BPW82 Datasheet

BPW82
Vishay Semiconductors
Silicon PIN Photodiode, RoHS Compliant
FEATURES
• Package type: leaded
• Package form: side view
• Dimensions (L x W x H in mm): 5 x 4 x 6.8
• Radiant sensitive area (in mm2): 7.5
• High radiant sensitivity
• Daylight blocking filter matched with 870 nm to
950 nm emitters
94 8480
• Fast response times
• Angle of half sensitivity: ϕ = ± 65°
• Lead (Pb)-free component in accordance
RoHS 2002/95/EC and WEEE 2002/96/EC
with
APPLICATIONS
DESCRIPTION
• High speed detector for infrared radiation
BPW82 is a PIN photodiode with high speed and high radiant
sensitivity in a black, side view plastic package with daylight
blocking filter. Filter bandwidth is matched with 870 nm to
950 nm IR emitters.
• Infrared remote control and free air data transmission
systems, e.g. in combination with TSFFxxxx series IR
emitters
PRODUCT SUMMARY
Ira (µA)
ϕ (deg)
λ0.5 (nm)
45
± 65
790 to 1050
PACKAGING
REMARKS
PACKAGE FORM
Bulk
MOQ: 4000 pcs, 4000 pcs/bulk
Side view
COMPONENT
BPW82
Note
Test condition see table “Basic Characteristics”
ORDERING INFORMATION
ORDERING CODE
BPW82
Note
MOQ: minimum order quantity
ABSOLUTE MAXIMUM RATINGS
PARAMETER
TEST CONDITION
Reverse voltage
Tamb ≤ 25 °C
Power dissipation
Junction temperature
SYMBOL
VALUE
VR
60
UNIT
V
PV
215
mW
Tj
100
°C
Operating temperature range
Tamb
- 40 to + 100
°C
Storage temperature range
Tstg
- 40 to + 100
°C
t≤5s
Tsd
260
°C
Connected with Cu wire, 0.14 mm2
RthJA
350
K/W
Soldering temperature
Thermal resistance junction/ambient
Note
Tamb = 25 °C, unless otherwise specified
www.vishay.com
406
For technical questions, contact: [email protected]
Document Number: 81529
Rev. 1.6, 08-Sep-08
BPW82
Silicon PIN Photodiode, RoHS Compliant
Vishay Semiconductors
BASIC CHARACTERISTICS
PARAMETER
TEST CONDITION
SYMBOL
MIN.
Breakdown voltage
IR = 100 µA, E = 0
V(BR)
60
TYP.
MAX.
UNIT
VR = 10 V, E = 0
Iro
2
30
nA
VR = 0 V, f = 1 MHz, E = 0
CD
70
Reverse dark current
Diode capacitance
V
pF
VR = 3 V, f = 1 MHz, E = 0
CD
25
Open circuit voltage
Ee = 1 mW/cm2, λ = 870 nm
Vo
350
mV
Short circuit current
Ee = 1 mW/cm2, λ = 870 nm
Ik
38
µA
Reverse light current
Ee = 1 mW/cm2, λ = 870 nm,
VR = 5 V
Ira
45
µA
43
40
pF
Angle of half sensitivity
ϕ
± 65
deg
Wavelength of peak sensitivity
λp
950
nm
λ0.5
790 to 1050
nm
VR = 10 V, λ = 870 nm
NEP
4 x 10-14
W/√Hz
Rise time
VR = 10 V, RL = 1 kΩ, λ = 820 nm
tr
100
ns
Fall time
VR = 10 V, RL = 1 kΩ, λ = 820 nm
tf
100
ns
Range of spectral bandwidth
Noise equivalent power
Note
Tamb = 25 °C, unless otherwise specified
BASIC CHARACTERISTICS
Tamb = 25 °C, unless otherwise specified
I ra rel - Relative Reverse Light Current
Iro - Reverse Dark Current (nA)
1000
100
10
VR = 10 V
1
20
94 8403
40
60
80
Tamb - Ambient Temperature (°C)
VR = 5 V
λ = 950 nm
1.2
1.0
0.8
0.6
0
100
Fig. 1 - Reverse Dark Current vs. Ambient Temperature
Document Number: 81529
Rev. 1.6, 08-Sep-08
1.4
94 8409
20
40
60
80
100
Tamb - Ambient Temperature (°C)
Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature
For technical questions, contact: [email protected]
www.vishay.com
407
BPW82
Silicon PIN Photodiode, RoHS Compliant
Vishay Semiconductors
1.2
S(λ)rel - Relative Spectral Sensivity
100
10
VR = 5 V
λ = 950 nm
1
0.1
0.01
0.1
0.6
0.4
0.2
850
Fig. 3 - Reverse Light Current vs. Irradiance
950
0°
0.2 mW/cm2
10
0.1 mW/cm2
0.05 mW/cm2
0.02 mW/cm2
Srel - Relative Radiant Sensitivity
I ra - Reverse Light Current (µA)
10°
20°
30°
mW/cm2
0.5 mW/cm2
λ = 950 nm
1150
Fig. 6 - Relative Spectral Sensitivity vs. Wavelength
100
1
1050
λ - Wavelength (nm)
94 8426
E e - Irradiance (mW/cm²)
94 8414
0.8
0.0
750
10
1
1.0
40°
1.0
0.9
50°
0.8
60°
70°
0.7
ϕ - Angular Displacement
Ira - Reverse Light Current (µA)
1000
80°
1
0.1
94 8415
1
10
100
V R - Reverse Voltage (V)
0.6
0.4
0.2
0
94 8406
Fig. 4 - Reverse Light Current vs. Reverse Voltage
Fig. 7 - Relative Radiant Sensitivity vs. Angular Displacement
CD - Diode Capacitance (pF)
80
E=0
f = 1 MHz
60
40
20
0
0.1
948407
1
10
100
VR - Reverse Voltage (V)
Fig. 5 - Diode Capacitance vs. Reverse Voltage
www.vishay.com
408
For technical questions, contact: [email protected]
Document Number: 81529
Rev. 1.6, 08-Sep-08
BPW82
Silicon PIN Photodiode, RoHS Compliant
Vishay Semiconductors
PACKAGE DIMENSIONS in millimeters
± 0.2
4
± 0.2
5
A
C
6.8
(2.8)
< 0.5
± 0.3
Chip position
(2.05)
19.8
- 0.8
8.9
± 0.3
Sensitive area
Area not plane
< 0.65
0.45
+ 0.01
- 0.05
2.5 nom.
2.3
0.4
± 0.2
+ 0.1
- 0.05
Drawing-No.: 6.544-5108.01-4
technical drawings
according to DIN
specifications
Issue:1; 01.07.96
96 12195
Document Number: 81529
Rev. 1.6, 08-Sep-08
For technical questions, contact: [email protected]
www.vishay.com
409
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000