dm00113115

AN4471
Application note
STEVAL-IME009V1 evaluation board based on the STHV800 high
voltage pulser
Introduction
The STEVAL-IME009V1 is an evaluation board designed around the STHV800
transmission pulser, which is a state-of-the-art product for ultrasound imaging applications.
The system permits four transducers to be driven as 8-channel transmitters; the output
waveforms can be displayed directly on an oscilloscope by connecting the scope probe on
the relative BNCs.
16 preset waveforms are available to test the HV pulser under different conditions.
Figure 1. Photo of STEVAL-IME009V1
Warning:
October 2014
Before applying any voltage to the STEVAL-IME009V1, please
read the instructions in this document carefully.
DocID026197 Rev 1
1/39
www.st.com
Contents
AN4471
Contents
1
Board features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Hardware layout and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
3.1
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2
MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3
SPI Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4
FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.1
Stored patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.2
Pattern program 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3
Pattern Program 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.4
Pattern Program 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.5
Pattern Program 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.6
Pattern Program 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5
STHV800 stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6
Operating supply conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2
Power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3
MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4
SPI Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5
FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5
Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2/39
DocID026197 Rev 1
AN4471
1
Board features
Board features
• Suitable for ultrasound imaging applications
• 8 monolithic channels, 3-level high voltage pulser
• Integrated T/R switch
– On-board equivalent piezoelectric load implemented by means of R/C equivalent
network
• USB interface to upload customized output waveforms
• 4 Mb serial Flash memory for storing customized waveforms
• Memory expansion connector to expand the serial Flash size
• High voltage and low voltage connectors to power the STHV800
• 25 LEDs to check evaluation board status and proper operation
• Human Machine Interface to select, start and stop the stored output waveforms
DocID026197 Rev 1
3/39
39
Getting started
2
AN4471
Getting started
The STEVAL-IME009V1 is shipped by STMicroelectronics and is ready to use in Normal
mode. The user only needs to:
1.
Connect the right power supply to the board (see Section 3.1)
2.
Connect the BNC to the oscilloscope
3.
Check that switch SW1 is set on the FPGA position (see Table 1 in Section 3.1)
4.
Check that the LED labeled “DONE” (D23) is on
5.
Check that FPGA is in the idle state (LED D4 is on)
6.
Select the waveform with the Program button; the corresponding program LED (D6D21) turns on
7.
Press the START button to run the selected program; the START LED (D2) turns on
8.
The selected waveform is output until the STOP button is pressed and the relative LED
(D3) turns on. After the program ends, the FPGA returns to the idle state (LED D4 is
on)
9.
To run the same program again, restart from step 7; to run another program, restart
from step 6
For Programming mode, please refer to UM1083.
4/39
DocID026197 Rev 1
AN4471
3
Hardware layout and configuration
Hardware layout and configuration
The STEVAL-IME009V1 evaluation board is designed around the STHV800. The hardware
block diagram (Figure 2) illustrates the main connection between STHV800, the FPGA, the
STM32F103C8T6 and the SPI Flash memory. Figure 3 will help you to locate connectors,
LEDs and features on the board.
Figure 2. Hardware block diagram
Figure 3. STEVAL-IME009V1 board layout
DocID026197 Rev 1
5/39
39
Hardware layout and configuration
3.1
AN4471
Power supply
The low voltage block of the STEVAL-IME009V1 board is designed to be powered by:
• 3.3 V DC connected to J4 to supply the FPGA and SPI Flash memory in Normal mode
• 5 V DC through USB mini-B connector to supply the STM32 and SPI memory in
Programming mode
The power supply is configured by setting SW1 and J41 as described in Table 1.
Table 1. Power related jumpers
Description
For normal operation mode, to power supply FPGA and SPI
Flash memory.
Default setting
LEFT (1)
SW1
For update operation mode, to power supply STM32F103 and
SPI Flash memory
RIGHT (1)
J41 (2)
FPGA and SPI Flash memory are power supplied by DVDD (J2).
Default setting: Not Mounted on PCB
1. Left and right are conceived by looking the board as depicted in Figure 1.
2. The fitting of J41 can create voltage mismatch between J4 and J2 when one of these is not 3.3 V.
LED D26, D27 and D28 show the power supply configuration as described in Table 1.
Table 2. Power supply LEDs
Color
Name
Description
D26
Red
USB ON
D27
Red
MCU
Programming mode, to supply power to STM32F103
and SPI Flash memory
D28
Red
FPGA
Normal mode, to supply power to FPGA and SPI
Flash memory
The USB cable is connected
The high voltage block of the STEVAL-IME009V1 is designed to be powered by (see
Table 15 for maximum rating):
• HVPCW: Continuous wave high voltage positive supply (J1 conn.)
• HVP0:TX High voltage positive supply (J1 conn.)
• GND: Ground (J1 conn.)
• DVDD: Logic voltage, 3.3 V (J2 conn.)
• VDDP: Positive supply voltage 3.3 V (J2 conn.)
6/39
DocID026197 Rev 1
AN4471
Hardware layout and configuration
• VDDM: Negative supply voltage -3.3 V to 0 (J2 conn.)
• GND: Ground (J2 conn.)
• HVMCW: Continuous wave high voltage negative supply (J3 conn.)
• HVM0: TX high voltage negative supply (J3 conn.)
• GND: Ground (J3 conn.)
3.2
MCU
The STM32F103C8T6 updates the waveform and the FPGA bit stream on the SPI Flash
memory. It is already pre-programmed as a DFU (device firmware upgrade) device and can
upgrade internal and external Flash memory. The STM32F103 manages all the DFU
operations, such as the authentication of product identifier, vendor identifier, Firmware
version as well as the alternate setting number (Target ID). This is used to upgrade the SPI
Flash memory hosted on the STEVAL-IME009V1 and render the upgrade more secure.
Note:
See AN3156, UM0412 and UM1083 for further details about the upgrade through DFU.
3.3
SPI Flash memory
The STEVAL-IME009V1 hosts a Micron N25Q032 (U9), it is a 32-Mbit (4 Mb x 8) serial
Flash memory with advanced write protection mechanisms. It can be accessed by a high
speed SPI-compatible bus and can even work in XIP (eXecution in Place) mode.
The N25Q032 also supports the high-performance quad I/O instructions used by the FPGA
to quadruple the transfer bandwidth for read and program operations.
If extra data memory is needed, the user can connect external Flash memory to the J10
connector. When the external Flash is plugged, LED D29 is on Table 3.
Table 3. SPI Flash memory LED
Color
Name
Description
D29
Green
EXT SPI-FLASH
The external SPI-Flash module is connected
D30
Red
On-board SPI-FLASH
The on-board SPI-Flash is used
The Flash memory is configured by setting J38 as described in Table 4.
Table 4. SPI Flash memory jumper
Status
Closed
Description
Fitted (default setting): enable the power supply to the on-board
SPI Flash memory (U9).
J38
Open
Unfitted: disable the power supply to the on-board SPI Flash
memory.
DocID026197 Rev 1
7/39
39
Hardware layout and configuration
3.4
AN4471
FPGA
The STEVAL-IME009V1 includes a Xilinx Spartan®-6 XC6SLX16 FPGA that drives the
STHV800 pulser by generating a suitable sequence of digital control signals (called
“program”). The board can store 16 individually selectable programs. The main features of
the waveforms generated by a program are summarized in Table 5.
Table 5. Programmable waveforms main features
Feature
Min.
Default
Max.
Programmable waveforms number
1
6
16
Pulse time resolution
-
5 ns
-
Pulse pattern duration (1)
40 ns
-
20.48 µs
Cycle period (PRF)
40 ns
-
2621.44 µs
1
-
255
Cycles number
Infinite cycle
Defined by the program
1. Time period of the pulse sequence pattern. (2) Time period of a pulse repetition cycle.
The data required to generate a program is stored in the SPI Flash memory. When the
program starts, the data is downloaded from Flash memory and stored in the FPGA internal
RAM blocks. The data is then managed in order to generate the high-speed STHV800
digital control signals.
The SPI Flash also contains FPGA configuration data (bit stream) which is automatically
loaded during start-up or following an FPGA reset (SW5).
The FPGA is configured by setting jumpers as described in Table 6.
Table 6. FPGA jumper
Description
J5
J5 controls FPGA I/O pull ups during configuration. It should be fitted to enable I/O pull
ups during FPGA configuration.
Default setting: Not Mounted.
Force FPGA into Suspend mode
J12
Allow STM32 to control FPGA Suspend mode
(Default setting)
J13
8/39
J13 is used to prevent FPGA programming from the configuration source.
Fitted: disable FPGA programming.
Unfitted: enable FPGA programming.
(default setting: unfitted)
DocID026197 Rev 1
AN4471
Hardware layout and configuration
Table 6. FPGA jumper (continued)
Description
Configure J35 and J36 to setup outputs idle state as follows:
(default setting: Not Mounted)
J35 and
J36
High Z
J35 and J36
unfitted
Clamp / TRswitch
J35 fitted,
J36 unfitted
High Z
J35 and J36
fitted
Clamp
J35 unfitted,
J36 fitted
Configure J37 to connect FPGA outputs to STHV800
(default setting: Not mounted)
J37
Fitted: disconnect FPGA outputs (High Z)
Unfitted: connect FPGA outputs
Once the FPGA has been configured, the LED DONE (D23) turns on and the FPGA state
machine enters the idle state (LED D4 turns on).
In order to generate a programmed waveform, the user selects the desired waveform (refer
to Section 3.4.1) through the Program button. The selected program is given by the
illumination of its corresponding LED (D6, D8, … D21 represent Program 0, Program 1, …
Program 15, respectively). Program selection loops back to Program 0 after the last
installed program.
By pressing the START button, the selected program starts running and the START LED
(D2) turns on. When the program ends, the FPGA returns to the IDLE state (LED D4 is on).
If a continuous wave program has been selected, the STOP button must be pressed to stop
program execution. The FPGA returns to the idle state and the STOP LED (D3) turns on.
The LEDs associated with FPGA operations are described in Table 7.
Table 7. FPGA LED
Color
Name
Description
D2
Green
START
A program is running following activation of the start
button SW5.
D3
Green
STOP
The stop button SW4 has been pressed.
D4
Green
IDLE
The FPGA state machine is in the idle state.
D5
Red
ERROR
D23
Green
DONE
D6-D21
Yellow
An error has occurred during FPGA state machine
execution.
The FPGA has been successfully configured.
PROG 0-15 The corresponding program is selected
The FPGA state machine can be also controlled by an external digital device through the
FPGA USER I/O connector (J7), see Table 24 for the naming and pinout positioning of the
DocID026197 Rev 1
9/39
39
Hardware layout and configuration
AN4471
FPGA USER I/O connector. The REMOTE_ENABLE pin must be set high to enable remote
control of the board.
The waveform program can be selected by setting the PROG<3:0> port. If an uninstalled
program is selected, the ERROR output signal goes high. Alternatively, the idle state can be
selected through the IDLE_SEL<1:0> port.
If remote control is enabled, the Program, Start and Stop push buttons are disabled.
A waveform program can be started via the REMOTE_START signal (active high), and
stopped by setting the REMOTE_STOP signal high. Both the FPGA reset (SW5) and
REMOTE_RESET signal can be used to reset the FPGA.
Some internal FPGA control signals can be inspected through the FPGA USER I/O
connector (regardless of whether remote control is enabled or disabled). Figure 4 and
Figure 5 show the expected behavior of these timing control signals.
Figure 4. FPGA timing control signals (beginning of cycle n)
Figure 5. FPGA timing control signals (ending of cycle n)
3.4.1
Stored patterns
The STEVAL-IME009V1 can memorize up to 16 patterns in the on-board Flash memory to
show the achievable performance for each pulser output. A default set of five selectable
patterns are already stored in the Flash memory and ready to use.
A detailed description of the settled programs is listed below.
3.4.2
Pattern program 0
The first pattern stored in the SPI Flash is described in Table 8, where the output pulses are
in phase. Its state sequence is indicated in Table 9. In order to appreciate the waveforms
shown in Figure 20 the following test conditions have been applied:
– HVP0 = HVP1 = + 80 V
10/39
DocID026197 Rev 1
AN4471
Hardware layout and configuration
– HVM0 = HVM1 = - 80 V
– Load: 300 pF // 100 Ω
Table 8. Program “0”
Mode
Frequency
[MHz]
Number of
pulses
Initial pulse
PRF
H-Bridge
XDCR_1
PW
5
10
positive
300 µs
HV_TX
XDCR_2
PW
5
10
negative
300 µs
HV_TX
XDCR_3
PW
5
10
positive
300 µs
HV_TX
XDCR_4
PW
5
10
negative
300 µs
HV_TX
XDCR_5
PW
5
10
positive
300 µs
HV_TX
XDCR_6
PW
5
10
negative
300 µs
HV_TX
XDCR_7
PW
5
10
positive
300 µs
HV_TX
XDCR_8
PW
5
10
negative
300 µs
HV_TX
Table 9. State sequence Program “0”
XDCR_1, XDRC_3, XDCR_5, XDCR_7
XDCR_2, XDRC_4, XDCR_6, XDCR_8
CLAMP
2 µs
CLAMP
2 µs
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
CLAMP
2 µs
CLAMP
2 µs
RX
295 µs
RX
295 µs
DocID026197 Rev 1
11/39
39
Hardware layout and configuration
AN4471
Figure 6. Acquisition by Program “0”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2,
XDCR_3 and XDCR_4, respectively
3.4.3
Pattern Program 1
The second pattern stored in the SPI Flash is described in Table 10, where the output
pulses are delayed by 10 ns each. Its state sequence is indicated in Table 11. In order to
appreciate the waveforms shown in Table 7 and Table 8, the following test conditions have
been applied:
– HVP0 = + 80 V
– HVM0 = - 80 V
– Load: 300 pF // 100 Ω
Table 10. Program “1”
12/39
Mode
Frequency
[MHz]
Number of
pulses
Initial pulse
PRF
H-Bridge
XDCR_1
PW
5
10
positive
300 µs
HV_TX
XDCR_2
PW
5
10
negative
300 µs
HV_TX
XDCR_3
PW
5
10
positive
300 µs
HV_TX
XDCR_4
PW
5
10
negative
300 µs
HV_TX
XDCR_5
PW
5
10
positive
300 µs
HV_TX
XDCR_6
PW
5
10
negative
300 µs
HV_TX
XDCR_7
PW
5
10
positive
300 µs
HV_TX
XDCR_8
PW
5
10
negative
300 µs
HV_TX
DocID026197 Rev 1
AN4471
Hardware layout and configuration
Table 11. State sequence Program “1”
XDCR_1
XDCR_2
XDCR_3
XDCR_4
CLAMP
2 µs
CLAMP
2.01 µs
CLAMP
2.02 µs
CLAMP
2.03 µs
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
RX
295 µs
RX
294.99 µs
RX
294.98 µs
RX
294.97 µs
XDCR_5
XDCR_6
XDCR_7
XDCR_8
CLAMP
2.04 µs
CLAMP
2.05 µs
CLAMP
2.06 µs
CLAMP
2.07 µs
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVP
100 ns
HVM
100 ns
HVP
100 ns
HVM
100 ns
HVM
100 ns
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
RX
294.96 µs
RX
294.95 µs
RX
294.94 µs
RX
294.93 µs
DocID026197 Rev 1
13/39
39
Hardware layout and configuration
AN4471
Figure 7. Acquisition by Program “1”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2,
XDCR_7 and XDCR_8, respectively
Figure 8. Acquisition by Program “1”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2,
XDCR_7 and XDCR_8, respectively
14/39
DocID026197 Rev 1
AN4471
3.4.4
Hardware layout and configuration
Pattern Program 2
The third pattern stored in the SPI Flash is described in Table 12, where the output pulses
are in phase. Its state sequence is indicated in Table 13. In order to appreciate the
waveforms shown in Figure 9, the following test conditions have been applied:
– HVP_CW = + 10 V
– HVM_CW = - 10 V
– Load: 300 pF // 100 Ω
Table 12. Program “2”
Mode
Frequency [MHz]
Number of pulses
Initial pulse
H-Bridge
XDCR_1
CW
5
continuous wave
positive
HV-CW
XDCR_2
CW
2.5
continuous wave
positive
HV-CW
XDCR_3
CW
5
continuous wave
positive
HV-CW
XDCR_4
CW
2.5
continuous wave
positive
HV-CW
XDCR_5
CW
5
continuous wave
positive
HV-CW
XDCR_6
CW
2.5
continuous wave
positive
HV-CW
XDCR_7
CW
5
continuous wave
positive
HV-CW
XDCR_8
CW
2.5
continuous wave
positive
HV-CW
Table 13. State sequence Program “2”
XDCR_1, XDRC_3, XDCR_5, XDCR_7
XDCR_2, XDRC_4, XDCR_6, XDCR_8
HVP_CW
100 ns
HVP_CW
200 ns
HVM_CW
100 ns
HVM_CW
200 ns
HVP_CW
100 ns
HVP_CW
200 ns
HVM_CW
100 ns
HVM_CW
200 ns
HVP_CW
100 ns
HVP_CW
200 ns
HVM_CW
100 ns
HVM_CW
200 ns
HVP_CW
100 ns
HVP_CW
200 ns
HVM_CW
100 ns
HVM_CW
200 ns
DocID026197 Rev 1
15/39
39
Hardware layout and configuration
AN4471
Figure 9. Acquisition by Program “2”, where C1, C2, C3 and C4 are XDCR_1, XDCR_2,
XDCR_3 and XDCR_4, respectively
3.4.5
Pattern Program 3
The fourth pattern stored in the SPI Flash is described in Table 14, where the output pulses
are in delayed by 10 ns each. Its state sequence is indicated in Table 15. In order to
appreciate the waveforms shown in Figure 10 and Figure 11, the following test conditions
have been applied:
– HVP_CW = + 10 V
– HVM_CW = - 10 V
– Load: 300 pF // 100 Ω
Table 14. Program “3”
16/39
Mode
Frequency [MHz]
Number of pulses
Initial pulse
H-Bridge
XDCR_1
CW
5
continuous wave
positive
HV-CW
XDCR_2
CW
5
continuous wave
positive
HV-CW
XDCR_3
CW
5
continuous wave
positive
HV-CW
XDCR_4
CW
5
continuous wave
positive
HV-CW
XDCR_5
CW
5
continuous wave
positive
HV-CW
XDCR_6
CW
5
continuous wave
positive
HV-CW
XDCR_7
CW
5
continuous wave
positive
HV-CW
XDCR_8
CW
5
continuous wave
positive
HV-CW
DocID026197 Rev 1
AN4471
Hardware layout and configuration
Table 15. State sequence Program “3”
XDCR_1
XDCR_2
XDCR_3
XDCR_4
HVP_CW
20 ns
HVP_CW
30 ns
HVP_CW
40 ns
HVP_CW
50 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
80 ns
HVP_CW
70 ns
HVP_CW
60 ns
HVP_CW
50 ns
XDCR_5
XDCR_6
XDCR_7
XDCR_8
HVP_CW
60 ns
HVP_CW
70 ns
HVP_CW
80 ns
HVP_CW
90 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVP_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVM_CW
100 ns
HVP_CW
40 ns
HVP_CW
30 ns
HVP_CW
20 ns
HVP_CW
10 ns
DocID026197 Rev 1
17/39
39
Hardware layout and configuration
AN4471
Figure 10. Acquisition by Program “3”, where C1, C2, C3 and C4 are XDCR_1,
XDCR_3, XDCR_6 and XDCR_8, respectively
Figure 11. Acquisition by Program “3”, where C1, C2, C3 and C4 are XDCR_1,
XDCR_3, XDCR_6 and XDCR_8, respectively
18/39
DocID026197 Rev 1
AN4471
3.4.6
Hardware layout and configuration
Pattern Program 4
The fifth pattern stored in the SPI Flash is described in Table 16, where the output pulses
are in phase. Its state sequence is indicated in Table 17. In order to appreciate the
waveforms shown in Figure 12 and Figure 13, the following test conditions have been
applied:
– HVP = +80 V
– HVM = -80 V
– Load: 300pF // 100 Ω
Table 16. Program “4”
Mode
Frequency
[MHz]
Number of
pulses
Initial pulse
PRF
H-Bridge
XDCR_1
PC
2.5
3
positive
300 µs
HV_TX
XDCR_2
PC
2.5
3
negative
300 µs
HV_TX
XDCR_3
PC
5
3
positive
300 µs
HV_TX
XDCR_4
PC
5
3
negative
300 µs
HV_TX
XDCR_5
PC
2.5
2
positive
300 µs
HV_TX
XDCR_6
PC
2.5
2
negative
300 µs
HV_TX
XDCR_7
PC
5
2
positive
300 µs
HV_TX
XDCR_8
PC
5
2
negative
300 µs
HV_TX
Table 17. State sequence Program “4”
XDCR_1
XDCR_2
XDCR_3
XDCR_4
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
HVP
200 ns
HVM
200 ns
HVP
100 ns
HVM
100 ns
HVM
200 ns
HVP
200 ns
HVM
100 ns
HVP
100 ns
HVP
200 ns
HVM
200 ns
HVP
100 ns
HVM
100 ns
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
RX
295.4 µs
RX
295.4 µs
RX
295.7 µs
RX
295.7 µs
XDCR_5
XDCR_6
XDCR_7
XDCR_8
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
HVP
200 ns
HVM
200 ns
HVP
100 ns
HVP
100 ns
HVM
200 ns
HVP
200 ns
HVM
100 ns
HVM
100 ns
CLAMP
2 µs
CLAMP
2 µs
CLAMP
2 µs
HVP
2 µs
RX
295.6 µs
RX
295.6 µs
RX
295.8 µs
HVM
295.8 µs
DocID026197 Rev 1
19/39
39
Hardware layout and configuration
AN4471
Figure 12. Acquisition by Program “4”, where C1, C2, C3 and C4 are XDCR_1,
XDCR_2, XDCR_3 and XDCR_4, respectively
Figure 13. Acquisition by Program “4”, where C1, C2, C3 and C4 are XDCR_5,
XDCR_6, XDCR_7 and XDCR_8, respectively
20/39
DocID026197 Rev 1
AN4471
Hardware layout and configuration
Further customized patterns based on test requirements for final applications can be
uploaded by the user into the remaining memory slots (through the.dfu file - see user
manual UM1083).
3.5
STHV800 stage
The STHV800 high-voltage, high-speed pulser generator features eight independent
channels. It is designed for medical ultrasound applications, but can also be used for other
piezoelectric, capacitive or MEMS transducers.
The device contains a controller logic interface circuit, level translators, MOSFET gate
drivers, noise blocking diodes and high-power P-channel and N-channel MOSFETs as
output stages for each channel. It also includes clamping-to-ground circuitry, anti-leakage,
an anti-memory effect block, a thermal sensor and a HV receiver switch (HVR_SW) that
ensures strong decoupling during the transmission phase.
The STHV800 also features self-biasing and thermal shutdown blocks (see Figure 14).
Figure 14. STHV800 single channel block diagram
HVP
TX
INx_1
CW
P
Input logic & high voltage
level shifter
INx_0
HVP_CW
CW
P
S0
PCW
S2
N
Noise
blocking
diodes
PCW
NCW
XDCR
Clamp
RX
RX
S6
N
S1
NCW
Clamp
p
S5
LVOUT
S4
TRswitch
S3
Clamp
HVM
HVM_CW
AGND
GND_PWR
AM10224V1
Each channel can support up to three active output levels with one half-bridge. Each
channel consists of two supplied output stages for pulsed wave (PW) and continuous wave
(CW) operations. The PW output stage is able to provide up to ±2 A peak output current
while, to reduce power dissipation and jitter during continuous wave mode, the fully
optimized CW output stage delivers up to ±0.3 A.
Note:
For further information, please refer to the STHV800 datasheet.
The STEVAL-IME009V1 allows the user to configure the special pins on the STHV800, see
Table 18. A brief explanation of the use and functionality of these pins is given below:
• THSD is a thermal flag. The output stage of the THSD pin is a NMOS channel open-drain,
so it is necessary to connect the external pull-up resistance (R ≥ 10 kΩ) to the positive
low-voltage supply (see Figure 11). If the internal temperature exceeds 160 °C, THSD
DocID026197 Rev 1
21/39
39
Hardware layout and configuration
AN4471
goes down and puts all the channels into the HZ state. By externally forcing THSD to a
positive low-voltage supply, the thermal protection is disabled.
• EXPOSED-PAD is internally connected to the substrate. It is accessible on the bottom
side of the board and it is floating. The user can connect a 100 V capacitance to ground
in order to reduce noise during the receiving phase.
More information on the THSD pin is described in Table 18.
Table 18. STHV800 special pin configuration
Special pins on the PCB demo
Name
THSD (pin 29)
Description
Thermal shutdown pin
Status on board
Active (J24 closed between 1 and 2 - forced
to 3 V through R58 = 10 kΩ). The user can
monitor the THSD status on TP3 (test point).
Moreover the user can give the control to
FPGA by shorting J24 between 2 and 3
The STHV800 output waveforms for each channel Ch 1/2/3/4/5/6/7/8 can be displayed
directly using an oscilloscope by connecting the scope probe to the XDCR_x (with x= 1, …
8) BNC connectors.
The user can also select whether or not to connect the on board equivalent load, a 270 pF
200 V capacitor paralleled with a 100 Ω, 2 W resistor (through J19, J21, J20, J18, J27, J31,
J28, J32 respectively for Channel 1, ... 8). A coaxial cable can also be used to easily
connect the user transducer. Eight low voltage outputs are also available to receive the
transduced echo signal arriving from the piezo-element through the TRswitch (see Table 5)
on the low voltage output BNC (JlCh1, JlCh2, …).
Once the STHV800 performance is appreciated, users can make their own boards. The
main issues to be wary of during the PCB design are the capacitance values to ensure good
filtering and effective decoupling between the low voltage inputs and the HV switching
signals. The best way to ensure this is through layer separation.
3.6
Operating supply conditions
Table 19. DC working supply conditions
Operating supply voltages
Symbol
22/39
Parameter
Min.
Typ.
Max.
Unit
VDDP
Positive supply voltage
2.7
3
3.6
V
VDDM
Negative supply voltage
- 2.7
-3
- 3.6
V
VDD
Positive logic voltage
1.6
3
3.6
V
HVP
TX high voltage positive supply
95
V
HVP_CW
CW high voltage positive supply
95
V
HVM
TX high voltage negative supply
- 95
V
HVM_CW
CW high voltage negative supply
- 95
V
DocID026197 Rev 1
AN4471
Hardware layout and configuration
Table 20. Current consumption in CW mode, @ 5 MHz, HVP/M_CW = ± 5 V, no-load
Operating supply voltages
Symbol
Parameter
Value
Unit
IVDDP
Positive supply current
2
mA
IVDDM
Negative supply current
6
mA
IHVP1
TX1 high voltage positive supply current
14.5
mA
IHVM1
TX1 high voltage negative supply current
11
mA
DocID026197 Rev 1
23/39
39
Connectors
AN4471
4
Connectors
4.1
Power supply
The STEVAL-IME009V1 board has to be powered by J4, J1, J2 and J3 connectors as
shown in the following figures.
Figure 15. Power supply connector J4
Figure 16. Power supply connector J1
Figure 17. Power supply connector J2
24/39
DocID026197 Rev 1
AN4471
Connectors
Figure 18. Power supply connector J3
4.2
Power-up sequence
The device is fully power-up/power-down sequence free, so there is no recommended
sequence to follow in order to power up/down the STHV800. In any case, the relationships
HVM_CW ≥ HVM and HVP_CW ≤ HVP must be respected during operation.
4.3
MCU
Figure 19. USB mini-B connector (CN1)
Table 21. USB mini-B connector pinout
Pin number
Description
1
Vbus (power)
2
DM (STM32 PA11)
3
DM (STM32 PA11)
4
N.C.
5
Ground
Figure 20. SWD (J40)
DocID026197 Rev 1
25/39
39
Connectors
AN4471
Table 22. JTAG/SWD connector pinout
4.4
Pin number
Description
1
MCU_3V3
2
JTMS
3
GND
4
JTCK
5
GND
6
JTDO
7
GND
8
JTDI
9
GND
10
RESET#
SPI Flash memory
Figure 21. Memory expansion connector (J10)
Table 23. Memory expansion connector pinout
26/39
Pin number
Description
1
MCU_FPGA_PROG (not used)
2
SPI MISO3
3
SPI MISO2
4
SPI CS
5
SPI MOSI
6
SPI MISO
7
SPI CLK
8
GND
9
3.3V
10
CHECK
DocID026197 Rev 1
AN4471
Connectors
Note:
This memory is mutually exclusive with the on-board Flash memory, disconnect J38 before
plugging an expansion memory over J10; relative LED (D29) turns on.
4.5
FPGA
FPGA USER I/O connector (J7) connector is used for debugging purposes; it allows the
user to directly interface with FPGA I/Os.
Table 24. FPGA USER I/O connector pinout
Pin number
Description
Pin number
Description
Direction
1
GND
2
CW
OUTPUT
3
GND
4
TRIGGER_OUT
OUTPUT
5
GND
6
CLKOUT
OUTPUT
7
GND
8
CYCLE_END
OUTPUT
9
GND
10
THSD_EN
OUTPUT
11
GND
12
ERROR
OUTPUT
13
GND
14
PROG<0>
IN/OUT
15
GND
16
PROG<1>
IN/OUT
17
GND
18
PROG<2>
IN/OUT
19
GND
20
PROG<3>
IN/OUT
21
GND
22
IDLE_SEL<0>
IN/OUT
23
GND
24
IDLE_SEL<1>
IN/OUT
25
GND
26
REMOTE_ENABLE
INPUT
27
GND
28
REMOTE_START
INPUT
29
GND
30
REMOTE_STOP
INPUT
31
GND
32
REMOTE_RESET
INPUT
Table 25. FPGA PMOD connectors (J8) not mounted on the board
Pin number
Description
Pin number
Description
1
Not used
2
Not used
3
Not used
4
Not used
5
GND
6
3.3 V
7
Not used
8
Not used
9
Not used
10
Not used
11
GND
12
3.3 V
DocID026197 Rev 1
27/39
39
Connectors
AN4471
Table 26. FPGA PMOD connectors (J9) not mounted on the board
Pin number
Description
Pin number
Description
1
Not used
2
Not used
3
Not used
4
Not used
5
GND
6
3.3 V
7
Not used
8
Not used
9
Not used
10
Not used
11
GND
12
3.3 V
Two right-angle, 12-pin (2 x 6 female) Peripheral module (PMOD) headers (J8, J9) are
interfaced with the FPGA, with each header providing 3.3 V power, ground and eight I/O's,
see Table 25 and Table 26. These headers may be utilized as general-purpose I/Os or may
be used to interface to PMODs to enable additional user customization. J8 and J9 are
placed in close proximity (0'9" - centers) on the PCB in order to support dual PMODs.
Table 27. FPGA JTAG connectors (J11) not mounted on the board
Pin number
Description
Pin number
Description
1
GND
2
3.3 V
3
GND
4
TMS
5
GND
6
TCK
7
GND
8
TDO
9
GND
10
TDI
11
GND
12
Not used
13
GND
14
Not used
The STEVAL-IME009V1 evaluation board supports the serial peripheral interface (SPI
Flash) method of configuring the FPGA. The default configuration mode (determined by
pull-up/pull-down resistors R17, R18, R21, and R22) is “Master Serial / SPI” mode, which
allows the FPGA to be configured from the SPI Flash device. Spartan-6 devices have a
dedicated four-wire JTAG port (always available to the FPGA regardless of the mode pin
settings) that enables the Boundary-scan configuration method.
Configuring the FPGA via Boundary-scan requires a JTAG download cable to be attached to
the 14-pin 2 mm spaced keyed header J11 (to be mounted) with a ribbon cable. Resistors
RN1, R41 - R44 and diode D22 must also be mounted.
Jumper J13 is used to prevent FPGA programming from the configuration source. It must be
open (default) to enable FPGA programming. LED D23, labeled “DONE” on the board,
illuminates to indicate when the FPGA has been successfully configured.
28/39
DocID026197 Rev 1
DocID026197 Rev 1
FPGA
FPGA_SPI_CCLK
FPGA_SPI_MOSI
FPGA_SPI_MISO1
FPGA_SPI_MISO2
FPGA_SPI_MISO3
FPGA_SPI_SEL
MCU_FPGA_PROG
MCU_FPGA_INIT_B
MCU_FPGA_MODE1
FPGA_MCU_DONE
MCU_FPGA_OSC_EN
FPGA_MCU_AWAKE
MCU_FPGA_SUSPEND
MCU_FPGA_GPIO[0:7]
DVDD VDDP VDDM HVP0 HVM0 HVPCW HVMCW
MCU_FPGA_GPIO[0:7]
HVMCW
HVPCW
HVM0
USB_DP
USB_DP
USB_DM
USB_DISCONNECT
USB_DM
MCU_3V3
MCU_3V3
FLASH_3V3
FLASH_3V3
+VFPGA_IO_3V3
DATAOUT14
DATAOUT15
DATAOUT12
DATAOUT13
DATAOUT10
DATAOUT11
STHV800
CW
CK
THSD_EN
IN8_0
IN8_1
IN7_0
IN7_1
IN6_0
IN6_1
IN5_0
IN5_1
IN4_0
IN4_1
IN3_0
IN3_1
IN2_0
IN2_1
IN1_0
IN1_1
VDDP
+VFPGA_CORE_1V2
CK
CW
DATAOUT6
DATAOUT7
DATAOUT8
DATAOUT9
DATAOUT4
DATAOUT5
DATAOUT2
DATAOUT3
DATAOUT0
DATAOUT1
THSD_EN
DATAOUT[0:15]
DATAOUT[0:15]
DVDD VDDP HVP0 HVPCW
STHV800_BLK
VDDM
VDDM
HVP
BOARD_POWER
BOARD_POWER_BLK
STM32_FLASH
FLASH_C
FLASH_DQ0
FLASH_DQ1
FLASH_DQ2
FLASH_DQ3
FLASH_nS
MCU_FPGA_PROG
MCU_FPGA_INIT_B
MCU_FPGA_MODE1
FPGA_MCU_DONE
MCU_FPGA_OSC_EN
FPGA_MCU_AWAKE
MCU_FPGA_SUSPEND
FPGA_GPIO[0:7]
FPGA_BLK
HVM_CW
HVM
HVP_CW
HVMCW
HVM0
5
STM32_FLASH_BLK
AN4471
Schematics
Schematics
Figure 22. STEVAL-IME009V1- Part 1
DVDD
+VFPGA_CORE_1V2
+VFPGA_IO_3V3
HVP0
VDDM
VDDP
DVDD
USB_DISCONNECT
GSPG2209140940SG
29/39
39
30/39
4
DocID026197 Rev 1
1
2
D1
SM2T3V3A
J41
2
NOT ASSEMBLY
1
C12
4u7
6.3V
EXT_3V3
USB_3V3
C8
2.2uF 6.3V
MMS228T
nc
ON_2a
COM_1a
ON_1a
SOT23-5L
5
D3
4
5
ON_1b
nc
ON_2b
COM_1b
DVDD
D26
RED
USB ON
C13
4u7
6.3V
1
4
ST1S12xx
EN
Vin
U3
FB/Vo
+VFPGA_IO_3V3
FLASH_3V3
2
5
3
MCU
L1 Detail
TDK (VLF4012AT-2R2M1R5) - RS (614-3147)
C14 Detail
TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND)
Dimension 0805 - EIA 2012
RED
D28
FPGA
R125 56
5
6
7
8
SW
Kingbright KP2012SURC
RS: 466-3829
Farnell: 8529930
LED 0805
3.3V Power Management
R90 56R
C8 Details:
DigiKey (478-2552-2-ND) - AVX (TACL225M006XTA)
Package 0603
L1
R124
56 D27
RED
USB_DISCONNECT
USB_DM
USB_DP
DM
USB_DISCONNECT
DP
C7 Details:
Digikey (445-4998-2-ND) - TDK (C1005X5R0J105K)
Package 0402
USBUF02W6
D2
Grd 3.3V
U1 SOTT323-6L
6
D1
D4
GND
J4 Details
Phoenix Contact (Mfg Code MPT 0.5/2-2.54)
RS (220-4260)
C12 and C13 Detail
TDK (C1608X5R0J475K) - Digikey (445-5178-2-ND)
Dimension 0603 - EIA 1608
3V3
3V3 Connector
J4
SW1 Details:
SW1
RS 711-8329
KNITTER-SWITCH (MMS228T)
2
4
3
2
1
GND
EXT_3V3
BYPS
FLASH_3V3
INH
C11
33nF
VOUT
LDS3985M33R
3
2
1
USB_DISCONNECT
USBDM
USBDP
USBDM
USBDP
2.2uH
C14
10u
10V
MCU_3V3
HVMCW
HVM0
VDDM
DVDD
VDDP
HVPCW
HVP0
C9
1
2
3
4
J2
DVDD
VDDP
GND
VDDM
LV
1
2
3
J3
HVMCW
HVM0
GND
HVM
GND_POWER
C10
J3 Details:
22000n 100V RS (193-0570)
Phoenix Contact
(Mfg Code MKDS 1.5/3-5.08)
HVMCW
HVM0
GND_POWER
0
R2
C4, C5, C6 Details:
Digikey (445-1436-2-ND) - TDK (C3225X5R1C226M)
Package 1210 - EIA 3225
+VFPGA_CORE_1V2
HVPCW
HVP0
GND
HVP
C4
J2 Details
RS 2X(193-0564)
22000n 16V Phoenix Contact
(Mfg Code
16V
MKDS 1.5/2-5.08)
VDDM
DVDD
VDDP
GND_POWER
GND_POWER
16V
J1
C2
J1 Details
22000n 100V RS (193-0570)
100V
Phoenix Contact
(Mfg Code MKDS 1.5/3-5.08)
0
GND_SHIELD
R123
C1, C2, C9, C10 Details:
Digikey (445-5217-2-ND) - TDK (CKG57NX7S2A226M)
Package 6.5mm x 5.5 mm
100V
100V
22000n 100V
16V
C6
100V
C1
22000n 16V 22000n 16V
C5
22000n 100V
HVPCW 1
HVP0 2
3
STHV800 Power Management
LOW POWER
USB_3V3
C7
1uF
3
VIN
ID nc
GND
SHELL
SHELL
SHELL
SHELL
VBUS
DM
DP
RS (515-1995)
Molex (54819-0572)
C3
4.7nF
4
5
6
7
8
9
1
2
3
CN1
USB_miniB
1
U2
DM
DP
USB
+ HIGH VOLTAGE
USB_5V
R1
1M
USB_5V
Schematics
AN4471
Figure 23. STEVAL-IME009V1- Part 2
- HIGH VOLTAGE
GSPG2209141100SG
DocID026197 Rev 1
XC6SLX16-2CSG324C
IO_0_L01N_VREF
IO_0_L01P_HSWAPEN
IO_0_L02N
IO_0_L02P
IO_0_L03N
IO_0_L03P
IO_0_L04N
IO_0_L04P
IO_0_L05N
IO_0_L05P
IO_0_L06N
IO_0_L06P
IO_0_L07N
IO_0_L07P
IO_0_L08N_VREF
IO_0_L08P
IO_0_L09N
IO_0_L09P
IO_0_L10N
IO_0_L10P
IO_0_L11N
IO_0_L11P
IO_0_L32N
IO_0_L32P
IO_0_L33N
IO_0_L33P
IO_0_L34N_GCLK18
IO_0_L34P_GCLK19
IO_0_L35N_GCLK16
IO_0_L35P_GCLK17
IO_0_L36N_GCLK14
IO_0_L36P_GCLK15
IO_0_L37N_GCLK12
IO_0_L37P_GCLK13
IO_0_L38N_VREF
IO_0_L38P
IO_0_L39N
IO_0_L39P
IO_0_L40N
IO_0_L40P
IO_0_L41N
IO_0_L41P
IO_0_L42N
IO_0_L42P
IO_0_L47N
IO_0_L47P
IO_0_L50N
IO_0_L50P
IO_0_L51N
IO_0_L51P
IO_0_L62N_VREF
IO_0_L62P
IO_0_L63N_SCP6
IO_0_L63P_SCP7
IO_0_L64N_SCP4
IO_0_L64P_SCP5
IO_0_L65N_SCP2
IO_0_L65P_SCP3
IO_0_L66N_SCP0
IO_0_L66P_SCP1
FPGA - Bank 0
U4A
C4
D4
A2
B2
C6
D6
A3
B3
A4
B4
A5
C5
E6
F7
A6
B6
E8
E7
A7
C7
C8
D8
F8
G8
A8
B8
C9
D9
A9
B9
C11
D11
A10
C10
F9
G9
A11
B11
F10
G11
A12
B12
E11
F11
C12
D12
A13
C13
E12
F12
A14
B14
E13
F13
A15
C15
C14
D14
A16
B16
Diff. pair
DATAOUT8
Diff. pair
DATAOUT9
Diff. pair
DATAOUT10
Diff. pair
DATAOUT11
Diff. pair
DATAOUT12
Diff. pair
DATAOUT13
Diff. pair
DATAOUT14
Diff. pair
DATAOUT15
Diff. pair
CW
IDLE_STATE0
IDLE_STATE1
HI_Z
THSD_EN
HSWAPEN
Diff. pair
DATAOUT3
Diff. pair
DATAOUT4
Diff. pair
DATAOUT2
Diff. pair
DATAOUT1
Diff. pair
DATAOUT0
Diff. pair
DATAOUT5
Diff. pair
DATAOUT6
Diff. pair
DATAOUT7
Diff. pair
CK
R120
10K 0402
DATAOUT[0:15]
THSD_EN
J5
R121
10K 0402
CW
DATAOUT[0:15]
CK
R122
10K 0402
C15
100n 0402
NOT ASSEMBLY
JUMPER
HSWAPEN
1
2
R3
10K 0402
+VFPGA_IO_3V3
2
2
2
FPGA DISCONNECT
NOT ASSEMBLY
THESE JUMPERS
J35 1
J36 1
J37 1
IDLE STATE
+VFPGA_IO_3V3
C16
10uF 10V 0805
+VFPGA_IO_3V3
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
STHV748 I/O CONNECTOR
HEADER 17X2
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
NOT ASSEMBLY
DATAOUT3
DATAOUT12
DATAOUT2
+VFPGA_IO_3V3
C17
10uF 10V 0805
C16 and C17 Details:
TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND)
Dimension 0805 - EIA 2012
Open J37 (default) to connect FPGA outputs
Close J37 to disconnect outputs (High-Z)
Configure J35 and J36 to setup outputs idle state as follows:
00 - (J35 and J36 open) --> High-Z (default)
01 - (J35 closed and J36 open) --> Clamp/HVR_SW
11 - (J35 and J36 closed) --> High-Z
10 - (J35 open and J36 closed) --> Clamp
Jumpers J35, J36 and J37 are used to set dataout output state.
CK
CW
DATAOUT0
DATAOUT1
DATAOUT9
DATAOUT13
DATAOUT10
DATAOUT14
DATAOUT6
DATAOUT15
DATAOUT7
DATAOUT8
DATAOUT5
DATAOUT11
THSD_EN
DATAOUT4
J6
Open (default) to float I/O output during FPGA configuration.
Set jumper 1:2 to enable I/O pullups during FPGA configuration.
Jumper J5 is used to control I/O pullups during FPGA configuration.
C18
100n 0402
AN4471
Schematics
Figure 24. STEVAL-IME009V1- Part 3
GSPG2209141120SG
31/39
39
FPGA - Bank 1
DocID026197 Rev 1
XC6SLX16-2CSG324C
IO_1_L01N_A24_VREF
IO_1_L01P_A25
IO_1_L29N_A22_M1A14
IO_1_L29P_A23_M1A13
IO_1_L30N_A20_M1A11
IO_1_L30P_A21_M1RESET
IO_1_L31N_A18_M1A12
IO_1_L31P_A19_M1CKE
IO_1_L32N_A16_M1A9
IO_1_L32P_A17_M1A8
IO_1_L33N_A14_M1A4
IO_1_L33P_A15_M1A10
IO_1_L34N_A12_M1BA2
IO_1_L34P_A13_M1WE
IO_1_L35N_A10_M1A2
IO_1_L35P_A11_M1A7
IO_1_L36N_A8_M1BA1
IO_1_L36P_A9_M1BA0
IO_1_L37N_A6_M1A1
IO_1_L37P_A7_M1A0
IO_1_L38N_A4_M1CLKN
IO_1_L38P_A5_M1CLK
IO_1_L39N_M1ODT
IO_1_L39P_M1A3
IO_1_L40N_GCLK10_M1A6
IO_1_L40P_GCLK11_M1A5
IO_1_L41N_GCLK8_M1CASN
IO_1_L41P_GCLK9_IRDY1_M1RASN
IO_1_L42N_GCLK6_TRDY1_M1LDM
IO_1_L42P_GCLK7_M1UDM
IO_1_L43N_GCLK4_M1DQ5
IO_1_L43P_GCLK5_M1DQ4
IO_1_L44N_A2_M1DQ7
IO_1_L44P_A3_M1DQ6
IO_1_L45N_A0_M1LDQSN
IO_1_L45P_A1_M1LDQS
IO_1_L46N_FOE_B_M1DQ3
IO_1_L46P_FCS_B_M1DQ2
IO_1_L47N_LDC_M1DQ1
IO_1_L47P_FWE_B_M1DQ0
IO_1_L48N_M1DQ9
IO_1_L48P_HDC_M1DQ8
IO_1_L49N_M1DQ11
IO_1_L49P_M1DQ10
IO_1_L50N_M1UDQSN
IO_1_L50P_M1UDQS
IO_1_L51N_M1DQ13
IO_1_L51P_M1DQ12
IO_1_L52N_M1DQ15
IO_1_L52P_M1DQ14
IO_1_L53N_VREF
IO_1_L53P
IO_1_L61N
IO_1_L61P
IO_1_L74N_DOUT_BUSY
IO_1_L74P_AWAKE
U4B
F16
F15
C18
C17
G14
F14
D18
D17
G13
H12
E18
E16
K13
K12
F18
F17
H14
H13
H16
H15
G18
G16
K14
J13
L13
L12
K16
K15
L16
L15
H18
H17
J18
J16
K18
K17
L18
L17
M18
M16
N18
N17
P18
P17
N16
N15
T18
T17
U18
U17
N14
M14
M13
L14
P16
P15
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
NOT ASSEMBLY
FPGA_MCU_AWAKE
TP1
TEST POINT
HEADER 16X2
J7
FPGA USER I/O
X1
GND
OE ST
OUT
VCC
FPGA_CLK_66MHZ
2
1
BACKUP OF U5
R126
10k
33R2
R7
1
8
7
3
2
FPGA_PMOD2_P7
FPGA_PMOD2_P9
FPGA_PMOD2_P1
FPGA_PMOD2_P3
C29
100nF
J8
DX
2
4
6
8
10
12
NOT ASSEMBLY
PMOD2
HEADER 6X2
1
3
5
7
9
11
J9
C27
C20
10nF
FPGA_PMOD1_P8
FPGA_PMOD1_P10
C28
100nF
+VFPGA_IO_3V3
R6
10K NM
MCU_FPGA_OSC_EN
FPGA_PMOD1_P2
FPGA_PMOD1_P4
10uF 10V 0805
5
4
6
C19
100nF
FPGA_PMOD2_P8
FPGA_PMOD2_P10
FPGA_PMOD2_P2
FPGA_PMOD2_P4
C31
10uF 10V 0805
C32
100nF
+VFPGA_IO_3V3
C26, C27, C30 and C31 Detail
TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND)
Dimension 0805 - EIA 2012
2
4
6
8
10
12
C30
10uF 10V 0805
HEADER 6X2
SX
NOT ASSEMBLY
PMOD1
C26
10uF 10V 0805
1
3
5
7
9
11
+VFPGA_IO_3V3
FPGA_PMOD1_P7
FPGA_PMOD1_P9
FPGA_PMOD1_P1
FPGA_PMOD1_P3
C25
100nF
+VFPGA_IO_3V3
GND
GND
PDN
66MHZ OSC
DS1088LU-66
OUT
n/c
n/c
VCC
VCC
U5
PERIPHERRAL MODULE (PMOD)
3
4
+VFPGA_IO_3V3
66MHZ EXTERNAL OSCILLATOR
Place R7 (1%) close to the clock
source DS1088LU-66 device
MCU_FPGA_OSC_EN
Two right-angle, 12-pin (2 x 6 female) Peripheral
Module (PMOD) headers (J8, J9) are interfaced to the
FPGA, with each header providing 3.3 V power, ground,
and eight I/O's. These headers may be utilized as
general-purpose I/Os or may be used to interface to
PMODs. J6 and J8 are placed in close proximity (0'9"
-centers) on the PCB in order to support dual PMODs.
FPGA_DOUT_BUSY
FPGA_AWAKE
FPGA_USER_IO_0
FPGA_USER_IO_1
FPGA_USER_IO_2
FPGA_USER_IO_3
FPGA_USER_IO_4
FPGA_USER_IO_5
FPGA_USER_IO_6
FPGA_USER_IO_7
FPGA_USER_IO_8
FPGA_USER_IO_9
FPGA_USER_IO_10
FPGA_USER_IO_11
FPGA_USER_IO_12
FPGA_USER_IO_13
FPGA_USER_IO_14
FPGA_USER_IO_15
CTRL_LED3
CTRL_LED2
FPGA_RESET
STOP_PB
CTRL_LED1
CTRL_LED0
SEL_PROG_PB
FPGA_CLK_66MHZ
START_PB
FPGA_PMOD1_P2
FPGA_PMOD1_P1
FPGA_PMOD1_P4
FPGA_PMOD1_P3
FPGA_PMOD1_P8
FPGA_PMOD1_P7
FPGA_PMOD1_P10
FPGA_PMOD1_P9
FPGA_PMOD2_P2
FPGA_PMOD2_P1
FPGA_PMOD2_P4
FPGA_PMOD2_P3
FPGA_PMOD2_P8
FPGA_PMOD2_P7
FPGA_PMOD2_P10
FPGA_PMOD2_P9
1
32/39
When using backup oscillator X1,
R126 have to be unmounted and R6
must be placed.
STOP
SW PUSHBUTTON-DPST
R8
10K 0402
PROGRAM
RED LED
Kingbright KP2012SURC
RS: 466-3829
Farnell: 8529930
LED 0805
CTRL LED
R10
56R 0402
R13
56R 0402
R12
56R 0402
R11
56R 0402
RED
D5
GREEN
D4
GREEN
D3
GREEN
C24
100nF
FPGA_RESET
FPGA RESET
D2
R5
10K 0402
R9
10K 0402
ERROR
ERROR signal
IDLE
IDLE state signal
Near STOP button
Near START button
SW5
START
SW PUSHBUTTON-DPST
+VFPGA_IO_3V3
C22
100nF SW3
START_PB
+VFPGA_IO_3V3
SW PUSHBUTTON-DPST
GREEN LED
Kingbright KP2012SURC
RS: 466-3778
Farnell: 8529906
LED 0805
CTRL_LED3
CTRL_LED2
CTRL_LED1
CTRL_LED0
SW2, SW3, SW4, Details RS (378-6527)
C23
100nF SW4
STOP_PB
R4
10K 0402
SW PUSHBUTTON-DPST
+VFPGA_IO_3V3
C21
100nF SW2
SEL_PROG_PB
+VFPGA_IO_3V3
PUSHBUTTONS
Schematics
AN4471
Figure 25. STEVAL-IME009V1- Part 4
GSPG2209141140SG
DocID026197 Rev 1
MCU_FPGA_GPIO0
MCU_FPGA_GPIO1
MCU_FPGA_GPIO2
MCU_FPGA_GPIO3
MCU_FPGA_GPIO4
MCU_FPGA_GPIO5
MCU_FPGA_GPIO6
MCU_FPGA_GPIO7
T15
R15
V16
U16
T13
R13
V15
U15
V14
T14
P12
N12
V13
U13
N11
M11
T11
R11
V12
T12
P11
N10
N9
M10
V11
U11
T10
R10
V10
U10
T8
R8
V9
T9
N8
M8
V8
U8
V7
U7
P8
N7
V6
T6
T7
R7
P7
N6
T5
R5
V5
U5
T3
R3
V4
T4
P6
N5
V3
U3
MCU_FPGA_GPIO[0:7]
IO_2_L01N_M0_CMPMISO
IO_2_L01P_CCLK
IO_2_L02N_CMPMOSI
IO_2_L02P_CMPCLK
IO_2_L03N_MOSI_CSI_B_MISO0
IO_2_L03P_D0_DIN_MISO_MISO1
IO_2_L05N
IO_2_L05P
IO_2_L12N_D2_MISO3
IO_2_L12P_D1_MISO2
IO_2_L13N_D10
IO_2_L13P_M1
IO_2_L14N_D12
IO_2_L14P_D11
IO_2_L15N
IO_2_L15P
IO_2_L16N_VREF
IO_2_L16P
IO_2_L19N
IO_2_L19P
IO_2_L20N
IO_2_L20P
IO_2_L22N
IO_2_L22P
IO_2_L23N
IO_2_L23P
IO_2_L29N_GCLK2
IO_2_L29P_GCLK3
IO_2_L30N_GCLK0_USERCCLK
IO_2_L30P_GCLK1_D13
IO_2_L31N_GCLK30_D15
IO_2_L31P_GCLK31_D14
IO_2_L32N_GCLK28
IO_2_L32P_GCLK29
IO_2_L40N
IO_2_L40P
IO_2_L41N_VREF
IO_2_L41P
IO_2_L43N
IO_2_L43P
IO_2_L44N
IO_2_L44P
IO_2_L45N
IO_2_L45P
IO_2_L46N
IO_2_L46P
IO_2_L47N
IO_2_L47P
IO_2_L48N_RDWR_B_VREF
IO_2_L48P_D7
IO_2_L49N_D4
IO_2_L49P_D3
IO_2_L62N_D6
IO_2_L62P_D5
IO_2_L63N
IO_2_L63P
IO_2_L64N_D9
IO_2_L64P_D8
IO_2_L65N_CSO_B
IO_2_L65P_INIT_B
FPGA - Bank 2
TP2
TEST POINT
MCU_FPGA_GPIO[0:7]
PROG_LED14
PROG_LED15
MCU_FPGA_GPIO6
MCU_FPGA_GPIO7
MCU_FPGA_GPIO4
MCU_FPGA_GPIO5
PROG_LED12
PROG_LED13
MCU_FPGA_GPIO2
MCU_FPGA_GPIO3
MCU_FPGA_GPIO0
MCU_FPGA_GPIO1
PROG_LED10
PROG_LED11
PROG_LED2
PROG_LED3
PROG_LED6
PROG_LED7
PROG_LED0
PROG_LED1
PROG_LED4
PROG_LED5
PROG_LED8
PROG_LED9
FPGA_SPI_SEL
FPGA_INIT_B
FPGA_MODE1
FPGA_SPI_MISO3
FPGA_SPI_MISO2
FPGA_SPI_MOSI
FPGA_SPI_MISO1
FPGA_MODE0
CCLK
1
XC6SLX16-2CSG324C
U4C
R16
10K 0402
R21
2K43 0402 DNP
R17
2K43 0402
R22
2K43 0402
MCU_FPGA_MODE1
MCU_FPGA_INIT_B
R18
2K43 0402 DNP
1
2
3
4
5
6
7
8
9
10
Place D29
close to J10
EXT SPI
FLASH
CON10 R127
56
J10
R38
GREEN
C33 Details:
TDK (C2012X7R1A106K) - DIGIKEY (445-6857-2-ND)
Dimension 0805 - EIA 2012
C34
100nF
R40
NA 0402
R39
NA 0402
FPGA_SPI_CCLK
FPGA_SPI_MISO1
FPGA_SPI_MOSI
FPGA_SPI_SEL
FPGA_SPI_MISO2
FPGA_SPI_MISO3
MCU_FPGA_PROG
+VFPGA_IO_3V3
C33
10uF 10V 0805
33R2 0402
TO CORRECT
D29
CCLK
FPGA_SPI_MISO1
FPGA_SPI_MOSI
FPGA_SPI_SEL
FPGA_SPI_MISO2
FPGA_SPI_MISO3
Place R38 close to the FPGA device
SPI FLASH CTRL SIGNALS
When FPGA_INIT_B (bidirectional open-drain) is Low the configuration memory is
being cleared.
When held Low, the start of configuration is delayed.
During configuration, a Low on this output indicates that a configuration data
error has occurred.
Configuration mode selection:
FPGA_MODE0 = Parallel (Low) or Serial (High)
FPGA_MODE1 = Master (Low) or Slave (High)
FPGA_INIT_B
FPGA_MODE0
FPGA_MODE1
+VFPGA_IO_3V3
FPGA CONFIGURATION
PROG_LED7
PROG_LED6
PROG_LED5
PROG_LED4
PROG_LED3
PROG_LED2
PROG_LED1
PROG_LED0
68R 0402
R33
68R 0402
R31
68R 0402
R29
68R 0402
R27
68R 0402
R25
68R 0402
R23
68R 0402
R19
68R 0402
R14
YELLOW
D20
PROG 7
YELLOW
D18
PROG 6
YELLOW
D16
PROG 5
YELLOW
D14
PROG 4
YELLOW
D12
PROG 3
YELLOW
D10
PROG 2
YELLOW
D8
PROG 1
YELLOW
D6
PROG 0
PROGRAM SELECTOR LEDS
68R 0402
R34
68R 0402
R32
68R 0402
R30
68R 0402
R28
68R 0402
R26
68R 0402
R24
68R 0402
R20
68R 0402
R15
Kingbright KP-3216SYC
RS: 466-3942
LED 0805
PROG_LED15
PROG_LED14
PROG_LED13
PROG_LED12
PROG_LED11
PROG_LED10
PROG_LED9
PROG_LED8
YELLOW
D21
PROG 15
YELLOW
D19
PROG 14
YELLOW
D17
PROG 13
YELLOW
D15
PROG 12
YELLOW
D13
PROG 11
YELLOW
D11
PROG 10
YELLOW
D9
PROG 9
YELLOW
D7
PROG 8
AN4471
Schematics
Figure 26. STEVAL-IME009V1- Part 5
SPI EXTERNAL PROGRAMMING HEADER
GSPG2209141200SG
33/39
39
34/39
FPGA - Bank 3
GSPG2209141410SG
DocID026197 Rev 1
XC6SLX16-2CSG324C
IO_3_L01N_VREF
IO_3_L01P
IO_3_L02N
IO_3_L02P
IO_3_L31N_VREF
IO_3_L31P
IO_3_L32N_M3DQ15
IO_3_L32P_M3DQ14
IO_3_L33N_M3DQ13
IO_3_L33P_M3DQ12
IO_3_L34N_M3UDQSN
IO_3_L34P_M3UDQS
IO_3_L35N_M3DQ11
IO_3_L35P_M3DQ10
IO_3_L36N_M3DQ9
IO_3_L36P_M3DQ8
IO_3_L37N_M3DQ1
IO_3_L37P_M3DQ0
IO_3_L38N_M3DQ3
IO_3_L38P_M3DQ2
IO_3_L39N_M3LDQSN
IO_3_L39P_M3LDQS
IO_3_L40N_M3DQ7
IO_3_L40P_M3DQ6
IO_3_L41N_GCLK26_M3DQ5
IO_3_L41P_GCLK27_M3DQ4
IO_3_L42N_GCLK24_M3LDM
IO_3_L42P_GCLK25_TRDY2_M3UDM
IO_3_L43N_GCLK22_IRDY2_M3CASN
IO_3_L43P_GCLK23_M3RASN
IO_3_L44N_GCLK20_M3A6
IO_3_L44P_GCLK21_M3A5
IO_3_L45N_M3ODT
IO_3_L45P_M3A3
IO_3_L46N_M3CLKN
IO_3_L46P_M3CLK
IO_3_L47N_M3A1
IO_3_L47P_M3A0
IO_3_L48N_M3BA1
IO_3_L48P_M3BA0
IO_3_L49N_M3A2
IO_3_L49P_M3A7
IO_3_L50N_M3BA2
IO_3_L50P_M3WE
IO_3_L51N_M3A4
IO_3_L51P_M3A10
IO_3_L52N_M3A9
IO_3_L52P_M3A8
IO_3_L53N_M3A12
IO_3_L53P_M3CKE
IO_3_L54N_M3A11
IO_3_L54P_M3RESET
IO_3_L55N_M3A14
IO_3_L55P_M3A13
IO_3_L83N_VREF
IO_3_L83P
U4D
N3
N4
P3
P4
M5
L6
U1
U2
T1
T2
P1
P2
N1
N2
M1
M3
L1
L2
K1
K2
L3
L4
J1
J3
H1
H2
K3
K4
K5
L5
H3
H4
K6
L7
G1
G3
J6
J7
F1
F2
H5
H6
E1
E3
F3
F4
D1
D2
G6
H7
D3
E4
F5
F6
C1
C2
FPGA BANK 3 NOT USED
Schematics
AN4471
Figure 27. STEVAL-IME009V1- Part 6
DocID026197 Rev 1
SUSPEND
SW PUSHBUTTON-DPST
4
FPGA_PROG
C73
100nF
To be placed
near U3
74LX1G08CTR
U7
Jumper J13 used to prevent FPGA from
programming from configuration source.
Set 1:2 to disable FPGA programming.
Open (default) to enable FPGA
programming.
JUMPER
FPGA PROG
DISABLE
J13
3
FPGA PROG
1
2
2
1
R50
10K 0402
5
RS (378-6527)
R49
10K 0402
4
74V1G32CTR
U6
+VFPGA_IO_3V3
3
MCU_FPGA_PROG
2
10K 0402
R48
1
CMPCS_B_2
PROGRAM_B_2
SUSPEND
DONE_2
FPGA - Power & Configuration
FPGA_MCU_DONE
DONE
DONE
FPGA_DONE
R52
330 0402
+VFPGA_IO_3V3
Q1
2N7002
D23
GREEN
R51
56R
A1
J9
K10
V18
V1
U6
U12
T16
R9
R4
R18
R14
R1
N13
M6
M2
M17
L9
L11
K8
G12
E15
J4
J15
J11
H8
H10
G5
G2
G17
C16
B7
D5
D10
C3
B13
A18
RST1
1
2
3
5
Header 3
J12
R46
10K 0402
FPGA_CMP_CS_B P13
V2
FPGA_PROG
FPGA_SUSPEND R16
V17
FPGA_DONE
TCK
TMS
TDO
TDI
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
PROGRAM_B
Jumper J12
1:2 to force
FPGA into
suspend mode.
2:3 (Default)
to allow MCU
to control
FPGA suspend
mode.
MCU_FPGA_SUSPEND
C62
100nF
R45
A17
B18
D16
D15
C42
0805
R47
0
FPGA BANK 3
NOT USED
E2
G4
J2
J5
M4
R2
P9
R12
R6
U14
U4
U9
E17
G15
J14
J17
M15
R17
0.22uF 6.3V 0402
C36, C37, C38, C41, C42, C52, C53, C59, C60, C67, C
TDK (C1608X5R0J475K) - Digikey (445-5178-2-ND)
Dimension 0603 - EIA 1608
C72
0.22uF 6.3V 0402
0.22uF 6.3V 0402
C69
C71
4.7uF 6.3V 0603
C68
0.22uF 6.3V 0402
4.7uF 6.3V 0603
C67
+VFPGA_IO_3V3
C70
100uF 6.3V 1206
0.22uF 6.3V 0402
C61
0.22uF 6.3V 0402
C65
4.7uF 6.3V 0603
C60
0.22uF 6.3V 0402
C63
0.22uF 6.3V 0402
4.7uF 6.3V 0603
C64
C59
100uF 6.3V 1206
0.22uF 6.3V 0402
0.22uF 6.3V 0402
+VFPGA_IO_3V3
C57
C56
C58
C66
C54
0.22uF 6.3V 0402
C55
4.7uF 6.3V 0603
C53
+VFPGA_IO_3V3
0.22uF 6.3V 0402
C52
4.7uF 6.3V 0603
C51
0.22uF 6.3V 0402
0.22uF 6.3V 0402
C50
4.7uF 6.3V 0603
0.22uF 6.3V 0402
C49
100uF 6.3V 1206
C35, C40, C51, C58, C66 Details
Murata (GRM31CR60J107ME39L) - Digikey (490-4539-1-ND)
Dimension 1206 - EIA 3216
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_3
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_2
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_1
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
VCCO_0
B10
B15
B5
D13
D7
E10
XC6SLX16-3CSG324C
0.22uF 6.3V 0402
0.22uF 6.3V 0402
0.22uF 6.3V 0402
0.22uF 6.3V 0402
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
VCCAUX
10K 0402
FPGA_TCK
FPGA_TMS
FPGA_TDO
FPGA_TDI
U4E
XC6SLX16-2CSG324C
0.22uF 6.3V 0402
C48
C47
C46
C45
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
VCCINT
To be placed
near U6
4
3
2
1
+VFPGA_IO_3V3
NOT ASSEMBLY
R43 49R 0402
NOT ASSEMBLY
R44 49R 0402
NOT ASSEMBLY
R42 49R 0402
NOT ASSEMBLY
R41 49R 0402
C44
4.7uF 6.3V 0603
0.22uF 6.3V 0402
C43
C41
C40
100uF 6.3V 1206
C39
C38
4.7uF 6.3V 0603
+VFPGA_CORE_1V2
+VFPGA_IO_3V3
4.7uF 6.3V 0603
4.7uF 6.3V 0603
100uF 6.3V 1206
+VFPGA_IO_3V3
+VFPGA_CORE_1V2
C37
C36
C35
P5
P14
P10
M9
K7
J12
G10
E9
E5
E14
B17
B1
Xilinx Parallel IV Connector
2.0mm 7x2 shrouded header
CON14A
2
4
6
8
10
12
14
NOT ASSEMBLY
J11
RESDIP4X1206
RN1
RESISTOR DIP 4
4-Resistor Array
3.2x1.6mm
Not Assembly
+VFPGA_IO_3V3
+VFPGA_CORE_1V2
M7
M12
L8
L10
K9
K11
J8
J10
H9
H11
G7
SUSPEND & CMPCS_B
1
3
5
7
9
11
13
NOT ASSEMBLY
D22
STTH102A
+VFPGA_IO_3V3
5
6
7
8
FPGA JTAG
FPGA JTAG
AN4471
Schematics
Figure 28. STEVAL-IME009V1- Part 7
GSPG2209141435SG
35/39
39
36/39
CW
CK
CK
2
BNC
1 BNC
Jch7
2
1
Jch8
2
1
BNC
Jch6
XDCR_5
1
Jch5
GND_PWR
LVOUT_5
DocID026197 Rev 1
16
15
1
1
2
1
2
1
2
2
LVOUT_5
LVOUT_6
18
17
19
1
21
Jlch7
BNC
1
2
2
2
LVOUT_8
Jlch8
BNC
B2S J30
B2S J29
LVOUT_7
1
1
1
B2S J34
B2S
2
26
LVOUT_6
Jlch5
BNC
20
Jlch6
BNC
LVOUT_3
1
LVOUT_7
C113
LVOUT_8
LVOUT_2
22
100
R63
C112
270p 100V 1206
LVOUT_1
23
100
R65
IN5_0
100
R61
GND_PWR
24
C111
270p 100V 1206
IN5_1
25
1
IN6_0
J33
THSD
VDDP
VDDM
AGND
HVP
HVP
HVP
HVP
HVP
HVP_CW
IN4_1
IN4_0
IN3_1
IN3_0
IN2_2
IN2_0
IN1_1
IN1_0
C118 20p 1206
C117 20p 1206
C115 20p 1206
IN8_1
IN8_0
IN7_1
IN7_0
IN6_1
IN6_0
IN5_1
IN5_0
VDDP
30
29
VDDM
31
32
33
34
35
36
37 HVP
38
CK
J25
CON3
C83
C95
220n
CX7
HVP_CW
CK
LVOUT_4
TEST POINT
TP3
220n
C87
220n 100V 0805
220n 100V 0805
220n 100V 0805
220n
CX9
220n
1
Jlch3
BNC
Jlch4
BNC LVOUT_3
CX10
1
C101
220n
C85
C97
220n
HVP
DVDD
40
39
CW
41
42
STHV800
C114 20p 1206
IN6_1
1
IN3_0
270p 100V 1206
J27
B2S
IN7_0
28
270p 100V 1206
C116
100
R62
J31
B2S
IN2_1
J28
B2S
IN7_1
J32
B2S
XDCR_8
XDCR_7
XDCR_6
XDCR_5
HVM_CW
LVOUT_4
14
13
12
11
10
HVM
HVM
STHV800
IN2_0
HVM
D46
DFLS1200
8
9
HVM
HVM
HVM
IN8_0
HVP
220n
C86
7
6
5
DGND
DVDD
CW
CK
20p 1206
20p 1206
IN8_1
D44
DFLS1200
DFLS1200
D45
D39
DFLS1200
CX5
220n
220n
220n
HVM_CW
220n 100V 0805
220n 100V 0805
CX4
C91
HVM
C90
C88
IN1_1
DFLS1200
D43
D40
DFLS1200
DFLS1200
D41
CX3
GND_PWR
BNC
XDCR_7
XDCR_6
DFLS1200
D42
CX2
GND_PWR
XDCR_8
CW
HVM
CX1
IN4_1
THSD_EN
D38
DFLS1200
220n 100V 0805
220n 100V 0805
220n 100V 0805
XDCR_4
XDCR_3
IN4_0
DFLS1200
HVP
D37
DFLS1200
D36
3
4
IN3_1
THSD_EN
IN8_1
DFLS1200
D35
1 BNC
Jch3
BNC
C92
C76
20p 1206
20p 1206
LVOUT_2
LVOUT_1
2
IN8_1
IN8_0
IN7_1
2
1
Jch4
2
C75
C74
IN1_0
IN8_0
BNC
XDCR_3
1
IN7_1
XDCR_4
2
IN7_0
IN6_1
2
IN7_0
56
XDCR_2
55
XDCR_1
54
1
53
2
52
D32
DFLS1200
51
D34
50
BNC
49
1
Jch2
48
IN6_1
XDCR_2
1
DFLS1200
B2S J14
B2S J15
2
2
2
47
IN6_0
1
Jch1
1
B2S J16
B2S J17
46
IN6_0
XDCR_1
U8
DFLS1200
D31
J19
B2S
1
1
1
45
IN5_1
J21
B2S
C81
270p 100V 1206
44
IN5_0
1
DFLS1200
D33
J20
B2S
R56
100
1
Jlch2
BNC
2
IN5_1
HVM
HVP
J18
B2S
R55
100
43
IN5_0
IN4_1
IN4_0
IN3_1
C80
1
IN4_1
IN4_0
IN3_1
IN3_0
2
IN3_0
C77
270p 100V 1206
R54
100
2
IN2_1
R64
100
2
IN2_0
C84
270p 100V 1206
2
IN2_1
IN1_1
IN1_0
HVM
HVM_CW
DVDD
VDDP
VDDM
HVP
HVP_CW
2
IN2_0
IN1_1
IN1_0
HVM
HVM_CW
DVDD
VDDP
VDDM
HVP
HVP_CW
1
Jlch1
BNC
2
1
2
3
270p 100V 1206
D1, D2, D3 ,D4, D5, D6, D7, D8
diode DFLS1200 rs-code 708-2324
CX6
THSD_EN
R59
100k
THSD
R58
10k
C89
220n
1
2
3
CON3
J24
THSD
220n 100V 0805
DVDD
CX8
220n 100V 0805
J16, J17, J22, J23, J25, J26, J29 and J30 Details
Tyco Electronics (1-1337482-0) - RS (420-5401)
C77, C80, C111, C112 Details
DigiKey (490-1462-2-ND) Murata (GRM188R72A271KA01D)
J16, J17, J22, J23, J25, J26, J29 and J30 Details
Tyco Electronics (1-1337482-0) - RS (420-5401)
Schematics
AN4471
Figure 29. STEVAL-IME009V1- Part 8
1
27
2
2
2
2
2
2
GSPG2209141545SG
VSS
4
DocID026197 Rev 1
0R - N/A
0R - N/A
0R - N/A
0R - N/A
0R - N/A
0R - N/A
0R - N/A
0R - N/A
FPGA_GPIO0
FPGA_GPIO1
FPGA_GPIO2
FPGA_GPIO3
FPGA_GPIO4
FPGA_GPIO5
FPGA_GPIO6
FPGA_GPIO7
STM32_GPIO_8
STM32_GPIO_9
STM32_GPIO_10
STM32_GPIO_11
STM32_GPIO_12
STM32_GPIO_13
STM32_GPIO_14
R82
R83
R84
R85
R86
R88
R89
0R - N/A
0R - N/A
0R - N/A
0R - N/A
0R - N/A
0R - N/A
0R - N/A
FPGA_MCU_AWAKE
FPGA_MCU_DONE
MCU_FPGA_OSC_EN
MCU_FPGA_INIT_B
MCU_FPGA_MODE1
MCU_FPGA_PROG
MCU_FPGA_SUSPEND
FPGA_GPIO[0:7]
C122
100nF
FPGA_MCU_AWAKE
FPGA_MCU_DONE
MCU_FPGA_OSC_EN
MCU_FPGA_INIT_B
MCU_FPGA_MODE1
MCU_FPGA_PROG
MCU_FPGA_SUSPEND
FPGA_GPIO[0:7]
C123
1uF 6.3V
R66
4K7
MCU_3V3
RESET#
9
44
20
7
JNTRST
JTMS
JTCK
JTDO
JTDI
RESET#
R76
10k
R77
10k
R78
10k
MCU_3V3
STM32F103C8T6
VDDA
BOOT0
PB2-BOOT1
NRST
PC14-OSC32_IN
PC15-OSC32_OUT
PC13-Tamper-RTC
PA0-WKUP
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PA8
PA9
PA10
PA11
PA12
JTAG/SWD
R67
4K7
VDDA
BOOT0
BOOT1
3
4
2
10
STM32_GPIO_0
11
STM32_GPIO_1
12
STM32_GPIO_2
13
STM32_GPIO_3
14
STM32_GPIO_4
15
STM32_GPIO_5
16
STM32_GPIO_6
17
STM32_GPIO_7
29
STM32_GPIO_8
30
STM32_GPIO_9
USB_DISCONNECT31
32
DM_STM32
33
DP_STM32
MCU
MCU_3V3
R79
10k
R87
10k
JP1 JUMPER
2
1
2
4
6
8
10
1
3
5
7
9
MCU JTAG
SWD/JTAG
J40
Male Connector 2x5
Pitch 1.27 mm
SAMTEC FTSH-105-01-F-D-K
MCU_3V3
OSCIN
OSCOUT
5
6
C120
100nF
USER_LED1
USER_LED2
STM32_GPIO_10
STM32_GPIO_11
STM32_GPIO_12
STM32_GPIO_13
STM32_GPIO_14
FLASH_DQ3
FLASH_DQ2
FLASH_nS
FLASH_C
FLASH_DQ1
FLASH_DQ0
JNTRST
JTDO
JTDI
JTCK
JTMS
C119
100nF
MCU_3V3
18
19
41
42
43
45
46
21
22
25
26
27
28
STM32F103
PD0 OSC_IN
PD1 OSC_OUT
PB0
PB1
PB5
PB6
PB7
PB8
PB9
PB10
PB11
PB12
PB13
PB14
PB15
U10
40
39
38
37
34
C126
100nF
Place near MCU
PB4 JNTRST
PB3 JTDO
PA15 JTDI
PA14 JTCK
PA13 JTMS
FLASH_3V3
MCU_3V3
47
35
23
8
OPTIONAL FPGA CONFIGURATION SIGNALS
R69
R70
R71
R72
R73
R74
R75
R80
FLASH_DQ1
INT SPI FLASH
USB_DISCONNECT
USB_DM
USB_DP
FLASH_DQ1
D30
RED
FLASH_3V3
MCU_3V3
VSS_3
VSS_2
VSS_1
VSSA
STM32_GPIO_0
STM32_GPIO_1
STM32_GPIO_2
STM32_GPIO_3
STM32_GPIO_4
STM32_GPIO_5
STM32_GPIO_6
STM32_GPIO_7
N25Q032xSC
2
56
R128
FLASH DISABLE
Use J38 to enable/disable power for SPI flash device.
J38 must be open when using external spi flash device on
connecto J10. Default value closed.
DQ0
DQ1
C
nS
nW/Vpp/DQ2
nHOLD/DQ3
2
1
J38
VBAT
VDD_1
VDD_2
VDD_3
C123 Details:
Digikey (445-4998-2-ND) - TDK (C1005X5R0J105K)
Package 0402
5
6
1
3
7
U9
0R - N/A
VCC
OPTIONAL FPGA I/O
4k7
4k7
R131
C124
100nF
4k7
R132
8
FLASH_DQ0
FLASH_C
FLASH_nS
FLASH_DQ2
FLASH_DQ3
R130
R129
FLASH_3V3
1
24
36
48
FLASH_DQ0
FLASH_C
FLASH_nS
FLASH_DQ2
FLASH_DQ3
SPI FLASH
C121
100nF
MCU RESET
Not Assembly
RS (505-9186)
C&K (Y78B22110FP)
SW PUSHBUTTON-DPST
RST2
OSCIN
OSCOUT
R68 56R
R81 56R
Kingbright KP2012SURC
RS: 466-3829
Farnell: 8529930
LED 0805
RED
D25
FLASH READY
Kingbright KP2012SURC
RS: 466-3829
Farnell: 8529930
LED 0805
RED
D24
DOWNLOAD
USER_LED2
USER_LED1
Murata (CSTCE8M00G55-R0)
DigiKey (490-1195-1-ND)
RS: 283-961
Farnell: 1615352
8MHz
Y1
OSCILLATOR
8MHZ OSC
C125
100nF
RESET#
R133
10K
MCU_3V3
AN4471
Schematics
Figure 30. STEVAL-IME009V1- Part 9
GSPG2209141610SG
37/39
39
Revision history
6
AN4471
Revision history
Table 28. Document revision history
38/39
Date
Revision
22-Oct-2014
1
Changes
Initial release.
DocID026197 Rev 1
AN4471
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved
DocID026197 Rev 1
39/39
39