old 125 DownloadLink 4834

MLX90316
Rotary Position Sensor IC
Features and Benefits
Absolute Rotary Position Sensor IC
Simple & Robust Magnetic Design
Tria⊗is Hall Technology
Programmable Angular Range up to 360 Degrees
Programmable Linear Transfer Characteristic
Selectable Analog (Ratiometric), PWM, Serial Protocol
12 bit Angular Resolution
10 bit Angular Accuracy
40 bit ID Number
Single Die - SO8 Package RoHS Compliant
Dual Die (Full Redundant) - TSSOP16 Package RoHS Compliant
Applications
Absolute Rotary Position Sensor
Pedal Position Sensor
Throttle Position Sensor
Ride Height Position Sensor
Steering Wheel Position Sensor
Motor-shaft Position Sensor
Float-Level Sensor
Non-Contacting Potentiometer
Ordering Information
Part No.
Temperature Suffix
MLX90316
MLX90316
MLX90316
MLX90316
MLX90316
S (− 20°C to + 85°C)
E (− 40°C to + 85°C)
K (− 40°C to + 125°C)
E (− 40°C to + 85°C)
K (− 40°C to + 125°C)
Package Code
Option code
DC [SOIC-8]
DC [SOIC-8]
DC [SOIC-8]
GO [TSSOP-16]
GO [TSSOP-16]
-
1. Functional Diagram
!
µ
',
'*
'+
Tria is
'
"!
# $%
(
%
&
!)
Figure 1 − Block Diagram
3901090316
Rev. 001
Page 1 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
2. Description
The MLX90316 is a monolithic sensor IC featuring the Tria⊗is Hall technology. Conventional planar Hall
technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is Hall
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an
Integrated Magneto-Concentrator (IMC) which is deposited on the CMOS die (as an additional back-end
step).
The MLX90316 is only sensitive to the flux density coplanar with the IC surface. This allows the
MLX90316 with the correct magnetic circuit to decode the absolute rotary (angular) position from 0 to 360
Degrees. It enables the design of novel generation of non-contacting rotary position sensors that are
frequently required for both automotive and industrial applications.
In combination with the appropriate signal processing, the magnetic flux density of a small magnet
(diametral magnetization) rotating above the IC can be measured in a non-contacting way (Figure 2). The
angular information is computed from both vectorial components of the flux density (i.e. BX and BY)
MLX90316 produces an output signal proportional to the decoded angle. The output is selectable between
Analog, PWM and Serial Protocol.
α
Figure 2 − Typical application of MLX90316
3901090316
Rev. 001
Page 2 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
TABLE OF CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1
APPLICATIONS............................................................................................................................................ 1
ORDERING INFORMATION......................................................................................................................... 1
1.
FUNCTIONAL DIAGRAM...................................................................................................................... 1
2.
DESCRIPTION....................................................................................................................................... 2
3.
GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 5
4.
PINOUT.................................................................................................................................................. 5
5.
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 6
6.
DETAILED DESCRIPTION.................................................................................................................... 6
7.
MLX90316 ELECTRICAL SPECIFICATION......................................................................................... 9
8.
MLX90316 ISOLATION SPECIFICATION .......................................................................................... 10
9.
MLX90316 TIMING SPECIFICATION ................................................................................................. 10
10. MLX90316 ACCURACY SPECIFICATION ......................................................................................... 11
11. MLX90316 MAGNETIC SPECIFICATION .......................................................................................... 12
12. MLX90316 CPU & MEMORY SPECIFICATION ................................................................................. 12
13. MLX90316 END-USER PROGRAMMABLE ITEMS ........................................................................... 13
14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 14
14.1.
OUTPUT_MODE.........................................................................................................................................14
14.1.1. Analog Output Mode ............................................................................................................................14
14.1.2. PWM Output Mode...............................................................................................................................14
14.1.3. Serial Protocol Output Mode ...............................................................................................................14
14.2.
OUTPUT TRANSFERT CHARACTERISTIC .....................................................................................................15
14.2.1. CLOCKWISE Parameter......................................................................................................................15
14.2.2. LNR Parameters ...................................................................................................................................15
14.2.3. CLAMPING Parameters ......................................................................................................................16
14.2.4. DEADZONE Parameter .......................................................................................................................16
14.2.5. FHYST Parameter ................................................................................................................................16
14.3.
IDENTIFICATION ........................................................................................................................................16
14.4.
SENSOR FRONT-END .................................................................................................................................17
14.4.1. HIGHSPEED Parameter......................................................................................................................17
14.4.2. FILTER Parameter...............................................................................................................................17
14.4.3. AUTO_RG, RGThresL, RGThresH Parameters...................................................................................17
14.5.
DIAGNOSTIC ..............................................................................................................................................18
14.5.1. EEHAMHOLE Parameter ....................................................................................................................18
14.5.2. RESONFAULT Parameter ...................................................................................................................18
14.5.3. DACTHRES Parameter........................................................................................................................18
14.5.4. FORCERA75 Parameter ......................................................................................................................18
3901090316
Rev. 001
Page 3 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
14.6.
LOCK.........................................................................................................................................................18
14.6.1. MLXLOCK Parameter .........................................................................................................................18
14.6.2. LOCK Parameter .................................................................................................................................18
15. MLX90316 SELF DIAGNOSTIC.......................................................................................................... 19
16. SERIAL PROTOCOL........................................................................................................................... 21
16.1.
INTRODUCTION .........................................................................................................................................21
16.2.
SERIAL PROTOCOL MODE ...................................................................................................................21
16.3.
MOSI (MASTER OUT SLAVE IN) ...............................................................................................................21
16.4.
MISO (MASTER IN SLAVE OUT) ...............................................................................................................21
16.5.
/SS (SLAVE SELECT) .................................................................................................................................21
16.6.
MASTER START-UP ...................................................................................................................................21
16.7.
SLAVE START-UP ......................................................................................................................................21
16.8.
TIMING ......................................................................................................................................................22
16.9.
SLAVE RESET ............................................................................................................................................23
16.10. FRAME LAYER ..........................................................................................................................................23
16.10.1.
Command Device Mechanism ..........................................................................................................23
16.10.2.
Data Frame Structure ......................................................................................................................23
16.10.3.
Timing ..............................................................................................................................................23
16.10.4.
Data Structure ..................................................................................................................................24
16.10.5.
Angle Calculation.............................................................................................................................24
16.10.6.
Error Handling.................................................................................................................................24
17. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 25
17.1.
17.2.
17.3.
17.4.
ANALOG OUTPUT WIRING WITH THE MLX90316 IN SOIC PACKAGE .......................................................25
ANALOG OUTPUT WIRING WITH THE MLX90316 IN TSSOP PACKAGE ....................................................25
PWM LOW SIDE OUTPUT WIRING ............................................................................................................26
SERIAL PROTOCOL ....................................................................................................................................26
18. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS
WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 28
19. ESD PRECAUTIONS........................................................................................................................... 28
20. PACKAGE INFORMATION................................................................................................................. 29
20.1.
20.2.
20.3.
20.4.
20.5.
20.6.
SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................29
SOIC8 - PINOUT AND MARKING ...............................................................................................................29
SOIC8 - IMC POSITIONNING .....................................................................................................................30
TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................31
TSSOP16 - PINOUT AND MARKING ..........................................................................................................32
TSSOP16 - IMC POSITIONNING ................................................................................................................32
21. DISCLAIMER ....................................................................................................................................... 34
3901090316
Rev. 001
Page 4 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
3. Glossary of Terms − Abbreviations − Acronyms
Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G
TC: Temperature Coefficient (in ppm/Deg.C.)
NC: Not Connected
PWM: Pulse Width Modulation
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF)
ADC: Analog-to-Digital Converter
DAC: Digital-to-Analog Converter
LSB: Least Significant Bit
MSB: Most Significant Bit
DNL: Differential Non-Linearity
INL: Integral Non-Linearity
RISC: Reduced Instruction Set Computer
ASP: Analog Signal Processing
DSP: Digital Signal Processing
ATAN: trigonometric function: arctangent (or inverse tangent)
IMC: Integrated Magneto-Concentrator (IMC)
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
EMC: Electro-Magnetic Compatibility
4. Pinout
Pin #
SOIC-8
TSSOP-16
Analog / PWM
Serial Protocol
Analog / PWM
Serial Protocol
1
Vdd
Vdd
Vdig_1
Vdig_1
2
Test 0
Test 0
Vss_1 (Ground_1)
Vss_1 (Ground_1)
3
Not Used
/SS
Vdd_1
Vdd_1
4
Not Used
SCLK
Test0_1
Test 01
5
Out
MOSI / MISO
Not Used_2
/SS_2
6
Test 1
Test 1
Not Used_2
SCLK_2
7
Vdig
Vdig
Out_2
MOSI_2 / MISO_2
8
Vss (Ground)
Vss (Ground)
Test1_2
Test 12
9
Vdig_2
Vdig_2
10
Vss_2 (Ground_2)
Vss_2 (Ground_2)
11
Vdd_2
Vdd_2
12
Test0_2
Test 02
13
Not Used_1
/SS_1
14
Not Used_1
SCLK_1
15
Out_1
MOSI_1 / MISO_1
16
Test1_1
Test 11
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the Ground (see
section 16).
3901090316
Rev. 001
Page 5 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
5. Absolute Maximum Ratings
Parameter
Value
Supply Voltage, VDD (overvoltage)
+ 20 V
Reverse Voltage Protection
− 10 V
Positive Output Voltage
+ 10 V
+ 14 V (200 s max − TA = + 25°C)
Output Current (IOUT)
± 30 mA
Reverse Output Voltage
− 0.3 V
Reverse Output Current
− 50 mA
Operating Ambient Temperature Range, TA
− 40°C … + 150°C
Storage Temperature Range, TS
− 40°C … + 150°C
Magnetic Flux Density
± 700 mT
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability.
6. Detailed Description
As described on the block diagram (Figure 1), the magnetic flux density parallel to the IC surface (i.e. B//)
is sensed through the Tria⊗is sensor front-end. This front-end consists into two orthogonal pairs (for
each of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (blue
area on Figure 3) and an Integrated Magneto-Concentrator (IMC − yellow disk on Figure 3).
Figure 3 − Tria⊗is sensor front-end (4 Hall plates + IMC disk)
Both components of the applied flux density B// are measured individually i.e. BX// and BY//. Two orthogonal
components (respectively BX⊥ and BY⊥) proportional to the parallel components (respectively BX// and BY//)
are induced through the IMC and can be measured by both respective pairs of conventional planar Hall
plates as those are sensitive to the flux density applied orthogonally to them and the IC surface.
While a magnet (diametrally magnetized) rotates above the IC as described on Figure 2, the sensing
stage provides two differential signals in quadrature (sine and cosine − Figures 4 & 5).
3901090316
Rev. 001
Page 6 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
400
300
BX & BY (G)
200
100
0
-100
-200
-300
-400
0
90
180
270
360
450
Alpha (Degree)
540
BX
630
720
BY
Figure 4 − Magnetic Flux Density − BX ∝ cos(α) & BY ∝ sin(α)
2000
1500
VX & VY (mV)
1000
500
0
-500
-1000
-1500
-2000
0
90
180
270
360
450
Alpha (Degree)
VX
540
630
720
VY
Figure 5 − Tria⊗is sensor front-end − Output signals − VX ∝ BX ∝ cos(α) & VY ∝ BY ∝ sin(α)
Those Hall signals are processed through a fully differential analog chain featuring the classic offset
cancellation technique (Hall plate quadrature spinning and chopper-stabilized amplifier).
The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose
primary function is the extraction of the angular position from the two raw signals (after so-called front-end
compensation steps) through the following operation:
α = ATAN
3901090316
Rev. 001
VY
VX
Page 7 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is
stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also
the self-diagnostic modes.
In the MLX90316, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a
CoRDiC algorithm).
Due to the fact that the ″ATAN″ operation is performed on the ratio ″VY/VX″, the angular information is
intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or ageing effects)
affecting both signals. This feature allows therefore an improved thermal accuracy vs. rotary position
sensor based on conventional linear Hall sensors.
In addition to the improved thermal accuracy, the realized rotary position sensor is capable of measuring a
complete revolution (360 Degrees) and the linearity performances are excellent taking into account typical
manufacturing tolerances (e.g. relative placement between the Hall IC and the magnet).
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the
target transfer characteristic and it is provided at the output(s) as:
•
•
•
an analog output level through a 12 bit DAC followed by a buffer
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz)
a digital Serial Protocol (SP − 14 bits computed angular information available)
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary
position sensor output transfer characteristic:
Vout(α) = ClampLo
Vout(α) = Voffset + Gain × α
Vout(α) = ClampHi
for α ≤ αmin
for αmin ≤ α ≤ αmax
for α ≥ αmax
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.
The linear part of the transfer curve can be adjusted through either a 2 point or a 3 point calibration
depending on the linearity requirement.
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).
The programming steps do not require any dedicated pins. The operation is done using the supply and
output nodes of the IC. The programming of the MLX90316 is handled at both engineering lab and
production line levels by the Melexis Programming Unit PTC-04 with the dedicated MLX90316
daugtherboard and software tools (DLL − User Interface).
3901090316
Rev. 001
Page 8 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
7. MLX90316 Electrical Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E or K).
Parameter
Nominal Supply Voltage
Supply Current
(1)
Symbol
Test Conditions
Vdd
Idd
Min
Typ
Max
4.5
5
5.5
Output Short Circuit Current
Iout
Ishort
10
mA
Fast mode# &
16
mA
Analog Output mode
-8
8
mA
PWM Output mode
-20
20
mA
Vout = 0 V
12
Vout = 5 V
12
15
mA
22
30
mA
4
10
∞
kΩ
4
5.6
Vout = 14 V (TA = 25°C)
Output Load
RL
Pull-down to Ground
(2)
Pull-up to 5V (3)
Saturation Output Level
Diagnostic Output Level
Vsat_lo
Pull-up load RL > 10 k
Vsat_hi
Pull-down load RL > 10 k
Diag_lo
Pull-down load RL > 10 k
mA
∞
(4)
3
96
kΩ
%Vdd
%Vdd
1
Pull-up load RL > 10 k
%Vdd
1.5
Pull-down load RL > 10 k
97
Pull-up load RL > 10 k
98
Clamp_lo
Programmable
0
100
%Vdd (5)
Clamp_hi
Programmable
0
100
%Vdd (5)
Diag_hi
Clamped Output Level
V
Slow mode# &
,
,
Output Current
Units
%Vdd
(1) For the dual version, the supply current is multiplied by 2
(2) See section 14.1 for details concerning Slow and Fast mode
(3) Applicable for output in Analog and PWM (Open-Drain) modes
(4) RL < ∞ for output in PWM mode
(5) Clamping levels are limited by Vsat_lo and Vsat_hi
3901090316
Rev. 001
Page 9 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
8. MLX90316 Isolation Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E or K). Only valid for the package code GO i.e. dual die version.
Parameter
Symbol
Isolation Resistor
Test Conditions
Min
Between 2 dies – TSSOP package
4
Typ
Max
Units
M
9. MLX90316 Timing Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E or K).
Parameter
Main Clock Frequency
Symbol
Ck
Test Conditions
Min
MHz
Fast mode # &
20
MHz
Slow mode # &
600
s
200
s
-
Fast mode # &
Ts
Slow mode # &, Filter=5 # &
-
.
400
Fast mode # &, Filter=0 # &
-
Watchdog
Wd
Start-up Cycle
Tsu
Analog Output Slew Rate
PWM Frequency
Units
7
-
Step Response Time
Max
Slow mode #-&
-
Sampling Rate
Typ
.
Slow and Fast mode #-&
Cout = 42 nF
FPWM
4
ms
600
s
5
ms
15
ms
200
100
V/ms
1000
Hz
(6) See section 14.1 for details concerning Slow and Fast mode
(7) See section 14.4 for details concerning Filter parameter
3901090316
Rev. 001
Page 10 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
10.
MLX90316 Accuracy Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E or K).
All the errors expressed in Deg. Can be converted in %Vdd or %dc by using the following relationship:
Err (%Vdd) = Err (Deg) × Output Span (%Vdd) / Angular Span (Deg) + Err_DAC + Err_OutBuf
Err (%DC) = Err (Deg) × Output Span (%DC) / Angular Span (Deg)
Err (Serial Protocol) = Err (Deg)
Parameter
Symbol
ADC Resolution
RADC
Test Conditions
Min
Typ
Max
Units
Slow – 15 bits ADC (14 + sign)
0.005
Deg/LSB15
Fast – 14 bits ADC (13 + sign)
0.01
Deg/LSB14
Thermal Offset Drift #1
Thermal Offset Drift at the DSP
input (excl. DAC and output stage)
-60
+60
LSB15 (9)
Thermal Offset Drift #2
Thermal Offset Drift of the DAC
and Output Stage
- 0.2
+ 0.2
%Vdd
Only for the Analog Output
Analog Output Resolution
RDAC
12 bits DAC
0.025
%Vdd/LSB
(Theoretical – Noise free)
INL
-4
DNL
0.05
Output stage Noise
Noise pk-pk
1
+4
LSB
2
LSB
0.05
(10)
RG = 9, Slow mode, Filter=5
0.03
0.06
Deg
RG = 9, Fast mode, Filter=0
0.1
0.2
Deg
0
0.1
%
Ratiometry Error
-0.1
PWM Output Resolution
RPWM
% Vdd
12 bits
0.025
%DC/LSB
(Theoretical – Jitter free)
PWM
Jitter(11)
Serial Protocol Output
Resolution
JPWM
fPWM = 250 Hz
RSP
14 bits – 360 Deg. mapping
0.2
0.022
%DC
Deg/LSB
(Theoretical – Jitter free)
12
Intrinsic Linearity Error( )
Le
360 Deg
-2
2
Deg
(9) Thermal Offset Drift #1 yields to max. ± 0.3 Deg. drift for the computed angular information (output of
the DSP).
(10) The application diagram used is described in the recommended wiring. For detailed information, refer
to section filter in application mode.
(11) Jitter is defined by ± 3 for 1000 acquisitions.
(12) The Intrinsic Linearity Error refers to the IC itself (offset, sensitivity mismatch, orthogonality) taking into
account an ideal rotating field. Once associated to a practical magnetic construction and the associated
mechanical and magnetic tolerances, the output linearity error increases. However, it can be improved
with the 2 point or 3 point end-user calibration that is available on the MLX90316.
3901090316
Rev. 001
Page 11 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
11.
MLX90316 Magnetic Specification
DC Operating Parameters at Vdd = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (S, E or K).
Parameter
Magnetic Flux Density
Symbol
Test Conditions
B
Min
20
Typ
50
Magnet Temperature Coefficient
TCm
-2400
(13) Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
12.
Max
13
Units
70( )
mT
0
ppm/°C
MLX90316 CPU & Memory Specification
The DSP is based on a 16 bit RISC / $!
Parameter
Symbol
01(CPU provides 5 Mips while running at 20 MHz.
Test Conditions
Min
Typ
Max
Units
ROM
10
KB
RAM
256
B
EEPROM
128
B
3901090316
Rev. 001
Page 12 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
13.
MLX90316 End-User Programmable Items
Comments
Parameter
Output stage Mode
PWMPOL1
PWM_Freq
CLOCKWISE
DP
LNR_S0
LNR_A_X
LNR_A_Y
LNR_A_S
LNR_B_X
LNR_B_Y
LNR_B_S
LNR_C_X
LNR_C_Y
LNR_C_S
CLAMP_HIGH
CLAMP_LOW
DEADZONE
FHYST
MELEXISID1
MELEXISID2
MELEXISID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
HIGHSPEED
FILTER
AUTO_RG
RGThresL
RGThresH
EEHAMHOLE
RESONFAULT
DACTHRES
FORCERA75
MLXLOCK
LOCK
CRC
3901090316
Rev. 001
Define the output stage mode
PWM Polarity
PWM Frequncy
Discontinuity Point
Initial Slope
AX Coordinate
AY Coordinate
AS Coordinate
BX Coordinate
BY Coordinate
BS Coordinate
CX Coordinate
CY Coordinate
CS Coordinate
Clamping_High
Clamping_Low
Automatically computed and programmed by the IC
Page 13 of 34
# bit
16
1
16
1
15
16
16
16
16
16
16
16
16
16
16
16
16
8
8
16
16
16
8
16
16
1
8
1
4
4
16
1
8
1
1
1
16
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
14.
Description of End-User Programmable Items
14.1. Output_Mode
The MLX90316 output type is defined by the Ouput_Mode parameter.
Parameter
Output_Mode
Value
Analog
PWM NMOS
Serial
Unit
14.1.1. Analog Output Mode
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration
allowed the use of a pull-up or pull-down resistor.
14.1.2. PWM Output Mode
When PWM NMOS is selected, the output signal is a PWM modulation. The output stage is an open drain
NMOS transistor, to be used with a pull-up resistor (low side).
The PWM polarity is selected by the PWMPOL1 parameter:
•
•
PWMPOL1 = 0 for a low level at 100%
PWMPOL1 = 1 for a high level at 100%
The PWM frequency is selected by the PWM_Freq parameter.
Parameter
Value
PWMPOL1
0
1
PWM_Freq
100 … 1000
Unit
Hz
14.1.3. Serial Protocol Output Mode
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.
See the dedicated Serial Protocol section for a full description (Section 17).
3901090316
Rev. 001
Page 14 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
14.2. Output Transfert Characteristic
Parameter
CLOCKWISE
Value
Unit
CCW = 0
CW = 1
DP
0 … 359.9999
Deg.
LNR_A_X
LNR_B_X
LNR_C_X
0 … 359.9999
Deg.
LNR_A_Y
LNR_B_Y
LNR_C_Y
0 … 100
%
LNR_S0
LNR_A_S
LNR_B_S
LNR_C_S
0 … 64
%/Deg.
CLAMP_LOW
0 … 100
%
CLAMP_HIGH
0 … 100
%
DEADZONE
FHYST
0 … 359.9999
Deg.
0 … 255
LSB
14.2.1. CLOCKWISE Parameter
The CLOCKWISE parameter defines the magnet rotation direction.
•
•
CCW is the defined by the 1-4-5-8 pin order direction for the SOIC8 package and 1-8-9-16 pin
order direction for the TSSOP16 package.
CW is defined by the reverse direction: 8-5-4-1 pin order direction for the SOIC8 and 16-9-8-1 pin
order direction for the TSSOP16 package.
Refer to the drawing in the IMC positioning sections (Section 19.3 and 19.6).
14.2.2. LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angle and the output signal.
The shape of the 90316 transfer function from the digital angle value to the output voltage is described by
the drawing below. Six segments can be programmed but the clamping levels are necessarily flat.
Two, three, or even five calibration points are then available, reducing the overall non-linearity of the IC by
almost an order of magnitude each time. Three or five point calibration will be preferred by customers
looking for excellent non-linearity figures. Two-point calibrations will be preferred by customers looking for
a cheaper calibration set-up and shorter calibration time.
3901090316
Rev. 001
Page 15 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
100 %
Clamping High
CLAMPHIGH
C
Slope LNR_C_S
LNR_C_Y
B
Slope LNR_B_S
LNR_B_Y
A
Slope LNR_A_S
LNR_A_Y
Slope LNR_S0
Clamping Low
CLAMPLOW
0%
LNR_A_X
0
LNR_B_X
LNR_C_X
360
(Deg.)
14.2.3. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum
output voltage level. Both parameters have 16 bits of adjustment with a resolution of approximately 0.076
mV.
14.2.4. DEADZONE Parameter
The dead zone is defined as the angle window between 0 and 359.9999.
When the digital angle lies in this zone, the IC is in fault mode.
14.2.5. FHYST Parameter
The FHYST parameter is an hysteresis filter. The output value of the IC is not updated when the digital
step is smaller than the programmed FHYST parameter value. The output value is modified when the
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the
noise level.
14.3. Identification
Parameter
Value
MELEXSID1
MELEXSID2
MELEXSID3
0 … 65535
0 … 65535
0 … 65535
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
0 … 255
0 … 65535
0 … 65535
Unit
Identification number: 40 bits freely useable by Customer for traceability purpose.
3901090316
Rev. 001
Page 16 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
14.4. Sensor Front-End
Parameter
HIGHSPEED
FILTER
Value
Unit
0 = Slow mode
1 = Fast mode
0…5
AUTO_RG
0 = disable
1 = enable
RGThresL
0 … 15
RGThresH
0 … 15
14.4.1. HIGHSPEED Parameter
The HIGHSPEED parameter defined the main frequency for the DSP.
• HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.
• HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.
For a better accuracy, the Slow mode must be enable.
14.4.2. FILTER Parameter
The MLX90316 includes a programmable low-pass filter controlled with the Filter parameter. 6 values are
possible described in the next table.
Filter Value
Attenuation
Speed
Response time
(dB)
Mode
(ms)
Low
High
Low
High
Low
High
Low
High
Low
High
2.22
0.75
3
1
3.75
1.25
3.75
1.25
4.5
1.5
0
na
1
2.9
2
3.6
3
5
4
6.1
5
7
14.4.3. AUTO_RG, RGThresL, RGThresH Parameters
AUTO_RG parameter enables the automatic gain control to optimize the ADC span. RGThresL defines
the minimum RG value while RGThresH defines the maximum RG value. When AUTO_RG is enabled,
the optimized value for RGThresL is 0.
3901090316
Rev. 001
Page 17 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
14.5. Diagnostic
Parameter
Value
EEHAMHOLE
0
3131h
RESONFAULT
0
1
DACTHRES
0 … 255
FORCERA75
0
1
Unit
14.5.1. EEHAMHOLE Parameter
The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is
detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory
recovery)
14.5.2. RESONFAULT Parameter
This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the
parameter is to 1. By default, the parameter is set to 0.
14.5.3. DACTHRES Parameter
The DACTHRES is the high threshold of the DAC monitor. The DAC monitor senses an output DAC
voltage for one fixed code. The table hereafter highlights the effect of the DACTHRES on the output Vs
supply voltage.
14.5.4. FORCERA75 Parameter
This parameter forces the circle radius adjustment to 75% instead of 90% when the parameter is set to 1.
By default, the parameter is set to 0.
14.6. Lock
Parameter
Value
MLXLOCK
0
1
LOCK
0
1
Unit
14.6.1. MLXLOCK Parameter
MLXLOCK locks all the parameters set by Melexis.
14.6.2. LOCK Parameter
LOCK locks all the parameters set by the user.
3901090316
Rev. 001
Page 18 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
15.
MLX90316 Self Diagnostic
The MLX90316 provides numerous self-diagnostic features. Those features increase the robustness of the IC
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure
modes (“fail-safe”).
ROM CRC Error at start up
(64 words including Intelligent
Watch Dog - IWD)
ROM CRC Error (Operation Background task)
RAM Test Fail (Start up)
Action
CPU Reset # &
Effect on Outputs
Diagnostic low #'+&
Enter Endless Loop:
- Progress (watchdog
Acknowledge)
- Set Outputs in Diagnostic low
CPU Reset
Immediate Diagnostic low
'*
Diagnostic low
Calibration Data CRC Error
(Start-Up)
Hamming Code Recovery
Hamming Code Recovery Error
(Start-Up)
Calibration Data CRC Error
(Operation - Background)
Dead Zone
CPU Reset
Immediate Diagnostic low
CPU Reset
Immediate Diagnostic low
Set Outputs in Diagnostic low.
Normal Operation until the “dead
zone” is left.
Set Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Immediate Diagnostic low
ADC Clipping
(ADC Output is 0000h or
7FFFh)
Radius Overflow ( > 100% ) or
Radius Underflow
( < 50 % )
Fine Gain Clipping
(FG < 0d or > 63d)
Rough Offset Clipping
(RO is < 0d or > 127d)
Rough Gain Clipping
(RG < RGTHRESLOW or RG >
RGTHRESHIGH)
DAC Monitor (Digital to Analog
converter)
ADC Monitor (Analog to Digital
converter)
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
Remark
All the outputs are already
in Diagnostic low - (start-up)
All the outputs are already
in Diagnostic low** ** (startup)
Start-Up Time is increased
by 3 ms if successful
recovery
Immediate recovery if the
“dead zone” is left
Immediate Diagnostic low
Immediate Diagnostic low
(50 % - 100 %)
No magnet / field too high
Immediate Diagnostic low
Immediate Diagnostic low
Immediate Diagnostic low
Immediate Diagnostic low
Immediate Diagnostic low
ADC Inputs are Shorted
MLX90316 Fault Mode continue…
3901090316
Rev. 001
Page 19 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
…MLX90316 Fault Mode
Fault Mode
Undervoltage Mode
Action
At Start-Up, wait Until Vdd > 3V.
During operation, CPU Reset after
3 ms debouncing
Effect on Outputs
- Vdd < POR level =>
Outputs high impedance
Remark
Firmware Flow Error
CPU Reset
- POR level < Vdd < 3 V =>
Outputs in Diagnostic low.
Immediate Diagnostic low
Read/Write Access out of
physical memory
Write Access to protected area
(IO and RAM Words)
Unauthorized entry in
“SYSTEM” Mode
Vdd > 7 V
CPU Reset
Immediate Diagnostic low
Intelligent Watchdog
(Observer)
100% Hardware detection.
CPU Reset
Immediate Diagnostic low
100% Hardware detection.
CPU Reset
Immediate Diagnostic low
100% Hardware detection.
Set Output High Impedant (Analog)
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High#'+&
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
100% Hardware detection.
Vdd > 9.4 V
IC is switched off (internal supply)
CPU Reset on recovery
Broken Vss
CPU Reset on recovery
Broken Vdd
CPU Reset on recovery
100% Hardware detection.
100% Hardware detection.
Pull down load < 10 k to
meet Diag Lo spec < 2%
Vdd
100% Hardware detection.
Pull up load to Vpullup> 8 V
to meet Diag Hi spec > 96%
Vdd
#'*& CPU Reset means:
1. Core Reset (same as Power-On-Reset). It induces a typical start up time.
2. Periphery Reset (same as Power-On-Reset)
3. Fault Flag/Status Lost
#'+& Refer to Section 7 for the Diagnostic Output Level specifications
3901090316
Rev. 001
Page 20 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
16.
Serial Protocol
16.1. Introduction
The MLX90316 features a digital Serial Protocol mode. The MLX90316 is considered as a Slave node.
The serial protocol of the MLX90316 is a three wires protocol (/SS, SCLK, MOSI-MISO):
•
•
•
/SS pin is a 5 V tolerant digital input
SCLK pin is a 5 V tolerant digital input
MOSI-MISO pin is a 5 V tolerant open drain digital input/output
The basic knowledge of the standard SPI specification is required for the good understanding of the
present section.
16.2. SERIAL PROTOCOL Mode
•
•
CPHA = 1
CPOL = 0
even clock changes are used to sample the data
active-Hi clock
The positive going edge shifts a bit to the Slave’s output stage and the negative going edge samples the
bit at the Master’s input stage.
16.3. MOSI (Master Out Slave In)
The Master sends a command to the Slave to get the angle information.
16.4. MISO (Master In Slave Out)
The MISO of the slave is an open-collector stage. Due to the capacitive load (TBD) a >1 kΩ pull-up is
used for the recessive high level (in fast mode). Note that MOSI and MISO use the same physical pin of
the MLX90316.
16.5. /SS (Slave Select)
The /SS pin enables a frame transfer (if CPHA = 1). It allows a re-synchronisation between Slave and
Master in case of communication error.
16.6. Master Start-up
/SS, SCLK, MISO can be undefined during the Master start-up as long as the Slave is re-synchronized
before the first frame transfer.
16.7. Slave Start-up
The slave start-up (after power-up, or an internal failure) takes 16 ms. Within this time /SS and SCLK is
ignored by the Slave. The first frame can therefore be sent after 16 ms. MISO is Hi-Z (i.e. Hi-impedant)
until the Slave is selected by its /SS input. MLX90316 will cope with any signal from the Master while
starting up.
3901090316
Rev. 001
Page 21 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
16.8. Timing
To synchronize communication, the Master deactivates /SS high for at least t5 (1.5 ms). In this case, the
Slave will be ready to receive a new frame. The Master can re-synchronize at any time, even in the middle
of a byte transfer.
Note:
Any time shorter than t5 leads to an undefined frame state, because the Slave may or may not
have seen /SS inactive.
t6 t1
t1
t7 t1
t1
t1
t2
t4
t9
t5
SCLK
MOSIMISO
/SS
Byte 0
Timings
Min(15)
Byte 1
Byte 2
Byte 3
Max
t1
2.3 s / 6.9 s
-
t2
12.5 s / 37.5 s
-
t4
2.3 s / 6.9 s
-
t5
300 s / 1500 s
-
t5
0 s
t6
2.3 s / 6.9 s
-
t7
15 s / 45 s
-
t8
0 s
t9
-
<1 s
TStartUp
-
< 10 ms / 16 ms
-
-
Byte 9
Remarks
No capacitive load on MISO.
t1 is the minimum clock period for any
bits within a byte.
t2 the minimum time between any other
byte
Time between last clock and
/SS=high=chip de-selection
Minimum /SS = Hi time where it’s
guaranteed
that
a
frame
resynchronizations will be started.
Maximum /SS = Hi time where it’s
guaranteed that NO frame resynchronizations will be started.
The time t6 defines the minimum time
between /SS = Lo and the first clock edge
t7 is the minimum time between the
StartByte and the Byte0
the minimum time where SS is
deactivated between a ID Byte and a
StartByte
Maximum time between /SS = Hi and
MISO Bus High-Impedance
Minimum time between reset-inactive
and any master signal change
(15) Timings shown for oscillator base frequency of 20MHz (Fast Mode) / 7MHz (Slow Mode).
3901090316
Rev. 001
Page 22 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
16.9. Slave Reset
On internal soft failures the Slave resets after 1 second or after an (error) frame is sent. On internal hard
failures the Slave resets itself. In that case, the Serial Protocol will not come up. The serial protocol link is
enable only after the completion of the first synchronization (the Master deactivates /SS for at least t5).
16.10. Frame Layer
16.10.1. Command Device Mechanism
Before each transmission of a data frame, the Master should send a byte AAh to enable a frame transfer.
The latch point for the angle measurement is at the last clock of the first data frame byte.
Latch point
/SS
SCLK
MOSI
A
A
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
A
A
F
F
F
F
MISO
F
F
F
F
D
A
T
A
F
F
F
F
F
F
F
F
F
F
F
F
D
Timing diagram
16.10.2. Data Frame Structure
A data frame consists of 10 bytes:
•
•
•
•
2 start bytes (AAh followed by FFh)
2 data bytes (DATA16 – most significant byte first)
2 inverted data bytes (/DATA16 - most significant byte first)
4 all-Hi bytes
The Master should send AAh followed by 9 bytes FFh. The Slave will answer with two bytes FFh followed
by 4 data bytes and 4 bytes FFh.
16.10.3. Timing
There are no timing limits for frames: a frame transmission could be initiated at any time. There is no interframe time defined.
3901090316
Rev. 001
Page 23 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
16.10.4. Data Structure
The DATA16 could be a valid angle, or an error condition. The two meanings are distinguished by the
LSB.
DATA16: Angle A[13:0] with (Angle Span)/214
Most Significant Byte
MSB
A13 A12 A11 A10 A9 A8 A7
DATA16: Error
MSB
E15
Most Significant Byte
E14
E13
E12
E11
BIT
E0
E1
E2
E3
E4
NAME
0
1
F_ADCMONITOR
F_ADCSATURA
F_RGTOOLOW
E5
E6
E7
F_MAGTOOLOW
F_MAGTOOHIGH
F_RGTOOHIGH
E8
E9
E10
E11
E12
E13
E14
E15
F_FGCLAMP
F_ROCLAMP
F_MT7V
F_DACMONITOR
-
E10
E9
LSB
A6
LSB
E8
MSB
A5
Less Significant Byte
A4
MSB
E7
A3
A2
A1
A0
0
LSB
1
E1
LSB
E0
Less Significant Byte
E6
E5
E4
E3
E2
ADC Failure
ADC Saturation (Electrical failure or field too strong)
Analog Gain Below Trimmed Threshold
(Likely reason : field too weak)
Magnetic Field Too Weak
Magnetic Field Too Strong
Analog Gain Above Trimmed Threshold
(Likely reason : field too strong)
Never occurring in serial protocol
Analog Chain Rough Offset Compensation : Clipping
Device Supply VDD Greater than 7V
Never occurring in serial protocol
16.10.5. Angle Calculation
All communication timing is independent (asynchronous) of the angle data processing. The angle is
calculated continuously by the Slave:
•
•
Slow Mode: every 1.5 ms at most.
Fast Mode: every 350 s at most.
The last angle calculated is hold to be read by the Master at any time. Only valid angles are transferred by
the Slave, because any internal failure of the Slave will lead to a soft reset.
16.10.6. Error Handling
In case of any errors listed in section 16.10.4, the Serial protocol will be initialized and the error condition
can be read by the master. The slave will perform a soft reset once the error frame is sent.
In case of any other errors (ROM CRC error, EEPROM CRC error, RAM check error, intelligent watchdog
error…) the Slave’s serial protocol is not initialized. The MOSI/MISO pin will stay Hi-impedant (no error
frame are sent).
3901090316
Rev. 001
Page 24 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
17.
Recommended Application Diagrams
17.1. Analog Output Wiring with the MLX90316 in SOIC Package
ECU
5V
Vdd
8
1
C1
100nF
Vdd
GND
Vss
MLX90316
Test 1
C2
100nF
Vdig
Test 2
NotUsed
Out1
C3
100nF
Output
5
4
NotUsed
ADC
R1
10K
C4
4.7nF
Recommended wiring for the MLX90316 in SOIC8 package.
17.2. Analog Output Wiring with the MLX90316 in TSSOP Package
ECU
VDD1
Vdd1
GND1
GND1
GND1
Vdig1
Vss1
C3
100nF
16
1
C1
100nF
C2
100nF
C7
4.7nF
R1
10K
Output1
Out1
Vdd1
C4
100nF
MLX90316
Vdd2
GND2
Vdd2
Vss2
Vdig2
C6
100nF
ADC
9
8
Out2
VDD2
GND2
GND2
C5
100nF
Output2
R2
10K
C8
4.7nF
Recommended wiring for the MLX90316 in TSSOP16 package (dual die).
3901090316
Rev. 001
Page 25 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
17.3. PWM Low Side Output Wiring
ECU
5V
Vdd
8
1
C1
100nF
Vdd
GND
Vss
MLX90316
Test 1
C2
100nF
Vdig
Test 2
NotUsed
PWM
TIMER
C3
4.7nF
R1
1K
Output
5
4
NotUsed
5V
PWM
C4
4.7nF
Recommended wiring for a PWM Low Side Output configuration.
17.4. Serial Protocol
1K
3.3V/5V
SPI MASTER
90316
MOSI
SCLK
/SS
OUT1
Connector
if needed
MISO
SPI SLAVE INTERFACE
CPU
MOSI
MISO
OUT2
OUT3
SCLK
/SS
MLX9031 − Single Die − Serial Protocol Mode
3901090316
Rev. 001
Page 26 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
1K
3.3V 5V
SPI MASTER
90316 #1
LINE
OUT1
Connector
MISO
MOSI
SCLK1
/SS1
SCLK2
/SS2
SPI SLAVE INTERFACE
CPU
MOSI
MISO
SCLK1
OUT2
/SS1
OUT3
SCLK
/SS
SCLK2
/SS2
90316 #2
OUT1
SPI SLAVE INTERFACE
CPU
MOSI
MISO
OUT2
OUT3
SCLK
/SS
MLX90316 Dual Die − Serial Protocol Mode (Dual Slave)
3901090316
Rev. 001
Page 27 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
18. Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)
Melexis Working Instruction 341901308
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Melexis Working Instruction 341901309
Iron Soldering THD’s (Through Hole Devices)
•
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Melexis Working Instruction 341901309
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
Melexis Working Instruction 3304312
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
For more information on the lead free topic please see quality page at our website:
http://www.melexis.com/quality.asp
19.
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901090316
Rev. 001
Page 28 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
20.
Package Information
20.1. SOIC8 - Package Dimensions
1.27 TYP
NOTES:
3.81
5.84
3.99** 6.20**
4.80
4.98*
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion
(shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
1.40
1.55
1.55
1.73
0.35
0.49***
0.19
0.25
0°
8°
0.127
0.250
0.41
0.89
8
Out
MOSI/MISO
Test 1
Vdig
Vss
20.2. SOIC8 - Pinout and Marking
Marking :
Part Number MLX90316 (5 digits)
Die Version (1 digit)
5
90316
90316B
123456
YYWW
B
123456
YY
Lot number (6 digits)
WW
Week Date code (2 digits)
Year Date code (2 digits)
3901090316
Rev. 001
SCLK
/SS
Test 0
4
Vdd
1
Page 29 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
20.3. SOIC8 - IMC Positionning
CW
8
7
6
5
CCW
COS
1.25
1.65
1
2
3
0.46 +/- 0.06
4
1.96
2.26
SIN
Angle detection MLX90316 SOIC8
0 Deg.
N
6
S
1
7
2
3
5
8
7
4
1
2
2
3
5
S
3
4
270 Deg.
5
8
7
6
5
4
1
2
N3
4
S
3901090316
Rev. 001
6
N
1
7
S
180 Deg.
8
6
N
8
90 Deg.
Page 30 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
20.4. TSSOP16 - Package Dimensions
0.65 TYP
12O TYP
0.20 TYP
0.09 MIN
1.0 DIA
4.30
4.50**
6.4 TYP
0.09 MIN
1.0
12O TYP
1.0
0.50
0.75
0O
8O
1.0 TYP
0.85
0.95
4.90
5.10*
1.1 MAX
0.19
0.30***
0.09
0.20
0.05
0.15
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at
maximum material condition. Dambar cannot be located on the lower radius of the foot.
3901090316
Rev. 001
Page 31 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
20.5. TSSOP16 - Pinout and Marking
16
1
Vdig_1
Vdd_1
Test0_1
NotUsed_2
Test1_1
Out_1/MOSI/MISO_1
90316B
123456
YYWW
Vss_1
NotUsed_1
NotUsed_1
Test0_2
Out_2/MOSI/MISO_2
Test1_2
Vss_2
Vdig_2
9
Vdd_2
8
NotUsed_2
Marking :
Part Number MLX90316 (5 digits)
Die Version (1 digit)
90316
B
123456
YY
Lot number (6 digits)
WW
Week Date code (2 digits)
Year Date code (2 digits)
20.6. TSSOP16 - IMC Positionning
CW
COS 2
16
9
Die 1
Die 2
SIN 2
SIN 1
0.30 +/- 0.06
CCW
1.95
2.45
1
8
1.84
2.04
COS 1
2.76
2.96
3901090316
Rev. 001
Page 32 of 34
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
Angle detection MLX90316 TSSOP16
90 Deg.
180 Deg.
9
Die 2
Die 1
S
1
8
180 Deg.
0 Deg.
16
90 Deg.
Die 2
9
Die 1
S
S
3901090316
Rev. 001
8
16
N
1
Die 2
1
270 Deg.
9
Die 1
9
N
N
Die 1
16
S
16
270 Deg.
8
1
Page 33 of 34
Die 2
N
0 Deg.
8
Data Sheet
4 October 05
MLX90316
Rotary Position Sensor IC
21.
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2005 Melexis NV. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
America:
Phone: +32 1367 0495
Phone: +1 603 223 2362
E-mail: [email protected] E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901090316
Rev. 001
Page 34 of 34
Data Sheet
4 October 05
Similar pages