emif2Regs
(3)
CanaRegs
CAN_REGS
0x0004 8000
0x0004 87FF
Yes
CanbRegs
CAN_REGS
0x0004 A000
0x0004 A7FF
Yes
IPC_REGS_CPU1
IPC_REGS_CPU2
0x0005 0000
0x0005 0023
Yes
IpcRegs
(2)
FlashPumpSemaphoreRegs
(2)
DevCfgRegs(3)
AnalogSubsysRegs
(3)
(4)
FLASH_PUMP_SEMAPHORE_REGS
0x0005 0024
0x0005 0025
Yes
DEV_CFG_REGS
0x0005 D000
0x0005 D17F
Yes
ANALOG_SUBSYS_REGS
0x0005 D180
0x0005 D1FF
Yes
ClkCfgRegs
CLK_CFG_REGS
0x0005 D200
0x0005 D2FF
Yes
CpuSysRegs(2)
CPU_SYS_REGS
0x0005 D300
0x0005 D3FF
Yes
RomPrefetchRegs(3)
ROM_PREFETCH_REGS
0x0005 E608
0x0005 E60B
Yes
(2)
DCSM_Z1_REGS
0x0005 F000
0x0005 F02F
Yes
DcsmZ2Regs(2)
DCSM_Z2_REGS
0x0005 F040
0x0005 F05F
Yes
DcsmCommonRegs(2)
DCSM_COMMON_REGS
0x0005 F070
0x0005 F07F
Yes
DcsmZ1Regs
(2)
MEM_CFG_REGS
0x0005 F400
0x0005 F47F
Yes
Emif1ConfigRegs(2)
EMIF1_CONFIG_REGS
0x0005 F480
0x0005 F49F
Yes
Emif2ConfigRegs(3)
EMIF2_CONFIG_REGS
0x0005 F4A0
0x0005 F4BF
Yes
ACCESS_PROTECTION_REGS
0x0005 F4C0
0x0005 F4FF
Yes
MemCfgRegs
AccessProtectionRegs
(2)
(2)
MemoryErrorRegs
MEMORY_ERROR_REGS
0x0005 F500
0x0005 F53F
Yes
RomWaitStateRegs(3)
ROM_WAIT_STATE_REGS
0x0005 F540
0x0005 F541
Yes
Flash0CtrlRegs(2)
FLASH_CTRL_REGS
0x0005 F800
0x0005 FAFF
Yes
FLASH_ECC_REGS
0x0005 FB00
0x0005 FB3F
Yes
(2)
Flash0EccRegs
CLA
ACCESS
DMA
ACCESS
(1) The CPU (not applicable for CLA or DMA) contains a write followed by read protection mode to ensure that any read operation that
follows a write operation within a protected address range is executed as written by delaying the read operation until the write is
initiated.
(2) A unique copy of these registers exist on each CPU subsystem.
(3) These registers are available only on the CPU1 subsystem.
(4) These registers are mapped to either CPU1 or CPU2 based on a semaphore.
184
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
6.3.5
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Memory Types
Table 6-6 provides more information about each memory type.
Table 6-6. Memory Types
ECC-CAPABLE
PARITY
SECURITY
HIBERNATE
RETENTION
ACCESS
PROTECTION
M0, M1
Yes
–
–
Yes
–
D0, D1
MEMORY TYPE
Yes
–
Yes
–
Yes
LSx
–
Yes
Yes
–
Yes
GSx
–
Yes
–
–
Yes
CPU/CLA MSGRAM
–
Yes
Yes
–
Yes
Boot ROM
–
–
–
N/A
–
Secure ROM
–
–
Yes
N/A
–
Flash
Yes
–
Yes
N/A
N/A
User-configurable DCSM OTP
Yes
–
Yes
N/A
N/A
6.3.5.1
Dedicated RAM (Mx and Dx RAM)
The CPU subsystem has four dedicated ECC-capable RAM blocks: M0, M1, D0, and D1. M0/M1
memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has
access to them). D0/D1 memories are secure blocks and also have the access-protection feature (CPU
write/CPU fetch protection).
6.3.5.2
Local Shared RAM (LSx RAM)
RAM blocks which are dedicated to each subsystem and are accessible to its CPU and CLA only, are
called local shared RAMs (LSx RAMs).
All LSx RAM blocks have parity. These memories are secure and have the access protection (CPU
write/CPU fetch) feature.
By default, these memories are dedicated to the CPU only, and the user could choose to share these
memories with the CLA by configuring the MSEL_LSx bit field in the LSxMSEL registers appropriately.
Table 6-7 shows the master access for the LSx RAM.
Table 6-7. Master Access for LSx RAM
(With Assumption That all Other Access Protections are Disabled)
MSEL_LSx
CLAPGM_LSx
CPU ALLOWED
ACCESS
CLA ALLOWED
ACCESS
COMMENT
00
X
All
–
LSx memory is configured
as CPU dedicated RAM.
01
0
All
Data Read
Data Write
LSx memory is shared
between CPU and CLA1.
01
1
Emulation Read
Emulation Write
Fetch Only
LSx memory is CLA1
program memory.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
185
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.3.5.3
www.ti.com
Global Shared RAM (GSx RAM)
RAM blocks which are accessible from both the CPU and DMA are called global shared RAMs (GSx
RAMs). Each shared RAM block can be owned by either CPU subsystem based on the configuration of
respective bits in the GSxMSEL register.
All GSx RAM blocks have parity.
When a GSx RAM block is owned by a CPU subsystem, the CPUx and CPUx.DMA will have full access to
that RAM block whereas the other CPUy and CPUy.DMA will only have read access (no fetch/write
access).
Table 6-8 shows the master access for the GSx RAM.
Table 6-8. Master Access for GSx RAM
(With Assumption That all Other Access Protections are Disabled)
GSxMSEL
0
1
CPU
INSTRUCTION
FETCH
READ
WRITE
CPUx.DMA
READ
CPUx.DMA
WRITE
CPU1
Yes
Yes
Yes
Yes
Yes
CPU2
–
Yes
–
Yes
–
CPU1
–
Yes
–
Yes
–
CPU2
Yes
Yes
Yes
Yes
Yes
The GSx RAMs have access protection (CPU write/CPU fetch/DMA write).
6.3.5.4
CPU Message RAM (CPU MSGRAM)
These RAM blocks can be used to share data between CPU1 and CPU2. Since these RAMs are used for
interprocessor communication, they are also called IPC RAMs. The CPU MSGRAMs have CPU/DMA
read/write access from its own CPU subsystem, and CPU/DMA read only access from the other
subsystem.
This RAM has parity.
6.3.5.5
CLA Message RAM (CLA MSGRAM)
These RAM blocks can be used to share data between the CPU and CLA. The CLA has read and write
access to the "CLA to CPU MSGRAM." The CPU has read and write access to the "CPU to CLA
MSGRAM." The CPU and CLA both have read access to both MSGRAMs.
This RAM has parity.
186
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
6.4
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Identification
Table 6-9 shows the Device Identification Registers.
Table 6-9. Device Identification Registers
NAME
ADDRESS
SIZE (x16)
DESCRIPTION
Device part identification number
PARTIDH
0x0005 D00A
2
TMS320F28379D
0x00F9 0300
TMS320F28377D
0x00FF 0300
TMS320F28376D
0x00FE 0300
TMS320F28375D
0x00FD 0300
TMS320F28374D
0x00FC 0300
Silicon revision number
REVID
0x0005 D00C
UID_UNIQUE
0x0007 03C0
2
2
Revision 0
0x0000 0000
Revision A
0x0000 0000
Revision B
0x0000 0002
Revision C
0x0000 0003
Unique identification number. This number is different on each
individual device with the same PARTIDH. This can be used as
a serial number in the application. This number is present only
on TMS Revision C devices.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
187
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.5
www.ti.com
Bus Architecture – Peripheral Connectivity
Table 6-10 shows a broad view of the peripheral and configuration register accessibility from each bus
master. Peripherals can be individually assigned to the CPU1 or CPU2 subsystem (for example, ePWM
can be assigned to CPU1 and eQEP assigned to CPU2). Peripherals within peripheral frames 1 or 2 will
all be mapped to the respective secondary master as a group (if SPI is assigned to CPUx.DMA, then
McBSP is also assigned to CPUx.DMA).
Table 6-10. Bus Master Peripheral Access
PERIPHERALS
(BY BUS ACCESS TYPE)
CPU1.DMA
CPU1.CLA1
CPU1
CPU2
CPU2.CLA1
CPU2.DMA
Peripherals that can be assigned to CPU1 or CPU2 and have common selectable Secondary Masters
Peripheral Frame 1:
•
ePWM
•
SDFM
•
eCAP (1)
•
eQEP (1)
•
CMPSS (1)
•
DAC (1)
Y
Y
Y
Peripheral Frame 1:
•
HRPWM
Y
Y
Y
Peripheral Frame 2:
•
SPI
•
McBSP
Y
Y
Y
Peripheral Frame 2:
•
uPP Configuration (1)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Peripherals that can be assigned to CPU1 or CPU2 subsystems
SCI
Y
Y
I2C
Y
Y
CAN
Y
Y
Y
Y
Y
Y
ADC Configuration
Y
EMIF1
Y
Y
Y
Peripherals and Device Configuration Registers only on CPU1 subsystem
EMIF2
Y
Y
USB
Y
Device Capability, Peripheral Reset, Peripheral CPU
Select
Y
GPIO Pin Mapping and Configuration
Y
Analog System Control
Y
uPP Message RAMs
Y
Reset Configuration
Y
Y
Accessible by only one CPU at a time with Semaphore
Clock and PLL Configuration
Y
Y
Peripherals and Registers with Unique Copies of Registers for each CPU and CLA Master (2)
System Configuration
(WD, NMIWD, LPM, Peripheral Clock Gating)
Flash Configuration
(3)
Y
Y
Y
Y
CPU Timers
Y
Y
DMA and CLA Trigger Source Select
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
GPIO Data (4)
ADC Results
(1)
(2)
(3)
(4)
188
Y
Y
These modules are on a Peripheral Frame with DMA access; however, they cannot trigger a DMA transfer.
Each CPUx and CPUx.CLA1 can only access its own copy of these registers.
At any given time, only one CPU can perform program or erase operations on the Flash.
The GPIO Data Registers are unique for each CPUx and CPUx.CLAx. When the GPIO Pin Mapping Register is configured to assign a
GPIO to a particular master, the respective GPIO Data Register will control the GPIO. See the General-Purpose Input/Output (GPIO)
chapter of the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual for more details.
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
6.6
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
C28x Processor
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal
processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and
tool sets.
The CPU features include a modified Harvard architecture and circular addressing. The RISC features are
single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The
microcontroller features include ease of use through an intuitive instruction set, byte packing and
unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and
data fetches to be performed in parallel. The CPU can read instructions and data while it writes data
simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this
over six separate address/data buses.
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction
Set Reference Guide.
6.6.1
Floating-Point Unit
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU
by adding registers and instructions to support IEEE single-precision floating point operations.
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point
unit registers. The additional floating-point unit registers are the following:
• Eight floating-point result registers, RnH (where n = 0–7)
• Floating-point Status Register (STF)
• Repeat Block Register (RB)
All of the floating-point registers, except the repeat block register, are shadowed. This shadowing can be
used in high-priority interrupts for fast context save and restore of the floating-point registers.
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.
6.6.2
Trigonometric Math Unit
The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU
instructions to speed up the execution of common trigonometric and arithmetic operations listed in
Table 6-11.
Table 6-11. TMU Supported Instructions
INSTRUCTIONS
C EQUIVALENT OPERATION
PIPELINE CYCLES
MPY2PIF32 RaH,RbH
a = b * 2pi
2/3
DIV2PIF32 RaH,RbH
a = b / 2pi
2/3
DIVF32 RaH,RbH,RcH
a = b/c
5
SQRTF32 RaH,RbH
a = sqrt(b)
5
SINPUF32 RaH,RbH
a = sin(b*2pi)
4
COSPUF32 RaH,RbH
a = cos(b*2pi)
4
ATANPUF32 RaH,RbH
a = atan(b)/2pi
4
QUADF32 RaH,RbH,RcH,RdH
Operation to assist in calculating ATANPU2
5
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU
instructions use the existing FPU register set (R0H to R7H) to carry out their operations. A detailed
explanation of the workings of the FPU can be found in the TMS320C28x Extended Instruction Sets
Technical Reference Manual.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
189
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.6.3
www.ti.com
Viterbi, Complex Math, and CRC Unit II (VCU-II)
The VCU-II is the second-generation Viterbi, Complex Math, and CRC extension to the C28x CPU. The
VCU-II extends the capabilities of the C28x CPU by adding registers and instructions to accelerate the
performance of FFTs and communications-based algorithms. The C28x+VCU-II supports the following
algorithm types:
• Viterbi Decoding
Viterbi decoding is commonly used in baseband communications applications. The Viterbi decode
algorithm consists of three main parts: branch metric calculations, compare-select (Viterbi butterfly),
and a traceback operation. Table 6-12 shows a summary of the VCU performance for each of these
operations.
Table 6-12. Viterbi Decode Performance
VITERBI OPERATION
VCU CYCLES
Branch Metric Calculation (code rate = 1/2)
Branch Metric Calculation (code rate = 1/3)
2p
Viterbi Butterfly (add-compare-select)
2 (1)
Traceback per Stage
3 (2)
(1)
(2)
•
•
1
C28x CPU takes 15 cycles per butterfly.
C28x CPU takes 22 cycles per stage.
Cyclic Redundancy Check
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity
over large data blocks, communication packets, or code sections. The C28x+VCU can perform 8-bit,
16-bit, 24-bit, and 32-bit CRCs. For example, the VCU can compute the CRC for a block length of 10
bytes in 10 cycles. A CRC result register contains the current CRC, which is updated whenever a CRC
instruction is executed.
Complex Math
Complex math is used in many applications, a few of which are:
– Fast Fourier Transform (FFT)
The complex FFT is used in spread spectrum communications, as well as in many signal
processing algorithms.
– Complex filters
Complex filters improve data reliability, transmission distance, and power efficiency. The
C28x+VCU can perform a complex I and Q multiply with coefficients (four multiplies) in a single
cycle. In addition, the C28x+VCU can read/write the real and imaginary parts of 16-bit complex data
to memory in a single cycle.
Table 6-13 shows a summary of the VCU operations enabled by the VCU.
Table 6-13. Complex Math Performance
COMPLEX MATH OPERATION
VCU CYCLES
NOTES
Add or Subtract
1
32 +/- 32 = 32-bit (Useful for filters)
Add or Subtract
1
16 +/- 32 = 15-bit (Useful for FFT)
Multiply
2p
16 x 16 = 32-bit
Multiply and Accumulate (MAC)
2p
32 + 32 = 32-bit, 16 x 16 = 32-bit
RPT MAC
2p+N
Repeat MAC. Single cycle after the first operation.
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.
190
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
6.7
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Control Law Accelerator
The CLA is an independent single-precision (32-bit) FPU processor with its own bus structure, fetch
mechanism, and pipeline. Eight individual CLA tasks can be specified. Each task is started by software or
a peripheral such as the ADC, ePWM, eCAP, eQEP, or CPU Timer 0. The CLA executes one task at a
time to completion. When a task completes, the main CPU is notified by an interrupt to the PIE and the
CLA automatically begins the next highest-priority pending task. The CLA can directly access the ADC
Result registers, ePWM, eCAP, eQEP, Comparator and DAC registers. Dedicated message RAMs provide
a method to pass additional data between the main CPU and the CLA.
Figure 6-2 shows the CLA block diagram.
CLA Control
Register Set
From
Shared
Peripherals
MPERINT1
to
MPERINT8
SYSCLK
CLA Clock Enable
SYSRSn
MIFR(16)
MIOVF(16)
MICLR(16)
MICLROVF(16)
MIFRC(16)
MIER(16)
MIRUN(16)
MVECT1(16)
MVECT2(16)
MVECT3(16)
MVECT4(16)
MVECT5(16)
MVECT6(16)
MVECT7(16)
MVECT8(16)
CLA_INT1
to
CLA_INT8
INT11
INT12
PIE
C28x
CPU
LVF
LUF
CPU Read/Write Data Bus
CLA Program Bus
CLA Program
Memory (LSx)
MCTL(16)
MPC(16)
MSTF(32)
MR0(32)
MR1(32)
MR2(32)
MR3(32)
MAR0(16)
MAR1(16)
CLA Data Bus
CLA Execution
Register Set
CLA Data
Memory (LSx)
CPU Data Bus
LSxMSEL[MSEL_LSx]
LSxCLAPGM[CLAPGM_LSx]
CLA Message
RAMs
Shared
Peripherals
MEALLOW
CPU Read Data Bus
Figure 6-2. CLA Block Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
191
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.8
www.ti.com
Direct Memory Access
Each CPU has its own 6-channel DMA module. The DMA module provides a hardware method of
transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing
up bandwidth for other system functions. Additionally, the DMA has the capability to orthogonally
rearrange the data as it is transferred as well as “ping-pong” data between buffers. These features are
useful for structuring data into blocks for optimal CPU processing.
The DMA module is an event-based machine, meaning it requires a peripheral or software trigger to start
a DMA transfer. Although it can be made into a periodic time-driven machine by configuring a timer as the
interrupt trigger source, there is no mechanism within the module itself to start memory transfers
periodically. The interrupt trigger source for each of the six DMA channels can be configured separately
and each channel contains its own independent PIE interrupt to let the CPU know when a DMA transfer
has either started or completed. Five of the six channels are exactly the same, while Channel 1 has the
ability to be configured at a higher priority than the others.
DMA features include:
• Six channels with independent PIE interrupts
• Peripheral interrupt trigger sources
– ADC interrupts and EVT signals
– Multichannel buffered serial port transmit and receive
– External interrupts
– CPU timers
– EPWMxSOC signals
– SPIx transmit and receive
– SDFM
– Software trigger
• Data sources and destinations:
– GSx RAM
– CPU message RAM (IPC RAM)
– ADC result registers
– ePWMx
– SPI
– McBSP
– EMIF
• Word Size: 16-bit or 32-bit (SPI and McBSP limited to 16-bit)
• Throughput: four cycles/word (without arbitration)
192
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Figure 6-3 shows a device-level block diagram of the DMA.
CPU1
TIMER
(3)
Global Shared
16x 4Kx16
GS0-15 RAMs
MSG RAM
1Kx16
CPU2 to CPU1
MSG RAM
1Kx16
CPU1 to CPU2
CPU1.DMA Bus
TINT (0-2)
XINT (1-5)
ADC INT (A-D) (1-4), EVT (A-D)
SDxFLTy (x = 1 to 2, y = 1 to 4)
SOCA (1-12), SOCB (1-12)
MXEVT (A-B), MREVT (A-B)
SPITX (A-C), SPIRX (A-C)
C28x CPU1 Bus
DMA Trigger
Source Selection
DMACHSRCSEL1.CHx
DMACHSRCSEL2.CHx
CHx.MODE.PERINTSEL
(x = 1 to 6)
DMA
CPU1
DMA Trigger
Source Selection
XINT (1-5)
TINT (0-2)
DMACHSRCSEL1.CHx
DMACHSRCSEL2.CHx
CHx.MODE.PERINTSEL
(x = 1 to 6)
DMA
CPU2
DMA_CHx (1-6)
CPU1
XINT
(5)
ADC
RESULTS
(4)
DMA_CHx (1-6)
ADC
WRAPPER
(4)
C28x
CPU1
PIE
C28x
CPU2
PIE
CPU2.DMA Bus
C28x CPU2 Bus
eCAP
eQEP
DAC
CMPSS
DMA Trigger Source
SDFM
(8)
EPWM
(12)
McBSP
(2)
SPI
(3)
EMIF1
CPU2
XINT
(5)
CPU2
TIMER
(3)
CPU and DMA Data Path
Figure 6-3. DMA Block Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
193
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.9
www.ti.com
Interprocessor Communication Module
The IPC module supports several methods of interprocessor communication:
• Thirty-two IPC flags per CPU, which can be used to signal events or indicate status through software
polling. Four flags per CPU can generate interrupts.
• Shared data registers, which can be used to send commands or other small pieces of information
between CPUs. Although the register names were chosen to support a command/response system,
they can be used for any purpose as defined in software.
• Boot mode and status registers, which allow CPU1 to control the CPU2 boot process.
• A general-purpose free-running 64-bit counter.
• Two shared message RAMs, which can be used to transfer bulk data. Each RAM can be read by both
CPUs. CPU1 can write to one RAM and CPU2 can write to the other.
Figure 6-4 shows the IPC architecture.
SET31
CLR31
ACK31
FLG31
R=0/W=1
IPCSET[31:0]
R=0/W=1
IPCCLR[31:0]
SET0
CLR0
IPCACK[31:0]
ACK0
R=0/W=1
FLG0
Gen Int Pulse
(on FLG 0->1)
IPCFLG[31:0]
R
C1TOC2IPCINT1/2/3/4
CPU2.
ePIE
IPCSTS[31:0]
R
R/W
IPCSENDCOM[31:0]
C1TOC2IPCCOM[31:0]
IPCRECVCOM[31:0]
R
R/W
IPCSENDADDR[31:0]
C1TOC2IPCADDR[31:0]
IPCRECVADDR[31:0]
R
R/W
IPCSENDDATA[31:0]
C1TOC2IPCDATAW[31:0]
IPCRECVDATA[31:0]
R
R
IPCREMOTEREPLY[31:0]
C1TOC2IPCDATAR[31:0]
IPCLOCALREPLY[31:0]
R/W
R/W
IPCBOOTMODE[31:0]
R
R
IPCBOOTSTS[31:0]
R/W
CPU1.EmulationHalt
CPU1
R
64-bit Free Run Counter
IPCCOUNTERH/L[31:0]
CPU2.EmulationHalt
PLLSYSCLK
R
CPU2
SET31
ACK31
CLR31
FLG31
IPCACK[31:0]
R=0/W=1
SET0
CLR0
ACK0
IPCSET[31:0]
R=0/W=1
IPCCLR[31:0]
R=0/W=1
IPCFLG[31:0]
R
FLG0
CPU1.
ePIE
C2TOC1IPCINT1/2/3/4
Gen Int Pulse
(on FLG 0->1)
IPCSTS[31:0]
R
R
IPCRECVCOM[31:0]
C2TOC1IPCCOM[31:0]
IPCSENDCOM[31:0]
R/W
R
IPCRECVADDR[31:0]
C2TOC1IPCADDR[31:0]
IPCSENDADDR[31:0]
R/W
R
IPCRECVDATA[31:0]
C2TOC1IPCDATAW[31:0]
IPCSENDDATA[31:0]
R/W
R/W
IPCLOCALREPLY[31:0]
C2TOC1IPCDATAR[31:0]
IPCREMOTEREPLY[31:0]
R
Figure 6-4. IPC Architecture
194
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.10 Boot ROM and Peripheral Booting
The device boot ROM (on both the CPUs) contains bootloading software. The CPU1 boot ROM does the
system initialization before bringing CPU2 out of reset. The device boot ROM is executed each time the
device comes out of reset. Users can configure the device to boot to flash (using GET mode) or choose to
boot the device through one of the bootable peripherals by configuring the boot mode GPIO pins.
The CPU1 boot ROM, being master, owns the boot mode GPIO and boot configurations. The CPU2 boot
ROM either boots to flash (if configured to do so through user configurable DCSM OTP) or enters a WAIT
BOOT mode if no OTP is programmed. In WAIT BOOT mode, the CPU1 application instructs the CPU2
boot ROM on how to boot further using boot mode IPC commands supported by CPU2 boot ROM.
Table 6-14 shows the possible boot modes supported on the device. The default boot mode pins are
GPIO72 (boot mode pin 1) and GPIO 84 (boot mode pin 0). Users may choose to have weak pullups for
boot mode pins if they use a peripheral on these pins as well, so the pullups can be overdriven. On this
device, customers can change the factory default boot mode pins by programming user configurable
DCSM OTP locations. This is recommended only for cases in which the factory default boot mode pins do
not fit into the customer design. More details on the locations to be programmed is available in the
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual.
Table 6-14. Device Boot Mode
MODE
NO.
CPU1 BOOT MODE
CPU2 BOOT MODE
TRST
GPIO72
(BOOT
MODE
PIN 1)
GPIO84
(BOOT
MODE
PIN 0)
0
Parallel IO
Boot from Master
0
0
0
1
SCI Mode
Boot from Master
0
0
1
2
Wait Boot Mode
Boot from master
0
1
0
3
Get Mode
Boot from Master
0
1
1
EMU Boot Mode (Emulator Connected)
Boot from Master
1
X
X
4-7
NOTE
The default behavior of Get mode is boot-to-flash. On unprogrammed devices, using Get
mode will result in repeated watchdog resets, which may prevent proper JTAG connection
and device initialization. Use Wait mode or another boot mode for unprogrammed devices.
CAUTION
Some reset sources are internally driven by the device. The user must ensure
the pins used for boot mode are not actively driven by other devices in the
system for these cases. The boot configuration has a provision for changing the
boot pins in OTP. For more details, see the TMS320F2837xD Dual-Core
Delfino Microcontrollers Technical Reference Manual.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
195
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
6.10.1 EMU Boot or Emulation Boot
The CPU enters this boot when it detects that TRST is HIGH (in other words, when an emulator/debugger
is connected). In this mode, the user can program the EMUBOOTCTRL register (at location 0xD00) to
instruct the device on how to boot. If the contents of the EMUBOOTCTRL locations are invalid, then the
device would default into WAIT Boot mode. The emulation boot allows users to verify the device boot
before programming the boot mode into OTP.
6.10.2 WAIT Boot Mode
The device in this boot mode loops in the boot ROM. This mode is useful if users want to connect a
debugger on a secure device or if users do not want the device to execute an application in flash yet.
6.10.3 Get Mode
The default behavior of Get mode is boot-to-flash. This behavior can be changed by programming the ZxOTPBOOTCTRL locations in user configurable DCSM OTP. The user configurable DCSM OTP on this
device is divided in to two secure zones: Z1 and Z2. The Get mode function in boot ROM first checks if a
valid OTPBOOTCTRL value is programmed in Z1. If the answer is yes, then the device boots as per the
Z1-OTPBOOTCTRL location. The Z2-OTPBOOTCTRL location is read and decodes only if Z1OTPBOOTCTRL is invalid or not programmed. If either Zx-OTPBOOTCTRL location is not programmed,
then the device defaults to factory default operation, which is to use factory default boot mode pins to boot
to flash if the boot mode pins are set to GET MODE. Users can choose the device through which to
boot—SPI, I2C, CAN, and USB—by programming proper values into the user configurable DCSM OTP.
More details on this can be found in the TMS320F2837xD Dual-Core Delfino Microcontrollers Technical
Reference Manual.
196
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.10.4 Peripheral Pins Used by Bootloaders
Table 6-15 shows the GPIO pins used by each peripheral bootloader. This device supports two sets of
GPIOs for each mode, as shown in Table 6-15.
Table 6-15. GPIO Pins Used by Each Peripheral Bootloader
BOOTLOADER
GPIO PINS
NOTES
SCI-Boot0
SCITXDA: GPIO84
SCIRXDA: GPIO85
SCIA Boot IO option 1 (default SCI option
when chosen through Boot Mode GPIOs)
SCI-Boot1
SCITXDA: GPIO28
SCIRXDA: GPIO29
SCIA Boot option 2 – with alternate IOs.
Parallel Boot
D0 – GPIO65
D1 – GPIO64
D2 – GPIO58
D3 – GPIO59
D4 – GPIO60
D5 – GPIO61
D6 – GPIO62
D7 – GPIO63
HOST_CTRL – GPIO70
DSP_CTRL – GPIO69
CAN-Boot0
CANRXA: GPIO70
CANTXA: GPIO71
CAN-A Boot -IO Option 1
CAN-Boot1
CANRXA: GPIO62
CANTXA: GPIO63
CAN-A Boot -IO option 2
I2C-Boot0
SDAA: GPIO91
SCLA: GPIO92
I2CA Boot- IO option 1
I2C-Boot1
SDAA: GPIO32
SCLA: GPIO33
I2CA Boot- IO option 2
SPI-Boot0
SPISIMOA - GPIO58
SPISOMIA - GPIO59
SPICLKA - GPIO60
SPISTEA - GPIO61
SPIA Boot- IO Option 1
SPI-Boot1
SPISIMOA – GPIO16
SPISOMIA – GPIO17
SPICLKA – GPIO18
SPISTEA – GPIO19
SPIA Boot - IO Option 2
USB Boot
USB0DM - GPIO42
USB0DP - GPIO43
The USB Bootloader will switch the clock
source to the external crystal oscillator (X1
and X2 pins). A 20-MHz crystal should be
present on the board if this boot mode is
selected.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
197
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
6.11 Dual Code Security Module
The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure”
means access to secure memories and resources is blocked. The term “unsecure” means access is
allowed; for example, through a debugging tool such as Code Composer Studio™ (CSS).
The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security
implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP
memory and secure ROM) and allocated secure resource (CLA, LSx RAM, and flash sectors).
The security of each zone is ensured by its own 128-bit password (CSM password). The password for
each zone is stored in an OTP memory location based on a zone-specific link pointer. The link pointer
value can be changed to program a different set of security settings (including passwords) in OTP.
6.12 Timers
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock
prescaling. The timers have a 32-bit count-down register that generates an interrupt when the counter
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.
When the counter reaches zero, it is automatically reloaded with a 32-bit period value.
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use
and is connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of
the CPU. If TI-RTOS is not being used, CPU-Timer 2 is available for general use.
CPU-Timer 2 can be clocked by any one of the following:
• SYSCLK (default)
• Internal zero-pin oscillator 1 (INTOSC1)
• Internal zero-pin oscillator 2 (INTOSC2)
• X1 (XTAL)
• AUXPLLCLK
6.13 Nonmaskable Interrupt With Watchdog Timer (NMIWD)
The NMIWD module is used to handle system-level errors. There is an NMIWD module for each CPU.
The conditions monitored are:
• Missing system clock due to oscillator failure
• Uncorrectable ECC error on CPU access to flash memory
• Uncorrectable ECC error on CPU, CLA, or DMA access to RAM
• Vector fetch error on the other CPU
• CPU1 only: Watchdog or NMI watchdog reset on CPU2
If the CPU does not respond to the latched error condition, then the NMI watchdog will trigger a reset after
a programmable time interval. The default time is 65536 SYSCLK cycles.
198
Detailed Description
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
6.14 Watchdog
The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional
lower limit on the time between software resets of the counter. This windowed countdown is disabled by
default, so the watchdog is fully backwards-compatible.
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a
selectable frequency divider.
Figure 6-5 shows the various functional blocks within the watchdog module.
WDCR(WDPS(2:0))
WDCR(WDDIS)
WDCNTR(7:0)
Watchdog
Prescaler
/512
OSCCLK
SYSRSn
8-bit
Watchdog
Counter
WDCLK
Overflow
1 WDCLK
delay
Clear
Count
WDWCR(MIN(7:0))
WDKEY(7:0)
Watchdog
Key Detector
55 + AA
WDRSn
WDINTn
In Window
Good Key
Out of Window
Watchdog
Window
Detector
Bad Key
Generate
512-OSCCLK
Output Pulse
Watchdog Time-out
SCSR(WDENINT)
Figure 6-5. Windowed Watchdog
6.15 Configurable Logic Block (CLB)
TI uses the CLB to offer additional interfacing and control features for select C2000 devices. Functions
that would otherwise be accomplished using external logic devices are now provided by on-chip TI
solutions. For example, absolute encoder master protocol interfaces such as EnDat and BiSS are now
provided as Position Manager solutions. Configuration files, application programmer’s interface (API), and
use examples for such solutions are provided with the C2000 controlSUITE software package. In some
solutions, the TI-configured CLB is used with other on-chip resources, such as the SPI port or the C28x
CPU, to perform more complex functionality. In some cases, external communications transceivers may
need to be added. See Table 3-1 for the devices that support the CLB feature.
Detailed Description
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
199
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
7 Applications, Implementation, and Layout
NOTE
Information in the following sections is not part of the TI component specification, and TI
does not warrant its accuracy or completeness. TI’s customers are responsible for
determining suitability of components for their purposes. Customers should validate and test
their design implementation to confirm system functionality.
7.1
TI Design or Reference Design
TI Designs Reference Design Library is a robust reference design library spanning analog, embedded
processor, and connectivity. Created by TI experts to help you jump start your system design, all TI
Designs include schematic or block diagrams, BOMs, and design files to speed your time to market.
Search and download designs at TIDesigns.
Industrial Servo Drive and AC Inverter Drive Reference Design
The DesignDRIVE Development Kit is a reference design for a complete industrial drive directly
connecting to a three-phase ACI or PMSM motor. Many drive topologies can be created from the
combined control, power, and communications technologies included on this single platform. This platform
includes multiple position sensor interfaces, diverse current sensing techniques, hot-side partitioning
options, and expansion for safety and industrial Ethernet.
Isolated Current Shunt and Voltage Measurement Reference Design for Motor Drives
This evaluation kit and reference design implement the AMC130x reinforced isolated delta-sigma
modulators along with integrated Sinc filters in the C2000 TMS320F28377D Delfino microcontroller. The
design provides an ability to evaluate the performance of these measurements: three motor currents, three
inverter voltages, and the DC Link voltage. Provided in the kit is firmware to configure the Sinc filters, set
the PLL frequency, and receive data from Sinc filters. A versatile run-time GUI is also provided to help the
user validate the AMC130x performance and supports configuration changes to Sinc filter parameters in
the Delfino controller.
Isolated, Shunt-Based Current Sensing Reference Design
This Verified TI Design implements an isolated current sensing data acqusition solution based on the
AMC1304M25 isolated delta-sigma (ΔΣ) modulator and a TMS320F28377D microcontroller. This circuit
was designed for shunt-based current measurement applications, which require excellent galvanic
isolation and accuracy, such as industrial motor drives, photovoltaic inverters, and energy metering. It is
capable of measuring load currents from –10 A to +10 A with better than 0.3% uncalibrated accuracy, and
it also provides dual functionality of a high-resolution channel and an additional overcurrent or short-circuit
detection channel. The design’s functionality and performance were verified against the circuit design
goals by fabricating three PCBs and measuring results for dc and ac input signals.
Differential Signal Conditioning Circuit for Current and Voltage Measurement Using Fluxgate Sensors
This design provides a 4-channel signal conditioning solution for differential ADCs integrated into a
microcontroller measuring motor current using fluxgate sensors. Also provided is an alternative
measurement circuit with external differential SAR ADCs as well as circuits for high-speed overcurrent and
earth fault detection. Proper differential signal conditioning improves noise immunity on critical current
measurements in motor drives. This reference design can help increase the effective resolution of the
analog-to-digital conversion, improving motor drive efficiency.
200
Applications, Implementation, and Layout
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
8 Device and Documentation Support
8.1
Device and Development Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
TMS320™ MCU devices and support tools. Each TMS320 MCU commercial family member has one of
three prefixes: TMX, TMP, or TMS (for example, TMS320F28379D). Texas Instruments recommends two
of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent
evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX
for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools).
Device development evolutionary flow:
TMX
Experimental device that is not necessarily representative of the final device's electrical
specifications
TMP
Final silicon die that conforms to the device's electrical specifications but has not
completed quality and reliability verification
TMS
Fully qualified production device
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal
qualification testing
TMDS Fully qualified development-support product
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
"Developmental product is intended for internal evaluation purposes."
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, PTP) and temperature range (for example, T). Figure 8-1 provides a legend
for reading the complete device name for any family member.
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your
TI sales representative.
For additional description of the device nomenclature markings on the die, see the TMS320F28379D,
TMS320F28377D, TMS320F28376D, TMS320F28375D, TMS320F28374D Dual-Core Delfino
Microcontrollers Silicon Errata.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
201
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
TMS
320
F
www.ti.com
28379D
PTP
T
PREFIX
TMX = experimental device
TMP = prototype device
TMS = qualified device
DEVICE FAMILY
320 = TMS320 MCU Family
TEMPERATURE RANGE
T = −40°C to 105°C (TJ)
S = −40°C to 125°C (TJ)
Q = −40°C to 125°C (TA)
(Q refers to Q100 qualification for automotive applications.)
PACKAGE TYPE
337-Ball ZWT New Fine Pitch Ball Grid Array (nFBGA)
176-Pin PTP PowerPAD Thermally Enhanced Low-Profile Quad Flatpack (HLQFP)
100-Pin PZP PowerPAD Thermally Enhanced Thin Quad Flatpack (HTQFP)
TECHNOLOGY
F = Flash
DEVICE
28379D
28377D
28376D
28375D
28374D
Figure 8-1. Device Nomenclature
8.2
Tools and Software
TI offers an extensive line of development tools. Some of the tools and software to evaluate the
performance of the device, generate code, and develop solutions are listed below. To view all available
tools and software for C2000™ real-time control MCUs, visit the C2000 MCU Tools and Software page.
Development Tools
F28379D controlCARD for C2000 Real time control development kits
The Delfino F28379D controlCARD from Texas Instruments is Position Manager-ready and an ideal
product for initial software development and short run builds for system prototypes, test stands, and many
other projects that require easy access to high-performance controllers. All C2000 controlCARDs are
complete board-level modules that utilize a HSEC180 or DIMM100 form factor to provide a low-profile
single-board controller solution. The host system needs to provide only a single 5V power rail to the
controlCARD for it to be fully functional.
F28379D Delfino Experimenter Kit
C2000™ MCU Experimenter Kits provide a robust hardware prototyping platform for real-time, closed loop
control development with Texas Instruments C2000 32-bit microcontroller family. This platform is a great
tool to customize and prove-out solutions for many common power electronics applications, including
motor control, digital power supplies, solar inverters, digital LED lighting, precision sensing, and more.
Software Tools
controlSUITE™ Software Suite
controlSUITE™ for C2000 microcontrollers is a cohesive set of software infrastructure and software tools
designed to minimize software development time.
Code Composer Studio (CCS) Integrated Development Environment (IDE)
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller
and Embedded Processors portfolio. CCS comprises a suite of tools used to develop and debug
embedded applications. CCS includes an optimizing C/C++ compiler, source code editor, project build
environment, debugger, profiler, and many other features.
Pin Mux Tool
The Pin Mux Utility is a software tool which provides a Graphical User Interface for configuring pin
multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs.
202
Device and Documentation Support
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
F021 Flash Application Programming Interface (API)
The F021 Flash Application Programming Interface (API) provides a software library of functions to
program, erase, and verify F021 on-chip Flash memory.
Training
C2000 Multi-Day Workshop
The C2000™ Microcontroller 3-Day Workshop will decrease the learning curve from months to days,
reduce development time, and accelerate product time to market! The workshop is perfect for both the
beginner and advanced users. Based on TI’s latest F28x7x devices, this workshop combines many of the
common features and peripherals found on the Piccolo™ and Delfino™ families, making it ideal for
anyone interested in learning about the C2000 MCU family of devices.
F2837xD Workshop
The F2837xD workshop is a hands-on technical course facilitated by qualified Texas Instruments'
instructors.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
203
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
8.3
www.ti.com
Documentation Support
To receive notification of documentation updates—including silicon errata—go to the product folder for
your device on ti.com (TMS320F28379D, TMS320F28377D, TMS320F28376D, TMS320F28375D,
TMS320F28374D). In the upper right-hand corner, click the "Alert me" button. This registers you to receive
a weekly digest of product information that has changed (if any). For change details, check the revision
history of any revised document.
The current documentation that describes the processor, related peripherals, and other technical collateral
is listed below.
Errata
TMS320F28379D, TMS320F28377D, TMS320F28376D, TMS320F28375D, TMS320F28374D Dual-Core
Delfino Microcontrollers Silicon Errata describes known advisories on silicon and provides workarounds.
Technical Reference Manual
TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual details the integration,
the environment, the functional description, and the programming models for each peripheral and
subsystem in the 2837xD microcontrollers.
CPU User's Guides
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and
the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This
Reference Guide also describes emulation features available on these DSPs.
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline,
and instruction set of the TMU, VCU-II, and FPU accelerators.
Peripheral Guides
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the
28x DSPs.
Tools Guides
TMS320C28x Assembly Language Tools v15.12.0.LTS User's Guide describes the assembly language
tools (assembler and other tools used to develop assembly language code), assembler directives, macros,
common object file format, and symbolic debugging directives for the TMS320C28x device.
TMS320C28x Optimizing C/C++ Compiler v15.12.0.LTS User's Guide describes the TMS320C28x C/C++
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly
language source code for the TMS320C28x device.
TMS320C28x Instruction Set Simulator Technical Overview describes the simulator, available within the
Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x core.
Application Reports
Semiconductor Packing Methodology describes the packing methodologies employed to prepare
semiconductor devices for shipment to end users.
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful
lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at
general engineers who wish to determine if the reliability of the TI EP meets the end system reliability
requirement.
Getting Started With TMS320C28x Digital Signal Controllers provides tips on getting started with
TMS320C28x DSP software and hardware development to aid in initial design and debug efforts.
204
Device and Documentation Support
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
www.ti.com
8.4
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 8-1. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
TMS320F28379D
Click here
Click here
Click here
Click here
Click here
TMS320F28377D
Click here
Click here
Click here
Click here
Click here
TMS320F28376D
Click here
Click here
Click here
Click here
Click here
TMS320F28375D
Click here
Click here
Click here
Click here
Click here
TMS320F28374D
Click here
Click here
Click here
Click here
Click here
8.5
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among
engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve
problems with fellow engineers.
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers
get started with Embedded Processors from Texas Instruments and to foster innovation and growth of
general knowledge about the hardware and software surrounding these devices.
8.6
Trademarks
PowerPAD, Delfino, TMS320C2000, C2000, Piccolo, controlSUITE, Code Composer Studio, TMS320,
E2E are trademarks of Texas Instruments.
Bosch is a registered trademark of Robert Bosch GmbH Corporation.
All other trademarks are the property of their respective owners.
8.7
Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
8.8
Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
Copyright © 2013–2016, Texas Instruments Incorporated
205
TMS320F28379D, TMS320F28377D
TMS320F28376D, TMS320F28375D, TMS320F28374D
SPRS880G – DECEMBER 2013 – REVISED MAY 2016
www.ti.com
9 Mechanical Packaging and Orderable Information
9.1
Packaging Information
The following pages include mechanical packaging and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
For packages with a thermal pad, the MECHANICAL DATA figure shows a generic thermal pad without
dimensions. For the actual thermal pad dimensions that are applicable to this device, see the THERMAL
PAD MECHANICAL DATA figure.
206
Mechanical Packaging and Orderable Information
Copyright © 2013–2016, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320F28379D TMS320F28377D TMS320F28376D TMS320F28375D TMS320F28374D
PACKAGE OPTION ADDENDUM
www.ti.com
24-Jun-2016
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TMS320F28374DPTPS
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
TMS320
F28374DPTPS
TMS320F28374DPTPT
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 105
TMS320
F28374DPTPT
TMS320F28374DZWTS
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 125
TMS320
F28374DZWTS
TMS320F28374DZWTT
ACTIVE
NFBGA
ZWT
337
90
TBD
Call TI
Call TI
-40 to 105
TMS320F28375DPTPS
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
TMS320
F28375DPTPS
TMS320F28375DPTPT
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 105
TMS320
F28375DPTPT
TMS320F28375DPZPS
ACTIVE
HTQFP
PZP
100
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
TMS320
F28375DPZPS
TMS320F28375DZWTS
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 125
TMS320
F28375DZWTS
TMS320F28375DZWTT
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 105
TMS320
F28375DZWTT
TMS320F28376DPTPS
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
TMS320
F28376DPTPS
TMS320F28376DPTPT
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 105
TMS320
F28376DPTPT
TMS320F28376DZWTS
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 125
TMS320
F28376DZWTS
TMS320F28376DZWTT
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 105
TMS320
F28376DZWTT
TMS320F28377DPTPQ
PREVIEW
HLQFP
PTP
176
TBD
Call TI
Call TI
-40 to 125
TMS320F28377DPTPS
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
TMS320
F28377DPTPS
TMS320F28377DPTPT
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 105
TMS320
F28377DPTPT
TMS320F28377DZWTQ
PREVIEW
NFBGA
ZWT
337
90
TBD
Call TI
Call TI
-40 to 125
TMS320F28377DZWTQR
PREVIEW
NFBGA
ZWT
337
1000
TBD
Call TI
Call TI
-40 to 125
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
24-Jun-2016
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TMS320F28377DZWTS
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 125
TMS320
F28377DZWTS
TMS320F28377DZWTT
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 105
TMS320
F28377DZWTT
TMS320F28379DPTPS
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 125
TMS320
F28379DPTPS
TMS320F28379DPTPT
ACTIVE
HLQFP
PTP
176
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 105
TMS320
F28379DPTPT
TMS320F28379DZWTS
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 125
TMS320
F28379DZWTS
TMS320F28379DZWTT
ACTIVE
NFBGA
ZWT
337
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 105
TMS320
F28379DZWTT
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
24-Jun-2016
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 3
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages