Data Sheet

LPC12D27
32-bit ARM Cortex-M0 microcontroller; 128 kB flash and 8 kB
SRAM; 40 segment x 4 LCD driver
Rev. 1 — 20 September 2011
Product data sheet
1. General description
The LPC12D27 are ARM Cortex-M0 based microcontrollers for embedded applications
featuring a high level of integration and low power consumption. The ARM Cortex-M0 is a
next generation core that offers system enhancements such as enhanced debug features
and a higher level of support block integration.
The LPC12D27 is a dual-chip module consisting of a LPC1227 single-chip microcontroller
combined with a PCF8576D Universal LCD driver in a low-cost 100-pin package. The
LCD driver provides 40 segments and supports from one to four backplanes. Display
overhead is minimized by an on-chip display RAM with auto-increment addressing.
The LPC12D27 operate at CPU frequencies of up to 45 MHz and include 128 kB of flash
memory and 8 kB of data memory.
The peripheral complement of the LPC1227 microcontroller includes a micro DMA
controller, one Fast-mode Plus I2C interface, one SSP interface, two UARTs, four general
purpose timers, a 10-bit ADC, two comparators, and up to 40 general purpose I/O pins.
Remark: For a functional description of the LPC1227 microcontroller see the LPC122x
data sheet. For a detailed description of the LCD driver see the PCF8576D data sheet.
Both data sheets are available at http://www.nxp.com/microcontrollers
2. Features and benefits
 LCD driver
 40 segments.
 One to four backplanes.
 On-chip display RAM with auto-increment addressing.
 Processor core
 ARM Cortex-M0 processor, running at frequencies of up to 45 MHz (one wait state
from flash) or 30 MHz (zero wait states from flash). The LPC12D27 have a high
score of over 45 in CoreMark CPU performance benchmark testing, equivalent to
1.51/MHz.
 ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).
 Serial Wire Debug (SWD).
 System tick timer.
 Memory
 8 kB SRAM.
 128 kB on-chip flash programming memory.
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller







LPC12D27
Product data sheet
 In-System Programming (ISP) and In-Application Programming (IAP) via on-chip
bootloader software.
 Includes ROM-based 32-bit integer division routines.
Clock generation unit
 Crystal oscillator with an operating range of 1 MHz to 25 MHz.
 12 MHz Internal RC (IRC) oscillator trimmed to 1 % accuracy that can optionally be
used as a system clock.
 PLL allows CPU operation up to the maximum CPU rate without the need for a
high-frequency crystal. May be run from the system oscillator or the internal RC
oscillator.
 Clock output function with divider that can reflect the system oscillator clock, IRC
clock, main clock, and Watchdog clock.
 Real-Time Clock (RTC).
Digital peripherals
 Micro DMA controller with 21 channels.
 CRC engine.
 Two UARTs with fractional baud rate generation and internal FIFO. One UART with
RS-485 and modem support and one standard UART with IrDA.
 SSP/SPI controller with FIFO and multi-protocol capabilities.
 I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a
data rate of 1 Mbit/s with multiple address recognition and monitor mode. I2C-bus
pins have programmable glitch filter.
 Up to 40 General Purpose I/O (GPIO) pins with programmable pull-up resistor,
open-drain mode, programmable digital input glitch filter, and programmable input
inverter.
 Programmable output drive on all GPIO pins. Four pins support high-current output
drivers.
 All GPIO pins can be used as edge and level sensitive interrupt sources.
 Four general purpose counter/timers with four capture inputs and four match
outputs (32-bit timers) or two capture inputs and two match outputs (16-bit timers).
 Windowed WatchDog Timer (WWDT), IEC-60335 Class B certified.
Analog peripherals
 One 8-channel, 10-bit ADC.
 Two highly flexible analog comparators. Comparator outputs can be programmed
to trigger a timer match signal or can be used to emulate 555 timer behavior.
Power
 Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.
 Processor wake-up from Deep-sleep mode via start logic using 12 port pins.
 Processor wake-up from Deep-power down and Deep-sleep modes via the RTC.
 Brownout detect with three separate thresholds each for interrupt and forced reset.
 Power-On Reset (POR).
 Integrated PMU (Power Management Unit).
Unique device serial number for identification.
3.3 V power supply.
Available as 100-pin LQFP package.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
2 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
3. Applications





White goods
Portable medical devices
Lighting control
Thermostats
Alarm systems
4. Ordering information
Table 1.
Ordering information
Type number
Package
Name
LPC12D27FBD100/301 LQFP100
Description
Version
plastic low profile quad flat package; 100 leads; body 14  14  1.4 mm SOT407-1
4.1 Ordering options
Table 2.
Ordering options for LPC12D27
Type number
Flash
Total SRAM
UART
RS-485
I2C/ FM+
SSP
ADC
channels
Package
LPC12D27FBD100/301
128 kB
8 kB
1
1
1
8
LQFP100
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
3 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
5. Block diagram
S[39:0]
PIO0, PIO1, PIO2
BP[3:0]
PCF8576D
LPC1227
LCD
CONTROLLER
MCU
VLCD
Fig 1.
LPC12D27
Product data sheet
LCD_SCL, LCD_SDA
SCL, SDA
002aaf672
LPC12D27 block diagram
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
4 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
XTALIN
XTALOUT
RESET
SWD
LPC1227
CLOCK
GENERATION,
POWER CONTROL,
SYSTEM
FUNCTIONS
clocks and
controls
TEST/DEBUG
INTERFACE
ARM
CORTEX-M0
MICRO DMA
CONTROLLER
system
bus
128 kB
FLASH
master
8 kB
SRAM
slave
CLKOUT
ROM
slave
slave
AHB-LITE BUS
slave
GPIO ports
SCK
SSEL
MISO
MOSI
RXD0
TXD0
DTR0, DSR0, CTS0,
DCD0, RI0, RTS0
HIGH-SPEED
GPIO
AHB-ABB
BRIDGE
CRC
ENGINE
ACMP0/1_I[3:0]
COMPARATOR0/1
VREF_CMP
UART1
WINDOWED WDT
SCL
SDA
I2C-bus
IOCONFIG
32-bit COUNTER/TIMER 0/1
REAL-TIME CLOCK
16-bit COUNTER/TIMER 0/1
SYSTEM CONTROL
4 x CAP
2 x MAT
2 x CAP
ACMP0/1_O
UART0 RS-485
RXD1
TXD1
4 x MAT
AD[7:0]
10-bit ADC
SSP/SPI
RTCXOUT
RTCXIN
MICRO DMA REGISTERS
002aag501
Fig 2.
LPC12D27 block diagram (microcontroller)
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
5 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
BP0
BP2
BP1
S0 to S39
BP3
40
VLCD
DISPLAY SEGMENT
OUTPUTS
BACKPLANE
OUTPUTS
LCD
VOLTAGE
SELECTOR
DISPLAY
REGISTER
OUTPUT BANK SELECT
AND BLINK CONTROL
DISPLAY
CONTROLLER
LCD BIAS
GENERATOR
VSS(LCD)
CLK
SYNC
OSC
CLOCK SELECT
AND TIMING
BLINKER
TIMEBASE
OSCILLATOR
POWER-ON
RESET
INPUT
FILTERS
I2C-BUS
CONTROLLER
DISPLAY RAM
40 x 4-BIT
PCF8576D
COMMAND
DECODER
WRITE DATA
CONTROL
DATA POINTER AND
AUTO INCREMENT
VDD
LCD_SCL
LCD_SDA
SUBADDRESS
COUNTER
002aaf673
Fig 3.
LCD display controller block diagram
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
6 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
6. Pinning information
77 S31
76 S30
78 S32
79 S33
80 R/PIO1_1
81 PIO1_2
82 PIO1_3
83 PIO1_4
84 PIO1_5
85 PIO1_6
86 VSS
87 VDD(3V3)
88 RTCXOUT
89 RTCXIN
90 VDD(IO)
91 VSSIO
92 XTALIN
93 XTALOUT
94 VREF_CMP
95 PIO0_19
96 PIO0_20
97 PIO0_21
98 PIO0_22
99 PIO0_23
100 PIO0_24
6.1 Pinning
SWDIO/PIO0_25
1
75 S29
SWCLK/PIO0_26
2
74 S28
PIO0_27
3
73 S27
PIO0_28
4
72 S26
PIO0_29
5
71 S25
PIO0_0
6
70 S24
PIO0_1
7
69 S23
PIO0_2
8
68 S22
PIO0_3
9
67 S21
PIO0_4 10
66 S20
PIO0_5 11
65 S19
PIO0_6 12
64 S18
LPC12D27
PIO0_7 13
62 S16
PIO0_9 15
61 S15
PIO2_0 16
60 S14
PIO0_10 17
59 S13
PIO0_11 18
58 S12
PIO0_12 19
57 S11
RESET/PIO0_13 20
56 S10
PIO0_14 21
55 S9
PIO0_15 22
54 S8
S4 50
S3 49
S2 48
S1 47
S0 46
BP3 45
BP1 44
BP2 43
BP0 42
VLCD 41
VSS(LCD) 40
VDD 39
CLK 38
SYNC 37
LCD_ SCL 36
LCD_ SDA 35
S39 34
S38 33
S37 32
S36 31
51 S5
S35 30
PIO0_18 25
S34 29
52 S6
R/PIO1_0 28
53 S7
PIO0_17 24
R/PIO0_31 27
PIO0_16 23
R/PIO0_30 26
Fig 4.
63 S17
PIO0_8 14
002aag502
Pin configuration LQFP100 package
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
7 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
6.2 Pin description
All pins except the supply pins and the LCD pins can have more than one function as
shown in Table 3. The pin function is selected through the pin’s IOCON register in the
IOCONFIG block. The multiplexed functions include the counter/timer inputs and outputs,
the UART receive, transmit, and control functions, and the serial wire debug functions.
For each pin, the default function is listed first together with the pin’s reset state.
Table 3.
LPC12D27 LQFP100 pin description
Symbol
Pin
Start Reset
logic state
input [1]
Type
Description
I/O
Port 0 — Port 0 is a 32-bit I/O port with individual direction and
function controls for each bit. The operation of port 0 pins
depends on the function selected through the IOCONFIG register
block.
I/O
PIO0_0 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
O
RTS0 — Request To Send output for UART0.
I/O
PIO0_1 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I
RXD0 — Receiver input for UART0.
I
CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.
Microcontroller pins
PIO0_0 to PIO0_31
PIO0_0/RTS0
6[2]
PIO0_1/RXD0/
CT32B0_CAP0/
CT32B0_MAT0
7[2]
PIO0_2/TXD0/
CT32B0_CAP1/
CT32B0_MAT1
PIO0_3/DTR0/
CT32B0_CAP2/
CT32B0_MAT2
PIO0_4/
CT32B0_CAP3/
CT32B0_MAT3
PIO0_5/DCD0
LPC12D27
Product data sheet
8[2]
9[2]
10[2]
11[2]
yes
yes
yes
yes
yes
yes
I; PU
I; PU
I; PU
I; PU
I; PU
I; PU
O
CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.
I/O
PIO0_2 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
O
TXD0 — Transmitter output for UART0.
I
CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.
O
CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0.
I/O
PIO0_3 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
O
DTR0 — Data Terminal Ready output for UART0.
I
CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.
O
CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.
I/O
PIO0_4 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I
DSR0 — Data Set Ready input for UART0.
I
CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.
O
CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.
I/O
PIO0_5 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I
DCD0 — Data Carrier Detect input for UART0.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
8 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 3.
LPC12D27 LQFP100 pin description …continued
Symbol
Pin
PIO0_6/RI0/
CT32B1_CAP0/
CT32B1_MAT0
12[2] yes
PIO0_7/CTS0/
CT32B1_CAP1/
CT32B1_MAT1
PIO0_8/RXD1
/CT32B1_CAP2/
CT32B1_MAT2
PIO0_9/TXD1/
CT32B1_CAP3/
CT32B1_MAT3
13[2]
yes
14[2] yes
15[2]
PIO0_10/SCL
17[3]
PIO0_11/SDA/
CT16B0_CAP0/
CT16B0_MAT0
18[3]
PIO0_12/CLKOUT/
CT16B0_CAP1/
CT16B0_MAT1
Start Reset
logic state
input [1]
19[7]
yes
yes
yes
no
I; PU
I; PU
I; PU
I; PU
I; IA
I; IA
I; PU
RESET/PIO0_13
20[4] no
I; PU
PIO0_14/SCK
21[2] no
I; PU
LPC12D27
Product data sheet
Type
Description
I/O
PIO0_6 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I
RI0 — Ring Indicator input for UART0.
I
CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.
O
CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.
I/O
PIO0_7 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I
CTS0 — Clear To Send input for UART0.
I
CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1.
O
CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1.
I/O
PIO0_8 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I
RXD1 — Receiver input for UART1.
I
CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1.
O
CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1.
I/O
PIO0_9 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
O
TXD1 — Transmitter output for UART1.
I
CT32B1_CAP3 — Capture input, channel 3 for 32-bit timer 1.
O
CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1.
I/O
PIO0_10 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I/O
SCL — I2C-bus clock input/output.
I/O
PIO0_11 — General purpose digital input/output pin. Also serves
as wake-up pin from Deep-sleep mode.
I/O
SDA — I2C-bus data input/output.
I
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.
O
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.
I/O
PIO0_12 — General purpose digital input/output pin. A LOW
level on this pin in during reset starts the ISP command handler.
High-current output driver.
O
CLKOUT — Clock out pin.
I
CT16B0_CAP1 — Capture input, channel 0 for 16-bit timer 0.
O
CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0.
I
RESET — External reset input: A LOW on this pin resets the
device, causing I/O ports and peripherals to take on their default
states, and processor execution to begin at address 0.
I/O
PIO0_13 — General purpose digital input/output pin.
I/O
PIO0_14 — General purpose digital input/output pin.
I/O
SCK — Serial clock for SSP.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
9 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 3.
LPC12D27 LQFP100 pin description …continued
Symbol
Pin
PIO0_15/SSEL/
CT16B1_CAP0/
CT16B1_MAT0
22[2] no
PIO0_16/MISO/
CT16B1_CAP1/
CT16B1_MAT1
23[2]
PIO0_17/MOSI
24[2]
no
I; PU
PIO0_18/SWCLK/
CT32B0_CAP0/
CT32B0_MAT0
25[2] no
I; PU
PIO0_19/ACMP0_I0/
CT32B0_CAP1/
CT32B0_MAT1
95[5] no
PIO0_20/ACMP0_I1/
CT32B0_CAP2/
CT32B0_MAT2
96[5] no
PIO0_21/ACMP0_I2/
CT32B0_CAP3/
CT32B0_MAT3
97[5] no
PIO0_22/ACMP0_I3
98[5] no
PIO0_23/
ACMP1_I0/
CT32B1_CAP0/
CT32B1_MAT0
99[5]
PIO0_24/ACMP1_I1/
CT32B1_CAP1/
CT32B1_MAT1
LPC12D27
Product data sheet
100
[5]
Start Reset
logic state
input [1]
no
no
no
I; PU
I; PU
I; PU
I; PU
I; PU
I; PU
I; PU
I; PU
Type
Description
I/O
PIO0_15 — General purpose digital input/output pin.
I/O
SSEL — Slave select for SSP.
I
CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1.
O
CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1.
I/O
PIO0_16 — General purpose digital input/output pin.
I/O
MISO — Master In Slave Out for SSP.
I
CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1.
O
CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1.
I/O
PIO0_17 — General purpose digital input/output pin.
I/O
MOSI — Master Out Slave In for SSP.
I/O
PIO0_18 — General purpose digital input/output pin.
I
SWCLK — Serial wire clock, alternate location.
I
CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.
O
CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.
I/O
PIO0_19 — General purpose digital input/output pin.
I
ACMP0_I0 — Input 0 for comparator 0.
I
CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.
O
CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0
I/O
PIO0_20 — General purpose digital input/output pin.
I
ACMP0_I1 — Input 1 for comparator 0.
I
CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.
O
CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.
I/O
PIO0_21 — General purpose digital input/output pin.
I
ACMP0_I2 — Input 2 for comparator 0.
I
CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.
O
CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.
I/O
PIO0_22 — General purpose digital input/output pin.
I
ACMP0_I3 — Input 3 for comparator 0.
I/O
PIO0_23 — General purpose digital input/output pin.
I
ACMP1_I0 — Input 0 for comparator 1.
I
CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.
O
CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.
I/O
PIO0_24 — General purpose digital input/output pin.
I
ACMP1_I1 — Input 1 for comparator 1.
I
CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1.
O
CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
10 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 3.
LPC12D27 LQFP100 pin description …continued
Symbol
Pin
Start Reset
logic state
input [1]
Type
Description
SWDIO/ACMP1_I2/
CT32B1_CAP2/
CT32B1_MAT2/PIO0_25
1[5]
no
I/O
SWDIO — Serial wire debug input/output, default location.
I
ACMP1_I2 — Input 2 for comparator 1.
I
CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1.
O
CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1.
I/O
PIO0_25 — General purpose digital input/output pin.
SWCLK/
ACMP1_I3/
CT32B1_CAP3/
CT32B1_MAT3/PIO0_26
2[5]
PIO0_27/ACMP0_O
3[7]
PIO0_28/ACMP1_O/
CT16B0_CAP0/
CT16B0_MAT0
4[7]
PIO0_29/ROSC/
CT16B0_CAP1/
CT16B0_MAT1
R/PIO0_30/AD0
R/PIO0_31/AD1
5[7]
26[5]
27[5]
no
no
no
no
no
no
I; PU
I; PU
I; PU
I; PU
I; PU
I; PU
I; PU
PIO1_0 to PIO1_6
R/PIO1_0/AD2
LPC12D27
Product data sheet
28[5] no
I; PU
I
SWCLK — Serial wire clock, default location.
I
ACMP1_I3 — Input 3 for comparator 1.
I
CT32B1_CAP3 — Capture input, channel 3 or 32-bit timer 1.
O
CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1.
I/O
PIO0_26 — General purpose digital input/output pin.
I/O
PIO0_27 — General purpose digital input/output pin
(high-current output driver).
O
ACMP0_O — Output for comparator 0.
I/O
PIO0_28 — General purpose digital input/output pin
(high-current output driver).
O
ACMPC1_O — Output for comparator 1.
I
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.
O
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.
I/O
PIO0_29 — General purpose digital input/output pin
(high-current output driver).
I/O
ROSC — Relaxation oscillator for 555 timer applications.
I
CT16B0_CAP1 — Capture input, channel 1 for 16-bit timer 0.
O
CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0.
I
R — Reserved. Configure for an alternate function in the
IOCONFIG block.
I/O
PIO0_30 — General purpose digital input/output pin.
I
AD0 — A/D converter, input 0.
I
R — Reserved. Configure for an alternate function in the
IOCONFIG block.
I/O
PIO0_31 — General purpose digital input/output pin.
I
AD1 — A/D converter, input 1.
I/O
Port 1 — Port 1 is a 32-bit I/O port with individual direction and
function controls for each bit. The operation of port 1 pins
depends on the function selected through the IOCONFIG register
block. Pins PIO1_7 through PIO1_31 are not available.
O
R — Reserved. Configure for an alternate function in the
IOCONFIG block.
I/O
PIO1_0 — General purpose digital input/output pin.
I
AD2 — A/D converter, input 2.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
11 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 3.
LPC12D27 LQFP100 pin description …continued
Symbol
Pin
R/PIO1_1/AD3
80[5] no
PIO1_2/SWDIO/AD4
PIO1_3/AD5/WAKEUP
81[5]
82[6]
Start Reset
logic state
input [1]
no
no
PIO1_4/AD6
83[5] no
PIO1_5/AD7/
CT16B1_CAP0/
CT16B1_MAT0
84[5]
PIO1_6/CT16B1_CAP1/
CT16B1_MAT1
85[2]
no
no
I; PU
I; PU
I; PU
I; PU
I; PU
I; PU
PIO2_0
Type
Description
I
R — Reserved. Configure for an alternate function in the
IOCONFIG block.
I/O
PIO1_1 — General purpose digital input/output pin.
I
AD3 — A/D converter, input 3.
I/O
PIO1_2 — General purpose digital input/output pin.
I/O
SWDIO — Serial wire debug input/output, alternate location.
I
AD4 — A/D converter, input 4.
I/O
PIO1_3 — General purpose digital input/output pin.
I
AD5 — A/D converter, input 5.
I
WAKEUP — Deep power-down mode wake-up pin.
I/O
PIO1_4 — General purpose digital input/output pin.
I
AD6 — A/D converter, input 6.
I/O
PIO1_5 — General purpose digital input/output pin.
I
AD7 — A/D converter, input 7.
I
CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1.
O
CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1.
I/O
PIO1_6 — General purpose digital input/output pin.
I
CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1.
O
CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1.
I/O
Port 2 — Port 2 is a 32-bit I/O port with individual direction and
function controls for each bit. The operation of port 2 pins
depends on the function selected through the IOCONFIG register
block. Pins PIO2_1 through PIO2_31 are not available.
I/O
PIO2_0 — General purpose digital input/output pin.
I
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.
PIO2_0/CT16B0_CAP0/
CT16B0_MAT0
16[2] no
O
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.
RTCXIN
89
-
-
-
Input to the 32 kHz oscillator circuit.
RTCXOUT
88
-
-
-
Output from the 32 kHz oscillator amplifier.
XTALIN
92
-
-
-
Input to the system oscillator circuit and internal clock generator
circuits.
XTALOUT
93
-
-
-
Output from the system oscillator amplifier.
VREF_CMP
94
-
-
-
Reference voltage for comparator.
VDD(IO)
90
-
-
-
Input/output supply voltage.
VDD(3V3)
87
-
-
-
3.3 V supply voltage to the internal regulator and the ADC. Also
used as the
I; PU
ADC reference voltage.
VSSIO
91
-
-
-
Ground.
VSS
86
-
-
-
Ground.
46
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
LCD segment output.
LCD display pins
S0
S1
LPC12D27
Product data sheet
47
O
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
12 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 3.
LPC12D27 LQFP100 pin description …continued
Symbol
Pin
Start Reset
logic state
input [1]
Type
Description
S2
48
-
VLCD[8] O
LCD segment output.
S3
49
-
VLCD[8]
O
LCD segment output.
S4
50
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S5
S6
51
52
S7
53
-
VLCD[8]
O
LCD segment output.
S8
54
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S9
S10
55
56
S11
57
-
VLCD[8]
O
LCD segment output.
S12
58
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S13
S14
59
60
S15
61
-
VLCD[8]
O
LCD segment output.
S16
62
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S17
S18
63
64
S19
65
-
VLCD[8]
O
LCD segment output.
S20
66
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S21
S22
67
68
S23
69
-
VLCD[8]
O
LCD segment output.
S24
70
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S25
S26
71
72
S27
73
-
VLCD[8]
O
LCD segment output.
S28
74
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S29
S30
75
76
S31
77
-
VLCD[8]
O
LCD segment output.
S32
78
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
S33
S34
79
29
S35
30
-
VLCD[8]
O
LCD segment output.
S36
31
-
VLCD[8] O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
-
VLCD[8]
O
LCD segment output.
O
S37
S38
32
33
S39
34
-
VLCD[8]
BP0
42
-
VLCD[8] O
LPC12D27
Product data sheet
LCD segment output.
LCD backplane output.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
13 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 3.
LPC12D27 LQFP100 pin description …continued
Symbol
Pin
Start Reset
logic state
input [1]
Type
Description
BP1
44
-
VLCD[8] O
LCD backplane output.
BP2
43
-
VLCD[8]
O
LCD backplane output.
BP3
45
-
VLCD[8] O
LCD backplane output.
I/O
I2C-bus serial data input/output.
I2C-bus serial clock input.
LCD_SDA
35
-
[8]
LCD_SCL
36
-
[8]
I/O
SYNC
37
-
[8]
I/O
Cascade synchronization input/output.
CLK
38
-
[8]
I/O
External clock input/output.
VDD
39
-
-
-
1.8 V to 5.5 V power supply: Power supply voltage for the
PCF8576D.
VSS(LCD)
40
-
-
-
LCD ground.
VLCD
41
-
-
-
LCD power supply: LCD voltage.
[1]
Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled.
[2]
Digital I/O pin; default: pull-up enabled, no hysteresis.
[3]
I2C-bus pins; 5 V tolerant; open-drain; default: no pull-up/pull-down, no hysteresis.
[4]
Digital I/O pin with RESET function; default: pull-up enabled, no hysteresis.
[5]
Digital I/O pin with analog function; default: pull-up enabled, no hysteresis.
[6]
Digital I/O pin with analog function and WAKEUP function; default: pull-up enabled, no hysteresis.
[7]
High-drive digital I/O pin; default: pull-up enabled, no hysteresis.
[8]
See Section 7.2.3.
7. Functional description
7.1 LPC1227 microcontroller
See the LPC122x data sheet for a detailed functional description of the LPC1227
microcontroller.
7.2 LCD driver
See the PCF8576 data sheet for a detailed functional description of the PCF8576D LCD
driver.
7.2.1 General description
The PCF8576D is a peripheral device which interfaces to almost any Liquid Crystal
Display (LCD) with low multiplex rates. It generates the drive signals for any static or
multiplexed LCD containing up to four backplanes and up to 40 segments. It can be easily
cascaded for larger LCD applications. The PCF8576D communicates via the two-line
bidirectional I2C-bus. Communication overheads are minimized by a display RAM with
auto-incremented addressing, by hardware subaddressing and by display memory
switching (static and duplex drive modes). Please refer to PCF8576D data sheet for
electrical data.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
14 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
7.2.2 Functional description
The PCF8576D is a versatile peripheral device interfacing the LPC1227 microcontroller
with a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing
up to four backplanes and up to 40 segments.
The possible display configurations of the PCF8576D depend on the number of active
backplane outputs required. A selection of display configurations is shown in Table 4. The
integration of the LPC1227 microcontroller with the PCF8576D is shown in Figure 1.
Table 4.
Selection of display configurations
Number of
Digits/Characters
Backplanes
Segments
7-segment
14-segment
Dot matrix/Elements
4
160
20
10
160 (4  40)
3
120
15
7
120 (3  40)
2
80
10
5
64 (2  40)
1
40
5
2
40 (1  40)
7.2.3 Reset state of the LCD controller and pins
After power-on, the LCD controller resets to the following starting conditions:
•
•
•
•
•
•
•
All backplane and segment outputs are set to VLCD.
The selected drive mode is 1:4 multiplex with 1/3 bias.
Blinking is switched off.
Input and output bank selectors are reset.
The I2C-bus interface is initialized.
The data pointer and the subaddress counter are cleared (set to logic 0).
The display is disabled.
Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow the
reset action to complete.
7.2.4 LCD bias generator
Fractional LCD biasing voltages are obtained from an internal voltage divider consisting of
three impedances connected in series between VLCD and VSS(LCD). The middle resistor
can be bypassed to provide a 1/2 bias voltage level for the 1:2 multiplex configuration. The
LCD voltage can be temperature compensated externally using the supply to pin VLCD.
7.2.5 Oscillator
7.2.5.1
Internal clock
The internal logic of the PCF8576D and its LCD drive signals are timed either by its
internal oscillator or by an external clock. The internal oscillator is enabled by connecting
pin OSC to pin VSS(LCD). If the internal oscillator is used, the output from pin CLK can be
used as the clock signal for several PCF8576Ds in the system that are connected in
cascade.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
15 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
7.2.6 Timing
The PCF8576D timing controls the internal data flow of the device. This includes the
transfer of display data from the display RAM to the display segment outputs. In cascaded
applications, the correct timing relationship between each PCF8576D in the system is
maintained by the synchronization signal at pin SYNC. The timing also generates the LCD
frame signal whose frequency is derived from the clock frequency. The frame signal
frequency (ffr) is a fixed division of the clock frequency (fclk) from either the internal or an
external clock: ffr = fclk/24.
7.2.7 Display register
A display latch holds the display data while the corresponding multiplex signals are
generated. There is a one-to-one relationship between the data in the display latch, the
LCD segment outputs, and each column of the display RAM.
7.2.8 Segment outputs
The LCD drive section includes 40 segment outputs S0 to S39 which should be connected
directly to the LCD. The segment output signals are generated in accordance with the
multiplexed backplane signals and with data residing in the display latch. When less than
40 segment outputs are required, the unused segment outputs should be left open-circuit.
7.2.9 Backplane outputs
The LCD drive section includes four backplane outputs BP0 to BP3 which must be
connected directly to the LCD. The backplane output signals are generated in accordance
with the selected LCD drive mode. If less than four backplane outputs are required, the
unused outputs can be left open-circuit.
In the 1:3 multiplex drive mode, BP3 carries the same signal as BP1, therefore these two
adjacent outputs can be tied together to give enhanced drive capabilities.
In the 1:2 multiplex drive mode, BP0 and BP2, BP1 and BP3 all carry the same signals
and may also be paired to increase the drive capabilities.
In the static drive mode the same signal is carried by all four backplane outputs and they
can be connected in parallel for very high drive requirements.
7.2.10 Display RAM
The display RAM is a static 40  4-bit RAM which stores LCD data. There is a one-to-one
correspondence between the RAM addresses and the segment outputs, and between the
individual bits of a RAM word and the backplane outputs. For details, see PCF8576D data
sheet.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
16 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
8. Limiting values
Table 5.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]
Symbol
Parameter
Conditions
VDD(3V3)
supply voltage (3.3 V)
VDD(IO)
input/output supply voltage
VI
input voltage
on all digital pins
[2]
on pins PIO0_10
and PIO0_11
(I2C-bus pins)
IDD
supply current
Min
Max
Unit
3.0
3.6
V
3.0
3.6
V
0.5
+3.6
V
0
5.5
V
per supply pin
[3]
-
100
mA
[3]
-
100
mA
-
100
mA
65
+150
C
-
1.5
W
8000
+8000
V
ISS
ground current
per ground pin
Ilatch
I/O latch-up current
(0.5VDD) < VI <
(1.5VDD);
Tj < 125 C
[4]
Tstg
storage temperature
Ptot(pack)
total power dissipation (per package)
based on package
heat transfer, not
device power
consumption
VESD
electrostatic discharge voltage
human body
model; all pins
[1]
[5]
The following applies to the limiting values:
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated
maximum.
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless
otherwise noted.
[2]
Including voltage on outputs in 3-state mode.
[3]
The peak current is limited to 25 times the corresponding maximum current.
[4]
Dependent on package type.
[5]
Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
17 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
9. Thermal characteristics
9.1 Thermal characteristics
The average chip junction temperature, Tj (C), can be calculated using the following
equation:
T j = T amb +  P D  R th  j – a  
(1)
• Tamb = ambient temperature (C),
• Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)
• PD = sum of internal and I/O power dissipation
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of
the I/O pins is often small and many times can be negligible. However it can be significant
in some applications.
Table 6.
Thermal characteristics
VDD = 3.0 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Rth(j-a)
thermal resistance from
junction to ambient
JEDEC test board; no
air flow
-
61
-
C/W
86
-
C/W
19
-
C/W
36
-
C/W
-
150
C
LQFP64 package
LQFP48 package
Rth(j-c)
thermal resistance from
junction to case
JEDEC test board
-
LQFP64 package
LQFP48 package
Tj(max)
maximum junction
temperature
LPC12D27
Product data sheet
-
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
18 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
10. Static characteristics
Table 7.
Static characteristics
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ[1]
Max
Unit
VDD(IO)
input/output supply
voltage
on pin VDD(IO)
3.0
3.3
3.6
V
VDD(3V3)
supply voltage (3.3 V)
3.0
3.3
3.6
V
IDD
supply current
CCLK = 12 MHz
-
4.6
-
mA
CCLK = 24 MHz
-
9
-
mA
CCLK = 33 MHz
-
12.2
-
mA
CCLK = 12 MHz
-
6.6
-
mA
CCLK = 24 MHz
-
10.9
-
mA
CCLK = 33 MHz
-
14.1
-
mA
CCLK = 12 MHz
-
1.8
-
mA
CCLK = 24 MHz
-
3.3
-
mA
CCLK = 33 MHz
-
4.4
-
mA
Deep-sleep mode;
VDD(3V3) = 3.3 V;
Tamb = 25 C
-
30
-
A
Deep power-down mode;
VDD(3V3) = 3.3 V;
Tamb = 25 C
-
720
-
nA
Active mode;
VDD(3V3) = 3.3 V;
Tamb = 25 C; code
while(1){}
executed from flash
all peripherals disabled:
all peripherals enabled:
Sleep mode;
VDD(3V3) = 3.3 V;
Tamb = 25 C;
all peripherals disabled
Normal-drive output pins (Standard port pins, RESET)
IIL
LOW-level input
current
VI = 0 V;
-
-
100
nA
IIH
HIGH-level input
current
VI = VDD(IO);
-
-
100
nA
IOZ
OFF-state output
current
VO = 0 V; VO = VDD(IO);
-
-
100
nA
VI
input voltage
pin configured to provide a
digital function
0
-
VDD(IO)
V
VO
output voltage
output active
0
-
VDD(IO)
V
VIH
HIGH-level input
voltage
0.7VDD(IO)
-
-
V
LPC12D27
Product data sheet
[2][3][4]
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
19 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 7.
Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
VIL
LOW-level input
voltage
Vhys
hysteresis voltage
VOH
HIGH-level output
voltage
VOL
IOH
LOW-level output
voltage
HIGH-level output
current
Conditions
Min
Typ[1]
Max
Unit
-
-
0.3VDD(IO)
V
-
0.4
-
V
low mode; IOH = 2 mA
VDD(IO) 
0.4
-
-
V
high mode; IOH = 4 mA
VDD(IO) 
0.4
-
-
V
low mode; IOL = 2 mA
-
-
0.4
V
high mode; IOL = 4 mA
0.4
low mode; VOH = VDD(IO) 
0.4 V
2
-
-
mA
high mode; VOH = VDD(IO) 
0.4 V
4
-
-
mA
low mode; VOL = 0.4 V
2
-
-
mA
IOL
LOW-level output
current
4
-
-
mA
IOHS
HIGH-level
short-circuit output
current
VOH = 0 V
[5]
-
-
45
mA
IOLS
LOW-level
short-circuit output
current
VOL = VDDA
[5]
-
-
50
mA
Ipu
pull-up current
VI = 0 V
50
80
100
A
high mode; VOL = 0.4 V
High-drive output pins (PIO0_27, PIO0_28, PIO0_29, PIO0_12)
IIL
LOW-level input
current
VI = 0 V;
-
-
100
nA
IIH
HIGH-level input
current
VI = VDD(IO);
-
-
100
nA
IOZ
OFF-state output
current
VO = 0 V; VO = VDD(IO);
-
-
100
nA
VI
input voltage
pin configured to provide a
digital function
0
-
VDD(IO)
V
0
-
VDD(IO)
V
0.7VDD(IO)
-
-
V
-
0.3VDD(IO)
-
-
-
-
V
VO
output voltage
VIH
HIGH-level input
voltage
VIL
LOW-level input
voltage
Vhys
hysteresis voltage
VOH
HIGH-level output
voltage
VOL
LPC12D27
Product data sheet
LOW-level output
voltage
[2][3]
[4]
output active
-
low mode; IOH = 20 mA
VDD(IO) 
0.7
-
-
V
high mode; IOH = 28 mA
VDD(IO) 
0.7
-
-
V
low mode; IOL = 12 mA
-
-
0.4
V
high mode; IOL = 18 mA
-
-
0.4
V
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
20 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Table 7.
Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ[1]
Max
Unit
IOH
HIGH-level output
current
low mode; VOH = VDD(IO) 
0.7
20
-
-
mA
high mode; VOH = VDD(IO) 
0.7
28
-
-
mA
VOL = 0.4 V
12
-
-
mA
18
-
-
mA
-
-
50
80
100
A
LOW-level output
current
IOL
low mode
high mode
IOLS
LOW-level
short-circuit output
current
VOL = VDD
Ipu
pull-up current
VI = 0 V
I2C-bus
[5]
mA
pins (PIO0_10 and PIO0_11)
VIH
HIGH-level input
voltage
0.7VDD(IO)
-
-
V
VIL
LOW-level input
voltage
-
-
0.3VDD(IO)
V
Vhys
hysteresis voltage
-
0.05VDD(IO) -
V
VOL
LOW-level output
voltage
IOLS = 20 mA
-
-
0.4
V
ILI
input leakage current
VI = VDD(IO)
-
2
4
A
VI = 5 V
-
10
22
A
capacitance for each
I/O pin
on pins PIO0_10 and
PIO0_11
-
-
8
pF
Vi(xtal)
crystal input voltage
see Section 12.1
0
1.8
1.95
V
Vo(xtal)
crystal output voltage
0
1.8
1.95
V
Ci
[6]
Oscillator pins
[1]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.
[2]
Including voltage on outputs in 3-state mode.
[3]
VDD(3V3) and VDD(IO) supply voltages must be present.
[4]
3-state outputs go into 3-state mode when VDD(IO) is grounded.
[5]
Allowed as long as the current limit does not exceed the maximum current allowed by the device.
[6]
To VSS.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
21 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
10.1 Peripheral power consumption
The supply current per peripheral is measured as the difference in supply current between
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both
registers and no code is executed. Measured on a typical sample at Tamb = 25 C and
VDD(3V3) = 3.3 V.
Table 8.
Peripheral power consumption
Peripheral
Typical current consumption IDD in mA
Frequency
independent
24 MHz
12 MHz
system
oscillator + PLL
IRC + PLL
system
oscillator
IRC
IRC
0.29
-
-
-
-
PLL (PLL output
frequency = 24 MHz)
1.87
-
-
-
-
WDosc (WDosc output
frequency = 500 kHz)
0.25
-
-
-
-
BOD
0.06
-
-
-
-
Analog comparator 0/1
-
0.05
0.05
0.03
0.02
ADC
-
1.86
1.85
1.61
1.61
CRC engine
-
0.04
0.04
0.02
0.02
16-bit timer 0 (CT16B0)
-
0.09
0.09
0.04
0.04
16-bit timer 1 (CT16B1)
-
0.09
0.09
0.04
0.04
32-bit timer 0 (CT32B0)
-
0.08
0.08
0.04
0.04
32-bit timer 1 (CT32B1)
-
0.08
0.08
0.04
0.04
GPIO0
-
0.34
0.34
0.17
0.17
GPIO1
-
0.34
0.34
0.17
0.17
GPIO2
-
0.36
0.37
0.18
0.18
I2C
-
0.09
0.09
0.05
0.05
IOCON
-
0.09
0.10
0.05
0.05
RTC
-
0.10
0.10
0.05
0.05
SSP
-
0.30
0.29
0.15
0.15
UART0
-
0.52
0.51
0.26
0.26
UART1
-
0.52
0.51
0.26
0.26
DMA
-
0.18
0.18
0.09
0.09
WWDT
-
0.06
0.06
0.03
0.03
10.2 Power consumption
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the
following conditions (see LPC122x user manual):
• Active mode: all GPIO pins set to input with external pull-up resistors.
• Sleep and Deep-sleep modes: all GPIO pins set to output driving LOW.
• Deep power-down mode: all GPIO pins set to input with external pull-up resistors.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
22 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
002aag186
16
IDD
(mA)
33 MHz(2)
12
24 MHz(2)
8
12 MHz
4
(1)
4 MHz(3)
(3)
1 MHz
0
3
3.2
3.4
3.6
VDD(3V3) (V)
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all
peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal
pull-up resistors disabled; BOD disabled.
(1) System oscillator and system PLL disabled; IRC enabled.
(2) System oscillator and system PLL enabled; IRC disabled.
(3) System oscillator enabled; IRC and system PLL disabled.
Fig 5.
Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for
different system clock frequencies (all peripherals disabled)
002aag023
16
IDD
(mA)
33 MHz(2)
12
24 MHz(2)
8
12 MHz(1)
4
4 MHz(3)
1 MHz(3)
0
-40
-15
10
35
60
85
temperature (°C)
Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all
peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal
pull-up resistors disabled; BOD disabled.
(1) System oscillator and system PLL disabled; IRC enabled.
(2) System oscillator and system PLL enabled; IRC disabled.
(3) System oscillator enabled; IRC and system PLL disabled.
Fig 6.
LPC12D27
Product data sheet
Active mode: Typical supply current IDD versus temperature for different system
clock frequencies (peripherals disabled)
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
23 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
002aag187
16
33 MHz(2)
IDD
(mA)
12
24 MHz
8
(2)
12 MHz(1)
4 MHz(3)
(3)
1 MHz
4
0
3
3.2
3.4
3.6
VDD(3V3) (V)
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all
peripherals enabled in the SYSAHBCLKCTRL register.
(1) System oscillator and system PLL disabled; IRC enabled.
(2) System oscillator and system PLL enabled; IRC disabled.
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.
Fig 7.
Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for
different system clock frequencies (all peripherals enabled)
002aag024
16
33 MHz(2)
IDD
(mA)
24 MHz(2)
12
8
12 MHz(1)
4 MHz(3)
4
1 MHz(3)
0
-40
-15
10
35
60
85
temperature (°C)
Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all
peripherals enabled in the SYSAHBCLKCTRL register.
(1) System oscillator and system PLL disabled; IRC enabled.
(2) System oscillator and system PLL enabled; IRC disabled.
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.
Fig 8.
LPC12D27
Product data sheet
Active mode: Typical supply current IDD versus temperature for different system
clock frequencies (peripherals enabled)
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
24 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
002aag188
5
33 MHz
IDD
(mA)
(2)
4
24 MHz(2)
3
2
1
12 MHz
(1)
4 MHz(3)
1 MHz(3)
0
3.0
3.2
3.4
3.6
VDD(3V3) (V)
Conditions: VDD(3V3) = 3.3 V; sleep mode entered from flash; all peripherals disabled in the
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal
pull-up resistors disabled; BOD disabled.
(1) System oscillator and system PLL disabled; IRC enabled.
(2) System oscillator and system PLL enabled; IRC disabled.
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.
Fig 9.
Sleep mode: Typical supply current IDD versus supply voltage VDD(3V3) for
different system clock frequencies
002aag190
50
IDD
(μA)
40
VDD(3V3) = 3.6 V
3.3 V
3.0 V
30
20
10
-40
-15
10
35
60
85
temperature (°C)
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register
Fig 10. Deep-sleep mode: Typical supply current IDD versus temperature for different
supply voltages VDD(3V3)
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
25 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
002aag189
1.0
IDD
(μA)
0.9
0.8
VDD(3V3) = 3.6 V
3.3 V
3.0 V
0.7
0.6
-40
-15
10
35
60
85
temperature (°C)
Fig 11. Deep power-down mode: Typical supply current IDD versus temperature for
different supply voltages VDD(3V3)
10.3 Electrical pin characteristics
002aag175
3.6
VOH
(V)
3.2
low mode
-40 °C
+25 °C
+70 °C
+85 °C
low mode
-40 °C
+25 °C
+70 °C
+85 °C
2.8
2.4
2
0
16
32
48
IOH (mA)
Conditions: VDD(IO) = 3.3 V
Fig 12. High-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level output
current IOH
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
26 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
002aag310
1.2
VOL
(V)
high mode
-40 °C
+25 °C
+70 °C
+85 °C
low mode
-40 °C
+25 °C
+70 °C
+85 °C
0.8
0.4
0
0
16
32
48
IOL (mA)
Conditions: VDD(IO) = 3.3 V
Fig 13. High-drive pins: Typical LOW-level output voltage VOL versus LOW-level output
current IOL
002aag180
0.8
VOL
(V)
-40 °C
+25 °C
+70 °C
+85 °C
0.6
0.4
0.2
0
0
12
24
36
48
IOL (mA)
Conditions: VDD(IO) = 3.3 V.
Fig 14. I2C-bus pins (high current sink): Typical LOW-level output voltage VOL versus
LOW-level output current IOL
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
27 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
002aag181
1.2
VOL
(V)
-40 °C
+25 °C
+70 °C
+85 °C
low mode
high mode
-40 °C
+25 °C
+70 °C
+85 °C
0.8
0.4
0
0
4
8
12
16
IOL (mA)
Conditions: VDD(IO) = 3.3 V.
Fig 15. Normal-drive pins: Typical LOW-level output voltage VOL versus LOW-level output
current IOL
002aag182
3.4
high mode
VOH
(V)
3.0
-40 °C
+25 °C
+70 °C
+85 °C
low mode
-40 °C
+25 °C
+70 °C
+85 °C
2.6
2.2
1.8
0
4
8
12
16
IOH (mA)
Conditions: VDD(IO) = 3.3 V.
Fig 16. Normal-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level
output source current IOH
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
28 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
002aag185
0
Ipu
(mA)
-20
-40
+85 °C
+70 °C
+25 °C
-40 °C
-60
-80
-100
0
1
2
3
VI (mA)
Conditions: VDD(IO) = 3.3 V.
Fig 17. Typical pull-up current Ipu versus input voltage VI
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
29 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
10.4 ADC characteristics
Table 9.
ADC static characteristics
Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 9 MHz, VDD(3V3) = 3.0 V to
3.6 V.
Parameter
VIA
analog input voltage
0
-
VDD(3V3)
V
Cia
analog input capacitance
-
-
1
pF
ED
differential linearity error
[2][3][4]
-
-
1
LSB
integral non-linearity
[2][5]
-
-
 2.5
LSB
EO
offset error
[2][6]
-
-
1
LSB
EG
gain error
[2][7]
-
-
3
LSB
ET
absolute error
[2][8]
-
-
3
LSB
fc(ADC)
ADC conversion frequency
-
-
257
kHz
-
-
3.9
M
EL(adj)
Ri
Conditions
Min
Typ[1]
Symbol
input resistance
[9][10]
Max
Unit
[1]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[2]
Conditions: VSS = 0 V, VDD(3V3) = 3.3 V.
[3]
The ADC is monotonic, there are no missing codes.
[4]
The differential linearity error (ED) is the difference between the actual step width and the ideal step width.
See Figure 18.
[5]
The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 18.
[6]
The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the
straight line which fits the ideal curve. See Figure 18.
[7]
The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer
curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 18.
[8]
The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer
curve of the non-calibrated ADC and the ideal transfer curve. See Figure 18.
[9]
Tamb = 25 C; maximum sampling frequency fs = 257 kHz and analog input capacitance Cia = 1 pF.
[10] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs  Cia).
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
30 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
offset
error
EO
gain
error
EG
1023
1022
1021
1020
1019
1018
(2)
7
code
out
(1)
6
5
(5)
4
(4)
3
(3)
2
1 LSB
(ideal)
1
0
1
2
3
4
5
6
7
1018
1019
1020
1021
1022
1023
1024
VIA (LSBideal)
offset error
EO
1 LSB =
VDD(3V3) − VSS
1024
002aae787
(1) Example of an actual transfer curve.
(2) The ideal transfer curve.
(3) Differential linearity error (ED).
(4) Integral non-linearity (EL(adj)).
(5) Center of a step of the actual transfer curve.
Fig 18. ADC characteristics
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
31 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
10.5 BOD static characteristics
Table 10. BOD static characteristics[1]
Tamb = 25 C.
Symbol
Parameter
Conditions
Vth
threshold voltage
interrupt level 1
Min
Typ
Max
Unit
assertion
-
2.25
-
V
de-assertion
-
2.39
-
V
assertion
-
2.54
-
V
de-assertion
-
2.67
-
V
assertion
-
2.83
-
V
de-assertion
-
2.93
-
V
assertion
-
2.04
-
V
de-assertion
-
2.18
-
V
interrupt level 2
interrupt level 3
reset level 1
reset level 2
assertion
-
2.34
-
V
de-assertion
-
2.47
-
V
assertion
-
2.62
-
V
de-assertion
-
2.76
-
V
reset level 3
[1]
LPC12D27
Product data sheet
Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC122x
user manual.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
32 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
11. Dynamic characteristics
11.1 Power-up ramp conditions
Table 11. Power-up characteristics
Tamb = 40 C to +85 C.
Symbol Parameter
tr
rise time
twait
wait time
VI
input voltage
Conditions
Min
at t = t1: 0 < VI 400 mV
[1]
[1][2]
at t = t1 on pin VDD
Typ
Max
Unit
0
-
500
ms
12
-
-
s
0
-
400
mV
[1]
See Figure 19.
[2]
The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.
tr
VDD
400 mV
0
twait
t = t1
002aag001
Condition: 0 < VI 400 mV at start of power-up (t = t1)
Fig 19. Power-up ramp
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
33 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
11.2 Flash memory
Table 12. Dynamic characteristics: flash memory
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.
Symbol
Parameter
erase time
ter
programming
time
tprog
Nendu
endurance
tret
retention time
Conditions
for one page (512 byte)
[1]
Min
Max
Unit
-
20
ms
for one sector (4 kB)
[1]
162
ms
for all sectors; mass
erase
[1]
-
20
ms
one word (4 bytes)
[1]
-
49
s
four sequential words
[1]
-
194
s
128 bytes (one row of 32
words)
[1]
-
765
s
[2]
20000
-
cycles
10
-
years
[1]
Erase and programming times are valid over the lifetime of the device (minimum 20000 cycles).
[2]
Number of program/erase cycles.
11.3 External clock
Table 13. Dynamic characteristics: external clock
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]
Min
Typ[2]
Max
Unit
oscillator frequency
1
-
25
MHz
Tcy(clk)
clock cycle time
40
-
1000
ns
tCHCX
clock HIGH time
Tcy(clk)  0.4
-
-
ns
tCLCX
clock LOW time
Tcy(clk)  0.4
-
-
ns
tCLCH
clock rise time
-
-
5
ns
tCHCL
clock fall time
-
-
5
ns
Symbol
Parameter
fosc
Conditions
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
tCHCL
tCHCX
tCLCH
tCLCX
Tcy(clk)
002aaa907
Fig 20. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
34 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
11.4 Internal oscillators
Table 14. Dynamic characteristics: internal oscillators
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]
Symbol
Parameter
Conditions
Min
Typ[2]
Max
Unit
fosc(RC)
internal RC oscillator frequency
-
11.88
12
12.12
MHz
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at nominal supply voltages.
002aag020
12.15
12 MHz + 1%
fosc(RC)
(MHz)
VDD = 3.6 V
3.3 V
3.0 V
12.05
11.95
12 MHz − 1%
11.85
−40
−15
10
35
60
85
temperature (°C)
Fig 21. Internal RC oscillator frequency versus temperature
Table 15.
Dynamic characteristics: Watchdog oscillator
Min
Typ[1]
Max
Unit
internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1
frequency
in the WDTOSCCTRL register;
[2][3]
-
7.8
-
kHz
DIVSEL = 0x00, FREQSEL = 0xF
in the WDTOSCCTRL register
[2][3]
-
1700
-
kHz
Symbol Parameter
fosc(int)
LPC12D27
Product data sheet
Conditions
[1]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[2]
The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.
[3]
See the LPC122x user manual.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
35 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
11.5 I2C-bus
Table 16. Dynamic characteristics: I2C-bus pins
Tamb = 40 C to +85 C.[1]
Symbol
Parameter
Conditions
Min
Max
Unit
fSCL
SCL clock
frequency
Standard-mode
0
100
kHz
Fast-mode
0
fall time
tf
[2][3][4][5]
400
kHz
Fast-mode Plus 0
1
MHz
of both SDA
and SCL
signals
-
300
ns
Fast-mode
20 + 0.1  Cb
300
ns
Fast-mode
Plus
-
120
ns
Standard-mode
4.7
-
s
Fast-mode
Standard-mo
de
tLOW
tHIGH
tHD;DAT
tSU;DAT
LOW period of
the SCL clock
HIGH period of
the SCL clock
data hold time
data set-up time
[6][2][7]
[8][9]
1.3
-
s
Fast-mode Plus 0.5
-
s
Standard-mode
4.0
-
s
Fast-mode
0.6
-
s
Fast-mode Plus 0.26
-
s
Standard-mode
0
-
s
Fast-mode
0
-
s
Fast-mode Plus 0
-
s
Standard-mode
250
-
ns
Fast-mode
100
-
ns
-
ns
Fast-mode Plus 50
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to
bridge the undefined region of the falling edge of SCL.
[3]
Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.
[4]
The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines
without exceeding the maximum specified tf.
[5]
In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should
allow for this when considering bus timing.
[6]
tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
[7]
The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or
tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
[8]
tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the
acknowledge.
[9]
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
36 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
tf
SDA
tSU;DAT
70 %
30 %
70 %
30 %
tHD;DAT
tf
70 %
30 %
SCL
tVD;DAT
tHIGH
70 %
30 %
70 %
30 %
70 %
30 %
tLOW
S
1 / fSCL
002aaf425
Fig 22. I2C-bus pins clock timing
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
37 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
12. Application information
12.1 XTAL input
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a
clock in slave mode, it is recommended that the input be coupled through a capacitor with
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave
mode, a minimum of 200 mV(RMS) is needed.
LPC1xxx
XTALIN
Ci
100 pF
Cg
002aae788
Fig 23. Slave mode operation of the on-chip oscillator
12.2 XTAL Printed Circuit Board (PCB) layout guidelines
The crystal should be connected on the PCB as close as possible to the oscillator input
and output pins of the chip. Take care that the load capacitors Cx1,Cx2, and Cx3 in case of
third overtone crystal usage have a common ground plane. The external components
must also be connected to the ground plain. Loops must be made as small as possible in
order to keep the noise coupled in via the PCB as small as possible. Also parasitics
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller
accordingly to the increase in parasitics of the PCB layout.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
38 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
12.3 ElectroMagnetic Compatibility (EMC)
Radiated emission measurements according to the IEC61967-2 standard using the
TEM-cell method are shown for the LPC1227FBD64/301 in Table 17.
Table 17.
ElectroMagnetic Compatibility (EMC) for part LPC1227FBD64/301 (TEM-cell
method)
VDD = 3.3 V; Tamb = 25 C.
Parameter
Frequency band
System clock =
Unit
12 MHz
24 MHz
33 MHz
150 kHz - 30 MHz
4.2
3.8
6.4
dBV
30 MHz - 150 MHz
7.3
5.4
9
dBV
150 MHz - 1 GHz
16.4
20.1
23.4
dBV
-
M
L
L
-
4
6.6
dBV
Input clock: IRC (12 MHz)
maximum
peak level
IEC
level[1]
Input clock: crystal oscillator (12 MHz)
maximum
peak level
IEC level[1]
[1]
LPC12D27
Product data sheet
150 kHz - 30 MHz
4.8
30 MHz - 150 MHz
6.9
5.6
10
dBV
150 MHz - 1 GHz
16.3
20.3
22.3
dBV
-
M
L
L
-
IEC levels refer to Appendix D in the IEC61967-2 Specification.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
39 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
13. Package outline
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm
SOT407-1
c
y
X
A
51
75
50
76
ZE
e
E HE
A A2
(A 3)
A1
w M
θ
bp
Lp
pin 1 index
L
100
detail X
26
1
25
ZD
e
v M A
w M
bp
D
B
HD
v M B
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
mm
1.6
0.15
0.05
1.45
1.35
0.25
0.27
0.17
0.20
0.09
14.1
13.9
14.1
13.9
0.5
HD
HE
16.25 16.25
15.75 15.75
L
Lp
v
w
y
1
0.75
0.45
0.2
0.08
0.08
Z D (1) Z E (1)
1.15
0.85
1.15
0.85
θ
7o
o
0
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT407-1
136E20
MS-026
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
00-02-01
03-02-20
Fig 24. Package outline LQFP100
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
40 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
14. Soldering
Footprint information for reflow soldering of LQFP100 package
SOT407-1
Hx
Gx
P2
Hy
(0.125)
P1
Gy
By
Ay
C
D2 (8×)
D1
Bx
Ax
Generic footprint pattern
Refer to the package outline drawing for actual layout
solder land
occupied area
DIMENSIONS in mm
P1
0.500
P2
Ax
Ay
Bx
By
0.560 17.300 17.300 14.300 14.300
C
D1
D2
1.500
0.280
0.400
Gx
Gy
Hx
Hy
14.500 14.500 17.550 17.550
sot407-1
Fig 25. Reflow soldering of the LQFP100 package
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
41 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
15. References
LPC12D27
Product data sheet
[1]
LPC122x data sheet, http://www.nxp.com/microcontrollers
[2]
PCF8576D data sheet, http://www.nxp.com/microcontrollers
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
42 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
16. Revision history
Table 18.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
LPC12D27 v.1
20110920
Product data sheet
-
-
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
43 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
17. Legal information
17.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
17.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
17.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
44 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
17.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP B.V.
18. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
LPC12D27
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 20 September 2011
© NXP B.V. 2011. All rights reserved.
45 of 46
LPC12D27
NXP Semiconductors
32-bit ARM Cortex-M0 microcontroller
19. Contents
1
2
3
4
4.1
5
6
6.1
6.2
7
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.5.1
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
8
9
9.1
10
10.1
10.2
10.3
10.4
10.5
11
11.1
11.2
11.3
11.4
11.5
12
12.1
12.2
12.3
13
14
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ordering information . . . . . . . . . . . . . . . . . . . . . 3
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pinning information . . . . . . . . . . . . . . . . . . . . . . 7
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8
Functional description . . . . . . . . . . . . . . . . . . 14
LPC1227 microcontroller . . . . . . . . . . . . . . . . 14
LCD driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
General description . . . . . . . . . . . . . . . . . . . . 14
Functional description. . . . . . . . . . . . . . . . . . . 15
Reset state of the LCD controller and pins . . . 15
LCD bias generator . . . . . . . . . . . . . . . . . . . . 15
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 15
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Display register . . . . . . . . . . . . . . . . . . . . . . . . 16
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 16
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 16
Display RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 17
Thermal characteristics . . . . . . . . . . . . . . . . . 18
Thermal characteristics. . . . . . . . . . . . . . . . . . 18
Static characteristics. . . . . . . . . . . . . . . . . . . . 19
Peripheral power consumption . . . . . . . . . . . . 22
Power consumption . . . . . . . . . . . . . . . . . . . . 22
Electrical pin characteristics . . . . . . . . . . . . . . 26
ADC characteristics . . . . . . . . . . . . . . . . . . . . 30
BOD static characteristics. . . . . . . . . . . . . . . . 32
Dynamic characteristics . . . . . . . . . . . . . . . . . 33
Power-up ramp conditions . . . . . . . . . . . . . . . 33
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . 34
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 34
Internal oscillators. . . . . . . . . . . . . . . . . . . . . . 35
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Application information. . . . . . . . . . . . . . . . . . 38
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
XTAL Printed Circuit Board (PCB) layout
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
ElectroMagnetic Compatibility (EMC) . . . . . . . 39
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 40
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
15
16
17
17.1
17.2
17.3
17.4
18
19
References. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . . .
Legal information . . . . . . . . . . . . . . . . . . . . . .
Data sheet status . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . . .
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
43
44
44
44
44
45
45
46
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2011.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 20 September 2011
Document identifier: LPC12D27