dm00091153

AN4338
Application note
EVLSTNRG-170W: 170 W SMPS with digitally controlled PFC and
resonant LLC stage based on the STNRG388A
Introduction
This application note describes the characteristics and features of a 170 W, wide input
mains range, power factor corrected, evaluation board for evaluating the STNRG388A
digital controller in off-line power conversion applications such as digital industrial power
supplies. The solution implements a PFC stage followed by a resonant LLC stage
supporting up to 170 W with multiple output rails: a high power 24 V (6 A) channel for the
main application, 1 auxiliary 12 V (2 A) for the controller and an always-on 5 V (2 A) standby.
The STNRG388A power conversion dedicated peripherals (SMEDs) offer the flexibility to
drive the PFC in transition mode (DCM-CCM boundary) while the resonant LLC is controlled
with timeshift control (TSC). In parallel to managing the two conversion stages, the
STNRG388A device guarantees all the protections required by the application as well as
implementing the advanced anti-capacitive protection. Thanks to the digital core of the
STNRG388A device, it is also possible to monitor, control and debug the EVLSTNRG-170W
board via a convenient HyperTerminal control.
The EVLSTNRG-170W evaluation kit (Figure 1) is comprised of a power board,
accommodating power circuits and gate drivers L6382D, and a control card with a digital
control CORE based on the STNRG388A device. The control module receives status
signals from the power circuit and provides control signals to the power board. Two different
control cards are provided:
 “Slim”: this board shows how small a real application could be
 “Debug”: this board allows to easily monitor all STNRG388A signals, in order to
understand the operation of the system or debugging a new code.
Figure 1. EVLSTNRG-170W with “slim“ control board configuration
March 2016
DocID025038 Rev 2
1/59
www.st.com
59
Contents
AN4338
Contents
1
Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . 5
1.1
Boost PFC stage features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
LLC resonant HB converter features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3
Flyback converter features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4
Related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5
HW configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6
Digital PFC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7
Digital LLC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2
Efficiency measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
PFC performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
Functional checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
4.1
Power factor corrector stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
Resonant stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3
Dynamic load operation and output voltage regulation . . . . . . . . . . . . . . 20
4.4
Cross regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6
Mains dips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7
Mains ripple rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . . 28
Appendix A Electrical diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Appendix B Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Board revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2/59
DocID025038 Rev 2
AN4338
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
PFC signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
LLC signals description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Overall efficiency measured at different AC input voltages . . . . . . . . . . . . . . . . . . . . . . . . 14
PFC PF and THD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Bill of materials EVLSTNRG-170W “power board” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Bill of materials EVLSTNRG-170W “STNRG388A debug control board” . . . . . . . . . . . . . . 48
Bill of materials EVLSTNRG-170W “STNRG388A slim control board”. . . . . . . . . . . . . . . . 54
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DocID025038 Rev 2
3/59
59
List of figures
AN4338
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
4/59
EVLSTNRG-170W with “slim“ control board configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 1
EVLSTNRG-170W with “debug” control board connected . . . . . . . . . . . . . . . . . . . . . . . . . . 8
PFC block diagram and signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Enhanced constant on-time PFC boost inductor current profile . . . . . . . . . . . . . . . . . . . . . 11
LLC block diagram and signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Time-shift concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
EN61000-3-2 compliance at 230 V ac - 50 Hz, full load . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
JEITA-MITI compliance at 100 V ac - 50 Hz, full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
EN61000-3-2 compliance at 230 V ac - 50 Hz, 75 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
JEITA-MITI compliance at 100 V ac - 50 Hz, 75 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Input voltage and current at 115 V ac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Input voltage and current at 230 V ac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PFC Vds and inductor current at 115 V ac - 60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . 18
PFC Vds and inductor current at 115 V ac - 60 Hz - full load - detail . . . . . . . . . . . . . . . . . 18
PFC Vds and inductor current at 230 V ac - 50 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . 19
PFC Vds and inductor current at 230 V ac - 50 Hz - full load - detail . . . . . . . . . . . . . . . . . 19
PFC signals at 115 V ac - 60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PFC signals - line transient 115 V ac to 230 V ac - 60 Hz - full load . . . . . . . . . . . . . . . . . 19
Resonant stage waveforms, full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Adaptive dead time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Adaptive dead time - HB rising edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Adaptive dead time - HB falling edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
12 V load transition at 115 V ac - 60 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
12 V transition no-load to full load at 115 V ac - 60 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
24 V load transition at 115 V ac - 60 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
24 V transition no-load to full load at 115 V ac - 60 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
24 V load transition at 115 V ac - 60 Hz - cross regulation on 12 V . . . . . . . . . . . . . . . . . . 23
12 V load transition at 115 V ac - 60 Hz - cross regulation on 24 V . . . . . . . . . . . . . . . . . . 23
Startup at full load and 115 V ac - 60 Hz by ON/OFF signal . . . . . . . . . . . . . . . . . . . . . . . 24
Startup at full load and 230 V ac - 50 Hz by ON/OFF signal - detail. . . . . . . . . . . . . . . . . . 24
Resonant stage safe startup at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Turn-off at full load and 115 V ac - 60 Hz by ON/OFF signal . . . . . . . . . . . . . . . . . . . . . . . 25
Turn-off at full load and 230 V ac - 50 Hz by ON/OFF signal - detail . . . . . . . . . . . . . . . . . 25
One and half cycle (25 ms) mains dip at full load and 115 V ac - 60Hz . . . . . . . . . . . . . . . 26
One and half cycle (30 ms) mains dip at full load and 230 V ac - 50 Hz . . . . . . . . . . . . . . 26
LLC input voltage ripple rejection at full load - +12 Vout measurement . . . . . . . . . . . . . . . 27
LLC input voltage ripple rejection at full load - +24 Vout measurement . . . . . . . . . . . . . . . 27
Output voltages ripple and noise with infinite persistence . . . . . . . . . . . . . . . . . . . . . . . . . 28
Output voltages ripple and noise with maximum resolution (2 ns/pt - sync. with mains) . . 28
CE peak and average measurement 230 V - phase wire . . . . . . . . . . . . . . . . . . . . . . . . . . 29
CE peak and average measurement 115 V - phase wire . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Main board electrical diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Electrical diagram of dead time block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Electrical diagram of debug control board - controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Electrical diagram of debug control board - connections . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Electrical diagram of debug control board - power and interfaces . . . . . . . . . . . . . . . . . . . 34
Electrical diagram of slim control board - controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Electrical diagram of slim control board - connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DocID025038 Rev 2
AN4338
1
Main characteristics and circuit description
Main characteristics and circuit description
The main features of the SMPS are listed here below:

Universal input mains range: 90 264 V ac - frequency 45  65 Hz

Full load power 170 W

Output voltage 1: 24 V ± 5% at 6 A for backlight and audio supply

Output voltage 2: 12 V ± 3% at 2 A for panel supply

Output voltage 3: 5 V ± 2% at 2 A for microprocessor supply

Mains harmonics: according to EN61000-3-2 Class-D or JEITA-MITI Class-D

Standby mains consumption: at 230 V ac < 150 mW with 50 mW load

Overall efficiency at full load: better than 90% at full load

EMI: according to EN55022-Class-B

Safety: according to EN60950

Power board size: 195 x 115 mm, 25 mm max. components height from PCB

Control board size: “debug” 88 x 118 mm, “slim” 25 x 76 mm

Power board PCB: dual layers, 35 µm, mixed PTH/SMT

Control board PCB: four layers, 35 µm, mixed PTH/SMT
The circuit is composed of two sections:
1.
A 10 W standby based on the VIPER27L, a high-voltage switcher for off-line
applications. This auxiliary converter delivers 5 V/2 A and is dedicated to supply the TV
microprocessor, the IR receiver, the logic and supervisory circuitry, as well as the
control devices of the main converter.
2.
The main converter composed of a front-end PFC and a LLC resonant converter, both
controlled by the STNRG388A digital controller. The PFC stage delivers 400 V constant
voltage and acts as a pre-regulator for both the LLC stage and the standby supply; the
LLC resonant converter delivers two output voltages, one dedicated to supply the TV
panel and the other for the backlight and audio power amplifiers.
An external signal, referred to secondary ground, turns on and off the main converter.
The drive function for the discrete MOSFETs of the main converter is provided by the
L6382D: this dedicated companion driver integrates also the high voltage startup generator
and a precise reference voltage (3.3 V) able to provide up to 30 mA to supply the
STNRG388A.
DocID025038 Rev 2
5/59
59
Main characteristics and circuit description
1.1
1.2
Boost PFC stage features

Digitally controlled PFC pre-regulator

Transition-mode (DCM-CCM boundary) operation with valley switching

Enhanced constant on-time control with line voltage feedforward

Valley skipping with valley lock and burst mode operation

OCP with LEB on current sense

Protections:
1.4
–
Brownout
–
Overvoltage
–
Undervoltage
–
Overcurrent
–
Anti-continuous conduction mode

Programmable soft-start

Digital control loop with programmable PI frequency compensator
LLC resonant HB converter features

Time-shift control with min. and max. frequency limitation

Self-adjustable dead time

Protections:

1.3
AN4338
–
2 levels overcurrent
–
Overvoltage
–
Anti-capacitive mode
Safe start and digitally adjustable soft-start
Flyback converter features

Fixed switching frequency (60 kHz) with frequency jittering

CCM - DCM operation according to mains voltage and load amount
Related documents
Additional information and details about firmware and the parameters setting can be found
in the following documents:

UM1881 - EVLSTNRG-170W: user interface manual

UM1760 - STLUX™ SMED configurator 1.0
This evaluation board has been developed starting from the existing EVL170W-FTV
evaluation board, based on full analog control. Its application note (AN3329) can be used to
have a description and relevant waveforms of the standby supply.
Since that evaluation board refers to the same application and uses the same power
components, it is a good means for comparison between the analog and digital
performance.
6/59
DocID025038 Rev 2
AN4338
1.5
Main characteristics and circuit description
HW configuration
As already said, the EVLSTNRG-170W includes two different control boards. They work
exactly in the same way, using the same STNRG388A resources and sharing the same FW.
The “Slim” version has been thought to show the actual size of the digital control in a real
application. Since its height is only 25 mm it is mounted vertically on the power board.
Therefore the total footprint of the SMPS is the same of the power board.
The “debug” version allows accessing all the STNRG388A signal with convenient test
points. The STNRG388A is housed in a socket making very easy to remove / replace it. The
board has also dedicated supply connectors that allow using it as a standalone board to
develop a code for the STNRG388A device. Figure 2 shows the complete system using the
“debug” control board.
Figure 2. EVLSTNRG-170W with “debug” control board connected
DocID025038 Rev 2
7/59
59
Main characteristics and circuit description
1.6
AN4338
Digital PFC description
The PFC block diagram and STNRG388A pins used for PFC control are shown in Figure 3.
The gate drive signal for the power MOSFET is generated by two coupled SMEDs (“State
Machine Event Driven”) and delivered through the gate driver L6382. The schematic also
shows that four signals are sensed and opportunely scaled and conditioned. The PFC
output voltage and AC line are sensed using the STNRG388A device. These signals are
scaled to a range from 0 V to 1.25 V which corresponds to the ADC full scale. The
demagnetization detection and power MOSFET current sensing for the cycle-by-cycle
current limiting and current threshold detection are implemented with high speed analog
comparators available in the STNRG388A.
The PFC operates in transition mode using a proprietary enhanced constant on-time
technique. The on-time calculated by the voltage loop is kept constant for a given mains
voltage and load condition during each line half cycle to obtain a good power factor and
low harmonic content of the line current. The actual on-time is the sum of two times: the
calculated one and that required for the current to reach a predefined threshold.
As a consequence, the on-time is not rigorously constant over a line half cycle.
8/59
DocID025038 Rev 2
AN4338
Main characteristics and circuit description
Figure 3. PFC block diagram and signals description
Table 1. PFC signals description
Name
Description
Vin
AC line monitor for: line synchronization, peak voltage sampling, brown-in/out
Vbulk
Output voltage sampled for control loop PI and OVP, UVP
Vzcd
Demagnetization detection from auxiliary for TM
Isen
Current sensing for minimum current threshold and OCP
DocID025038 Rev 2
9/59
59
Main characteristics and circuit description
AN4338
As shown in Figure 4, defining the minimum current level before starting the calculated Ton
period allows the PFC to process more energy as compared to the case using only the ontime calculated by the control loop. This is a good way to balance the energy lost in MOS
charging, nearly compensating constant on-time non-idealities. This operation allows also to
artificially increase the on-time near the mains voltage zero crossing. As a result the energy
transfer is more efficient and the input current distortion is reduced.
Figure 4. Enhanced constant on-time PFC boost inductor current profile
The frequency compensation of the feedback loop that controls the output voltage is
implemented using firmware execution by the STNRG388A.
The voltage feedback loop is compensated using a PI algorithm. More in detail it uses two
different loop speeds according to the operating conditions.
During steady-state operation the algorithm implements a slow response loop with
crossover frequency designed around 10 Hz, which guarantees excellent THD and PF.
During transient operations that cause large bulk voltage deviation, the loop speed becomes
faster and the recovery time is dramatically reduced. This effect is obtained using a different
set of PI coefficients applied when the controller detects a variation of the bulk voltage
greater than a defined threshold.
This control technique, available only with the digital approach, allows the best performance
in both steady-state and transient conditions.
A feedforward compensation based on mains input voltage measurement is also introduced
in order to keep the regulation loop bandwidth constant over the complete mains input
voltage range.
The PI compensation algorithm calculates the required on-time near the zero-crossings of
the mains voltage. The calculation is based on the last taken sixteen output voltage
samples.
The PWM signal is generated using two coupled high speed “State Machine, Event Driven”
(SMED). SMEDs are software configurable peripherals able to manage very fast
asynchronous events without CPU intervention. SMEDs inputs are the zero current
detection signal, used for valley switching, minimum current detection for enhanced
constant on-time implementation and overcurrent information for power stage protection. All
these three signals use the analog comparators inside the STNRG388A device.
10/59
DocID025038 Rev 2
AN4338
Main characteristics and circuit description
In critical condition, such as when the mains voltage approaches the PFC DC output,
a proprietary algorithm guarantees that the “Continuous Conduction Mode” (CCM) is
avoided.
The PFC can be operated in valley skipping and burst mode for improved efficiency at low
output loads.
Valley skipping condition is directly managed by properly configured SMEDs states. If the
calculated on-time is lower than a minimum configurable thresholds, the system inserts
valley skipping, up to three valleys.
The system continuously checks that the PFC output voltage is under a reference value. If
the limit is exceeded, the PFC enters the burst mode switching off the MOS. As soon as the
PFC output voltage goes below a recovery value, the PFC is restarted.
1.7
Digital LLC description
The LLC block diagram and STNRG388A pins used for LLC control are shown in Figure 5.
The schematic shows that the voltage feedback loop is implemented with a typical analog
approach.
The loop is closed sensing both the output voltages with a circuit using a TL431 device
modulating the current in the optocoupler diode.
The resulting feedback voltage is then sampled by the 10-bit ADC of the STNRG388A
device.
In order to avoid half bridge (HB) switching noise effects, feedback voltage sampling
instants are opportunely chosen by means of a dedicated ADC hardware triggering function.
The resonant stage average current is also sampled by the ADC to implement the first level
of overcurrent protection (OCP). The intervention level is calculated taking into account the
input voltage to the resonant stage. This approach allows limiting the maximum output
power.
A second level OCP is implemented by an external comparator integrated in the L6382D IC
which immediately stops the gate drives activity. A digital fault signal is sent to the
STNRG388A that resets the system and attempts a restart after about 1 s. This protection
has therefore an auto-restart behavior but can be easily modified into a latched one.
The HB power MOSFETs are driven by the controller's coupled SMEDs through the half
bridge gate driver in the L6382. The input signals to the SMEDs include the resonant stage
zero current detection signal and a signal for adaptive dead time management generated by
a dedicated circuitry.
The zero current detection information is used to implement a proprietary control technique
named “Time-Shift Control” (TSC). The TSC methodology consists in controlling the amount
of time elapsing from a zero-crossing of the tank current to the switch-off of the MOSFET
currently on, as shown in Figure 6. Conceptually, with TSC an inner loop is closed and the
outer loop that regulates the output voltage provides the reference for the inner loop. This
inner loop is completely managed by SMEDs using the zero current detection information.
Time-shift control outperforms the direct frequency control method.
DocID025038 Rev 2
11/59
59
Main characteristics and circuit description
AN4338
In particular, one of the advantages of the TSC method is that the power stage, as a first
approximation, behaves like a first order system. As a consequence, the compensator
design is considerably simplified and can be obtained better dynamic performance to input
voltage and load transients.
A dedicated anti-capacitive protection mechanism prevents the harmful switching in the
capacitive mode operation. This protection acts in two different ways.
If the HB operation approaches the capacitive mode (i.e.: the ZCD signal becomes closer to
the HB transition than a predefined time) the STNRG388A decreases linearly the time-shift
applied. This means an increase of the HB switching frequency that moves the system away
from the capacitive mode. If the operation is still close to the capacitive mode after a certain
timeout value, the system is shut down.
If the capacitive mode is detected (i.e.: the current waveform leads the HB voltage) the
system is immediately shut down.
Figure 5. LLC block diagram and signals description
12/59
DocID025038 Rev 2
AN4338
Main characteristics and circuit description
Table 2. LLC signals description
Name
Description
Vfb
Control loop feedback voltage
Isen
Current sense for load management and OCP
HB_deadT
Adaptive dead time signal
Figure 6. Time-shift concept
DocID025038 Rev 2
13/59
59
Efficiency measurement
2
AN4338
Efficiency measurement
Table 3 shows the overall efficiency, measured at different mains voltages.
It is worth reminding that, even if the efficiency results are quite good, this evaluation board
is not optimized in this respect. Many circuits, that are not currently used, are still supplied,
adversely affecting efficiency results.
Table 3. Overall efficiency measured at different AC input voltages
Load = 100%
Vin [Vrms]
5 Volt
12 Volt
24 Volt
Pout
Pin
Eff.
Vout [V]
Iout [A]
Vout [V]
Iout [A]
Vout [V]
Iout [A]
[W]
[W]
[%]
90
5.013
1.9987
11.95
2.0001
23.96
5.993
177.513
201.71
88.00%
115
5.013
1.9987
11.95
2.0001
23.96
5.993
177.513
198.21
89.56%
230
5.013
1.9987
11.95
2.0001
23.96
5.993
177.513
194.21
91.40%
264
5.013
1.9987
11.95
2.0001
23.96
5.993
177.513
193.75
91.62%
Pout
Pin
Eff.
Load = 75%
Vin [Vrms]
5 Volt
12 Volt
24 Volt
Vout [V]
Iout [A]
Vout [V]
Iout [A]
Vout [V]
Iout [A]
[W]
[W]
[%]
90
5.011
1.4981
11.95
1.4997
23.99
4.4943
133.2467
150.66
88.44%
115
5.01
1.4981
11.95
1.4997
23.99
4.4943
133.2452
148.75
89.58%
230
5.01
1.4981
11.95
1.4997
23.99
4.4943
133.2452
146.76
90.79%
264
5.01
1.4981
11.95
1.4998
23.99
4.4962
133.2919
146.55
90.95%
Pout
Pin
Eff.
Load = 50%
Vin [Vrms]
5 Volt
12 Volt
24 Volt
Vout [V]
Iout [A]
Vout [V]
Iout [A]
Vout [V]
Iout [A]
[W]
[W]
[%]
90
5.009
0.9981
11.95
0.9998
24.01
2.9962
88.88585
101.26
87.78%
115
5.009
0.9981
11.95
0.9998
24.02
2.9962
88.91582
100.51
88.46%
230
5.009
0.9981
11.95
0.9998
24.01
2.9962
88.88585
99.82
89.05%
264
5.009
0.9981
11.95
0.9998
24.01
2.9962
88.88585
99.72
89.14%
Pout
Pin
Eff.
Load = 25%
Vin [Vrms]
5 Volt
12 Volt
24 Volt
Vout [V]
Iout [A]
Vout [V]
Iout [A]
Vout [V]
Iout [A]
[W]
[W]
[%]
90
5.01
0.4937
11.96
0.4997
24.03
1.4981
44.44919
53.02
83.83%
115
5.01
0.4937
11.96
0.4997
24.03
1.4981
44.44919
52.94
83.96%
230
5.01
0.4937
11.96
0.4997
24.03
1.4981
44.44919
52.85
84.10%
264
5.01
0.4937
11.96
0.4997
24.03
1.4981
44.44919
52.47
84.71%
14/59
DocID025038 Rev 2
AN4338
3
PFC performance
PFC performance
This evaluation board has been tested according to the European standard
EN61000-3-2 Class-D and Japanese standard JEITA-MITI Class-D, at the full load and
75 W input power, at both the nominal input voltage mains. The test results are shown from
Figure 7 to Figure 10.
Figure 7. EN61000-3-2 compliance at 230 V ac 50 Hz, full load
Figure 8. JEITA-MITI compliance at 100 V ac 50 Hz, full load
Vin = 230 V ac - 50 Hz, Pin = 196 W
Vin = 100 V ac - 50 Hz, Pin = 202 W
Figure 9. EN61000-3-2 compliance at 230 V ac 50 Hz, 75 W
Figure 10. JEITA-MITI compliance at 100 V ac 50 Hz, 75 W
Vin = 230 V ac - 50 Hz, Pin = 75 W
Vin = 100 V ac - 50 Hz, Pin = 75 W
DocID025038 Rev 2
15/59
59
PFC performance
AN4338
In Figure 11 and Figure 12 the AC input voltage and current waveforms at the nominal input
mains and full load are shown.
Figure 11. Input voltage and current at 115 V ac Figure 12. Input voltage and current at 230 V ac
- full load
- full load
CH3: AC input voltage
CH4: AC input current
CH3: AC input voltage
CH4: AC input current
In Table 4 power factor (PF) and total harmonic distortion (THD) are shown for nominal input
voltages.
Table 4. PFC PF and THD
16/59
115 V ac
PF
THD [%]
100%
0.995
2.4
75%
0.994
2.6
50%
0.987
3.3
25%
0.959
5.5
230 V ac
PF
THD [%]
100%
0.972
3.2
75%
0.952
3.6
50%
0.906
5.3
25%
0.754
11.3
DocID025038 Rev 2
AN4338
Functional checks
4
Functional checks
4.1
Power factor corrector stage
Figure 13 shows the PFC MOSFET's drain voltage, choke current and voltages on the
current sense pin along a line half period at 115 V ac. Low current distortion and high power
factor are achieved thanks to the enhanced constant on-time technique. Moreover, this
control methodology guarantees a considerable reduction of THD (total harmonic
distortion).
In Figure 14 the same signals are captured at the top of the input sine wave. Transition
mode control makes the inductor work on the boundary between the continuous and
discontinuous conduction mode. ZCD transition (Figure 17) is detected by SMED1 and used
as a start signal for a new switching cycle.
Figure 15 and Figure 16 show the same waveforms at 230 V ac.
A significant plus of TM operation is the possibility to work in ZVS: if the converter
instantaneous input voltage is lower than Vout/2, the ZVS (zero voltage switching) condition
is achieved, decreasing MOSFET switching losses. As displayed in Figure 16, if the
instantaneous input voltage is higher than Vout/2, the MOSFET is turned on just on the
valley of the drain voltage. In other words, valley switching guarantees transition losses
minimization.
Figure 13. PFC Vds and inductor current
at 115 V ac - 60 Hz - full load
CH1: Q1 drain voltage
CH2: current sense
CH4: choke current
Figure 14. PFC Vds and inductor current
at 115 V ac - 60 Hz - full load - detail
CH1: Q1 drain voltage
DocID025038 Rev 2
CH2: current sense
CH4: choke current
17/59
59
Functional checks
AN4338
Figure 15. PFC Vds and inductor current
at 230 V ac - 50 Hz - full load
CH1: Q1 drain voltage
CH2: current sense
CH4: choke current
Figure 16. PFC Vds and inductor current
at 230 V ac - 50 Hz - full load - detail
CH1: Q1 drain voltage
CH2: current sense
CH4: choke current
Figure 18 shows PFC reaction to a line transient from 115 V ac to 230 V ac. In this condition,
a predictive algorithm detects the input voltage step and forces an immediate recalculation
of the PFC compensation algorithm. As a consequence, on-time is updated without waiting
for zero crossing condition.
Figure 17. PFC signals at 115 V ac - 60 Hz
- full load
CH3: ZCD
18/59
CH2: current sense
CH4: gate drive
Figure 18. PFC signals - line transient
115 V ac to 230 V ac - 60 Hz - full load
CH1: output voltage
DocID025038 Rev 2
CH2: input voltage
CH4: choke current
AN4338
4.2
Functional checks
Resonant stage
Hereafter are shown some waveforms related to the resonant stage during steady-state
operation. The switching frequency at the full load and nominal input voltage is around
75 KHz, in order to achieve a good trade-off between transformer losses and size.
Figure 19 shows the resonant ZVS operation. Since the converter operates slightly below
resonance, the resonant current lags behind the voltage applied, as the input impedance of
the resonant network is inductive. The current is negative during the rising edge of half
bridge voltage and positive during the falling edge, providing, in both cases, the energy to
allow the node HB to swing.
Figure 19. Resonant stage waveforms, full load
CH1: HB voltage
CH2: LS gate
CH3: HS gate
CH4: resonant current
In Figure 20 the adaptive dead time feature is represented.
Figure 20. Adaptive dead time
CH1: HB voltage
CH2: HS gate
CH3: LS gate
CH4: HB dead time
DocID025038 Rev 2
19/59
59
Functional checks
AN4338
Figure 21. Adaptive dead time - HB rising edge Figure 22. Adaptive dead time - HB falling edge
CH1: HB voltage
CH3: LS gate
CH2: HS gate
CH4: HB dead time
CH1: HB voltage
CH3: LS gate
CH2: HS gate
CH4: HB dead time
Adaptive dead time is implemented through a dedicated external sensing circuitry. As
shown in Figure 21 and Figure 21, the MOSFETs are turned on after the rising edge of
HB_deadt signal.
4.3
Dynamic load operation and output voltage regulation
Figure 23 and Figure 25 show the output voltage regulation in case of load transients on
both the resonant stage outputs. The waveforms have been captured applying to one output
a load transient from 0 to the full load, while the other is delivering the full load.
Time-shift control allows a dramatic improvement in resonant stage transient response. The
output voltage reaches the steady-state condition in less than 1 ms. It can also be noted that
12 V output has a very tight variation (within ± 3%) even considering the spikes at the
current edges (see Figure 24).
Likewise, in Figure 26, it is possible to see that the 24 V output has a tight variation
(within ± 4%).
20/59
DocID025038 Rev 2
AN4338
Functional checks
Figure 23. 12 V load transition at 115 V ac
- 60 Hz
Figure 24. 12 V transition no-load to full load
at 115 V ac - 60 Hz
CH2: 12 V output voltage
CH4: 12 V output current
Figure 25. 24 V load transition at 115 V ac
- 60 Hz
CH2: 12 V output voltage
CH4: 12 V output current
Figure 26. 24 V transition no-load to full load
at 115 V ac - 60 Hz
CH2: 24 V output voltage
CH4: 24 V output current
DocID025038 Rev 2
CH2: 24 V output voltage
CH4: 24 V output current
21/59
59
Functional checks
4.4
AN4338
Cross regulation
Figure 27 and Figure 28 show the output voltage cross regulation with transient conditions
similar to those of the test described above apart from the load step frequency, which is
300 Hz on one output, with the other one delivering the rated load. The transient response is
so good that both outputs are able to reach the steady-state condition well before another
load transition takes place.
s
Figure 27. 24 V load transition at 115 V ac
- 60 Hz - cross regulation on 12 V
CH3: 24 V output voltage
22/59
CH2: 12 V output voltage
CH4: output current
Figure 28. 12 V load transition at 115 V ac
- 60 Hz - cross regulation on 24 V
CH3: 24 V output voltage
DocID025038 Rev 2
CH2: 12 V output voltage
CH4: output current
AN4338
4.5
Functional checks
Startup
Figure 29 and Figure 30 show waveforms during the startup at nominal voltages and the full
load of the PFC and resonant stages. It is possible to note the sequence of the two stages;
once the ON/OFF signal is asserted high, the voltage on C42 increases up to the Vcc turnon threshold of the L6382D.
The driver, then, generates the supply voltage for the STNRG388A. At first the PFC is
enabled, hereafter its output voltage starts increasing from the mains rectified peak voltage
to its nominal value. Meanwhile the resonant stage is kept disabled. As soon as the PFC
voltage reaches 380 V, the resonant starts to operate. Hence both the output voltages rise
according to the soft-start and reach their nominal levels.
Figure 29. Startup at full load and 115 V ac
- 60 Hz by ON/OFF signal
CH1: PFC output voltage
CH3: 24 V output voltage
CH2: ON/OFF signal
CH4: 12 V output voltage
Figure 30. Startup at full load and 230 V ac
- 50 Hz by ON/OFF signal - detail
CH1: PFC output voltage
CH3: 24 V output voltage
DocID025038 Rev 2
CH2: ON/OFF signal
CH4: 12 V output voltage
23/59
59
Functional checks
AN4338
Figure 31 shows the details of the half bridge startup. It can be noted that the low-side gate
drive starts first with a pulse of about 10 s, used to pre-charge the bootstrap capacitor.
After a fixed delay of 40 s (used to let any possible oscillations to be completely damped),
the half bridge starts its switching activity. The initial HB pulse is asymmetric as the duration
of the high-side pulse is half that of the low-side one. The purpose of this operation is to
prevent hard switching operation and flux imbalance. This startup sequence is implemented
by means of a proper configuration of resonant SMEDs' timings that can be dynamically
adjusted depending on the operating conditions of the resonant stage. As soon as the
startup sequence is completed, SMEDs are immediately reconfigured to manage normal
operation.
Figure 32 and Figure 33 show the PFC and resonant converter turn-off.
Figure 31. Resonant stage safe startup at full load
CH1: HB voltage
CH3: HS gate
CH2: LS gate
CH4: resonant current
Figure 32. Turn-off at full load and 115 V ac
- 60 Hz by ON/OFF signal
CH1: PFC output voltage
CH3: 24 V output voltage
24/59
CH2: ON/OFF signal
CH4: 12 V output voltage
Figure 33. Turn-off at full load and 230 V ac
- 50 Hz by ON/OFF signal - detail
CH1: PFC output voltage
CH3: 24 V output voltage
DocID025038 Rev 2
CH2: ON/OFF signal
CH4:12 V output voltage
AN4338
4.6
Functional checks
Mains dips
Figure 34 and Figure 35 show the converter behavior in the case of one cycle and a half
(25 ms at 60 Hz or 30 ms at 50 Hz) mains dip at 115 V ac and 230 V ac. Even if the PFC
output voltage slightly drops, the output voltage is kept regulated without any disturbance,
therefore demonstrating a good immunity of the circuit against mains dips.
Figure 34. One and half cycle (25 ms) mains
dip at full load and 115 V ac - 60Hz
CH1: PFC output voltage
CH3: 24 V output voltage
CH2: HB voltage
CH4: PFC input voltage
Figure 35. One and half cycle (30 ms) mains dip
at full load and 230 V ac - 50 Hz
CH1: PFC output voltage
CH3: 24 V output voltage
DocID025038 Rev 2
CH2: HB voltage
CH4: PFC input voltage
25/59
59
Functional checks
4.7
AN4338
Mains ripple rejection
Another of the benefits introduced by the time-shift control method is the high rejection
against input voltage variations of the LLC stage. This is obtained thanks to a high gain in
the Gloop at mains frequency. During normal operation, the PFC output voltage has a ripple
at twice of the mains frequency. On the two LLC output voltages the amount of the
remaining ripple is very small.
Figure 36. LLC input voltage ripple rejection at
full load - +12 Vout measurement(1)
CH1: PFC output voltage CH2: 12 V output voltage
CH3: 24 V output voltage
Figure 37. LLC input voltage ripple rejection at
full load - +24 Vout measurement(1)
CH1: PFC output voltage
CH3 : 24 V output voltage
CH2: 12 V output voltage
1. All signals are ac coupled.
Looking at Figure 36 and Figure 37 it is possible to calculate the rejection ratio for the two
outputs. The PFC output ripple is 6.22 V while the remaining ripple is 4.97 mV on the
+12 Vout and 9.97 mV on the +24 Vout.
This means the two rejection ratios are -61.9 dB and -55.9 dB respectively for +12 Vout and
+24 Vout.
26/59
DocID025038 Rev 2
AN4338
Functional checks
Figure 38 and Figure 39 show the two LLC output voltages ripple and noise. In Figure 38
the image is taken with infinite persistence and no synchronization while in Figure 39 the
signal are synchronized with input voltage mains and taken with the maximum resolution
allowed by the scope (2 ns/pt). In both cases the channels bandwidth is set to 20 MHz. The
ripple and noise measured is about 65 mV on the +12 V output and about 70 mV on the
+24 V output. The second figure is useful to check which is the contribution of the residual
mains ripple.
Figure 38. Output voltages ripple and noise Figure 39. Output voltages ripple and noise with
with infinite persistence(1)
maximum resolution (2 ns/pt - sync. with mains)(1)
CH2: 12 V output voltage
CH3: 24 V output voltage
CH2: 12 V output voltage
CH3: 24 V output voltage
1. All signals are ac coupled.
DocID025038 Rev 2
27/59
59
Conducted emission pre-compliance test
5
AN4338
Conducted emission pre-compliance test
Figure 40 and Figure 41 show the peak and average measurements of the conducted
emission noise at the full load and nominal mains voltages. The limits shown in the
diagrams are EN55022 Class-B, which is the most popular norm for domestic equipment
and has more severe limits compared to Class-A, dedicated to IT technology equipment. As
visible in the diagrams, in all test conditions the measurements are far below the limits.
Figure 40. CE peak and average measurement 230 V - phase wire
Figure 41. CE peak and average measurement 115 V - phase wire
28/59
DocID025038 Rev 2
[email protected]@M
3
.
3
,
3
.
3
,
3
.
3
.
$
O'
3
,
3
,
3
.
3
.
3
,
3
.
+1
%
4.
3
,
3
.
%
4.
$
O'
$
O'
3
.
3
.
3
,
3
.
3
.
7BD
[email protected]@O
3
ON
3
ON
3
ON
$
O'
[email protected]@O
$
V'9
$
Q'
$
Q'
@
$
O'7
)0-& )0-& )0-&
NN NN NN
3
3
%
#"587
%
#;7$W
[email protected]
%
#"587
37
7BD
3
ON
3
,
3
3
)4
)&"54*/,
$
O'7
[email protected][email protected]
+
[email protected]
[email protected]@JO
%
%9#)
(/%@"
45'/./
3
3
3
3
3
,
$
O'
3
,
3
3
,
3
,
3
3
-
3
2
[email protected]
-
1'$@[DE
O'
O'
3
,
3
3
$
$
V'7
%
/84
3
39
$
2
..#5"
3
3
$
O'
%
/84
$
V'7
2
..#5"
%
#;7$
3
ON
%
455)-
$
V'9
(/%*0
)#@[DE
.5"
)[email protected]
$
O'
[email protected]@IW
73&'
$4*
$40
)&(
OD
)746
OD
065
)4(
#005
O'
$
+
$0/"
$
O'
%
#"587
CPPU
ON
39
3
ON
$
SFWV'7
SFWV'7
455)"
%
7$$@"
IWTV
-%
1'*
-4*
)4*
)&*
1'(
OD
513
(/%
-4(
7$$
6
V'7
$
ON
39
+19
+19
[email protected]'$"NBY
1'*
-4*
)[email protected]
3
/5$34
[email protected]
%
/
(/%*0
+19
7$$@"
+19
3
3
3
L
7$$
3
3
[email protected]
O'
$
)#@%FBE5
513
)[email protected]
[email protected]
)#@%FBE5
$
O'
%
#;7$
3
3
3
3
6"
54
[email protected]
[email protected]
$
O'
3
,
+19
+1
3
ON
$
O'
39
3
%
ON
$
O'
[email protected]
3
3
3
ON
[email protected]
$
Q'
+19
#3
%3"*/
%3"*/
6
7*1&3-/
$
V'7
$0/5
7%%
3
,
[email protected]@IW
4063$&
'#
%
#"587
3
,
2
..#5"
2
..#5"
3
3
455)"
3
ON
3
3
SFWV'7
SFWV'7
$
3
3
%
+19
+19
6
4')"
3
ON
6
5-"$;
3
3
%
455)"
%
#"7
$
ON
2
#$$
2
#$$
3
,
$
O'
5
$
O'
3
,
$
O'
$
ON
3
3
6
4')"
$
V'7
%
4514-$'1
$
O'
$
O'
3
,
6
54";
$
O'
$
ON
3
,
3
,
3
,
3
ON
3
ON
3
,
3
,
$
V'7
3
,
%
..4;7
$
O'
$
ON
3
ON
-
%
/84
$
SFWV'7
SFWON
%
/84
)4
)&"54*/,
$
V'7
3
ON
$
O'
3
,
3
,
$
V'7
3
3
%
4514-"
%
..4;7
3
ON
3
ON
)4
)&"54*/,
3
,
%
4514)$'1
3
,
2
#$$
3
,
3
,
3
,
3
,
$
V'7
$
V'7
%
4514)$'1
%
4514-$'1
)4
)&"54*/,
+19
5
$
V'7
+19
$
O'
3
3
%
#"587
$
Q'
3
,
)4
6
4')"
$
ON
3
ON
3
,
+19
3
3
3
3
3
,
2
45'/./
O'
2
45'/./
$
3
3
3
3
%
1,&"
2
SFW#$$
SFW1#44/5
$
ON
3
,
2
..#5"
3
,
2
..#5"
$
O'
7$$@"
3
3
3
3
$
SFWV'7
SFWV'7
3
3
,
3
3
3
3
O'
$
,
%
#;7$7
$
V'7
6#
54
3
,
3
3
)[email protected]
3
,
CPPU
)0-&
NN
-
(/%@"
)0-&
NN
)#@[email protected]
)0-&
NN
)[email protected]
)&"54*/,
[email protected]@M
7$$
$
O'
'
'64&5"
)4*
DocID025038 Rev 2
+19
3
,
3
,
$
V'7
0/0''
7 45#:
7 45#:
(/%
7 45#:
(/%
(/%
0/
0''
+
7
7
7
7
(/%
(/%
(/%
(/%
(/%
(/%
(/%
(/%
7
7
7
7
+
".7
$
O'
7$$@"
$
O'
$
V'7
-
7!"
$
O'
$
V'7
7!"
3
,
7!"
-
Appendix A
AN4338
Electrical diagrams
Electrical diagrams
Figure 42. Main board electrical diagram
29/59
59
DocID025038 Rev 2
513
)[email protected]
3
3
O'
$
6
-$7(
6"
54
6#
54
$
O'
$
O'
3
,
3
,
3
,
3
,
3
,
30/59
%
#"58 7
%
#"58 7
3
3
[email protected]
%
ON
3
3
$
O'
%
455)3"
3
3
O'L7
$
3
3
3
ON
Q'L7$(
$
".
[email protected]
)[email protected]
Electrical diagrams
AN4338
Figure 43. Electrical diagram of dead time block
&2113&%
-
&2113&%
-
*3,2BB8$577;
*3,2BB8$575;B2%
*3,2B
*3,2B
*3,2BB'$/,7;B2%
*3,2BB'$/,5;B2%
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
9'',2
5
QP
5
QP
9'',2
6: ,0B5/,1.
6: ,0B567
*1',2
5
QP
5
QP
*1',2
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
QP
5
5
&
S)
5
5
S)
*1',2
,2BB3: 0B2%
,2BB3: 0
,2BB3: 0
,2BB3: 0B&.
,2BB3: 0
,2BB3: 0
9287B,&
6715*$
5
5
*1',2
5
5
*1'$
*1',2
X)
Q)
*1',2
5
5
*1'$
',1B&&2
',1B,2B
',1B,2B
',1B2%
',1B,2B
',1B2%
5
&33
&33
&30
&33
&33
$'&
$'&
$'&
$'&
$'&
$'&
$'&
$'&
',1B&&2
',1B,2B
',1B,2B
',1B2%
',1B,2B
',1B2%
*1'$
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
&33>@
&33>@
&30
&33>@
&33>@
5
9''$
9''$
',*,1>@&&2BFON
',*,1>@
',*,1>@
',*,1>@
',*,1>@
',*,1>@
&
&
*1'$
*3,2>@8$57B7;
*3,2>@8$57B5;
*3,2>@,&BVGD+6(2VF2XW
*3,2>@,&BVFO+6(2VF,Q
*3,2>@'$/,BW[
*3,2>@'$/,BU[
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
6:,0
1567
9287
8
Q)
&
62&.(7(13/$6276
*3,2BB8$577;
*3,2BB8$575;B2%
*3,2BB6'$B+6(287
*3,2BB6&/B+6(,1
*3,2BB'$/,7;B2%
*3,2BB'$/,5;B2%
&
<
QP
,2BB3: 0B2%
,2BB3: 0
,2BB3: 0
,2BB3: 0B&.
,2BB3: 0
,2BB3: 0
5
5
5
5
6: ,0B5/,1.
6: ,0B567
9287B,&
X)
9'',2
&
X)
9'',2
&
*1',2
9''$
*1'$
9'',2
*1',2
DocID025038 Rev 2
&33
&30
&33
&33
&33
$'&
$'&
$'&
$'&
$'&
$'&
$'&
$'&
&33
&33
&30
&33
&33
&
&
&
&
&
*1'$
&
&
S) S) S) S)
&
5
&
&
&
$'&
$'&
$'&
$'&
$'&
$'&
$'&
$'&
*1'$
5
QP
5
QP
5
5
5
5
5
5
5
5
5
5
5
5
5
,2BB3: 0B&.
*1',2
5
QP
5
QP
S) S) S) S) S) S) S) S)
&
QP
&
5
5
QP
5
QP
9'',2
5
QP
5
QP
5
5
5
5
5
5
5
5
5
5
5
5
5
5
QP
5
QP
-
-
-
&2113&%
$0
*1'$
&2113&%
-
*1'$
&2113&%
-
&2113&%
&2113&%
5
QP
5
QP
AN4338
Electrical diagrams
Figure 44. Electrical diagram of debug control board - controller
31/59
59
DocID025038 Rev 2
"%$
"%$
51
"%$
51
"%$
$1.
51
+
+6.1&3
3
,
*0@@18 .
*0@@18 .
*0@@18 .
*0@@18 .@0#
(/%*0
0651654
EJTBCMF
*0@@18 .@$,
"%$
%*/@*0@
7%%*0
7%%*0
(/%*0
7%%*0
(/%*0
(/%*0
3 3
(/%*0
3 ,
3
3
$ O'
3 L
3 ,
(/%*0
(/%*0
$
O'
3 ,
3 ,
$
O'
3 ,
3
3
3
7%%*0
O'
$
(/%*0
3
3
,
-7$40
6$
-7$40
6"
-7$40
6#
-7$40
6%
(/%*0
32/59
%*/@$$0
$
O'
(/%"
(/%@"
[email protected]
*0@@18 .
"%$
"%$
[email protected]#
%*/@*0@
%*/@*0@
[email protected]#
$11
$11
$11
"%$
$11
"%$
"%$
(/%"
(/%"
(/%*0
(/%*0
(/%"
$
$
$
3
$
$
O'
O'
O'
3
Q'
O'
(/%"
(/%"
(/%"
$
V'
51
51
7%%"
3
3
3
3
3
3
3
3
3
3
(/%*0
(/%*0
3
3
3
,
,
3
3
3
3
3
3
3
,
3
3
3
3
3
3
3
51
51
7$$
(/%"
(/%*0
[email protected]
(/%*0
(/%"
[email protected]
)#@[email protected]
)[email protected]
)#@[DE
)[email protected]
)4*
1'*
-4*
)[email protected]
[email protected]
1'$@[DE
[email protected][email protected]
[email protected]
[email protected]@JO
$0/"
+
".
(/%"
(/%*0
(/%"
Electrical diagrams
AN4338
Figure 45. Electrical diagram of debug control board - connections
7$$
[email protected]
(/%*0
3-*/,DPOOFDUPSWFSU
+
7$$
48*.
(/%
/345
7$$
+
[email protected]
[email protected]
(/%*0
V)
-
V)
-
(/%*0
[email protected] *.
V)
-
V)
-
7065
-%%5
"%+
7*/
6
%
3 074
L
7%%*0
(/%*0
+
3
L
453*11.
(/%*0
V'
$
V'7
$
(/%*0
%
074
3
L
7%%*0
48 *.@3-*/,
+
)&"%&3
3
3
+6.1&3
+
+*6.1&3
3
3
3
3
(/%*0
(/%*0
(/%*0
V'
$
V'
$
+
(/%*0
3
3
51
+6.1&3
+
164)@#9NN15)
48 3
3
3
L
V'7
$
(/%"
(/%*0
(/%*0
V'
$
V'
$
51
+
[email protected]@FYU
DocID025038 Rev 2
48 *.@345
7%%*0
7%%*0
(/%*0
3
3
3
48 *.@3-*/, V'7
$
(/%*0
7%%"
7%%*0
7%%*0
6"35*'
(/%*0
+
L
L
6"[email protected]
+
+
6"[email protected]
(/%*0
7%%*0
(/%*0
7%%*0
+6.1&3
+
+6.1&3
+
+6.1&3
3
,
+6.1&3
+6.1&3
+
3
,
+
+
+6.1&3
+
+6.1&3
3 L
7%%*0
+6.1&3
3 L
3
3
.$$
&
&
&
744
7$$
8$
4$4%"
3 L
3 L
O'
6
% 074
% 074
% 074
% 074
(/%*0
3
3
3
$
% 074
% 074
".
(1*0@@6"3559 (1*0@@6"[email protected]# (1*0@@%"[email protected]# (1*0@@%"[email protected]# (1*0@ (1*0@ AN4338
Electrical diagrams
Figure 46. Electrical diagram of debug control board - power and interfaces
33/59
59
*1',2
-
+($'(5
-
8$57,)
9&&
6:,0
*1'
1567
-
5/,1.FRQQHFWRUYHUW
-
+($'(5
5
5
*3,2BB8$575;B2%
*3,2BB8$577;
*1',2
5
5
5
5
9'',2
X)
,2BB3:0B2%
,2BB3:0
,2BB3:0
,2BB3:0B&.
,2BB3:0
,2BB3:0
*1',2
Q)
&
*1',2
5
5
*1'$
*1',2
5
5
6715*$
X)
Q)
*1',2
',1B&&2
5
5
&33
&33
&30
&33
&33
$'&
$'&
$'&
$'&
$'&
$'&
$'&
$'&
',1B&&2
',1B,2B
',1B,2B
',1B2%
',1B,2B
',1B2%
*1'$
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
$'&,1>@
&33>@
&33>@
&30
&33>@
&33>@
',1B,2B
',1B,2B
',1B2%
',1B,2B
',1B2%
5
5
*1'$
9''$
9''$
',*,1>@&&2BFON
',*,1>@
',*,1>@
',*,1>@
',*,1>@
',*,1>@
&
&
*1'$
*3,2>@8$57B7;
*3,2>@8$57B5;
*3,2>@,&BVGD+6(2VF2XW
*3,2>@,&BVFO+6(2VF,Q
*3,2>@'$/,BW[
*3,2>@'$/,BU[
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
*3,2>@3:0>@
6:,0
1567
9287
,2BB3:0B2%
,2BB3:0
,2BB3:0
,2BB3:0B&.
,2BB3:0
,2BB3:0
*3,2BB6'$B+6(287 *3,2BB6&/B+6(,1
6:,0B5/,1.
6:,0B567
8
9'',2
&
X)
5
&
9287B,&
9287B,&
*1',2
X)
5
6:,0B567
&
6:,0B5/,1.
567B6:,0
5
N
9'',2
6:,0B5/,1.
5
N
9''$
*1'$
9'',2
*1',2
DocID025038 Rev 2
&33
&30
&33
&33
&33
$'&
$'&
$'&
$'&
&33
&33
&30
&33
&33
5
9B9
5
*1',2
-
QP
&
&
&
&
$'&
$'&
$'&
$'&
$'&
$'&
$'&
$'&
S)
&
*1'$
S)
&
*1'$
S)
&
S) S) S) S)
*1',2
-803(5
/
X+
S)
&
&
X)9
X+
*1'$
&
X)
&
X)
-
*1',2
-803(5
/
&
X)
-
*1',2
,2BB3:0B&.
X+
&
675,330
/
73
73
34/59
9'',2
$0
9''$
9'',2
Electrical diagrams
AN4338
Figure 47. Electrical diagram of slim control board - controller
DocID025038 Rev 2
"%$
"%$
51
"%$
51
"%$
51
$1.
*0@@18 .
*0@@18 .
*0@@18 .
*0@@18 .@0#
(/%*0
0651654
EJTB CMF
*0@@18 .@$,
"%$
%*/@*0@
3
3
,
$
O'
3 L
$
O'
3 ,
3 ,
(/%*0
$
O'
3
3
3
(/%"
[email protected]
(/%"
(/%*0
O'
$
3
3
3
7%%*0
,
(/%*0
O'
$
3
3
-7$40
6$
-7$40
6#
-7$40
6"
,
(/%*0
(/%*0
(/%*0
(/%*0
-7$40
6%
3 ,
3
(/%*0
7%%*0
7%%*0
7%%*0
+
+6.1&3
,
3
%*/@$$0
$11
"%$
"%$
[email protected]#
%*/@*0@
%*/@*0@
[email protected]#
$11
$11
*0@@18 .
$11
"%$
"%$
"%$
(/%"
(/%"
(/%*0
(/%*0
(/%"
3
$
$
$
$
$
O'
O'
O'
3
Q'
O'
(/%"
(/%"
(/%"
$
V'
51
51
7%%"
3
3
3
3
3
3
3
3
3
3
3
3
(/%*0
(/%*0
3
3
3
,
,
3
3
3
3
3
,
3
3
3
3
3
3
3
51
51
7$$
(/%"
(/%*0
[email protected]
(/%*0
(/%"
[email protected]
)#@[email protected]
)[email protected]
)#@[DE
)[email protected]
)4*
1'*
-4*
)[email protected]
[email protected]
1'$@[DE
[email protected][email protected]
[email protected]
[email protected]@JO
$0/"
+
".
(/%"
(/%*0
(/%"
AN4338
Electrical diagrams
Figure 48. Electrical diagram of slim control board - connections
35/59
59
Electrical diagrams
AN4338
It is worth highlighting that the aim of this evaluation board is to make the user acquainted
the application and to provide a system for learning the use of the STNRG388A IC in power
supply applications. As a consequence, this evaluation module is absolutely not optimized
and contains many circuits that are disabled or are not actually used.
36/59
DocID025038 Rev 2
AN4338
Bill of materials
Appendix B
Bill of materials
The detailed specifications of the PFC coil, resonant power transformer and auxiliary flyback
transformer are available in the application note AN3329 of the EVL170W-FTV evaluation
board. The bill of materials of the power board is shown in Table 5, while for the debug and
slim control boards these are listed in Table 6 on page 48 and in Table 7 on page 54
respectively.
Table 5. Bill of materials EVLSTNRG-170W “power board”
Ref.
Part
Case
Description
Supplier
C1
2.2 nF
Dia. 12 p.10 mm
Y1 - safety cap. CD12-E2GA222MYGS
TDK
C2
2.2 nF
Dia. 12 p.10 mm
Y1 - safety cap. CD12-E2GA222MYGS
TDK
C3
270 pF
0805
16 V cercap. - general purpose - X7R - 10%
KEMET
C4
100 F - 450 V Dia. 18 x 35 p.10 mm 450 V - aluminium elcap. - KXG series - 105 °C
NIPPON
CHEMICON
C5
1 F - X2
11 x 26.5 p. 22.5 mm
X2 - FLM CAP - B32923C3105K
EPCOS
C6
1F - X2
11 x 26.5 p. 22.5 mm
X2 - FLM CAP - B32923C3105K
EPCOS
C7
470 nF-630 V 11 x 26.5 p. 22.5 mm
630 V - FLM CAP - B32613A6474K
EPCOS
C8
470 nF-630 V 11 x 26.5 p. 22.5 mm
630 V - FLM CAP - B32613A6474K
EPCOS
C9
100 F - 450 V Dia. 18 x 35 p.10 mm 450 V - aluminium elcap. - KXG series - 105 °C
NIPPON
CHEMICON
C10
47 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C11
100 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C12
100 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C13
1000 F - 35 V Dia. 12 x 25 p. 5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C14
1000 F - 35 V Dia. 12 x 25 p. 5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C15
100 F - 50 V Dia. 8 x 11 p. 3.5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C16
100 nF
0603
50 V cercap. - general purpose - X7R - 10%
KEMET
C17
2.2 nF
Dia. 12 p.10 mm
Y1 - safety cap. CD12-E2GA222MYGS
TDK
C18
4.7 nF
1206
500 V cercap. - 12067A221JAT2A - C0G - 5%
AVX
C19
47 F - 50 V
Dia. 6.3 x 11 p. 2.5
mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C21
1000 F - 25 V Dia.12 x 20 p. 5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C22
100 F - 50 V Dia. 8 x 11 p. 3.5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
50 V cercap. - general purpose - X7R - 10%
KEMET
C23
100 nF
0805
C24
N. M.
0805
C25
100 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C26
100 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C27
220 pF
1206
500 V cercap. - 12067A221JAT2A - C0G - 5%
AVX
DocID025038 Rev 2
37/59
59
Bill of materials
AN4338
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
C28
Part
Case
Rev. 1: 100 F
- 50 V
Dia. 8 x 11 p. 3.5 mm
Rev. 2: N. M.
Description
Supplier
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C29
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C30
220 nF
0805
16 V cercap. - general purpose - X7R - 10%
KEMET
C31
N. M.
1206
C32
33 nF
5.0 x 18.0 p.15 mm
1 KV - MKP film capacitor B32652A0333J
EPCOS
C33
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C34
2.2 nF
0805
50 V cercap. - general purpose - X7R - 10%
AVX
C35
47 F - 50 V
Dia. 6.3 x 11 p. 2.5
mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C36
N. M.
0805
C37
N. M.
0805
C38
47 nF
0805
25 V cercap. - general purpose - X7R - 10%
KEMET
C39
2.2 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C40
47 F - 16 V
Dia. 6.3 x 11 p. 2.5
mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C41
100 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C42
Rev.1: 47 F 50 V
Rev.2: 100 F
- 50 V
Dia. 6.3 x 11 p. 2.5
mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C43
47 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C44
N. M.
0805
C45
10 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C46
100 nF
1206
50 V cercap. - general purpose - X7R - 10%
KEMET
C47
Rev.1: 10 F
- 50 V
Rev.2: 100 F
- 50 V
Dia. 6.3 x 11 p. 2.5
mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C48
10 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C49
2.2 nF
Dia. 12 p.10 mm
Y1 - safety cap. CD12-E2GA222MYGS
TDK
C50
1 nF
1206
100 V cercap. - general purpose - X7R - 10%
KEMET
C51
2.2 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C52
10 F - 450 V
Dia. 10 P. 5 mm
450 V - aluminium elcap. - TXW series - 105 °C
RUBYCON
C53
N. M.
5.0 x 13.0 p.10 mm
C54
1000 F - 10 V Dia. 10 x 16 p. 5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C55
1000 F-10 V
Aluminium elcap. - YXF series - 105 °C
RUBYCON
38/59
Dia. 10X16 p. 5 mm
DocID025038 Rev 2
AN4338
Bill of materials
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
C56
220 F-16 V
Dia. 8 x 11 p. 3.5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C57
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C58
10 F - 50 V
Dia. 6.3 x 11 p. 2.5
mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C59
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C60
Rev.1: 22 F 50 V
Rev.2: 47 F 50 V
Dia. 5 x 11 p. 2 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C61
N. M.
0805
C62
10 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C63
N. M.
0805
C66
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C67
2.2 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C68
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C69
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C70
10 pF 1 kV
C0G
1206
1 KV cercap. - C0G - 5%
EPCOS
C71
1 nF 1 kV
1206
1 KV cercap. - X7R - 10%
EPCOS
C72
10 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C73
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
C74
100 nF
0805
50 V cercap. - general purpose - X7R - 10%
KEMET
D1
1N5406
DO-201
Rectifier - general purpose
VISHAY
D2
STTH5L06
DO-201
Ultrafast high voltage rectifier
STMicroelectronics
D3
D10XB60H
DWG
Single phase bridge rectifier
SHINDENGEN
D4
STPS20H100
CFP
TO-220FP
Power Schottky rectifier
STMicroelectronics
D5
BZV55-C18
MINIMELF
Zener diode
VISHAY
D6
1N4148 WS
SOD323
High speed signal diode
VISHAY
D7
1N4148 WS
SOD323
High speed signal diode
VISHAY
D8
STPS20L45C
FP
TO-220FP
Power Schottky rectifier
STMicroelectronics
D10
STPS20H100
CFP
TO-220FP
Power Schottky rectifier
STMicroelectronics
D11
BAT46W-V
SOD123
Schottky diode
VISHAY
D12
STPS1L60A
DO-214
Power Schottky rectifier
STMicroelectronics
D13
1N4148 WS
SOD323
High speed signal diode
VISHAY
DocID025038 Rev 2
39/59
59
Bill of materials
AN4338
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
D14
BZV55-C3 V3
MINIMELF
Zener diode
VISHAY
D15
BAT46W-V
SOD123
Schottky diode
VISHAY
D16
S1M
DO-214
Rectifier - general purpose
VISHAY
D17
S1M
DO-214
Rectifier - general purpose
VISHAY
D18
MMSZ4711-V
SOD123
27 V Zener diode
VISHAY
D19
MMSZ4702-V
SOD123
15 V Zener diode
VISHAY
D20
1N4148 WS
SOD323
High speed signal diode
VISHAY
D21
N. M.
SOD123
D22
BAT46W-V
SOD123
Schottky diode
VISHAY
D23
P6KE250A
DO-15
Transil™
STMicroelectronics
D24
BAV103
MINIMELF
High speed signal diode
VISHAY
D25
STPS20L45C
FP
TO-220FP
Power Schottky rectifier
STMicroelectronics
D26
STTH108A
SMA
HV ultrafast rectifier
STMicroelectronics
D27
STTH102A
SMA
High efficiency ultrafast diode
STMicroelectronics
D28
BAT46W-V
SOD123
Schottky diode
VISHAY
D29
N. M.
MINIMELF
D30
STTH1R06A
SMA
Ultrafast high voltage rectifier
STMicroelectronics
D31
BZV55-C13
MINIMELF
Zener diode
VISHAY
D32
BZV55-C3 V3
MINIMELF
Zener diode
VISHAY
D33
BAT46W-V
SOD123
Schottky diode
VISHAY
D34
STTH108A
SMA
HV ultrafast rectifier
STMicroelectronics
D35
BAT46W-V
SOD123
Schottky diode
VISHAY
D36
BAT46W-V
SOD123
Schottky diode
VISHAY
F1
Fuse T4A
8.5 x 4 p. 5.08 mm
Fuse 4 A - time LAG - 3921400
LITTLEFUSE
HOLE1
3 mm
Threaded stand-off
HOLE2
3 mm
Threaded stand-off
HOLE3
3 mm
Threaded stand-off
HOLE4
3 mm
Threaded stand-off
HOLE5
3 mm
Threaded stand-off
HOLE6
3 mm
Threaded stand-off
HS1
Heatsink
DWG
Heatsink for D4 and D10
HS2
Heatsink
DWG
Heatsink for Q4 and Q5
HS3
Heatsink
DWG
Heatsink for D3 and Q7
HS4
Heatsink
DWG
Heatsink for D8
40/59
DocID025038 Rev 2
AN4338
Bill of materials
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
HS5
Heatsink
DWG
Heatsink for D25
J1
MTA396-5
Connector - p. 3.96 mm - 5 pins (2 removed) KK
J2
CON50A
Connector-FLAT P. 2.54 mm 25 x 2 rows 90 M
J3
280385-2
Connector - P. 2.54 mm - 8 x 2 rows - MODU-II
AMP
J4
280384-2
Connector - P. 2.54 mm - 4 x 2 rows - MODU-II
AMP
JP1
N. M.
Wire jumper
JP2
Shorted
Wire jumper
JPX1
Shorted
Wire jumper
JPX2
Shorted
Wire jumper
JPX3
Shorted
Wire jumper
JPX4
Shorted
Wire jumper
JPX5
Shorted
Wire jumper
JPX6
Shorted
Wire jumper
JPX7
Shorted
Wire jumper
JPX8
Shorted
Wire jumper
JPX9
Shorted
Wire jumper
JPX10
Shorted
Wire jumper
JPX11
Shorted
Wire jumper
JPX12
Shorted
Wire jumper
L1
1606.001
DWG
1606.0010 EMI filter 2 x 4 mH 3.3 A
MAGNETICA
L2
2190.0001
26 x 13 mm
2190.0001 DM inductor 100 H 2.5 A
MAGNETICA
L3
2086.0001
DWG
2086.0001 PFC inductor 240 H 2.65 A
MAGNETICA
L4
1061.0014
Dia.12 p. 5 mm
1061.0041 inductor 2.9 H 11 A
MAGNETICA
L5
1071.0083
Dia. 8 p. 5 mm
1071.0083 inductor 1 H 5 A
MAGNETICA
L6
1071.0083
Dia. 8 p. 5 mm
1071.0083 inductor 1 H 5 A
MAGNETICA
PCB1 PCB rev. 1.0.1
Supplier
MOLEX
Dual layer - 2 OZ. - CEM-1
Q1
MMBT2222A
SOT-23
NPN small signal BJT
STMicroelectronics
Q2
MMBT2907A
SOT-23
PNP small signal BJT
STMicroelectronics
Q3
MMBT2222A
SOT-23
NPN small signal BJT
STMicroelectronics
Q4
STF14NM50N
TO-220FP
N-channel power MOSFET
STMicroelectronics
Q5
STF14NM50N
TO-220FP
N-channel power MOSFET
STMicroelectronics
Q6
MMBT2907A
SOT-23
PNP small signal BJT
STMicroelectronics
Q7
STF14NM50N
TO-220FP
N-channel power MOSFET
STMicroelectronics
Q8
MMBT2222A
SOT-23
NPN small signal BJT
STMicroelectronics
DocID025038 Rev 2
41/59
59
Bill of materials
AN4338
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
Q9
MMBT2907A
SOT-23
PNP small signal BJT
STMicroelectronics
Q10
Rev.1:
BC847C
Rev. 2:
PBSS4041NT
SOT-23
NPN small signal BJT
Rev.1: VISHAY
Rev.2: NXP
Q11
BC857C
SOT-23
PNP small signal BJT
VISHAY
Q12
BC847C
SOT-23
NPN small signal BJT
VISHAY
Q13
BC847C
SOT-23
NPN small signal BJT
VISHAY
R1
2.2 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R2
NTC 2R5S237
DWG
NTC resistor P/N B57237S0259M000
EPCOS
R3
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R4
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R5
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R6
100 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R7
N. M.
0805
R8
2.7 K
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R9
56 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R10
3.3 K
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
R11
2.2 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R12
3.9 K
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
R13
N. M.
0805
R14
4.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R15
2.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R16
2.2 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R17
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
42/59
DocID025038 Rev 2
AN4338
Bill of materials
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
R18
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R19
56 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R20
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R21
4.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R22
2.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R23
100 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R24
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R25
3.3 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R26
2.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R27
22 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R28
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R29
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R30
22 
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R31
75 
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
R32
100 
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R33
470 K
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R34
220 
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
R35
100 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R36
680 K
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R37
75 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R38
N. M.
1206
R39
0.47 
PTH
PR01 - metal film res. - 1 W - 5% - 250 ppm/°C
VISHAY
DocID025038 Rev 2
43/59
59
Bill of materials
AN4338
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
R40
0.47 
PTH
PR01 - metal film res. - 1 W - 5% - 250 ppm/°C
VISHAY
R41
0.47 
PTH
PR01 - metal film res. - 1 W - 5% - 250 ppm/°C
VISHAY
R42
22 K
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R43
N. M.
0805
R44
N. M.
0805
R45
N. M.
0805
R46
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R47
5.6 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R48
180 K
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R49
51 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R50
N. M.
0805
R51
33 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R52
180 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R53
N. M.
0805
R54
N. M.
0805
R55
10 k
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R56
1.5 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R57
2.2 R
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
R58
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R59
10 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R60
750 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R61
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R62
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R63
N. M.
0805
44/59
DocID025038 Rev 2
AN4338
Bill of materials
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
R64
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R65
4.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R66
N. M.
0805
R67
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R68
4.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R69
2.7 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R70
4.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R71
4.7 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R72
4.7 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R73
4.7 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R74
3.3 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R75
3.3 M
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R76
470 K
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R77
470 K
1206
SMD standard film res. - 1/4 W - 1% - 100
ppm/°C
VISHAY
R78
1
PTH
NFR25H - axial fusible res. - 1/2 W - 5% - 100
ppm/°C
VISHAY
R79
10 
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
R80
N. M.
1206
R81
33 K
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R82
N. M
0805
R83
N. M.
PTH
R84
2.7 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R85
3.9 
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
DocID025038 Rev 2
45/59
59
Bill of materials
AN4338
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
R86
1 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R87
12 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R88
390 K
PTH
AXIAL STD FILM RES - 1/8 W - 5% - 100
ppm/°C
VISHAY
R89
N. M.
0805
R90
120 K
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R92
82 K
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R93
27 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R96
270 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R97
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R98
39 K
0805
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
R99
10 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R100
22 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R101
100 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R102
22 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R103
8.2 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R104
47 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R105
10 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R106
22 K
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R107
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R108
10 
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R109
N. M.
0805
R110
10 k
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
46/59
DocID025038 Rev 2
AN4338
Bill of materials
Table 5. Bill of materials EVLSTNRG-170W “power board” (continued)
Ref.
Part
Case
Description
Supplier
R111
10 k
1206
SMD standard film res. - 1/4 W - 5% - 250
ppm/°C
VISHAY
R113
1.5 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R114
0
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R115
10 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R116
10 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R117
10 k
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
R118
N. M.
0805
R119
75 K
0805
R120
N. M.
1206
RV1
300 V ac
RX1
VISHAY
SMD standard film res. - 1/8 W - 1% - 100
ppm/°C
VISHAY
Dia. 15 x 5 p. 7.5 mm
300 V metal oxide varistor B72214S0301K101
EPCOS
1.5 k
1206
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
RX2
1.5 k
1206
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
RX3
0
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
RX4
0
0805
SMD standard film res. - 1/8 W - 5% - 250
ppm/°C
VISHAY
T1
1860.0014
DWG
1860.0014 resonant transformer 520 H
MAGNETICA
T2
1715.0084
DWG
1715.0084 ST-BY flyback trafo. 2.38 mH
MAGNETICA
U1
TS3022
SO-8
High speed dual comparator
STMicroelectronics
U2
SFH610A-2
DIP-4 - 10.16 mm
Optocoupler
INFINEON
U4
SFH610A-2
DIP-4 - 10.16 mm
Optocoupler
INFINEON
U5
SFH610A-2
DIP-4 - 10.16 mm
Optocoupler
INFINEON
U3
TL431ACZ
TO-92
Programmable shunt voltage reference
STMicroelectronics
U6
VIPER27LN
DIP-8
Off-line HV converter
STMicroelectronics
U7
TS431AZ
TO-92
Programmable shunt voltage reference
STMicroelectronics
U8
TS3022
SO-8
High speed dual comparator
STMicroelectronics
U9
74LCV1G08
SOT353-1
Single 2-input and gate
U10
L6382D
SO-20
Power management unit
DocID025038 Rev 2
STMicroelectronics
47/59
59
Bill of materials
AN4338
Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board”
Ref.
Part
Case
Description
Supplier
C1
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C2
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C3
4.7 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C4
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C5
560 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C6
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C7
2.7 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C8
47 F - 25 V
Dia. 6.3 x 11
(MM) p. 2.5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C9
10 F -25 V
Dia. 6.3 x 11
(MM) p. 2.5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C10
33 pF
0603
10 V cercap. - general purpose - C0G 5%
C11
33 pF
0603
10 V cercap. - general purpose - C0G 5%
C12
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C13
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C14
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C15
1 nF
0603
10 V cercap. - general purpose - X7R 10%
C16
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C17
N. M.
0603
C18
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C19
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C20
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C21
10 F -25 V
Dia. 6.3 x 11
(MM) p. 2.5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C22
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C23
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C24
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C25
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C26
270 pF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C27
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C28
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C29
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C30
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C31
1 nF
0603
10 V cercap. - general purpose - X7R 10%
C32
100 pF
0603
10 V cercap. - general purpose - C0G 5%
C33
1 nF
0603
10 V cercap. - general purpose - X7R 10%
48/59
DocID025038 Rev 2
KEMET
KEMET
KEMET
AN4338
Bill of materials
Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued)
Ref.
Part
Case
Description
Supplier
C34
1 F
0603
25 V cercap. - general purpose - X7R 10%
KEMET
C35
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C36
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C37
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C38
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C39
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C40
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
D1
OVS-0608
0603
LED red
D2
OVS-0608
0603
LED red
D3
OVS-0608
0603
LED red
D4
OVS-0608
0603
LED red
D5
OVS-0608
0603
LED red
D6
OVS-0608
0603
LED red
D7
OVS-0608
0603
LED red
D8
OVS-0608
0603
LED red
J1
Jumper
Strip P 254 mm M 2
J2
Conn. V_3 V3_ext
MORSQC508-ADIMPEX-MK159002
J3
Jumper
Strip P 254 mm M 2
J4
Conn. PCB 5
Strip P 254 mm M 5
J5
Conn. PCB 5
Strip P 254 mm M 5
J6
Conn. PCB 8
Strip P 254 mm M 8
J7
CON50A
CON-FLAT_CABLE P 254 mm 25 x 2 90 F
J8
Conn. PCB 8
Strip P 254 mm M 8
J9
Conn. PCB 8
Strip P 254 mm M 8
J10
Jumper
Strip P 254 mm M 2
J11
Jumper
Strip P 254 mm M 2
J12
Conn. VCC_ext
MORSQC508-ADIMPEX-MK159002
J13
Strip254P-M-2
Strip P 254 mm M 2
J14
Conn. PCB 8
Strip P 254 mm M 8
J15
Conn. PCB 8
Strip P 254 mm M 8
J16
UART I/F
3.5 mm JACK SC-35RASMT4BHNTRX
J17
Jumper
Strip P 254 mm M 2
J18
Jumper
Strip P 254 mm M 2
J19
Jumper
Strip P 254 mm M 2
J20
Jumper
Strip P 254 mm M 2
DocID025038 Rev 2
49/59
59
Bill of materials
AN4338
Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued)
Ref.
Part
J21
Jumper
Strip P 254 mm M 4
J22
Jumper
Strip P 254 mm M 4
J23
Header 4
Strip P 254 mm M 4
J24
Jumper
Strip P 254 mm M 2
J25
Jumper
Strip P 254 mm M 2
J27
RLink-connectorvert.
ERNI_284697
L1
10 H
1206
SMD inductor
L2
10 H
1206
SMD inductor
L3
10 H
1206
SMD inductor
L4
10 H
1206
SMD inductor
R1
3.9 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R2
5.6 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R3
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R4
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R5
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R6
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R7
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R8
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R9
1 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R10
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R11
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R12
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R13
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R14
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R15
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R16
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R17
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R18
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R19
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R20
N. M.
0603
R21
N. M.
0603
R22
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R23
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R24
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
50/59
Case
Description
DocID025038 Rev 2
Supplier
ERNI
AN4338
Bill of materials
Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued)
Ref.
Part
Case
Description
Supplier
R25
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R26
N. M.
0603
R27
N. M.
0603
R28
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R29
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R30
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R31
N. M.
0603
R32
N. M.
0603
R33
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R34
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R35
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R36
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R37
N. M.
0603
R38
N. M.
0603
R39
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R40
N. M.
0603
R41
N. M.
0603
R42
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R43
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R44
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R45
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R46
N. M.
0603
R47
N. M.
0603
R48
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R49
18 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R50
180 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R51
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R52
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R53
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R54
10 k
0603
SMD standard film res. - 1/8 W - 5% - 100 ppm/°C
VISHAY
R55
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R56
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R57
N. M.
0603
R58
N. M.
0603
R59
N. M.
0603
DocID025038 Rev 2
51/59
59
Bill of materials
AN4338
Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued)
Ref.
Part
Case
Description
Supplier
R60
N. M.
0603
R61
N. M.
0603
R62
N. M.
0603
R63
N. M.
0603
R64
N. M.
0603
R65
N. M.
0603
R66
N. M.
0603
R67
N. M.
0603
R68
N. M.
0603
R69
N. M.
0603
R70
N. M.
0603
R71
N. M.
0603
R72
N. M.
0603
R73
N. M.
0603
R74
N. M.
0603
R75
N. M.
0603
R76
N. M.
0603
R77
N. M.
0603
R78
N. M.
0603
R79
N. M.
0603
R80
N. M.
0603
R81
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R82
1 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R83
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R84
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R85
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R86
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R87
1.2 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R88
1.2 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R89
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R90
10 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R91
10 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R92
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R93
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R94
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
52/59
DocID025038 Rev 2
AN4338
Bill of materials
Table 6. Bill of materials EVLSTNRG-170W “STNRG388A debug control board” (continued)
Ref.
Part
Case
Description
Supplier
R95
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R96
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R97
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R98
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R99
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R100
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R101
3.3 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R102
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R103
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R104
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R105
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R106
0
0805
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
SW1
PUSH_B
63 x 45 mm - PTH
TP1
Test point
TP2
Test point
TP3
Test point
TP4
Test point
TP5
Test point
TP6
Test point
TP7
Test point
TP8
Test point
TP9
Test point
U1
LD1086D2T33
D2PAK
LDO 3.3 V 1.5 A
STMicroelectronics
U2
STNRG388A
TSSOP38
STNRG388A on TSSOP38 socket
STMicroelectronics
U3
74LVC08/SO
TSSOP-14
Quad 2-input and gate
U4
MC24C64
SO-8
64 K 2-wire serial EEPROM
Y1
N. M.
HC49
XTAL 4 mm PTH
PUSH_B switch 63 x 45 mm - PTH
DocID025038 Rev 2
53/59
59
Bill of materials
AN4338
Table 7. Bill of materials EVLSTNRG-170W “STNRG388A slim control board”
Ref.
Part
Case
Description
Supplier
C1
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C2
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C3
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C4
N. M.
0603
C5
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C6
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C7
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C8
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C9
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C10
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C11
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C12
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C13
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C14
47 F - 25 V
Dia. 6.3 x 11
(MM) P. 2.5 mm
Aluminium elcap. - YXF series - 105 °C
RUBYCON
C15
100 pF
0603
10 V cercap. - general purpose - NP0 5%
KEMET
C16
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C17
1 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C18
1 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C19
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C20
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C21
270 pF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C22
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C23
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C24
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C25
1 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C26
1 F
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C27
100 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C28
560 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C29
4.7 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
C30
2.7 nF
0603
10 V cercap. - general purpose - X7R 10%
KEMET
J1
Jumper
Strip P 254 mm M 2
J2
Strip254P-M-2
Strip P 254 mm M 2
J3
Jumper
Strip P 254 mm M 2
J4
Header 4
Strip P 254 mm M 4
54/59
DocID025038 Rev 2
AN4338
Bill of materials
Table 7. Bill of materials EVLSTNRG-170W “STNRG388A slim control board” (continued)
Ref.
Part
J5
Case
Description
Supplier
RLinkconnector-vert.
ERNI_284697
ERNI
J6
Header 4
Strip P 254 mm M4
J7
UART I/F
3.5 mm STEREO JACK SC-35RASMT4BHNTRX
J9
Jumper
Strip P 254 mm M 2
J10
CON50A
Strip P254 mm F 25X2
L1
10 H
1206
SMD inductor
L2
10 H
1206
SMD inductor
L3
10 H
1206
SMD inductor
R1
1 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R2
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R3
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R4
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R5
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R6
180 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R7
33 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R8
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R9
18 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R10
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R11
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R12
10 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R13
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R14
10 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R15
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R16
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R17
10 k
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R18
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R19
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R20
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R21
5.6 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R22
3.9 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R23
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R24
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R25
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R26
1 K
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
DocID025038 Rev 2
55/59
59
Bill of materials
AN4338
Table 7. Bill of materials EVLSTNRG-170W “STNRG388A slim control board” (continued)
Ref.
Part
Case
Description
Supplier
R27
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R28
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R29
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R30
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R31
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R32
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R33
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R34
100 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R35
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R36
10 
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R37
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R38
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
R39
0
0603
SMD standard film res. - 1/8 W - 1% - 100 ppm/°C
VISHAY
TP1
Test point
TP2
Test point
TP3
Test point
TP4
Test point
TP5
Test point
TP6
Test point
TP7
Test point
TP8
Test point
TP9
Test point
U1
STNRG388A
TSSOP38
STNRG388A on TSSOP38
STMicroelectronics
U2
74LVC08/SO
TSSOP-14
Quad 2-input and gate
56/59
DocID025038 Rev 2
AN4338
Board revision
Board revision
There are 2 revisions of the EVLSTNRG-170W evaluation board. The following changes
apply:

Rev.1: all boards manufactured and tested before 2016 are marked with “STEVALDPS170W” or with a white label attached close to the 50-pin connector labeled
“EVLSTNRG-170W”

Rev.2: all boards manufactured since 2016 are marked “EVLSTNRG-170W PWR
rev.2” and feature improved board stability when a transient is applied on the 5 V output
bus.
The main differences about the two revision are:
–
C28: rev.1: 100 F - 50 V; rev. 2: N. M.
–
C42: rev.1: 47 F - 50 V; rev. 2: 100 F - 50 V
–
C47: rev.1: 10 F - 50 V; rev. 2: 100 F - 50 V
–
C60: rev.1: 22 F - 50 V; rev. 2: 47 F - 50 V
–
Q10: rev.1: BC847C; rev. 2: PBSS4041NT.
DocID025038 Rev 2
57/59
59
Revision history
AN4338
Revision history
Table 8. Document revision history
Date
Revision
22-Jun-2015
1
Initial release.
2
Updated Figure 1 on page 1, Figure 2 on page 7, and
Figure 42 on page 29 (replaced by new figures).
Updated Table 5 on page 37 (updated C28, C42, C47,
C60, and Q10).
Added Section : Board revision on page 57
Minor modifications throughout document.
11-Mar-2016
58/59
Changes
DocID025038 Rev 2
AN4338
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID025038 Rev 2
59/59
59
Similar pages