EFM32LG360 Data Sheet

...the world's most energy friendly microcontrollers
EFM32LG360 DATASHEET
F256/F128/F64
• ARM Cortex-M3 CPU platform
• High Performance 32-bit processor @ up to 48 MHz
• Memory Protection Unit
• Flexible Energy Management System
• 20 nA @ 3 V Shutoff Mode
• 0.4 µA @ 3 V Shutoff Mode with RTC
• 0.65 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out
Detector, RAM and CPU retention
• 0.95 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU
retention
• 63 µA/MHz @ 3 V Sleep Mode
• 211 µA/MHz @ 3 V Run Mode, with code executed from flash
• 256/128/64 KB Flash
• 32 KB RAM
• 65 General Purpose I/O pins
• Configurable push-pull, open-drain, pull-up/down, input filter, drive
strength
• Configurable peripheral I/O locations
• 16 asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode
• 12 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
• Hardware AES with 128/256-bit keys in 54/75 cycles
• Timers/Counters
• 4× 16-bit Timer/Counter
• 4×3 Compare/Capture/PWM channels
• Dead-Time Insertion on TIMER0
• 16-bit Low Energy Timer
• 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter
• 3× 16/8-bit Pulse Counter
• Watchdog Timer with dedicated RC oscillator @ 50 nA
• Backup Power Domain
• RTC and retention registers in a separate power domain, available in all energy modes
• Operation from backup battery when main power drains out
• Communication interfaces
• 3× Universal Synchronous/Asynchronous Receiver/Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
• 2× Universal Asynchronous Receiver/Transmitter
• 2× Low Energy UART
• Autonomous operation with DMA in Deep Sleep
Mode
2
• 2× I C Interface with SMBus support
• Address recognition in Stop Mode
• Universal Serial Bus (USB) with Host & OTG support
• Fully USB 2.0 compliant
• On-chip PHY and embedded 5V to 3.3V regulator
• Ultra low power precision analog peripherals
• 12-bit 1 Msamples/s Analog to Digital Converter
• 8 single ended channels/4 differential channels
• On-chip temperature sensor
• 12-bit 500 ksamples/s Digital to Analog Converter
• 2× Analog Comparator
• Capacitive sensing with up to 16 inputs
• 3× Operational Amplifier
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain
• Supply Voltage Comparator
• Low Energy Sensor Interface (LESENSE)
• Autonomous sensor monitoring in Deep Sleep Mode
• Wide range of sensors supported, including LC sensors and capacitive buttons
• Ultra efficient Power-on Reset and Brown-Out Detector
• Debug Interface
• 2-pin Serial Wire Debug interface
• 1-pin Serial Wire Viewer
• Embedded Trace Module v3.5 (ETM)
• Pre-Programmed USB/UART Bootloader
• Temperature range -40 to 85 ºC
• Single power supply 1.98 to 3.8 V
• CSP81 package
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:
• Energy, gas, water and smart metering
• Health and fitness applications
• Smart accessories
• Alarm and security systems
• Industrial and home automation
...the world's most energy friendly microcontrollers
1 Ordering Information
Table 1.1 (p. 2) shows the available EFM32LG360 devices.
Table 1.1. Ordering Information
Ordering Code
Flash (kB)
RAM (kB)
Max
Speed
(MHz)
Supply
Voltage
(V)
Temperature
(ºC)
Package
EFM32LG360F64G-E-CSP81
64
32
48
1.98 - 3.8
-40 - 85
CSP81
EFM32LG360F128G-E-CSP81
128
32
48
1.98 - 3.8
-40 - 85
CSP81
EFM32LG360F256G-E-CSP81
256
32
48
1.98 - 3.8
-40 - 85
CSP81
Visit www.silabs.com for information on global distributors and representatives.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
2
www.silabs.com
...the world's most energy friendly microcontrollers
2 System Summary
2.1 System Introduction
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32LG microcontroller is well suited for
any battery operated application as well as other systems requiring high performance and low-energy
consumption. This section gives a short introduction to each of the modules in general terms and also
shows a summary of the configuration for the EFM32LG360 devices. For a complete feature set and indepth information on the modules, the reader is referred to the EFM32LG Reference Manual.
A block diagram of the EFM32LG360 is shown in Figure 2.1 (p. 3) .
Figure 2.1. Block Diagram
LG360F64/ 128/ 256
Clock Managem ent
Core and Mem ory
Mem ory
Protection
Unit
ARM Cortex ™ M3 processor
Flash
Program
Mem ory
RAM
Mem ory
Debug
Interface
w/ ETM
DMA
Controller
Energy Managem ent
Aux High Freq.
RC
Oscillator
High Freq.
RC
Oscillator
Voltage
Regulator
Voltage
Com parator
High Freq.
Crystal
Oscillator
Low Freq.
RC
Oscillator
Brown- out
Detector
Power- on
Reset
Low Freq.
Crystal
Oscillator
Ultra Low Freq.
RC
Oscillator
Back- up
Power
Dom ain
32- bit bus
Peripheral Reflex System
Serial Interfaces
USART
Low
Energy
UART™
USB
I/ O Ports
Tim ers and Triggers
UART
I 2C
Ex ternal
Interrupts
General
Purpose
I/ O
Pin
Reset
Pin
Wakeup
Tim er/
Counter
LESENSE
Low Energy
Tim er
Real Tim e
Counter
Pulse
Counter
Watchdog
Tim er
Analog Interfaces
Back- up
RTC
Hardware
AES
ADC
DAC
Security
Operational
Am plifier
Analog
Com parator
2.1.1 ARM Cortex-M3 Core
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone
MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well
as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32
implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual.
2.1.2 Debug Interface (DBG)
This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer
pin which can be used to output profiling information, data trace and software-generated messages.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3
www.silabs.com
...the world's most energy friendly microcontrollers
2.1.3 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the EFM32LG microcontroller. The
flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided
into two blocks; the main block and the information block. Program code is normally written to the main
block. Additionally, the information block is available for special user data and flash lock bits. There is
also a read-only page in the information block containing system and device calibration data. Read and
write operations are supported in the energy modes EM0 and EM1.
2.1.4 Direct Memory Access Controller (DMA)
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables
the system to stay in low energy modes when moving for instance data from the USART to RAM or
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA
controller licensed from ARM.
2.1.5 Reset Management Unit (RMU)
The RMU is responsible for handling the reset functionality of the EFM32LG.
2.1.6 Energy Management Unit (EMU)
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32LG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU
can also be used to turn off the power to unused SRAM blocks.
2.1.7 Clock Management Unit (CMU)
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board
the EFM32LG. The CMU provides the capability to turn on and off the clock on an individual basis to all
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree
of flexibility enables software to minimize energy consumption in any specific application by not wasting
power on peripherals and oscillators that are inactive.
2.1.8 Watchdog (WDOG)
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a
software failure.
2.1.9 Peripheral Reflex System (PRS)
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module
communicate directly with each other without involving the CPU. Peripheral modules which send out
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which
apply actions depending on the data received. The format for the Reflex signals is not given, but edge
triggers and other functionality can be applied by the PRS.
2.1.10 Universal Serial Bus Controller (USB)
The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device,
On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both
Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both fullspeed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated
Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in
addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for
supplying 5V to VBUS when operating as host.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
4
www.silabs.com
...the world's most energy friendly microcontrollers
2.1.11 Inter-Integrated Circuit Interface (I2C)
2
2
The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.
2
The interface provided to software by the I C module, allows both fine-grained control of the transmission
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all
energy modes.
2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.
2.1.13 Pre-Programmed USB/UART Bootloader
The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The
bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART
without the need for a debugger. The autobaud feature, interface and commands are described further
in the application note.
2.1.14 Universal Asynchronous Receiver/Transmitter (UART)
The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module.
It supports full- and half-duplex asynchronous UART communication.
2.1.15 Low Energy Universal Asynchronous Receiver/Transmitter
(LEUART)
TM
The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/
s. The LEUART includes all necessary hardware support to make asynchronous serial communication
possible with minimum of software intervention and energy consumption.
2.1.16 Timer/Counter (TIMER)
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor
control applications.
2.1.17 Real Time Counter (RTC)
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where
most of the device is powered down.
2.1.18 Backup Real Time Counter (BURTC)
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz
crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy
Modes and it can also run in backup mode, making it operational even if the main power should drain out.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
5
www.silabs.com
...the world's most energy friendly microcontrollers
2.1.19 Low Energy Timer (LETIMER)
TM
The unique LETIMER , the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most
of the device is powered down, allowing simple tasks to be performed while the power consumption of
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be
configured to start counting on compare matches from the RTC.
2.1.20 Pulse Counter (PCNT)
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.
The module may operate in energy mode EM0 - EM3.
2.1.21 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from
external pins. Response time and thereby also the current consumption can be configured by altering
the current supply to the comparator.
2.1.22 Voltage Comparator (VCMP)
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can
be generated when the supply falls below or rises above a programmable threshold. Response time and
thereby also the current consumption can be configured by altering the current supply to the comparator.
2.1.23 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits
at up to one million samples per second. The integrated input mux can select inputs from 8 external
pins and 6 internal signals.
2.1.24 Digital to Analog Converter (DAC)
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC
is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be
combined into one differential output. The DAC may be used for a number of different applications such
as sensor interfaces or sound output.
2.1.25 Operational Amplifier (OPAMP)
The EFM32LG360 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general
purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set
to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable
and the OPAMP has various internal configurations such as unity gain, programmable gain using internal
resistors etc.
2.1.26 Low Energy Sensor Interface (LESENSE)
TM
The Low Energy Sensor Interface (LESENSE ), is a highly configurable sensor interface with support
for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE
is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable
FSM which enables simple processing of measurement results without CPU intervention. LESENSE is
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
6
www.silabs.com
...the world's most energy friendly microcontrollers
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in
applications with a strict energy budget.
2.1.27 Backup Power Domain
The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC,
and a set of retention registers, available in all energy modes. This power domain can be configured to
automatically change power source to a backup battery when the main power drains out. The backup
power domain enables the EFM32LG360 to keep track of time and retain data, even if the main power
source should drain out.
2.1.28 Advanced Encryption Standard Accelerator (AES)
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or
decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK
cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data
and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit
operations are not supported.
2.1.29 General Purpose Input/Output (GPIO)
In the EFM32LG360, there are 65 General Purpose Input/Output (GPIO) pins, which are divided into
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More
advanced configurations like open-drain, filtering and drive strength can also be configured individually
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM
outputs or USART communication, which can be routed to several locations on the device. The GPIO
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other
peripherals.
2.2 Configuration Summary
The features of the EFM32LG360 is a subset of the feature set described in the EFM32LG Reference
Manual. Table 2.1 (p. 7) describes device specific implementation of the features.
Table 2.1. Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO,
DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
USB
Full configuration
USB_VBUS, USB_VBUSEN,
USB_VREGI, USB_VREGO, USB_DM,
USB_DMPU, USB_DP, USB_ID
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
7
www.silabs.com
...the world's most energy friendly microcontrollers
Module
Configuration
Pin Connections
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
I2C1
Full configuration
I2C1_SDA, I2C1_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
USART2
Full configuration with I2S
US2_TX, US2_RX, US2_CLK, US2_CS
UART0
Full configuration
U0_TX, U0_RX
UART1
Full configuration
U1_TX, U1_RX
LEUART0
Full configuration
LEU0_TX, LEU0_RX
LEUART1
Full configuration
LEU1_TX, LEU1_RX
TIMER0
Full configuration with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
TIMER2
Full configuration
TIM2_CC[2:0]
TIMER3
Full configuration
TIM3_CC[2:0]
RTC
Full configuration
NA
BURTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
PCNT1
Full configuration, 8-bit count register
PCNT1_S[1:0]
PCNT2
Full configuration, 8-bit count register
PCNT2_S[1:0]
ACMP0
Full configuration
ACMP0_CH[7:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:0]
DAC0
Full configuration
DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUTx,
OPAMP_OUTxALT, Inputs:
OPAMP_Px, OPAMP_Nx
AES
Full configuration
NA
GPIO
65 pins
Available pins are shown in
Table 4.3 (p. 62)
2.3 Memory Map
The EFM32LG360 memory map is shown in Figure 2.2 (p. 9) , with RAM and Flash sizes for the
largest memory configuration.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
8
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 2.2. EFM32LG360 Memory Map with largest RAM and Flash sizes
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
9
www.silabs.com
...the world's most energy friendly microcontrollers
3 Electrical Characteristics
3.1 Test Conditions
3.1.1 Typical Values
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10) , by simulation and/or technology characterisation unless otherwise specified.
3.1.2 Minimum and Maximum Values
The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 10) , by simulation and/or technology characterisation unless otherwise specified.
3.2 Absolute Maximum Ratings
The absolute maximum ratings are stress ratings, and functional operation under such conditions are
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.
10) .
Table 3.1. Absolute Maximum Ratings
Symbol
Parameter
Condition
Min
Typ
Max
-40
Unit
150
1
TSTG
Storage temperature range
TS
Maximum soldering
temperature
VDDMAX
External main supply voltage
0
3.8 V
VIOPIN
Voltage on any I/O
pin
-0.3
VDD+0.3 V
Latest IPC/JEDEC J-STD-020
Standard
°C
260 °C
1
Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.
3.3 General Operating Conditions
3.3.1 General Operating Conditions
Table 3.2. General Operating Conditions
Symbol
Parameter
Min
Typ
TAMB
Ambient temperature range
VDDOP
Operating supply voltage
fAPB
Internal APB clock frequency
48 MHz
fAHB
Internal AHB clock frequency
48 MHz
-40
1.98
Max
Unit
85 °C
3.8 V
3.3.2 Environmental
WLCSP devices can be handled and soldered using industry standard surface mount assembly techniques. However, because WLCSP devices are essentially a piece of silicon and are not encapsulated
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
10
www.silabs.com
...the world's most energy friendly microcontrollers
in plastic, they are susceptible to mechanical damage and may be sensitive to light. When WLCSPs
must be used in an environment exposed to light, it may be necessary to cover the top and sides with
an opaque material.
3.4 Current Consumption
Table 3.3. Current Consumption
Symbol
IEM0
IEM1
Parameter
EM0 current. No
prescaling. Running
prime number calculation code from
Flash. (Production
test condition = 14
MHz)
EM1 current (Production test condition = 14 MHz)
Condition
Min
Typ
Max
Unit
48 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
211
µA/
MHz
48 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
211
µA/
MHz
28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
212
µA/
MHz
28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
213
µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
214
µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
215
µA/
MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
216
µA/
MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
217
µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
218
µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
219
µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
224
µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
224
µA/
MHz
1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
257
µA/
MHz
1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
261
µA/
MHz
63
75 µA/
MHz
48 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=25°C
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
11
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
IEM2
IEM3
IEM4
Parameter
Condition
Min
Typ
Max
Unit
48 MHz HFXO, all peripheral
clocks disabled, VDD= 3.0 V,
TAMB=85°C
65
76 µA/
MHz
28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
64
75 µA/
MHz
28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
65
77 µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
65
76 µA/
MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
66
78 µA/
MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
67
79 µA/
MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
68
82 µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
68
81 µA/
MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
70
83 µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
74
87 µA/
MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
76
89 µA/
MHz
1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V,
TAMB=25°C
106
120 µA/
MHz
1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V,
TAMB=85°C
112
129 µA/
MHz
1
1.7
1
µA
1
4.0
1
µA
EM2 current with RTC
prescaled to 1 Hz, 32.768
kHz LFRCO, VDD= 3.0 V,
TAMB=25°C
0.95
EM2 current with RTC
prescaled to 1 Hz, 32.768
kHz LFRCO, VDD= 3.0 V,
TAMB=85°C
3.0
VDD= 3.0 V, TAMB=25°C
0.65
1.3 µA
VDD= 3.0 V, TAMB=85°C
2.65
4.0 µA
VDD= 3.0 V, TAMB=25°C
0.02
0.055 µA
VDD= 3.0 V, TAMB=85°C
0.44
0.9 µA
EM2 current
EM3 current
EM4 current
1
Using backup RTC.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
12
www.silabs.com
...the world's most energy friendly microcontrollers
3.4.1 EM1 Current Consumption
Figure 3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at
48 MHz
3.10
3.10
3.05
3.05
Idd [m A]
3.15
Idd [m A]
3.15
3.00
3.00
- 40°C
- 15°C
5°C
25°C
45°C
65°C
85°C
2.95
2.90
2.0
2.0V
2.2V
2.4V
2.6V
2.8V
3.0V
3.2V
3.4V
3.6V
3.8V
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.95
2.90
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
Figure 3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 28 MHz
1.80
1.80
1.75
1.75
Idd [m A]
1.85
Idd [m A]
1.85
1.70
1.70
- 40°C
- 15°C
5°C
25°C
45°C
65°C
85°C
1.65
1.60
2.0
2.0V
2.2V
2.4V
2.6V
2.8V
3.0V
3.2V
3.4V
3.6V
3.8V
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3.4
3.6
1.65
1.60
–40
3.8
13
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
1.42
1.42
1.40
1.40
1.38
1.38
1.36
1.36
Idd [m A]
Idd [m A]
Figure 3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 21 MHz
1.34
1.32
- 40°C
- 15°C
5°C
25°C
45°C
65°C
85°C
1.30
1.28
1.26
1.24
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
1.34
2.0V
2.2V
2.4V
2.6V
2.8V
3.0V
3.2V
3.4V
3.6V
3.8V
1.32
1.30
1.28
1.26
1.24
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
0.98
0.98
0.96
0.96
0.94
0.94
Idd [m A]
Idd [m A]
Figure 3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 14 MHz
0.92
- 40°C
- 15°C
5°C
25°C
45°C
65°C
85°C
0.90
0.88
0.86
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3.4
3.6
2.0V
2.2V
2.4V
2.6V
2.8V
3.0V
3.2V
3.4V
3.6V
3.8V
0.92
0.90
0.88
0.86
–40
3.8
14
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
0.78
0.78
0.76
0.76
Idd [m A]
Idd [m A]
Figure 3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 11 MHz
0.74
- 40°C
- 15°C
5°C
25°C
45°C
65°C
85°C
0.72
0.70
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0V
2.2V
2.4V
2.6V
2.8V
3.0V
3.2V
3.4V
3.6V
3.8V
0.74
0.72
0.70
3.8
–40
–15
5
25
Tem perature [°C]
45
65
85
0.52
0.52
0.51
0.51
0.50
0.50
0.49
0.49
Idd [m A]
Idd [m A]
Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 6.6 MHz
0.48
- 40°C
- 15°C
5°C
25°C
45°C
65°C
85°C
0.47
0.46
0.45
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3.4
3.6
2.0V
2.2V
2.4V
2.6V
2.8V
3.0V
3.2V
3.4V
3.6V
3.8V
0.48
0.47
0.46
0.45
–40
3.8
15
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running
at 1.2 MHz
0.138
0.160
- 40°C
- 15°C
5°C
25°C
45°C
65°C
85°C
0.136
0.134
0.150
0.145
Idd [m A]
Idd [m A]
0.132
0.155
0.130
0.140
2.0V
2.2V
2.4V
2.6V
2.8V
3.0V
3.2V
3.4V
3.6V
3.8V
0.135
0.128
0.130
0.126
0.125
0.124
0.122
2.0
0.120
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
0.115
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
3.4.2 EM2 Current Consumption
1
Figure 3.8. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO.
3.5
3.5
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
3.0
2.5
Idd [uA]
Idd [uA]
2.5
3.0
2.0
2.0
1.5
1.5
1.0
1.0
0.5
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
0.5
–40
3.8
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–20
0
20
40
Tem perature [°C]
60
80
1
Using backup RTC.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
16
www.silabs.com
...the world's most energy friendly microcontrollers
3.4.3 EM3 Current Consumption
Figure 3.9. EM3 current consumption.
3.0
3.0
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
2.5
2.0
Idd [uA]
Idd [uA]
2.0
2.5
1.5
1.5
1.0
1.0
0.5
0.5
0.0
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
0.0
–40
3.8
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–20
0
20
40
Tem perature [°C]
60
80
0
20
40
Tem perature [°C]
60
80
3.4.4 EM4 Current Consumption
Figure 3.10. EM4 current consumption.
0.7
0.6
0.6
0.5
0.4
Idd [uA]
Idd [uA]
0.5
0.7
- 40.0°C
- 15.0°C
5.0°C
25.0°C
45.0°C
65.0°C
85.0°C
0.3
0.4
0.3
0.2
0.2
0.1
0.1
0.0
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
0.0
–40
3.8
Vdd= 2.0V
Vdd= 2.2V
Vdd= 2.4V
Vdd= 2.6V
Vdd= 2.8V
Vdd= 3.0V
Vdd= 3.2V
Vdd= 3.4V
Vdd= 3.6V
Vdd= 3.8V
–20
3.5 Transition between Energy Modes
The transition times are measured from the trigger to the first clock edge in the CPU.
Table 3.4. Energy Modes Transitions
Symbol
Parameter
tEM10
Transition time from EM1 to EM0
0
HFCORECLK
cycles
tEM20
Transition time from EM2 to EM0
2
µs
tEM30
Transition time from EM3 to EM0
2
µs
tEM40
Transition time from EM4 to EM0
163
µs
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
Min
17
Typ
Max
Unit
www.silabs.com
...the world's most energy friendly microcontrollers
3.6 Power Management
The EFM32LG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with
optional filter) at the PCB level. For practical schematic recommendations, please see the application
note, "AN0002 EFM32 Hardware Design Considerations".
Table 3.5. Power Management
Symbol
Parameter
Condition
Min
Typ
Max
VBODextthr-
BOD threshold on
falling external supply voltage
VBODextthr+
BOD threshold on
rising external supply voltage
VPORthr+
Power-on Reset
(POR) threshold on
rising external supply voltage
tRESET
Delay from reset
is released until
program execution
starts
Applies to Power-on Reset,
Brown-out Reset and pin reset.
163
µs
CDECOUPLE
Voltage regulator
decoupling capacitor.
X5R capacitor recommended.
Apply between DECOUPLE pin
and GROUND
1
µF
CUSB_VREGO
USB voltage regulator out decoupling
capacitor.
X5R capacitor recommended.
Apply between USB_VREGO
pin and GROUND
1
µF
CUSB_VREGI
USB voltage regula- X5R capacitor recommended.
tor in decoupling ca- Apply between USB_VREGI
pacitor.
pin and GROUND
4.7
µF
1.74
Unit
1.96 V
1.85
1.98 V
1.98 V
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
18
www.silabs.com
...the world's most energy friendly microcontrollers
3.7 Flash
Table 3.6. Flash
Symbol
Parameter
ECFLASH
Flash erase cycles
before failure
Condition
Min
TAMB<150°C
RETFLASH
Flash data retention
Typ
Max
Unit
20000
cycles
10000
h
TAMB<85°C
10
years
TAMB<70°C
20
years
µs
tW_PROG
Word (32-bit) programming time
20
tPERASE
Page erase time
20
20.4
20.8 ms
tDERASE
Device erase time
40
40.8
41.6 ms
IERASE
Erase current
7
1
mA
IWRITE
Write current
7
1
mA
VFLASH
Supply voltage during flash erase and
write
1.98
3.8 V
1
Measured at 25°C
3.8 General Purpose Input Output
Table 3.7. GPIO
Symbol
Parameter
VIOIL
Input low voltage
VIOIH
Input high voltage
VIOOH
Output high voltage (Production test
condition = 3.0V,
DRIVEMODE =
STANDARD)
Condition
Min
Typ
Max
Unit
0.30VDD V
0.70VDD
V
Sourcing 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.80VDD
V
Sourcing 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.90VDD
V
Sourcing 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.85VDD
V
Sourcing 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.90VDD
V
Sourcing 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.75VDD
V
Sourcing 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.85VDD
V
Sourcing 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.60VDD
V
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
19
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Sourcing 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
VIOOL
Output low voltage
(Production test
condition = 3.0V,
DRIVEMODE =
STANDARD)
Typ
Max
0.80VDD
Unit
V
Sinking 0.1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.20VDD
V
Sinking 0.1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOWEST
0.10VDD
V
Sinking 1 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.10VDD
V
Sinking 1 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= LOW
0.05VDD
V
Sinking 6 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.30VDD V
Sinking 6 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= STANDARD
0.20VDD V
Sinking 20 mA, VDD=1.98 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.35VDD V
Sinking 20 mA, VDD=3.0 V,
GPIO_Px_CTRL DRIVEMODE
= HIGH
0.25VDD V
IIOLEAK
Input leakage current
RPU
I/O pin pull-up resistor
40
kOhm
RPD
I/O pin pull-down resistor
40
kOhm
RIOESD
Internal ESD series
resistor
200
Ohm
tIOGLITCH
Pulse width of pulses to be removed
by the glitch suppression filter
tIOOF
VIOHYST
High Impedance IO connected
to GROUND or Vdd
±0.1
±100 nA
10
50 ns
GPIO_Px_CTRL DRIVEMODE
= LOWEST and load capacitance CL=12.5-25pF.
20+0.1CL
250 ns
GPIO_Px_CTRL DRIVEMODE
= LOW and load capacitance
CL=350-600pF
20+0.1CL
250 ns
Output fall time
I/O pin hysteresis
(VIOTHR+ - VIOTHR-)
VDD = 1.98 - 3.8 V
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
0.10VDD
20
V
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.11. Typical Low-Level Output Current, 2V Supply Voltage
5
0.20
4
Low- Level Output Current [m A]
Low- Level Output Current [m A]
0.15
0.10
3
2
0.05
1
- 40°C
25°C
85°C
0.00
0.0
0.5
1.5
1.0
Low- Level Output Voltage [V]
- 40°C
25°C
85°C
0
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
Low- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
45
20
40
35
Low- Level Output Current [m A]
Low- Level Output Current [m A]
15
10
30
25
20
15
5
10
5
- 40°C
25°C
85°C
0
0.0
0.5
1.5
1.0
Low- Level Output Voltage [V]
0
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
- 40°C
25°C
85°C
0.5
1.5
1.0
Low- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = HIGH
21
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.12. Typical High-Level Output Current, 2V Supply Voltage
0.00
0.0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–0.5
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.05
–0.10
–1.0
–1.5
–0.15
–2.0
–0.20
0.0
1.5
0.5
1.0
High- Level Output Voltage [V]
–2.5
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
1.5
0.5
1.0
High- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = LOW
0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
High- Level Output Current [m A]
–5
–10
–20
–30
–15
–40
–20
0.0
1.5
0.5
1.0
High- Level Output Voltage [V]
–50
0.0
2.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
1.5
0.5
1.0
High- Level Output Voltage [V]
2.0
GPIO_Px_CTRL DRIVEMODE = HIGH
22
www.silabs.com
...the world's most energy friendly microcontrollers
0.5
10
0.4
8
Low- Level Output Current [m A]
Low- Level Output Current [m A]
Figure 3.13. Typical Low-Level Output Current, 3V Supply Voltage
0.3
0.2
0.1
6
4
2
- 40°C
25°C
85°C
0.0
0.0
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
- 40°C
25°C
85°C
0
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = LOW
40
50
35
40
Low- Level Output Current [m A]
Low- Level Output Current [m A]
30
25
20
15
30
20
10
10
5
0
0.0
- 40°C
25°C
85°C
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
- 40°C
25°C
85°C
0
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
0.5
1.5
1.0
2.0
Low- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = HIGH
23
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.14. Typical High-Level Output Current, 3V Supply Voltage
0.0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–1
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.1
–0.2
–0.3
–2
–3
–4
–0.4
–5
–0.5
0.0
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
–6
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = LOWEST
2.5
3.0
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
–10
High- Level Output Current [m A]
1.5
1.0
2.0
High- Level Output Voltage [V]
GPIO_Px_CTRL DRIVEMODE = LOW
0
–20
–30
–40
–50
0.0
0.5
–20
–30
–40
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
–50
0.0
3.0
GPIO_Px_CTRL DRIVEMODE = STANDARD
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
0.5
1.5
1.0
2.0
High- Level Output Voltage [V]
2.5
3.0
GPIO_Px_CTRL DRIVEMODE = HIGH
24
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.15. Typical Low-Level Output Current, 3.8V Supply Voltage
0.8
14
0.7
12
Low- Level Output Current [m A]
Low- Level Output Current [m A]
0.6
0.5
0.4
0.3
10
8
6
4
0.2
2
0.1
0.0
0.0
- 40°C
25°C
85°C
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
- 40°C
25°C
85°C
0
0.0
3.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
50
50
40
40
30
20
10
30
20
10
- 40°C
25°C
85°C
0
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOW
Low- Level Output Current [m A]
Low- Level Output Current [m A]
GPIO_Px_CTRL DRIVEMODE = LOWEST
0.5
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
- 40°C
25°C
85°C
0
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
0.5
1.5
1.0
2.0
2.5
Low- Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = HIGH
25
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.16. Typical High-Level Output Current, 3.8V Supply Voltage
0.0
–0.1
0
- 40°C
25°C
85°C
–1
- 40°C
25°C
85°C
–2
High- Level Output Current [m A]
High- Level Output Current [m A]
–0.2
–0.3
–0.4
–0.5
–3
–4
–5
–6
–0.6
–7
–0.7
–0.8
0.0
–8
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
–9
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = LOWEST
3.0
3.5
0
- 40°C
25°C
85°C
- 40°C
25°C
85°C
–10
High- Level Output Current [m A]
–10
High- Level Output Current [m A]
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
GPIO_Px_CTRL DRIVEMODE = LOW
0
–20
–30
–40
–50
0.0
0.5
–20
–30
–40
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
–50
0.0
3.5
GPIO_Px_CTRL DRIVEMODE = STANDARD
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
0.5
1.5
1.0
2.0
2.5
High- Level Output Voltage [V]
3.0
3.5
GPIO_Px_CTRL DRIVEMODE = HIGH
26
www.silabs.com
...the world's most energy friendly microcontrollers
3.9 Oscillators
3.9.1 LFXO
Table 3.8. LFXO
Symbol
Parameter
Condition
Min
Typ
Max
fLFXO
Supported nominal
crystal frequency
ESRLFXO
Supported crystal
equivalent series resistance (ESR)
CLFXOL
Supported crystal
external load range
ILFXO
Current consumption for core and
buffer after startup.
ESR=30 kOhm, CL=10 pF,
LFXOBOOST in CMU_CTRL is
1
190
nA
tLFXO
Start- up time.
ESR=30 kOhm, CL=10 pF,
40% - 60% duty cycle has
been reached, LFXOBOOST in
CMU_CTRL is 1
400
ms
32.768
kHz
30
X
Unit
120 kOhm
1
25 pF
1
See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help
users configure both load capacitance and software settings for using the LFXO. For details regarding
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design
Consideration".
3.9.2 HFXO
Table 3.9. HFXO
Symbol
Parameter
fHFXO
Supported nominal
crystal Frequency
ESRHFXO
The transconductance of the HFXO
input transistor at
crystal startup
CHFXOL
Supported crystal
external load range
tHFXO
Min
Typ
Current consumption for HFXO after
startup
Startup time
Max
4
Crystal frequency 48 MHz
Supported crystal
equivalent series re- Crystal frequency 32 MHz
sistance (ESR)
Crystal frequency 4 MHz
gmHFXO
IHFXO
Condition
HFXOBOOST in CMU_CTRL
equals 0b11
Unit
48 MHz
50 Ohm
30
60 Ohm
400
1500 Ohm
20
mS
5
25 pF
4 MHz: ESR=400 Ohm,
CL=20 pF, HFXOBOOST in
CMU_CTRL equals 0b11
85
µA
32 MHz: ESR=30 Ohm,
CL=10 pF, HFXOBOOST in
CMU_CTRL equals 0b11
165
µA
32 MHz: ESR=30 Ohm,
CL=10 pF, HFXOBOOST in
CMU_CTRL equals 0b11
400
µs
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
27
www.silabs.com
...the world's most energy friendly microcontrollers
3.9.3 LFRCO
Table 3.10. LFRCO
Symbol
Parameter
fLFRCO
Oscillation frequency , VDD= 3.0 V,
TAMB=25°C
tLFRCO
Startup time not including software
calibration
150
µs
ILFRCO
Current consumption
300
nA
TUNESTEPL-
Frequency step
for LSB change in
TUNING value
1.5
%
FRCO
Condition
Min
Typ
31.29
Max
32.768
Unit
34.28 kHz
42
42
40
40
38
38
Frequency [MHz]
Frequency [MHz]
Figure 3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage
- 40°C
25°C
85°C
36
34
34
32
32
30
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3.4
3.6
30
–40
3.8
28
2.0 V
3.0 V
3.8 V
36
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
3.9.4 HFRCO
Table 3.11. HFRCO
Symbol
Parameter
Oscillation frequency, VDD= 3.0 V,
TAMB=25°C
fHFRCO
Condition
Min
Typ
28.0
MHz
21 MHz frequency band
21.0
MHz
14 MHz frequency band
14.0
MHz
11 MHz frequency band
11.0
MHz
1
MHz
2
MHz
6.60
1 MHz frequency band
Settling time after
start-up
Current consumption
IHFRCO
TUNESTEPHFRCO
Unit
28 MHz frequency band
7 MHz frequency band
tHFRCO_settling
Max
1.20
fHFRCO = 14 MHz
0.6
Cycles
fHFRCO = 28 MHz
165
215 µA
fHFRCO = 21 MHz
134
175 µA
fHFRCO = 14 MHz
106
140 µA
fHFRCO = 11 MHz
94
125 µA
fHFRCO = 6.6 MHz
77
105 µA
fHFRCO = 1.2 MHz
25
40 µA
3
Frequency step
for LSB change in
TUNING value
0.3
%
1
For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.
For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.
3
The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.
2
1.45
1.45
1.40
1.40
1.35
1.35
Frequency [MHz]
Frequency [MHz]
Figure 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature
1.30
- 40°C
25°C
85°C
1.25
1.20
1.30
1.25
1.20
1.15
1.15
1.10
1.10
1.05
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3.4
3.6
1.05
–40
3.8
29
2.0 V
3.0 V
3.8 V
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
6.70
6.70
6.65
6.65
6.60
6.60
Frequency [MHz]
Frequency [MHz]
Figure 3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature
6.55
6.50
6.45
6.40
6.50
6.45
6.40
- 40°C
25°C
85°C
6.35
6.30
2.0
6.55
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
6.35
6.30
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
11.2
11.2
11.1
11.1
11.0
11.0
Frequency [MHz]
Frequency [MHz]
Figure 3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature
10.9
10.8
10.8
10.7
10.6
2.0
10.9
10.7
- 40°C
25°C
85°C
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
10.6
–40
3.8
2.0 V
3.0 V
3.8 V
–15
5
25
Tem perature [°C]
45
65
85
14.2
14.2
14.1
14.1
14.0
14.0
Frequency [MHz]
Frequency [MHz]
Figure 3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature
13.9
13.8
13.7
13.6
13.8
13.7
13.6
- 40°C
25°C
85°C
13.5
13.4
2.0
13.9
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3.4
3.6
2.0 V
3.0 V
3.8 V
13.5
13.4
–40
3.8
30
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
21.2
21.2
21.0
21.0
Frequency [MHz]
Frequency [MHz]
Figure 3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature
20.8
20.6
20.4
20.8
20.6
20.4
- 40°C
25°C
85°C
20.2
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
3.4
3.6
2.0 V
3.0 V
3.8 V
20.2
–40
3.8
–15
5
25
Tem perature [°C]
45
65
85
Figure 3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature
28.2
28.4
28.2
28.0
28.0
Frequency [MHz]
Frequency [MHz]
27.8
27.6
27.4
27.8
27.6
27.4
27.2
27.2
- 40°C
25°C
85°C
27.0
26.8
2.0
2.2
2.4
2.6
2.8
3.0
Vdd [V]
3.2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
3.4
3.6
2.0 V
3.0 V
3.8 V
27.0
26.8
–40
3.8
31
–15
5
25
Tem perature [°C]
45
65
85
www.silabs.com
...the world's most energy friendly microcontrollers
3.9.5 AUXHFRCO
Table 3.12. AUXHFRCO
Symbol
fAUXHFRCO
Parameter
Oscillation frequency, VDD= 3.0 V,
TAMB=25°C
tAUXHFRCO_settlingSettling time after
start-up
Condition
Min
Typ
Max
Unit
28 MHz frequency band
28.0
MHz
21 MHz frequency band
21.0
MHz
14 MHz frequency band
14.0
MHz
11 MHz frequency band
11.0
MHz
1
MHz
2
MHz
7 MHz frequency band
6.60
1 MHz frequency band
1.20
fAUXHFRCO = 14 MHz
0.6
Cycles
3
TUNESTEPAUX- Frequency step
for LSB change in
HFRCO
TUNING value
0.3
%
1
For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.
For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.
3
The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough
adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and
temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the
TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz
across operating conditions.
2
3.9.6 ULFRCO
Table 3.13. ULFRCO
Symbol
Parameter
Condition
Min
Typ
Max
fULFRCO
Oscillation frequency
25°C, 3V
TCULFRCO
Temperature coefficient
0.05
%/°C
VCULFRCO
Supply voltage coefficient
-18.2
%/V
0.7
Unit
1.75 kHz
3.10 Analog Digital Converter (ADC)
Table 3.14. ADC
Symbol
Parameter
VADCIN
Input voltage range
Condition
Min
Single ended
Differential
VADCREFIN
Input range of external reference voltage, single ended
and differential
Typ
Max
Unit
0
VREF V
-VREF/2
VREF/2 V
1.25
VDD V
VADCREFIN_CH7 Input range of external negative reference voltage on
channel 7
See VADCREFIN
0
VDD - 1.1 V
VADCREFIN_CH6 Input range of external positive ref-
See VADCREFIN
0.625
VDD V
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
32
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
Max
Unit
erence voltage on
channel 6
VADCCMIN
Common mode input range
IADCIN
Input current
CMRRADC
Analog input common mode rejection
ratio
IADC
Average active current
IADCREF
Current consumption of internal voltage reference
CADCIN
Input capacitance
RADCIN
Input ON resistance
RADCFILT
Input RC filter resistance
CADCFILT
Input RC filter/decoupling capacitance
fADCCLK
ADC Clock Frequency
tADCCONV
2pF sampling capacitors
VDD V
<100
nA
65
dB
1 MSamples/s, 12 bit, external
reference
351
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b00
67
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b01
63
µA
10 kSamples/s 12 bit, internal
1.25 V reference, WARMUPMODE in ADCn_CTRL set to
0b10
64
µA
Internal voltage reference
65
µA
2
pF
1
MOhm
10
250
Acquisition time
tADCACQVDD3
Required acquisition time for VDD/3
reference
kOhm
fF
13 MHz
6 bit
7
ADCCLK
Cycles
8 bit
11
ADCCLK
Cycles
12 bit
13
ADCCLK
Cycles
1
256 ADCCLK
Cycles
Conversion time
tADCACQ
tADCSTART
0
Programmable
2
Startup time of reference generator
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
µs
5
33
µs
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
Max
Unit
and ADC core in
NORMAL mode
Startup time of reference generator
and ADC core in
KEEPADCWARM
mode
SNRADC
Signal to Noise Ratio (SNR)
1
µs
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
59
dB
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
63
dB
1 MSamples/s, 12 bit, single
ended, VDD reference
65
dB
1 MSamples/s, 12 bit, differential, internal 1.25V reference
60
dB
1 MSamples/s, 12 bit, differential, internal 2.5V reference
65
dB
1 MSamples/s, 12 bit, differential, 5V reference
54
dB
1 MSamples/s, 12 bit, differential, VDD reference
67
dB
1 MSamples/s, 12 bit, differential, 2xVDD reference
69
dB
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
62
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
63
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
67
dB
200 kSamples/s, 12 bit, differential, internal 1.25V reference
63
dB
200 kSamples/s, 12 bit, differential, internal 2.5V reference
66
dB
200 kSamples/s, 12 bit, differential, 5V reference
66
dB
66
dB
200 kSamples/s, 12 bit, differential, 2xVDD reference
70
dB
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
58
dB
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
62
dB
1 MSamples/s, 12 bit, single
ended, VDD reference
64
dB
1 MSamples/s, 12 bit, differential, internal 1.25V reference
60
dB
200 kSamples/s, 12 bit, differential, VDD reference
SINADADC
SIgnal-to-Noise
And Distortion-ratio
(SINAD)
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
34
63
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Spurious-Free Dynamic Range (SFDR)
Max
Unit
1 MSamples/s, 12 bit, differential, internal 2.5V reference
64
dB
1 MSamples/s, 12 bit, differential, 5V reference
54
dB
1 MSamples/s, 12 bit, differential, VDD reference
66
dB
1 MSamples/s, 12 bit, differential, 2xVDD reference
68
dB
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
61
dB
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
65
dB
200 kSamples/s, 12 bit, single
ended, VDD reference
66
dB
200 kSamples/s, 12 bit, differential, internal 1.25V reference
63
dB
200 kSamples/s, 12 bit, differential, internal 2.5V reference
66
dB
200 kSamples/s, 12 bit, differential, 5V reference
66
dB
66
dB
200 kSamples/s, 12 bit, differential, 2xVDD reference
69
dB
1 MSamples/s, 12 bit, single
ended, internal 1.25V reference
64
dBc
1 MSamples/s, 12 bit, single
ended, internal 2.5V reference
76
dBc
1 MSamples/s, 12 bit, single
ended, VDD reference
73
dBc
1 MSamples/s, 12 bit, differential, internal 1.25V reference
66
dBc
1 MSamples/s, 12 bit, differential, internal 2.5V reference
77
dBc
1 MSamples/s, 12 bit, differential, VDD reference
76
dBc
1 MSamples/s, 12 bit, differential, 2xVDD reference
75
dBc
1 MSamples/s, 12 bit, differential, 5V reference
69
dBc
200 kSamples/s, 12 bit, single ended, internal 1.25V reference
75
dBc
200 kSamples/s, 12 bit, single
ended, internal 2.5V reference
75
dBc
200 kSamples/s, 12 bit, single
ended, VDD reference
76
dBc
200 kSamples/s, 12 bit, differential, VDD reference
SFDRADC
Typ
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
35
62
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
79
dBc
200 kSamples/s, 12 bit, differential, internal 2.5V reference
79
dBc
200 kSamples/s, 12 bit, differential, 5V reference
78
dBc
79
dBc
79
dBc
0.3
3 mV
0.3
mV
68
200 kSamples/s, 12 bit, differential, 2xVDD reference
After calibration, single ended
-3.5
Offset voltage
After calibration, differential
TGRADADCTH
Thermometer output gradient
DNLADC
Differential non-linearity (DNL)
INLADC
Integral non-linearity (INL), End point
method
MCADC
No missing codes
GAINED
Gain error drift
OFFSETED
Unit
200 kSamples/s, 12 bit, differential, internal 1.25V reference
200 kSamples/s, 12 bit, differential, VDD reference
VADCOFFSET
Max
-1
11.999
1
-1.92
mV/°C
-6.3
ADC
Codes/
°C
±0.7
4 LSB
±1.2
±3 LSB
12
2
0.033
3
%/°C
2
0.03
3
%/°C
2
0.7
3
LSB/°C
0.62
3
LSB/°C
1.25V reference
0.01
2.5V reference
0.01
1.25V reference
0.2
Offset error drift
2
2.5V reference
bits
0.2
1
On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale
input for chips that have the missing code issue.
2
Typical numbers given by abs(Mean) / (85 - 25).
3
Max number given by (abs(Mean) + 3x stddev) / (85 - 25).
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.24 (p.
37) and Figure 3.25 (p. 37) , respectively.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
36
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.24. Integral Non-Linearity (INL)
Digital ouput code
INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1
4095
4094
Actual ADC
tranfer function
before offset and
gain correction
4093
4092
Actual ADC
tranfer function
after offset and
gain correction
INL Error
(End Point INL)
Ideal transfer
curve
3
2
1
VOFFSET
0
Analog Input
Figure 3.25. Differential Non-Linearity (DNL)
Digital
ouput
code
DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2
Full Scale Range
4095
4094
Example: Adjacent
input value VD+ 1
corrresponds to digital
output code D+ 1
4093
4092
Actual transfer
function with one
m issing code.
Example: Input value
VD corrresponds to
digital output code D
Code width = 2 LSB
DNL= 1 LSB
Ideal transfer
curve
5
0.5
LSB
Ideal spacing
between two
adjacent codes
VLSBIDEAL= 1 LSB
4
3
2
1
Ideal 50%
Transition Point
Ideal Code Center
0
Analog Input
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
37
www.silabs.com
...the world's most energy friendly microcontrollers
3.10.1 Typical performance
Figure 3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
38
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
39
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C
1.25V Reference
2.5V Reference
2XVDDVSS Reference
5VDIFF Reference
VDD Reference
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
40
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.29. ADC Absolute Offset, Common Mode = Vdd /2
5
2.0
Vref= 1V25
Vref= 2V5
Vref= 2XVDDVSS
Vref= 5VDIFF
Vref= VDD
4
1.5
2
Actual Offset [LSB]
Actual Offset [LSB]
3
VRef= 1V25
VRef= 2V5
VRef= 2XVDDVSS
VRef= 5VDIFF
VRef= VDD
1
0
–1
1.0
0.5
0.0
–2
–0.5
–3
–4
2.0
2.2
2.4
2.6
2.8
3.0
Vdd (V)
3.2
3.4
3.6
–1.0
–40
3.8
Offset vs Supply Voltage, Temp = 25°C
–15
5
25
Tem p (C)
45
65
85
Offset vs Temperature, Vdd = 3V
Figure 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V
79.4
71
2XVDDVSS
70
1V25
79.2
Vdd
69
79.0
67
5VDIFF
2V5
66
SFDR [dB]
SNR [dB]
68
Vdd
2V5
78.8
78.6
2XVDDVSS
78.4
65
78.2
64
63
–40
–15
5
25
Tem perature [°C]
45
65
5VDIFF
1V25
85
78.0
–40
Signal to Noise Ratio (SNR)
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
–15
5
25
Tem perature [°C]
45
65
85
Spurious-Free Dynamic Range (SFDR)
41
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.31. ADC Temperature sensor readout
2600
Vdd= 2.0
Vdd= 3.0
Vdd= 3.8
Sensor readout
2500
2400
2300
2200
2100
–40
–25 –15
–5
5
15 25 35
Tem perature [°C]
45
55
65
75
85
3.11 Digital Analog Converter (DAC)
Table 3.15. DAC
Symbol
VDACOUT
VDACCM
Parameter
Output voltage
range
Condition
Min
Typ
0
VDD V
VDD voltage reference, differential
-VDD
VDD V
0
VDD V
500 kSamples/s, 12 bit
IDAC
100 kSamples/s, 12 bit
1 kSamples/s 12 bit NORMAL
SRDAC
Sample rate
fDAC
DAC clock frequency
400
1
µA
200
1
µA
1
µA
17
500 ksamples/s
Continuous Mode
CYCDACCONV
Clock cyckles per
conversion
tDACCONV
Conversion time
tDACSETTLE
Settling time
SNRDAC
Signal to Noise Ratio (SNR)
Unit
VDD voltage reference, single
ended
Output common
mode voltage range
Active current including references
for 2 channels
Max
1000 kHz
Sample/Hold Mode
250 kHz
Sample/Off Mode
250 kHz
2
2
µs
5
µs
500 kSamples/s, 12 bit, single ended, internal 1.25V reference
58
dB
500 kSamples/s, 12 bit, single
ended, internal 2.5V reference
59
dB
500 kSamples/s, 12 bit, differential, internal 1.25V reference
58
dB
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
42
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
SNDRDAC
SFDRDAC
VDACOFFSET
Parameter
Signal to Noisepulse Distortion Ratio (SNDR)
Spurious-Free
Dynamic
Range(SFDR)
Condition
Min
Typ
Max
Unit
500 kSamples/s, 12 bit, differential, internal 2.5V reference
58
dB
500 kSamples/s, 12 bit, differential, VDD reference
59
dB
500 kSamples/s, 12 bit, single ended, internal 1.25V reference
57
dB
500 kSamples/s, 12 bit, single
ended, internal 2.5V reference
54
dB
500 kSamples/s, 12 bit, differential, internal 1.25V reference
56
dB
500 kSamples/s, 12 bit, differential, internal 2.5V reference
53
dB
500 kSamples/s, 12 bit, differential, VDD reference
55
dB
500 kSamples/s, 12 bit, single ended, internal 1.25V reference
62
dBc
500 kSamples/s, 12 bit, single
ended, internal 2.5V reference
56
dBc
500 kSamples/s, 12 bit, differential, internal 1.25V reference
61
dBc
500 kSamples/s, 12 bit, differential, internal 2.5V reference
55
dBc
500 kSamples/s, 12 bit, differential, VDD reference
60
dBc
After calibration, single ended
2
mV
After calibration, differential
2
mV
Offset voltage
DNLDAC
Differential non-linearity
±1
LSB
INLDAC
Integral non-linearity
±5
LSB
MCDAC
No missing codes
12
bits
1
Measured with a static input code and no loading on the output.
3.12 Operational Amplifier (OPAMP)
The electrical characteristics for the Operational Amplifiers are based on simulations.
Table 3.16. OPAMP
Symbol
IOPAMP
Parameter
Active Current
Condition
Min
Typ
Max
Unit
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0, Unity
Gain
370
460 µA
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1, Unity
Gain
95
135 µA
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
43
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1, Unity
Gain
GOL
GBWOPAMP
PMOPAMP
Open Loop Gain
Gain Bandwidth
Product
Phase Margin
RINPUT
Input Resistance
RLOAD
Load Resistance
ILOAD_DC
DC Load Current
VINPUT
Input Voltage
VOUTPUT
VOFFSET
Max
13
25 µA
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
101
dB
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
98
dB
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
91
dB
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
6.1
MHz
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
1.8
MHz
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
0.25
MHz
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0, CL=75
pF
64
°
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1, CL=75
pF
58
°
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1, CL=75
pF
58
°
100
200
NOPAMP
Mohm
Ohm
11 mA
OPAxHCMDIS=0
VSS
VDD V
OPAxHCMDIS=1
VSS
VDD-1.2 V
VSS
VDD V
Output Voltage
Unity Gain, VSS<Vin<VDD,
OPAxHCMDIS=0
0
mV
Unity Gain, VSS<Vin<VDD-1.2,
OPAxHCMDIS=1
1
mV
Input Offset Voltage
VOFFSET_DRIFT Input Offset Voltage
Drift
SROPAMP
Unit
Slew Rate
Voltage Noise
0.02 mV/°C
(OPA2)BIASPROG=0xF,
(OPA2)HALFBIAS=0x0
3.2
V/µs
(OPA2)BIASPROG=0x7,
(OPA2)HALFBIAS=0x1
0.8
V/µs
(OPA2)BIASPROG=0x0,
(OPA2)HALFBIAS=0x1
0.1
V/µs
Vout=1V, RESSEL=0,
0.1 Hz<f<10 kHz, OPAxHCMDIS=0
101
µVRMS
Vout=1V, RESSEL=0,
0.1 Hz<f<10 kHz, OPAxHCMDIS=1
141
µVRMS
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
44
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Vout=1V, RESSEL=0, 0.1
Hz<f<1 MHz, OPAxHCMDIS=0
196
µVRMS
Vout=1V, RESSEL=0, 0.1
Hz<f<1 MHz, OPAxHCMDIS=1
229
µVRMS
RESSEL=7, 0.1 Hz<f<10 kHz,
OPAxHCMDIS=0
1230
µVRMS
RESSEL=7, 0.1 Hz<f<10 kHz,
OPAxHCMDIS=1
2130
µVRMS
RESSEL=7, 0.1 Hz<f<1 MHz,
OPAxHCMDIS=0
1630
µVRMS
RESSEL=7, 0.1 Hz<f<1 MHz,
OPAxHCMDIS=1
2590
µVRMS
Figure 3.32. OPAMP Common Mode Rejection Ratio
Figure 3.33. OPAMP Positive Power Supply Rejection Ratio
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
45
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.34. OPAMP Negative Power Supply Rejection Ratio
Figure 3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V
Figure 3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
46
www.silabs.com
...the world's most energy friendly microcontrollers
3.13 Analog Comparator (ACMP)
Table 3.17. ACMP
Symbol
Parameter
VACMPIN
Input voltage range
0
VDD V
VACMPCM
ACMP Common
Mode voltage range
0
VDD V
IACMP
IACMPREF
Active current
Current consumption of internal voltage reference
Condition
Min
Typ
Max
Unit
BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in
ACMPn_CTRL register
0.1
0.4 µA
BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
2.87
15 µA
BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in
ACMPn_CTRL register
195
520 µA
Internal voltage reference off.
Using external voltage reference
0
µA
Internal voltage reference
5
µA
0
12 mV
VACMPOFFSET
Offset voltage
BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in
ACMPn_CTRL register
VACMPHYST
ACMP hysteresis
Programmable
17
mV
CSRESSEL=0b00 in
ACMPn_INPUTSEL
39
kOhm
CSRESSEL=0b01 in
ACMPn_INPUTSEL
71
kOhm
CSRESSEL=0b10 in
ACMPn_INPUTSEL
104
kOhm
CSRESSEL=0b11 in
ACMPn_INPUTSEL
136
kOhm
RCSRES
tACMPSTART
Capacitive Sense
Internal Resistance
Startup time
-12
10 µs
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference
as given in Equation 3.1 (p. 47) . IACMPREF is zero if an external voltage reference is used.
Total ACMP Active Current
IACMPTOTAL = IACMP + IACMPREF
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
47
(3.1)
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1
4.5
2.5
HYSTSEL= 0.0
HYSTSEL= 2.0
HYSTSEL= 4.0
HYSTSEL= 6.0
4.0
3.5
Response Tim e [us]
Current [uA]
2.0
1.5
1.0
3.0
2.5
2.0
1.5
1.0
0.5
0.5
0.0
4
8
ACMP_CTRL_BIASPROG
0
0.0
12
Current consumption, HYSTSEL = 4
0
2
4
6
8
10
ACMP_CTRL_BIASPROG
12
14
Response time
100
BIASPROG= 0.0
BIASPROG= 4.0
BIASPROG= 8.0
BIASPROG= 12.0
Hysteresis [m V]
80
60
40
20
0
0
1
2
4
3
ACMP_CTRL_HYSTSEL
5
6
7
Hysteresis
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
48
www.silabs.com
...the world's most energy friendly microcontrollers
3.14 Voltage Comparator (VCMP)
Table 3.18. VCMP
Symbol
Parameter
VVCMPIN
Input voltage range
VDD
V
VVCMPCM
VCMP Common
Mode voltage range
VDD
V
IVCMP
Condition
Min
Typ
Max
Unit
BIASPROG=0b0000 and
HALFBIAS=1 in VCMPn_CTRL
register
0.3
0.6 µA
BIASPROG=0b1111 and
HALFBIAS=0 in VCMPn_CTRL
register. LPREF=0.
22
35 µA
NORMAL
10
µs
Single ended
10
mV
Differential
10
mV
61
210 mV
Active current
tVCMPREF
Startup time reference generator
VVCMPOFFSET
Offset voltage
VVCMPHYST
VCMP hysteresis
tVCMPSTART
Startup time
10 µs
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in
accordance with the following equation:
VCMP Trigger Level as a Function of Level Setting
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL
(3.2)
3.15 I2C
Table 3.19. I2C Standard-mode (Sm)
Symbol
Parameter
Min
Typ
0
Max
Unit
fSCL
SCL clock frequency
tLOW
SCL clock low time
4.7
µs
tHIGH
SCL clock high time
4.0
µs
tSU,DAT
SDA set-up time
250
ns
tHD,DAT
SDA hold time
tSU,STA
Repeated START condition set-up time
4.7
µs
tHD,STA
(Repeated) START condition hold time
4.0
µs
tSU,STO
STOP condition set-up time
4.0
µs
tBUF
Bus free time between a STOP and a START condition
4.7
µs
8
100
1
2,3
3450
kHz
ns
1
For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32LG Reference Manual.
The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3
-9
When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 4).
2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
49
www.silabs.com
...the world's most energy friendly microcontrollers
Table 3.20. I2C Fast-mode (Fm)
Symbol
Parameter
Min
Typ
Max
fSCL
SCL clock frequency
tLOW
SCL clock low time
1.3
µs
tHIGH
SCL clock high time
0.6
µs
tSU,DAT
SDA set-up time
100
ns
tHD,DAT
SDA hold time
tSU,STA
Repeated START condition set-up time
0.6
µs
tHD,STA
(Repeated) START condition hold time
0.6
µs
tSU,STO
STOP condition set-up time
0.6
µs
tBUF
Bus free time between a STOP and a START condition
1.3
µs
0
Unit
1
400
2,3
8
900
kHz
ns
1
For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32LG Reference Manual.
The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
3
-9
When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 4).
2
Table 3.21. I2C Fast-mode Plus (Fm+)
Symbol
Parameter
Min
Typ
0
Max
Unit
1
fSCL
SCL clock frequency
1000
kHz
tLOW
SCL clock low time
0.5
µs
tHIGH
SCL clock high time
0.26
µs
tSU,DAT
SDA set-up time
50
ns
tHD,DAT
SDA hold time
8
ns
tSU,STA
Repeated START condition set-up time
0.26
µs
tHD,STA
(Repeated) START condition hold time
0.26
µs
tSU,STO
STOP condition set-up time
0.26
µs
tBUF
Bus free time between a STOP and a START condition
0.5
µs
1
For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32LG Reference Manual.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
50
www.silabs.com
...the world's most energy friendly microcontrollers
3.16 USART SPI
Figure 3.38. SPI Master Timing
CS
t CS_MO
t SCKL_MO
SCLK
CLKPOL = 0
t SCLK
SCLK
CLKPOL = 1
MOSI
t SU_MI
t H_MI
MISO
Table 3.22. SPI Master Timing
Symbol
Parameter
tSCLK 1 2
SCLK period
Condition
Min
Typ
Max
2 * tHFPER-
Unit
ns
CLK
tCS_MO 1 2
CS to MOSI
-2.00
2.00 ns
tSCLK_MO 1 2
SCLK to MOSI
-1.00
3.00 ns
tSU_MI 1 2
MISO setup time
36.00
ns
tH_MI 1 2
MISO hold time
-6.00
ns
IOVDD = 3.0 V
1
Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
Measurement done at 10% and 90% of VDD (figure shows 50% of VDD)
2
Table 3.23. SPI Master Timing with SSSEARLY and SMSDELAY
Symbol
Parameter
tSCLK 1 2
SCLK period
Condition
Min
Typ
2 * tHFPER-
Max
Unit
ns
CLK
tCS_MO 12
CS to MOSI
-2.00
2.00 ns
tSCLK_MO 12
SCLK to MOSI
-1.00
3.00 ns
tSU_MI 12
MISO setup time
-32.00
ns
tH_MI 12
MISO hold time
63.00
ns
IOVDD = 3.0 V
1
Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
Measurement done at 10% and 90% of VDD (figure shows 50% of VDD)
2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
51
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 3.39. SPI Slave Timing
CS
t CS_ACT_MI
t CS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
t SCLK_HI
t SU_MO
t SCLK_LO
t SCLK
t H_MO
MOSI
t SCLK_MI
MISO
Table 3.24. SPI Slave Timing
Symbol
Parameter
tSCLK_sl 1 2
SCKL period
Min
Typ
Max
6 * tHFPER-
Unit
ns
CLK
tSCLK_hi 1 2
SCLK high period
3 * tHFPER-
ns
CLK
tSCLK_lo 1 2
SCLK low period
3 * tHFPER-
ns
CLK
tCS_ACT_MI 1 2
CS active to MISO
5.00
35.00 ns
tCS_DIS_MI 1 2
CS disable to MISO
5.00
35.00 ns
tSU_MO 1 2
MOSI setup time
5.00
ns
tH_MO 1 2
MOSI hold time
2 + 2 * tHF-
ns
PERCLK
tSCLK_MI 1 2
SCLK to MISO
7 + tHFPER-
42 + 2 * ns
tHFPERCLK
CLK
1
Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
Measurement done at 10% and 90% of VDD (figure shows 50% of VDD)
2
Table 3.25. SPI Slave Timing with SSSEARLY and SMSDELAY
Symbol
Parameter
tSCLK_sl 12
SCKL period
Min
Typ
6 * tHFPER-
Max
Unit
ns
CLK
tSCLK_hi 12
SCLK high period
3 * tHFPER-
ns
CLK
tSCLK_lo 12
SCLK low period
3 * tHFPER-
ns
CLK
tCS_ACT_MI 12
CS active to MISO
5.00
35.00 ns
tCS_DIS_MI 12
CS disable to MISO
5.00
35.00 ns
tSU_MO 12
MOSI setup time
5.00
ns
tH_MO 12
MOSI hold time
2 + 2 * tHF-
ns
PERCLK
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
52
www.silabs.com
...the world's most energy friendly microcontrollers
Symbol
Parameter
tSCLK_MI 12
SCLK to MISO
Min
Typ
Max
-264 + tHF-
Unit
-234 + 2 * ns
tHFPERCLK
PERCLK
1
Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
Measurement done at 10% and 90% of VDD (figure shows 50% of VDD)
2
3.17 Digital Peripherals
Table 3.26. Digital Peripherals
Symbol
Parameter
Condition
IUSART
USART current
USART idle current, clock enabled
4.0
µA/
MHz
IUART
UART current
UART idle current, clock enabled
3.8
µA/
MHz
ILEUART
LEUART current
LEUART idle current, clock enabled
194.0
II2C
I2C current
I2C idle current, clock enabled
7.6
µA/
MHz
ITIMER
TIMER current
TIMER_0 idle current, clock
enabled
6.5
µA/
MHz
ILETIMER
LETIMER current
LETIMER idle current, clock
enabled
85.8
nA
IPCNT
PCNT current
PCNT idle current, clock enabled
91.4
nA
IRTC
RTC current
RTC idle current, clock enabled
54.6
nA
IAES
AES current
AES idle current, clock enabled
1.8
µA/
MHz
IGPIO
GPIO current
GPIO idle current, clock enabled
3.4
µA/
MHz
IPRS
PRS current
PRS idle current
3.9
µA/
MHz
IDMA
DMA current
Clock enable
10.9
µA/
MHz
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
Min
53
Typ
Max
Unit
nA
www.silabs.com
...the world's most energy friendly microcontrollers
4 Pinout and Package
Note
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32LG360.
4.1 Pinout
The EFM32LG360 pinout is shown in Figure 4.1 (p. 54) and Table 4.1 (p. 54). Alternate locations
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module
in question.
Figure 4.1. EFM32LG360 Pinout (top view, not to scale)
Table 4.1. Device Pinout
Pin Alternate Functionality / Description
Pin #
CSP81 Pin#
and Name
Pin Name
Analog
A1
PF10
U1_TX #1
USB_DM
A2
PF11
U1_RX #1
USB_DP
A3
PF2
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
Timers
TIM0_CC2 #5
54
Communication
LEU0_TX #4
Other
ACMP1_O #0
www.silabs.com
...the world's most energy friendly microcontrollers
Pin #
CSP81 Pin#
and Name
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Other
DBG_SWO #0
GPIO_EM4WU4
A4
VSS
Ground
A5
IOVDD_5
A6
PE9
PCNT2_S1IN #1
A7
PE11
TIM1_CC1 #1
US0_RX #0
LES_ALTEX5 #0
BOOT_RX
A8
PE12
TIM1_CC2 #1
US0_RX #3
US0_CLK #0
I2C0_SDA #6
CMU_CLK1 #2
LES_ALTEX6 #0
A9
PA15
TIM3_CC2 #0
B1
USB_VREGI
B2
USB_VBUS
B3
PC15
TIM0_CDTI2 #1/3
TIM1_CC2 #0
US0_CLK #3
U0_RX #3
LES_CH15 #0
DBG_SWO #1
B4
PF1
TIM0_CC1 #5
LETIM0_OUT1 #2
US1_CS #2
LEU0_RX #3
I2C0_SCL #5
DBG_SWDIO #0/1/2/3
GPIO_EM4WU3
B5
PF5
TIM0_CDTI2 #2/5
USB_VBUSEN #0
PRS_CH2 #1
B6
PE8
PCNT2_S0IN #1
B7
PE13
B8
PA0
TIM0_CC0 #0/1/4
B9
PA2
TIM0_CC2 #0/1
C1
USB_VREGO
Digital IO power supply 5.
USB 5.0 V VBUS input.
ACMP1_CH7
DAC0_OUT1ALT #3/
OPAMP_OUT1ALT
PRS_CH3 #1
US0_TX #3
US0_CS #0
I2C0_SCL #6
LES_ALTEX7 #0
ACMP0_O #0
GPIO_EM4WU5
LEU0_RX #4
I2C0_SDA #0
PRS_CH0 #0
GPIO_EM4WU0
CMU_CLK0 #0
ETM_TD0 #3
TIM0_CDTI0 #1/3
TIM1_CC0 #0
TIM1_CC2 #4
PCNT0_S0IN #0
U1_RX #0
LES_CH13 #0
TIM0_CDTI1 #1/3
TIM1_CC1 #0
PCNT0_S1IN #0
US0_CS #3
U0_TX #3
LES_CH14 #0
TIM0_CC0 #5
LETIM0_OUT0 #2
US1_CLK #2
LEU0_TX #3
I2C0_SDA #5
DBG_SWCLK #0/1/2/3
C2
PC13
ACMP1_CH5
DAC0_OUT1ALT #1/
OPAMP_OUT1ALT
C3
PC14
ACMP1_CH6
DAC0_OUT1ALT #2/
OPAMP_OUT1ALT
C4
PF0
C5
PF12
C6
PE10
TIM1_CC0 #1
US0_TX #0
C7
PE14
TIM3_CC0 #0
LEU0_TX #2
C8
PA1
TIM0_CC1 #0/1
I2C0_SCL #0
CMU_CLK1 #0
PRS_CH1 #0
C9
PA3
TIM0_CDTI0 #0
U0_TX #2
LES_ALTEX2 #0
ETM_TD1 #3
D1
PC10
ACMP1_CH2
TIM2_CC2 #2
US0_RX #2
LES_CH10 #0
D2
PC11
ACMP1_CH3
US0_TX #2
LES_CH11 #0
D3
PC12
ACMP1_CH4
DAC0_OUT1ALT #0/
OPAMP_OUT1ALT
U1_TX #0
CMU_CLK0 #1
LES_CH12 #0
USB_ID
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
55
BOOT_TX
www.silabs.com
...the world's most energy friendly microcontrollers
Pin Alternate Functionality / Description
Pin #
CSP81 Pin#
and Name
Pin Name
Analog
Timers
Communication
Other
D4
PC9
ACMP1_CH1
TIM2_CC1 #2
US0_CLK #2
LES_CH9 #0
GPIO_EM4WU2
D5
PC8
ACMP1_CH0
TIM2_CC0 #2
US0_CS #2
LES_CH8 #0
D6
PA4
TIM0_CDTI1 #0
U0_RX #2
LES_ALTEX3 #0
ETM_TD2 #3
D7
PA5
TIM0_CDTI2 #0
LEU1_TX #1
LES_ALTEX4 #0
ETM_TD3 #3
D8
PA6
LEU1_RX #1
ETM_TCLK #3
GPIO_EM4WU1
D9
IOVDD_0
E1
PE4
US0_CS #1
E2
PE5
US0_CLK #1
E3
PE3
BU_STAT
U1_RX #3
ACMP1_O #1
E4
PC7
ACMP0_CH7
LEU1_RX #0
I2C0_SCL #2
LES_CH7 #0
ETM_TD0 #2
E5
PE15
E6
PB5
E7
PB3
PCNT1_S0IN #1
US2_TX #1
E8
PB4
PCNT1_S1IN #1
US2_RX #1
E9
VSS
F1
DEC_0
F2
PE2
BU_VOUT
F3
PC6
ACMP0_CH6
F4
PD7
ADC0_CH7
DAC0_N1 /
OPAMP_N1
F5
PD0
ADC0_CH0
DAC0_OUT0ALT #4/
OPAMP_OUT0ALT
OPAMP_OUT2 #1
F6
PA8
F7
PC2
ACMP0_CH2
DAC0_OUT0ALT #2/
OPAMP_OUT0ALT
TIM0_CDTI0 #4
US2_TX #0
LES_CH2 #0
F8
PC0
ACMP0_CH0
DAC0_OUT0ALT #0/
OPAMP_OUT0ALT
TIM0_CC1 #4
PCNT0_S0IN #2
US0_TX #5
US1_TX #0
I2C0_SDA #4
LES_CH0 #0
PRS_CH2 #0
F9
PB6
G1
VDD_DREG
Power supply for on-chip voltage regulator.
G2
VSS_DREG
Ground for on-chip voltage regulator.
G3
PD4
ADC0_CH4
OPAMP_P2
G4
PD3
ADC0_CH3
OPAMP_N2
G5
PB12
G6
PB11
Digital IO power supply 0.
TIM3_CC1 #0
LEU0_RX #2
US2_CLK #1
Ground
Decouple output for on-chip voltage regulator.
TIM3_CC2 #1
U1_TX #3
ACMP0_O #1
LEU1_TX #0
I2C0_SDA #2
LES_CH6 #0
ETM_TCLK #2
TIM1_CC1 #4
LETIM0_OUT1 #0
PCNT0_S1IN #3
US1_TX #2
I2C0_SCL #1
CMU_CLK0 #2
LES_ALTEX1 #0
ACMP1_O #2
ETM_TCLK #0
PCNT2_S0IN #0
US1_TX #1
TIM2_CC0 #0
US2_CS #1
LEU0_TX #0
ETM_TD2 #0/2
TIM0_CC2 #3
US1_CS #1
ETM_TD1 #0/2
DAC0_OUT1 /
OPAMP_OUT1
LETIM0_OUT1 #1
I2C1_SCL #1
DAC0_OUT0 /
TIM1_CC2 #3
I2C1_SDA #1
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
56
www.silabs.com
...the world's most energy friendly microcontrollers
Pin #
CSP81 Pin#
and Name
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
OPAMP_OUT0
LETIM0_OUT0 #1
Communication
Other
G7
PA9
TIM2_CC1 #0
G8
PC4
ACMP0_CH4
DAC0_P0 /
OPAMP_P0
TIM0_CDTI2 #4
LETIM0_OUT0 #3
PCNT1_S0IN #0
US2_CLK #0
I2C1_SDA #0
LES_CH4 #0
G9
PC1
ACMP0_CH1
DAC0_OUT0ALT #1/
OPAMP_OUT0ALT
TIM0_CC2 #4
PCNT0_S1IN #2
US0_RX #5
US1_RX #0
I2C0_SCL #4
LES_CH1 #0
PRS_CH3 #0
H1
PD8
BU_VIN
H2
PD6
ADC0_CH6
DAC0_P1 /
OPAMP_P1
TIM1_CC0 #4
LETIM0_OUT0 #0
PCNT0_S0IN #3
US1_RX #2
I2C0_SDA #1
LES_ALTEX0 #0
ACMP0_O #2
ETM_TD0 #0
H3
PD2
ADC0_CH2
TIM0_CC1 #3
USB_DMPU #0
US1_CLK #1
DBG_SWO #3
H4
VSS
H5
AVSS_0
Analog ground 0.
H6
AVDD_0
Analog power supply 0.
H7
PA10
H8
PC5
ACMP0_CH5
DAC0_N0 /
OPAMP_N0
LETIM0_OUT1 #3
PCNT1_S1IN #0
US2_CS #0
I2C1_SCL #0
LES_CH5 #0
H9
PC3
ACMP0_CH3
DAC0_OUT0ALT #3/
OPAMP_OUT0ALT
TIM0_CDTI1 #4
US2_RX #0
LES_CH3 #0
J1
PD5
ADC0_CH5
OPAMP_OUT2 #0
LEU0_RX #0
ETM_TD3 #0/2
J2
PD1
ADC0_CH1
DAC0_OUT1ALT #4/
OPAMP_OUT1ALT
US1_RX #1
DBG_SWO #2
J3
IOVDD_3
J4
PB14
HFXTAL_N
US0_CS #4/5
LEU0_RX #1
J5
PB13
HFXTAL_P
US0_CLK #4/5
LEU0_TX #1
J6
AVDD_1
Analog power supply 1.
J7
RESETn
Reset input, active low.
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up
ensure that reset is released.
J8
PB8
LFXTAL_N
TIM1_CC1 #3
US0_RX #4
US1_CS #0
J9
PB7
LFXTAL_P
TIM1_CC0 #3
US0_TX #4
US1_CLK #0
CMU_CLK1 #1
Ground
TIM2_CC2 #0
TIM0_CC0 #3
PCNT2_S1IN #0
Digital IO power supply 3.
4.2 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in
Table 4.2 (p. 58) . The table shows the name of the alternate functionality in the first column, followed
by columns showing the possible LOCATION bitfield settings.
Note
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
57
www.silabs.com
...the world's most energy friendly microcontrollers
Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.
Table 4.2. Alternate functionality overview
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
ACMP0_CH0
PC0
Analog comparator ACMP0, channel 0.
ACMP0_CH1
PC1
Analog comparator ACMP0, channel 1.
ACMP0_CH2
PC2
Analog comparator ACMP0, channel 2.
ACMP0_CH3
PC3
Analog comparator ACMP0, channel 3.
ACMP0_CH4
PC4
Analog comparator ACMP0, channel 4.
ACMP0_CH5
PC5
Analog comparator ACMP0, channel 5.
ACMP0_CH6
PC6
Analog comparator ACMP0, channel 6.
ACMP0_CH7
PC7
Analog comparator ACMP0, channel 7.
ACMP0_O
PE13
ACMP1_CH0
PC8
Analog comparator ACMP1, channel 0.
ACMP1_CH1
PC9
Analog comparator ACMP1, channel 1.
ACMP1_CH2
PC10
Analog comparator ACMP1, channel 2.
ACMP1_CH3
PC11
Analog comparator ACMP1, channel 3.
ACMP1_CH4
PC12
Analog comparator ACMP1, channel 4.
ACMP1_CH5
PC13
Analog comparator ACMP1, channel 5.
ACMP1_CH6
PC14
Analog comparator ACMP1, channel 6.
ACMP1_CH7
PC15
Analog comparator ACMP1, channel 7.
ACMP1_O
PF2
ADC0_CH0
PD0
Analog to digital converter ADC0, input channel number 0.
ADC0_CH1
PD1
Analog to digital converter ADC0, input channel number 1.
ADC0_CH2
PD2
Analog to digital converter ADC0, input channel number 2.
ADC0_CH3
PD3
Analog to digital converter ADC0, input channel number 3.
ADC0_CH4
PD4
Analog to digital converter ADC0, input channel number 4.
ADC0_CH5
PD5
Analog to digital converter ADC0, input channel number 5.
ADC0_CH6
PD6
Analog to digital converter ADC0, input channel number 6.
ADC0_CH7
PD7
Analog to digital converter ADC0, input channel number 7.
BOOT_RX
PE11
Bootloader RX
BOOT_TX
PE10
Bootloader TX
BU_STAT
PE3
Backup Power Domain status, whether or not the system
is in backup mode
BU_VIN
PD8
Battery input for Backup Power Domain
BU_VOUT
PE2
Power output for Backup Power Domain
CMU_CLK0
PA2
PC12
PD7
Clock Management Unit, clock output number 0.
CMU_CLK1
PA1
PD8
PE12
Clock Management Unit, clock output number 1.
DAC0_N0 /
OPAMP_N0
PC5
Operational Amplifier 0 external negative input.
DAC0_N1 /
OPAMP_N1
PD7
Operational Amplifier 1 external negative input.
PE2
PE3
PD6
Analog comparator ACMP0, digital output.
PD7
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
Analog comparator ACMP1, digital output.
58
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
OPAMP_N2
PD3
Operational Amplifier 2 external negative input.
DAC0_OUT0 /
OPAMP_OUT0
PB11
Digital to Analog Converter DAC0_OUT0 /
OPAMP output channel number 0.
DAC0_OUT0ALT /
PC0
OPAMP_OUT0ALT
DAC0_OUT1 /
OPAMP_OUT1
PC1
PC2
PC3
Digital to Analog Converter DAC0_OUT0ALT /
OPAMP alternative output for channel 0.
PD0
Digital to Analog Converter DAC0_OUT1 /
OPAMP output channel number 1.
PB12
DAC0_OUT1ALT /
PC12
OPAMP_OUT1ALT
PC13
OPAMP_OUT2
PD5
PD0
DAC0_P0 /
OPAMP_P0
PC4
Operational Amplifier 0 external positive input.
DAC0_P1 /
OPAMP_P1
PD6
Operational Amplifier 1 external positive input.
OPAMP_P2
PD4
Operational Amplifier 2 external positive input.
DBG_SWCLK
PF0
PF0
PF0
PF0
DBG_SWDIO
PF1
PF1
PF1
PF1
DBG_SWO
PF2
PC15
PD1
PD2
Note that this function is not enabled after reset, and must
be enabled by software to be used.
ETM_TCLK
PD7
PC6
PA6
Embedded Trace Module ETM clock .
ETM_TD0
PD6
PC7
PA2
Embedded Trace Module ETM data 0.
ETM_TD1
PD3
PD3
PA3
Embedded Trace Module ETM data 1.
ETM_TD2
PD4
PD4
PA4
Embedded Trace Module ETM data 2.
ETM_TD3
PD5
PD5
PA5
Embedded Trace Module ETM data 3.
GPIO_EM4WU0
PA0
Pin can be used to wake the system up from EM4
GPIO_EM4WU1
PA6
Pin can be used to wake the system up from EM4
GPIO_EM4WU2
PC9
Pin can be used to wake the system up from EM4
GPIO_EM4WU3
PF1
Pin can be used to wake the system up from EM4
GPIO_EM4WU4
PF2
Pin can be used to wake the system up from EM4
GPIO_EM4WU5
PE13
Pin can be used to wake the system up from EM4
HFXTAL_N
PB14
High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P
PB13
High Frequency Crystal positive pin.
I2C0_SCL
PA1
PD7
PC7
PC1
PF1
PE13
I2C0 Serial Clock Line input / output.
I2C0_SDA
PA0
PD6
PC6
PC0
PF0
PE12
I2C0 Serial Data input / output.
I2C1_SCL
PC5
PB12
I2C1 Serial Clock Line input / output.
I2C1_SDA
PC4
PB11
I2C1 Serial Data input / output.
LES_ALTEX0
PD6
LESENSE alternate exite output 0.
LES_ALTEX1
PD7
LESENSE alternate exite output 1.
LES_ALTEX2
PA3
LESENSE alternate exite output 2.
LES_ALTEX3
PA4
LESENSE alternate exite output 3.
LES_ALTEX4
PA5
LESENSE alternate exite output 4.
PC14
PC15
Digital to Analog Converter DAC0_OUT1ALT /
OPAMP alternative output for channel 1.
PD1
Operational Amplifier 2 output.
Debug-interface Serial Wire clock input.
Note that this function is enabled to pin out of reset, and
has a built-in pull down.
Debug-interface Serial Wire data input / output.
Note that this function is enabled to pin out of reset, and
has a built-in pull up.
Debug-interface Serial Wire viewer Output.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
59
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
LES_ALTEX5
PE11
LESENSE alternate exite output 5.
LES_ALTEX6
PE12
LESENSE alternate exite output 6.
LES_ALTEX7
PE13
LESENSE alternate exite output 7.
LES_CH0
PC0
LESENSE channel 0.
LES_CH1
PC1
LESENSE channel 1.
LES_CH2
PC2
LESENSE channel 2.
LES_CH3
PC3
LESENSE channel 3.
LES_CH4
PC4
LESENSE channel 4.
LES_CH5
PC5
LESENSE channel 5.
LES_CH6
PC6
LESENSE channel 6.
LES_CH7
PC7
LESENSE channel 7.
LES_CH8
PC8
LESENSE channel 8.
LES_CH9
PC9
LESENSE channel 9.
LES_CH10
PC10
LESENSE channel 10.
LES_CH11
PC11
LESENSE channel 11.
LES_CH12
PC12
LESENSE channel 12.
LES_CH13
PC13
LESENSE channel 13.
LES_CH14
PC14
LESENSE channel 14.
LES_CH15
PC15
LESENSE channel 15.
LETIM0_OUT0
PD6
PB11
PF0
PC4
Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1
PD7
PB12
PF1
PC5
Low Energy Timer LETIM0, output channel 1.
LEU0_RX
PD5
PB14
PE15
PF1
PA0
LEUART0 Receive input.
LEU0_TX
PD4
PB13
PE14
PF0
PF2
LEUART0 Transmit output. Also used as receive input in
half duplex communication.
LEU1_RX
PC7
PA6
LEUART1 Receive input.
LEU1_TX
PC6
PA5
LEUART1 Transmit output. Also used as receive input in
half duplex communication.
LFXTAL_N
PB8
Low Frequency Crystal (typically 32.768 kHz) negative
pin. Also used as an optional external clock input pin.
LFXTAL_P
PB7
Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN
PC13
PC0
PD6
Pulse Counter PCNT0 input number 0.
PCNT0_S1IN
PC14
PC1
PD7
Pulse Counter PCNT0 input number 1.
PCNT1_S0IN
PC4
PB3
Pulse Counter PCNT1 input number 0.
PCNT1_S1IN
PC5
PB4
Pulse Counter PCNT1 input number 1.
PCNT2_S0IN
PD0
PE8
Pulse Counter PCNT2 input number 0.
PCNT2_S1IN
PD1
PE9
Pulse Counter PCNT2 input number 1.
PRS_CH0
PA0
Peripheral Reflex System PRS, channel 0.
PRS_CH1
PA1
Peripheral Reflex System PRS, channel 1.
PRS_CH2
PC0
PF5
Peripheral Reflex System PRS, channel 2.
PRS_CH3
PC1
PE8
Peripheral Reflex System PRS, channel 3.
TIM0_CC0
PA0
PA0
PD1
PA0
PF0
Timer 0 Capture Compare input / output channel 0.
TIM0_CC1
PA1
PA1
PD2
PC0
PF1
Timer 0 Capture Compare input / output channel 1.
TIM0_CC2
PA2
PA2
PD3
PC1
PF2
Timer 0 Capture Compare input / output channel 2.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
60
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
TIM0_CDTI0
PA3
PC13
PC13
PC2
Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1
PA4
PC14
PC14
PC3
Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2
PA5
PC15
PC15
PC4
TIM1_CC0
PC13
PE10
PB7
PD6
Timer 1 Capture Compare input / output channel 0.
TIM1_CC1
PC14
PE11
PB8
PD7
Timer 1 Capture Compare input / output channel 1.
TIM1_CC2
PC15
PE12
PB11
PC13
Timer 1 Capture Compare input / output channel 2.
TIM2_CC0
PA8
PC8
Timer 2 Capture Compare input / output channel 0.
TIM2_CC1
PA9
PC9
Timer 2 Capture Compare input / output channel 1.
TIM2_CC2
PA10
PC10
Timer 2 Capture Compare input / output channel 2.
TIM3_CC0
PE14
Timer 3 Capture Compare input / output channel 0.
TIM3_CC1
PE15
Timer 3 Capture Compare input / output channel 1.
TIM3_CC2
PA15
PF5
PF5
PE2
Timer 0 Complimentary Deat Time Insertion channel 2.
Timer 3 Capture Compare input / output channel 2.
U0_RX
PA4
PC15
UART0 Receive input.
U0_TX
PA3
PC14
UART0 Transmit output. Also used as receive input in half
duplex communication.
U1_RX
PC13
PF11
PE3
UART1 Receive input.
U1_TX
PC12
PF10
PE2
UART1 Transmit output. Also used as receive input in half
duplex communication.
US0_CLK
PE12
PE5
PC9
PC15
PB13
PB13
USART0 clock input / output.
US0_CS
PE13
PE4
PC8
PC14
PB14
PB14
USART0 chip select input / output.
US0_RX
PE11
PC10
PE12
PB8
PC1
USART0 Asynchronous Receive.
USART0 Synchronous mode Master Input / Slave Output
(MISO).
USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX
PE10
PC11
PE13
PB7
PC0
USART0 Synchronous mode Master Output / Slave Input
(MOSI).
US1_CLK
PB7
PD2
PF0
USART1 clock input / output.
US1_CS
PB8
PD3
PF1
USART1 chip select input / output.
US1_RX
PC1
PD1
PD6
USART1 Asynchronous Receive.
USART1 Synchronous mode Master Input / Slave Output
(MISO).
USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX
PC0
PD0
PD7
USART1 Synchronous mode Master Output / Slave Input
(MOSI).
US2_CLK
PC4
PB5
USART2 clock input / output.
US2_CS
PC5
PB6
USART2 chip select input / output.
US2_RX
PC3
PB4
USART2 Asynchronous Receive.
USART2 Synchronous mode Master Input / Slave Output
(MISO).
USART2 Asynchronous Transmit.Also used as receive input in half duplex communication.
US2_TX
PC2
PB3
USART2 Synchronous mode Master Output / Slave Input
(MOSI).
USB_DM
PF10
USB D- pin.
USB_DMPU
PD2
USB D- Pullup control.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
61
www.silabs.com
...the world's most energy friendly microcontrollers
Alternate
LOCATION
Functionality
0
1
2
3
4
5
6
Description
USB_DP
PF11
USB D+ pin.
USB_ID
PF12
USB ID pin. Used in OTG mode.
USB_VBUS
USB_VBUS
USB 5 V VBUS input.
USB_VBUSEN
PF5
USB 5 V VBUS enable.
USB_VREGI
USB_VREGI
USB Input to internal 3.3 V regulator
USB_VREGO
USB_VREGO
USB Decoupling for internal 3.3 V USB regulator and regulator output
4.3 GPIO Pinout Overview
The specific GPIO pins available in EFM32LG360 is shown in Table 4.3 (p. 62) . Each GPIO port is
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated
by a number from 15 down to 0.
Table 4.3. GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Pin
9
Pin
8
Pin
7
Pin
6
Pin
5
Pin
4
Pin
3
Pin
2
Pin
1
Pin
0
Port A
PA15
-
-
-
-
PA10
PA9
PA8
-
PA6
PA5
PA4
PA3
PA2
PA1
PA0
Port B
-
PB14
PB13
PB12
PB11
-
-
PB8
PB7
PB6
PB5
PB4
PB3
-
-
-
Port C
PC15
PC14
PC13
PC12
PC11
PC10
PC9
PC8
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
Port D
-
-
-
-
-
-
-
PD8
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Port E
PE15
PE14
PE13
PE12
PE11
PE10
PE9
PE8
-
-
PE5
PE4
PE3
PE2
-
-
Port F
-
-
-
PF12
PF11
PF10
-
-
-
-
PF5
-
-
PF2
PF1
PF0
4.4 Opamp Pinout Overview
The specific opamp terminals available in EFM32LG360 is shown in Figure 4.2 (p. 62) .
Figure 4.2. Opamp Pinout
PC4
PC5
PD4
PD3
PD6
PD7
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
OUT0ALT
+
OPA0
OUT0
+
OPA2
OUT2
OUT1ALT
+
OPA1
OUT1
-
62
PB11
PB12
PC0
PC1
PC2
PC3
PC12
PC13
PC14
PC15
PD0
PD1
PD5
www.silabs.com
...the world's most energy friendly microcontrollers
4.5 CSP81 Package
Figure 4.3. CSP81
Note:
1.
2.
3.
4.
5.
All dimensions shown are in millimeters (mm) unless otherwise noted.
Dimensioning and Tolerancing per ANSI Y14.5M-1994.
Primary datum “C” and seating plane are defined by the spherical crowns of the solder balls.
Dimension “b” is measured at the maximum solder bump diameter, parallel to primary datum “C”.
Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body
Components.
Table 4.4. CSP81 (Dimensions in mm)
Symbol
A
A1
A2
b
S
Min
0.491 0.17 0.036 0.23 0.3075
Nom
0.55
Max
0.609 0.23 0.044 0.29 0.3125
-
-
-
0.31
D
E
e
D1
E1
4.355 4.275 0.40 3.20 3.20
BSC. BSC. BSC. BSC. BSC.
n
aaa
bbb
ccc
ddd
eee
81
0.05
0.10 0.075 0.15
0.05
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).
For additional Quality and Environmental information, please see:
http://www.silabs.com/support/quality/pages/default.aspx
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
63
www.silabs.com
...the world's most energy friendly microcontrollers
5 PCB Layout and Soldering
5.1 Recommended PCB Layout
Figure 5.1. CSP81 PCB Land Pattern
Table 5.1. CSP81 PCB Land Pattern Dimensions (Dimensions in mm)
Symbol
Dim. (mm)
X
0.20
C1
3.20
C2
3.20
E1
0.40
E2
0.40
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
64
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 5.2. CSP81 PCB Solder Mask
Table 5.2. CSP81 PCB Solder Mask Dimensions (Dimensions in mm)
Symbol
Dim. (mm)
X
0.26
C1
3.20
C2
3.20
E1
0.40
E2
0.40
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
65
www.silabs.com
...the world's most energy friendly microcontrollers
Figure 5.3. CSP81 PCB Stencil Design
Table 5.3. CSP81 PCB Stencil Design Dimensions (Dimensions in mm)
1.
2.
3.
4.
5.
6.
Symbol
Dim. (mm)
X
0.20
C1
3.20
C2
3.20
E1
0.40
E2
0.40
The drawings are not to scale.
All dimensions are in millimeters.
All drawings are subject to change without notice.
The PCB Land Pattern drawing is in compliance with IPC-7351B.
Stencil thickness 0.125 mm.
For detailed pin-positioning, see Figure 4.3 (p. 63) .
5.2 Soldering Information
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.
The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033
standard for MSL description and level 3 bake conditions.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
66
www.silabs.com
...the world's most energy friendly microcontrollers
6 Chip Marking, Revision and Errata
6.1 Chip Marking
In the illustration below package fields and position are shown.
Figure 6.1. Example Chip Marking (top view)
6.2 Revision
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 67) .
6.3 Errata
Please see the errata document for EFM32LG360 for description and resolution of device erratas. This
document is available in Simplicity Studio and online at:
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
67
www.silabs.com
...the world's most energy friendly microcontrollers
7 Revision History
7.1 Revision 1.00
October 15th, 2014
Initial release.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
68
www.silabs.com
...the world's most energy friendly microcontrollers
A Disclaimer and Trademarks
A.1 Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation
of all peripherals and modules available for system and software implementers using or intending to use
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and
do vary in different applications. Application examples described herein are for illustrative purposes only.
Silicon Laboratories reserves the right to make changes without further notice and limitation to product
information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life
Support System" is any product or system intended to support or sustain life and/or health, which, if it
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories
products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological
or chemical weapons, or missiles capable of delivering such weapons.
A.2 Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products
or brand names mentioned herein are trademarks of their respective holders.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
69
www.silabs.com
...the world's most energy friendly microcontrollers
B Contact Information
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Please visit the Silicon Labs Technical Support web page:
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
70
www.silabs.com
...the world's most energy friendly microcontrollers
Table of Contents
1. Ordering Information .................................................................................................................................. 2
2. System Summary ...................................................................................................................................... 3
2.1. System Introduction ......................................................................................................................... 3
2.2. Configuration Summary .................................................................................................................... 7
2.3. Memory Map ................................................................................................................................. 8
3. Electrical Characteristics ........................................................................................................................... 10
3.1. Test Conditions ............................................................................................................................. 10
3.2. Absolute Maximum Ratings ............................................................................................................. 10
3.3. General Operating Conditions .......................................................................................................... 10
3.4. Current Consumption ..................................................................................................................... 11
3.5. Transition between Energy Modes .................................................................................................... 17
3.6. Power Management ....................................................................................................................... 18
3.7. Flash .......................................................................................................................................... 19
3.8. General Purpose Input Output ......................................................................................................... 19
3.9. Oscillators .................................................................................................................................... 27
3.10. Analog Digital Converter (ADC) ...................................................................................................... 32
3.11. Digital Analog Converter (DAC) ...................................................................................................... 42
3.12. Operational Amplifier (OPAMP) ...................................................................................................... 43
3.13. Analog Comparator (ACMP) .......................................................................................................... 47
3.14. Voltage Comparator (VCMP) ......................................................................................................... 49
3.15. I2C ........................................................................................................................................... 49
3.16. USART SPI ................................................................................................................................ 51
3.17. Digital Peripherals ....................................................................................................................... 53
4. Pinout and Package ................................................................................................................................. 54
4.1. Pinout ......................................................................................................................................... 54
4.2. Alternate Functionality Pinout .......................................................................................................... 57
4.3. GPIO Pinout Overview ................................................................................................................... 62
4.4. Opamp Pinout Overview ................................................................................................................. 62
4.5. CSP81 Package ........................................................................................................................... 63
5. PCB Layout and Soldering ........................................................................................................................ 64
5.1. Recommended PCB Layout ............................................................................................................ 64
5.2. Soldering Information ..................................................................................................................... 66
6. Chip Marking, Revision and Errata .............................................................................................................. 67
6.1. Chip Marking ................................................................................................................................ 67
6.2. Revision ...................................................................................................................................... 67
6.3. Errata ......................................................................................................................................... 67
7. Revision History ...................................................................................................................................... 68
7.1. Revision 1.00 ............................................................................................................................... 68
A. Disclaimer and Trademarks ....................................................................................................................... 69
A.1. Disclaimer ................................................................................................................................... 69
A.2. Trademark Information ................................................................................................................... 69
B. Contact Information ................................................................................................................................. 70
B.1. ................................................................................................................................................. 70
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
71
www.silabs.com
...the world's most energy friendly microcontrollers
List of Figures
2.1. Block Diagram ....................................................................................................................................... 3
2.2. EFM32LG360 Memory Map with largest RAM and Flash sizes ........................................................................ 9
3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at 48 MHz ................................ 13
3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28 MHz .............................. 13
3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14
3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14
3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15
3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz ............................. 15
3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 1.2 MHz ............................. 16
3.8. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ......................................................... 16
3.9. EM3 current consumption. ..................................................................................................................... 17
3.10. EM4 current consumption. ................................................................................................................... 17
3.11. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21
3.12. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22
3.13. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23
3.14. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24
3.15. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25
3.16. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26
3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28
3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29
3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30
3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30
3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30
3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31
3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31
3.24. Integral Non-Linearity (INL) ................................................................................................................... 37
3.25. Differential Non-Linearity (DNL) .............................................................................................................. 37
3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38
3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39
3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40
3.29. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41
3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41
3.31. ADC Temperature sensor readout ......................................................................................................... 42
3.32. OPAMP Common Mode Rejection Ratio ................................................................................................. 45
3.33. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 45
3.34. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 46
3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 46
3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 46
3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 48
3.38. SPI Master Timing ............................................................................................................................... 51
3.39. SPI Slave Timing ................................................................................................................................ 52
4.1. EFM32LG360 Pinout (top view, not to scale) .............................................................................................. 54
4.2. Opamp Pinout ...................................................................................................................................... 62
4.3. CSP81 ................................................................................................................................................ 63
5.1. CSP81 PCB Land Pattern ...................................................................................................................... 64
5.2. CSP81 PCB Solder Mask ....................................................................................................................... 65
5.3. CSP81 PCB Stencil Design .................................................................................................................... 66
6.1. Example Chip Marking (top view) ............................................................................................................. 67
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
72
www.silabs.com
...the world's most energy friendly microcontrollers
List of Tables
1.1. Ordering Information ................................................................................................................................ 2
2.1. Configuration Summary ............................................................................................................................ 7
3.1. Absolute Maximum Ratings ..................................................................................................................... 10
3.2. General Operating Conditions .................................................................................................................. 10
3.3. Current Consumption ............................................................................................................................. 11
3.4. Energy Modes Transitions ...................................................................................................................... 17
3.5. Power Management ............................................................................................................................... 18
3.6. Flash .................................................................................................................................................. 19
3.7. GPIO .................................................................................................................................................. 19
3.8. LFXO .................................................................................................................................................. 27
3.9. HFXO ................................................................................................................................................. 27
3.10. LFRCO .............................................................................................................................................. 28
3.11. HFRCO ............................................................................................................................................. 29
3.12. AUXHFRCO ....................................................................................................................................... 32
3.13. ULFRCO ............................................................................................................................................ 32
3.14. ADC .................................................................................................................................................. 32
3.15. DAC .................................................................................................................................................. 42
3.16. OPAMP ............................................................................................................................................. 43
3.17. ACMP ............................................................................................................................................... 47
3.18. VCMP ............................................................................................................................................... 49
3.19. I2C Standard-mode (Sm) ...................................................................................................................... 49
3.20. I2C Fast-mode (Fm) ............................................................................................................................ 50
3.21. I2C Fast-mode Plus (Fm+) .................................................................................................................... 50
3.22. SPI Master Timing ............................................................................................................................... 51
3.23. SPI Master Timing with SSSEARLY and SMSDELAY ................................................................................. 51
3.24. SPI Slave Timing ................................................................................................................................ 52
3.25. SPI Slave Timing with SSSEARLY and SMSDELAY .................................................................................. 52
3.26. Digital Peripherals ............................................................................................................................... 53
4.1. Device Pinout ....................................................................................................................................... 54
4.2. Alternate functionality overview ................................................................................................................ 58
4.3. GPIO Pinout ........................................................................................................................................ 62
4.4. CSP81 (Dimensions in mm) .................................................................................................................... 63
5.1. CSP81 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 64
5.2. CSP81 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 65
5.3. CSP81 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 66
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
73
www.silabs.com
...the world's most energy friendly microcontrollers
List of Equations
3.1. Total ACMP Active Current ..................................................................................................................... 47
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 49
2014-10-15 - EFM32LG360FXX - d0286_Rev1.00
74
www.silabs.com
Similar pages