MLX90333 Preliminary Datasheet old 428 DownloadLink 5276

MLX90333
Triaxis 3D-Joystick Position Sensor
Features and Benefits
Absolute 3D Position Sensor
Simple & Robust Magnetic Design
Tria⊗is™ Hall Technology
Programmable Linear Transfer Characteristics (Alpha, Beta)
Selectable Analog (Ratiometric), PWM, Serial Protocol
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy
40 bit ID Number
Single Die – SO8 Package RoHS Compliant
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant
Applications
3D Position Sensor
4-Way Scroll Key
Man Machine Interface Device
Joystick
Joypad
Ordering Information1
Part No.
MLX90333
MLX90333
1
Temperature Suffix
K (− 40°C to + 125°C)
K (− 40°C to + 125°C)
Package Code
DC [SOIC-8]
GO [TSSOP-16]
Option code
-
Example: MLX90333KDC
3901090333
Rev. Preliminary
Page 1 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
1. Functional Diagram
3V3
Reg
Rev.Pol.
&
OverVolt.
VSS
DSP
12
D
VX
MUX
VY
G
A
D
VZ
x1
A
OUT 1
(Analog/PWM)
μC
14
-1
5
Tria9 is™
VDD
ROM - F/W
RAM
x1
EEP
ROM
OUT 2
(Analog/PWM)
Figure 1 - Block Diagram (Analog & PWM)
DSP
VX
VZ
MUX
VY
G
A
Rev.Pol.
μC
14
-1
5
Tria9is™
3V3
Reg
D
VDD
/SS
SERIAL PROTOCOL
SCLK
MOSI/MISO
ROM - F/W
RAM
EEP
ROM
VSS
Figure 2 - Block Diagram (Serial Protocol)
3901090333
Rev. Preliminary
Page 2 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
2. Description
The MLX90333 is a monolithic sensor IC featuring the Tria⊗is™ Hall technology. Conventional planar Hall
technology is only sensitive to the flux density applied orthogonally to the IC surface. The Tria⊗is™ Hall
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an
Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end
step).
The MLX90333 is sensitive to the 3 components of the flux density applied to the IC (BX, BY and BZ). This
allows the MLX90333 to sense any magnet moving in its surrounding and it enables the design of novel
generation of non-contacting joystick position sensors which are often required for both automotive and
industrial applications (e.g. man-machine interface).
Furthermore, the capability of measuring BX, BY and BZ allows the MLX90333 to be considered as
universal non-contacting position sensor i.e. not limited to joystick applications. For instance, a linear
travel can be sensed with the MLX90333 once included in a specific magnetic design.
In combination with the appropriate signal processing, the magnetic flux density of a small magnet (axial
magnetization) moving above the IC can be measured in a non-contacting way (Figure 3). The two (2)
angular information are computed from the three (3) vector components of the flux density (i.e. BX, BY and
BZ). MLX90333 reports two (2) linear output signals. The output formats are selectable between Analog,
PWM and Serial Protocol.
Figure 3 - Typical application of MLX90333
3901090333
Rev. Preliminary
Page 3 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
TABLE of CONTENTS
FEATURES AND BENEFITS ....................................................................................................................... 1
APPLICATIONS............................................................................................................................................ 1
ORDERING INFORMATION......................................................................................................................... 1
1.
FUNCTIONAL DIAGRAM...................................................................................................................... 2
2.
DESCRIPTION....................................................................................................................................... 3
3.
GLOSSARY OF TERMS − ABBREVIATIONS − ACRONYMS ............................................................ 6
4.
PINOUT.................................................................................................................................................. 6
5.
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 7
6.
DETAILED DESCRIPTION.................................................................................................................... 7
7.
MLX90333 ELECTRICAL SPECIFICATION....................................................................................... 13
8.
MLX90333 ISOLATION SPECIFICATION .......................................................................................... 15
9.
MLX90333 TIMING SPECIFICATION ................................................................................................. 15
10. MLX90333 ACCURACY SPECIFICATION ......................................................................................... 16
11. MLX90333 MAGNETIC SPECIFICATION .......................................................................................... 17
12. MLX90333 CPU & MEMORY SPECIFICATION ................................................................................. 17
13. MLX90333 END-USER PROGRAMMABLE ITEMS ........................................................................... 18
14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 19
14.1.
OUTPUT CONFIGURATION .........................................................................................................................19
14.2.
OUTPUT MODE ..........................................................................................................................................19
14.2.1. Analog Output Mode ............................................................................................................................19
14.2.2. PWM Output Mode...............................................................................................................................19
14.2.3. Serial Protocol Output Mode ...............................................................................................................20
14.3.
OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................20
14.3.1. The Polarity and Modulo Parameters ..................................................................................................20
14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point) ......................................................................21
14.3.3. LNR Parameters ...................................................................................................................................21
14.3.4. CLAMPING Parameters ......................................................................................................................22
14.3.5. DEADZONE Parameter .......................................................................................................................22
14.4.
IDENTIFICATION ........................................................................................................................................22
14.5.
SENSOR FRONT-END .................................................................................................................................23
14.5.1. HIGHSPEED Parameter......................................................................................................................23
14.5.2. GAINMIN and GAINMAX Parameters ................................................................................................23
14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters.................................................................23
14.6.
FILTER ....................................................................................................................................................24
14.6.1. Hysteresis Filter ...................................................................................................................................24
14.6.2. FIR Filters ............................................................................................................................................24
14.6.3. IIR Filters .............................................................................................................................................25
14.7.
PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................27
3901090333
Rev. Preliminary
Page 4 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
14.7.1. RESONFAULT Parameter ...................................................................................................................27
14.7.2. EEHAMHOLE Parameter ....................................................................................................................27
14.8.
LOCK.........................................................................................................................................................27
14.8.1. MLXLOCK Parameter .........................................................................................................................27
14.8.2. LOCK Parameter .................................................................................................................................27
15. MLX90333 SELF DIAGNOSTIC.......................................................................................................... 28
16. RECOMMENDED APPLICATION DIAGRAMS .................................................................................. 30
16.1.
16.2.
16.3.
16.4.
ANALOG OUTPUT WIRING WITH THE MLX90333 IN SOIC PACKAGE .......................................................30
PWM LOW SIDE OUTPUT WIRING ............................................................................................................30
ANALOG OUTPUT WIRING WITH THE MLX90333 IN TSSOP PACKAGE ....................................................31
SERIAL PROTOCOL ....................................................................................................................................31
17. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS
WITH DIFFERENT SOLDERING PROCESSES ........................................................................................ 33
18. ESD PRECAUTIONS........................................................................................................................... 33
19. PACKAGE INFORMATION................................................................................................................. 34
19.1.
19.2.
19.3.
19.4.
19.5.
19.6.
SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................34
SOIC8 - PINOUT AND MARKING ...............................................................................................................34
SOIC8 - IMC POSITIONNING .....................................................................................................................35
TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................36
TSSOP16 - PINOUT AND MARKING ..........................................................................................................37
TSSOP16 - IMC POSITIONNING ................................................................................................................37
20. DISCLAIMER ....................................................................................................................................... 38
3901090333
Rev. Preliminary
Page 5 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
3. Glossary of Terms − Abbreviations − Acronyms
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
Gauss (G), Tesla (T): Units for the magnetic flux density − 1 mT = 10 G
TC: Temperature Coefficient (in ppm/Deg.C.)
NC: Not Connected
PWM: Pulse Width Modulation
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF)
ADC: Analog-to-Digital Converter
DAC: Digital-to-Analog Converter
LSB: Least Significant Bit
MSB: Most Significant Bit
DNL: Differential Non-Linearity
INL: Integral Non-Linearity
RISC: Reduced Instruction Set Computer
ASP: Analog Signal Processing
DSP: Digital Signal Processing
ATAN: trigonometric function: arctangent (or inverse tangent)
IMC: Integrated Magneto-Concentrator (IMC®)
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)
EMC: Electro-Magnetic Compatibility
4. Pinout2
Pin #
SOIC-8
TSSOP-16
Analog / PWM
Serial Protocol
Analog / PWM
Serial Protocol
1
VDD
VDD
VDIG1
VDIG1
2
Test 0
Test 0
VSS1 (Ground1)
VSS1 (Ground1)
3
Not Used
/SS
VDD1
VDD1
4
Out 2
SCLK
Test 01
Test 01
5
Out 1
MOSI / MISO
Not Used
/SS2
6
Test 1
Test 1
Out 22
SCLK2
7
VDIG
VDIG
Out 12
MOSI2 / MISO2
8
VSS (Ground)
VSS (Ground)
Test 12
Test 12
9
VDIG2
VDIG2
10
VSS2 (Ground2)
VSS2 (Ground2)
11
VDD2
VDD2
12
Test 02
Test 02
13
Not Used
/SS1
14
Out 21
SCLK1
15
Out 11
MOSI1 / MISO1
16
Test 11
Test 11
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the
Ground (see section 16).
2
See Section 14.1 for the Out 1 and Out 2 configuration
3901090333
Rev. Preliminary
Page 6 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
5. Absolute Maximum Ratings
Parameter
Value
Supply Voltage, VDD (overvoltage)
+ 20 V
Reverse Voltage Protection
− 10 V
Positive Output Voltage
+ 10 V
(Analog or PWM)
+ 14 V (200 s max − TA = + 25°C)
Both outputs OUT 1 & OUT 2
Output Current (IOUT)
± 30 mA
Reverse Output Voltage
− 0.3 V
Both outputs OUT 1 & OUT 2
Reverse Output Current
− 50 mA
Both outputs OUT 1 & OUT 2
Operating Ambient Temperature Range, TA
− 40°C … + 150°C
Storage Temperature Range, TS
− 40°C … + 150°C
Magnetic Flux Density
± 700 mT
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.
6. Detailed Description
As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density applied to the IC is
sensed through the Tria⊗is™ sensor front-end. This front-end consists into two orthogonal pairs (for each
of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (sensitive
element – blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure
4).
Bz
Bz
Bz
Bz
Figure 4 - Tria⊗is™ sensor front-end (4 Hall plates + IMC® disk)
Two orthogonal components (respectively BX⊥ and BY⊥) proportional to the parallel components
(respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of
conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and
the IC surface. The third component BZ is also sensed by those four (4) conventional Hall plates as shown
above.
3901090333
Rev. Preliminary
Page 7 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
In summary, along X-axis, the left Hall plate measures “BX⊥ - BZ” while the right Hall plate measures “-BX⊥
- BZ”. Similarly, along the Y-axis, the left Hall plate measures “BY⊥ - BZ” while the right Hall plate measures
“-BY⊥ - BZ”.
Through an appropriate signal processing, the Tria⊗is™ sensor front-end reports the three (3)
components of the applied magnetic flux density B i.e. BX, BY and BZ.
Indeed, by subtracting the signals from the two (2) Hall plates in each pair, the components BX⊥ and BY⊥
are measured while BZ is cancelled. To the contrary, by adding the signals from the two (2) Hall plates in
each pair, the component BZ is measured while BX⊥ and BY⊥ are cancelled
In a joystick based on a “gimbal” mechanism as shown on Figure 3 (left), the magnet (axial magnetization)
moves on a hemisphere centered at the IC. The flux density is described through the following
relationships:
B X = SIN (α ) ⋅ COS ( β )
BY = COS (α ) ⋅ SIN ( β )
BZ = COS (α ) ⋅ COS ( β )
Those components are plotted on the Figure 5, Figure 6 and Figure 7.
Figure 5 – Magnetic Flux Density – BX, BY, BZ
3901090333
Rev. Preliminary
Page 8 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
400
300
Magnetic Flux Density (G)
200
100
0
-100
-200
-300
-400
-90
-45
BX
0
Alpha α (Deg)
45
BY
90
BZ
Figure 6 – Magnetic Flux Density – β = 0 Deg – BX ∝ sin(α), BY = 0 & BZ ∝ cos(α)
400
300
Magnetic Flux Density (G)
200
100
0
-100
-200
-300
-400
-90
-45
BX
0
Beta β (Deg)
BY
45
90
BZ
Figure 7 – Magnetic Flux Density – α = 0 Deg – BX = 0, BY ∝ sin(β) & BZ ∝ cos(β)
Three (3) differential voltages corresponding to the three (3) components of the applied flux density are
provided to the ADC (Analog-to-Digital Converter – Figure 8 and Figure 9). The Hall signals are
processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall
plate quadrature spinning and chopper-stabilized amplifier).
The amplitude of VZ is smaller than the other two (2) components VX and VY due to fact that the magnetic
gain of the IMC only affects the components parallel to the IC surface.
3901090333
Rev. Preliminary
Page 9 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
2000
ADC Input Voltages VX, VY & VZ (mV)
1500
1000
500
0
-500
-1000
-1500
-2000
-90
-45
VX
0
Alpha α (Deg)
45
VY
90
VZ
Figure 8 – ADC Input Signals – β = 0 Deg – VX ∝ BX ∝ sin(α),VY = BY = 0 & VZ ∝ BZ ∝ cos(α)
2000
ADC Input Voltages VX, VY & VZ (mV)
1500
1000
500
0
-500
-1000
-1500
-2000
-90
-45
VX
0
Beta β (Deg)
VY
45
90
VZ
Figure 9 – ADC Input Signals – α = 0 Deg – VX = BX = 0, VY ∝ BY ∝ sin(β) & VZ ∝ BZ ∝ cos(β)
3901090333
Rev. Preliminary
Page 10 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
The conditioned analog signals are converted through an ADC (configurable − 14 or 15 bits) and provided
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose
primary function is the extraction of the two (2) angular information from the three (3) raw signals (after socalled front-end compensation steps) through the following operations:
⎛ VX
⎝ k ZVZ
⎞
⎟⎟
⎠
⎛ V
⎞
α = ATAN ⎜⎜
β = ATAN ⎜⎜ Y ⎟⎟
⎝ k Z VZ ⎠
where kZ is a programmable parameter.
In a joystick based on a “ball & socket” joint as shown on Figure 3 (right), the magnet (axial
magnetization) moves on a hemisphere centered at the pivot point. The flux density is described through
slightly more complex equations but the MLX90333 offers an alternate algorithm to extract both angular
informations:
⎛
⎞
⎟
⎜ (k V ) 2 + (k V ) 2 ⎟
Z Z
t Y
⎝
⎠
α = ATAN ⎜
⎛
VX
⎞
⎟
⎜ (k V ) 2 + (k V ) 2 ⎟
Z Z
t X
⎝
⎠
β = ATAN ⎜
VY
where kZ and kt are programmable parameters.
The DSP functionality is governed by the micro-code (firmware − F/W) of the micro-controller which is
stored into the ROM (mask programmable). In addition to the ″ATAN″ function, the F/W controls the whole
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also
the self-diagnostic modes.
In the MLX90333, the ″ATAN″ function is computed via a look-up table (i.e. it is not obtained through a
CoRDiC algorithm).
Due to the fact that the ″ATAN″ operation is performed on the ratios ″VX/VZ″ and ″VY/VZ″, the angular
information are intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or
ageing effects) affecting the magnetic signal. This feature allows therefore an improved thermal accuracy
vs. joystick based on conventional linear Hall sensors.
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the
target transfer characteristic and it is provided at the output(s) as:
•
•
•
an analog output level through a 12 bit DAC followed by a buffer
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz … 1 kHz)
a digital Serial Protocol (SP − 14 bits computed angular information available)
3901090333
Rev. Preliminary
Page 11 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary
position sensor output transfer characteristic:
Vout(α) = ClampLo
Vout(α) = Voffset + Gain × α
Vout(α) = ClampHi
for α ≤ αmin
for αmin ≤ α ≤ αmax
for α ≥ αmax
Vout(β) = ClampLo
Vout(β) = Voffset + Gain × β
Vout(β) = ClampHi
for β ≤ βmin
for βmin ≤ β ≤ βmax
for β ≥ βmax
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.
The linear part of the transfer curve can be adjusted through a 3 point calibration. Once only one output is
used, a 5 point calibration is also available for further improvement of the linearity.
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).
The programming steps do not require any dedicated pins. The operation is done using the supply and
output nodes of the IC. The programming of the MLX90333 is handled at both engineering lab and
production line levels by the Melexis Programming Unit PTC-04 with the MLX90316 daughterboard and
dedicated software tools (DLL − User Interface).
3901090333
Rev. Preliminary
Page 12 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
7. MLX90333 Electrical Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K).
Parameter
Nominal Supply Voltage
Supply Current(3)
POR Level
Output Current
Both outputs OUT 1 & OUT 2
Output Short Circuit Current
Both outputs OUT 1 & OUT 2
Output Load
Both outputs OUT 1 & OUT 2
Symbol
Test Conditions
VDD
Idd
VDD POR
Iout
Ishort
RL
Slow
8.5
11
mA
Fast
mode(4)
13.5
16
mA
2.7
3
V
Supply Under Voltage
2
Analog Output mode
-8
8
mA
PWM Output mode
-20
20
mA
Vout = 0 V
12
15
mA
Vout = 5 V
12
15
mA
Vout = 14 V (TA = 25°C)
24
45
mA
1
10
∞(6)
kΩ
1
10
∞(6)
kΩ
3
%VDD
Pull-down to Ground
Pull-up to
5V(5)
Vsat_hi
Pull-down load RL ≥ 10 kΩ
Digital Saturation Output Level
VsatD_lo
Both outputs OUT 1 & OUT 2
Diag_hi
BVSSPD
Passive Diagnostic Output Level BVSSPU
Both outputs OUT 1 & OUT 2
(Broken Track Diagnostic) (7)
BVDDPD
BVDDPU
4.5
V
Both outputs OUT 1 & OUT 2
Active Diagnostic Output Level
Units
5.5
Pull-up load RL ≥ 10 kΩ
Diag_lo
Max
5
Vsat_lo
VsatD_hi
Typ
mode(4)
Analog Saturation Output Level
Both outputs OUT 1 & OUT 2
Min
96
%VDD
Pull-up Low Side RL ≥ 10 kΩ
1.5
Push-Pull (IOUT = -20mV)
Push-Pull (IOUT = 20mV)
97
%VDD
1
Pull-down load RL ≥ 10 kΩ
1.5
Pull-up load RL ≥ 10 kΩ
Pull-down load RL ≥ 10 kΩ
97
Pull-up load RL ≥ 10 kΩ
98
4(7)
Pull-down load RL ≤ 10 kΩ
Pull-up load RL ≥ 1kΩ
99
Broken VDD(8) &
Broken VDD &
Pull-up load to 5V
100
0
Pull-down load RL ≥ 1kΩ
%VDD
%VDD
Broken VSS&
Broken VSS(8) &
%VDD
%VDD
%VDD
1
No Broken Track diagnostic
%VDD
%VDD
Clamped Output Level
Clamp_lo
Programmable
0
100
%VDD(9)
Both outputs OUT 1 & OUT 2
Clamp_hi
Programmable
0
100
%VDD(9)
3 For
the dual version, the supply current is multiplied by 2
section 14.5.1 for details concerning Slow and Fast mode
5 Applicable for output in Analog and PWM (Open-Drain) modes
6 RL < ∞ for output in PWM mode
7 For detailed information, see also section 15
9 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)
4 See
3901090333
Rev. Preliminary
Page 13 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
As an illustration of the previous table, the MLX90333 fits the typical classification of the output span
described on the Figure 10.
100 %
90 %
96 %
92 %
88 %
Diagnostic Band (High)
Clamping High
80 %
Output Level
70 %
60 %
50 %
Linear Range
40 %
30 %
20 %
10 %
0%
12 %
8%
4%
Clamping Low
Diagnostic Band (Low)
Figure 10 - Output Span Classification
3901090333
Rev. Preliminary
Page 14 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
8. MLX90333 Isolation Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K). Only valid for the package code GO i.e. dual die version.
Parameter
Symbol
Isolation Resistance
Test Conditions
Between 2 dies
Min
Typ
Max
4
Units
MΩ
9. MLX90333 Timing Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K).
Parameter
Main Clock Frequency
Symbol
Ck
Sampling Rate
Step Response Time
Ts
Test Conditions
Min
Start-up Cycle
Wd
Tsu
Analog Output Slew Rate
PWM Frequency
FPWM
Max
Units
Slow mode(10)
7
MHz
Fast
mode(10)
20
MHz
Slow
mode(11)
600
μs
Fast
mode(11)
200
μs
Slow
mode(10),
Filter=5(11)
Fast mode(10), Filter=0(11)
Watchdog
Typ
400
See Section 15
Slow and Fast
mode(10)
COUT = 42 nF
200
COUT = 100 nF
100
PWM Output Enabled
100
4
ms
600
μs
5
ms
15
ms
V/ms
1000
Hz
Digital Output Rise Time
Mode 5 – 10nF, RL = 10 kΩ
120
μs
Both outputs OUT 1 & OUT 2
Mode 7 – 10nF, RL = 10 kΩ
2.2
μs
Digital Output Fall Time
Mode 5 – 10nF, RL = 10 kΩ
1.8
μs
Both outputs OUT 1 & OUT 2
Mode 7 – 10nF, RL = 10 kΩ
1.9
μs
10 See
11 See
section 14.5.1 for details concerning Slow and Fast mode
section 14.6 for details concerning Filter parameter
3901090333
Rev. Preliminary
Page 15 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
10.
MLX90333 Accuracy Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K).
Parameter
ADC Resolution on the raw
signals X, Y and Z
Symbol
RADC
Test Conditions
Typ
Max
Units
Slow Mode(12)
15
bits
Mode(12)
14
bits
Fast
Offset on the Raw Signals X, Y X0, Y0, Z0 TA = 25°C
and Z
Mismatch on the Raw Signals X,
Y and Z
SMISMXY
Between X and Y
SMISMXZ
Between X and Z
SMISMYZ
Between Y and Z
-60
60
LSB15
-1
1
%
TA = 25°C
Thermal Offset Drift #1 on the
raw signals X, Y and Z
Thermal Offset Drift at the DSP
Thermal Offset Drift #2
Thermal Offset Drift of the DAC
(to be considered only for the
analog output mode)
and Output Stage
End-User programmable(13) (KT parameter)
-60
+60
LSB15
- 0.3
+ 0.3
%VDD
- 0.3
+ 0.3
%
input (excl. DAC and output stage)
Thermal Drift of Sensitivity
Mismatch
Analog Output Resolution
Min
RDAC
12 bits DAC
0.025
%VDD/LSB
(Theoretical – Noise free)
INL
-4
DNL
0.05
1
+4
LSB
2
LSB
Output stage Noise
Clamped Output
Noise pk-pk(17)
Gain = 14, Slow mode, Filter=5
5
10
LSB15
Gain = 14, Fast mode, Filter=0
10
20
LSB15
0
0.1
%VDD
Ratiometry Error
PWM Output Resolution
0.05
-0.1
RPWM
12 bits
%VDD
0.025
%DC/LSB
(Theoretical – Jitter free)
PWM Jitter
JPWM
Gain = 11, FPWM = 250 Hz – 800Hz
Serial Protocol Output
RSPI
Theoretical – Jitter free
5
14
LSB12
bits
15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to
0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed.
13 The mismatch between X and Z (Y and Z) is end-user programmable through the 2 parameters KZ and KT as described in the
formulas page 11 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical).
17 The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in
application mode (Section 14.6).
19 Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.
12
3901090333
Rev. Preliminary
Page 16 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
Resolution
11.
MLX90333 Magnetic Specification
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the
Temperature suffix (K).
Parameter
Magnetic Flux Density
Magnet Temperature Coefficient
12.
Symbol
Test Conditions
Min
Typ
Max
Units
B
20
50
70(19)
mT
TCm
-2400
0
ppm/°C
MLX90333 CPU & Memory Specification
The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
ROM
10
kB
RAM
256
B
EEPROM
128
B
3901090333
Rev. Preliminary
Page 17 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
13.
MLX90333 End-User Programmable Items
Parameter
MAINMODE
Outputs Mode
PWMPOL1
PWMPOL2
PWM_Freq
ALPHA_POL
ALPHA_MOD180
ALPHA_DP
ALPHA_DEADZONE
ALPHA_S0
ALPHA_X
ALPHA_Y
ALPHA_S1
BETA_POL
BETA_MOD180
BETA_DP
BETA_DEADZONE
BETA_S0
BETA_X
BETA_Y
BETA_S1
CLAMP_LOW
CLAMP_HIGH
2D
XYZ
KZ
KT
FIELDTHRES_LOW
FIELDTHRES_HIGH
DERIVGAIN
FILTER
FILTER A1
FILTER A2
FSWAP
FHYST
MELEXISID1
MELEXISID2
MELEXISID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
3901090333
Rev. Preliminary
Comments
Select Outputs Configuration
Define the output stages mode
PWM Polarity (Out 1)
PWM Polarity (Out 2)
PWM Frequency
Revert the Sign of Alpha
Modulo Operation (180deg) on Alpha
Alpha Discontinuity Point
Alpha Dead Zone
Initial Slope
Alpha X Coordinate
Alpha Y Coordinate
Alpha S Coordinate
Revert the Sign of Beta
Modulo Operation (180deg) on Beta
Beta Discontinuity Point
Beta Dead Zone
Beta Dead Zone
Beta X Coordinate
Beta Y Coordinate
Beta S Coordinate
Clamping Low
Clamping High
SPI Only
Filter coefficient A1 for FILTER=6
Filter coefficient A2 for FILTER=6
Page 18 of 38
Default Values
# bit
0
2
2
3
0
1
0
1
1000h
16
TBD
1
TBD
1
TBD
8
TBD
6
TBD
16
TBD
16
TBD
16
TBD
16
TBD
1
TBD
1
TBD
6
TBD
8
TBD
16
TBD
16
TBD
16
TBD
16
8%
16
8%
16
TBD
1
TBD
1
TBD
8
TBD
8
TBD
8
TBD
8
TBD
8
TBD
8
6600h
16
2A00h
16
TBD
1
TBD
8
MLX
16
MLX
16
MLX
16
TBD
16
TBD
16
TBD
16
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
HIGHSPEED
GAINMIN
GAINMAX
EEHAMHOLE
RESONFAULT
MLXLOCK
LOCK
14.
0
TBD
TBD
3131h
TBD
TBD
TBD
1
8
8
16
2
1
1
Description of End-User Programmable Items
14.1. Output Configuration
The parameter MAINMODE defines the output stages configuration
MAINMODE
OUT1
OUT2
0
ALPHA
BETA
1
BETA
ALPHA
2
ALPHA
ALPHA DERIVATE
3
BETA
BETA DERIVATE
14.2. Output Mode
The MLX90333 outputs type is defined by the Output Mode parameter.
Parameter
Value
Analog Output Mode
2, 4
Analog Rail-to-Rail
5
Low Side (NMOS)
7
Push-Pull
PWM Output Mode
Serial
N/A
Description
Low Side (NMOS)
14.2.1. Analog Output Mode
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration
allows the use of a pull-up or pull-down resistor.
14.2.2. PWM Output Mode
If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width
Modulation (PWM).
In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor
to VDD.
In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up
resistor to VDD.
The PWM polarity of the Out 1 (Out 2) is selected by the PWMPOL1 (PWMPOL2) parameter:
•
•
PWMPOL1 (PWMPOL2) = 0 for a low level at 100%
PWMPOL1 (PWMPOL2) = 1 for a high level at 100%
3901090333
Rev. Preliminary
Page 19 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
The PWM frequency is selected by the PWM_Freq parameter.
PWM Frequency Code
Oscillator Mode
Pulse-Width Modulation Frequency (Hz)
100
200
500
1000
Low Speed
35000
17500
7000
3500
High Speed
-
50000
20000
10000
For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz.
14.2.3. Serial Protocol Output Mode
The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node.
See the dedicated Serial Protocol section for a full description (Section TBD).
14.3. Output Transfer Characteristic
Parameter
Value
Unit
ALPHA_POL
BETA_POL
0
1
ALPHA_MOD180
BETA_MOD180
0
1
ALPHA_DP
BETA_DP
0 … 359.9999
deg
ALPHA_X
BETA_X
0 … 359.9999
deg
ALPHA_Y
BETA_Y
0 … 100
%
ALPHA_S0
ALPHA_S1
BETA_S0
BETA_S1
CLAMP_LOW
0 … 17
%/deg
0 … 100
%
CLAMP_HIGH
0 … 100
%
ALPHA_DEADZONE
BETA_DEADZONE
0 … 359.9999
deg
14.3.1. The Polarity and Modulo Parameters
The angle Alpha is defined as the arctangent of X/Z and Beta as the arctangent of Y/Z. It is possible to
invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to “1”.
The MLX90313 can also be insensitive to the field polarity by setting the
ALPHA_MOD180/BETA_MOD180 to “1”.
3901090333
Rev. Preliminary
Page 20 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
z
β
y
α
x
14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point)
The Discontinuity Point defines the zero point of the circle (Alpha or Beta). The discontinuity point places
the origin at any location of the trigonometric circle (see Figure 12).
For a Joystick Application, Melexis recommends to set the DP to zero.
14.3.3. LNR Parameters
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)
between the digital angles (Alpha and Beta) and the output signals.
The shape of the MLX90333 transfer function from the digital angle values to the output voltages is
described by the drawing below (See Figure 11). Four segments can be programmed but the clamping
levels are necessarily flat.
100%
C
Clamping High
AlphaOut
CLAMPHIGH
ALPHA_S1
B
ALPHA_Y
ALPHA_S0
A
Clamping Low
CLAMPLOW
0%
0°
ALPHA_X
Alpha
360°
Figure 11 - Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta)
3901090333
Rev. Preliminary
Page 21 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
14.3.4. CLAMPING Parameters
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum
output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be
limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In
SPI mode, the resolution is 14bits or 0.022deg over 360deg.
14.3.5. DEADZONE Parameter
The dead zone is defined as the angle window between 0 and 359.9999 (See Figure 12).
When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be
set to “1” – See 14.7.1).
In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180° and 360° will
generate a “deadzone” fault, unless DEADZONE=0.
z
90°
α
Programmable 0° point
0°
180°
x
Programmable Forbidden Zone
Figure 12 – Discontinuity Point and Dead Zone (Alpha – Idem ditto for Beta)
14.4. Identification
Parameter
MELEXSID1
MELEXSID2
MELEXSID3
CUSTUMERID1
CUSTUMERID2
CUSTUMERID3
Value
0 … 65535
0 … 65535
0 … 65535
0 … 65535
0 … 65535
0 … 65535
Unit
Identification number: 48 bits freely useable by Customer for traceability purpose.
3901090333
Rev. Preliminary
Page 22 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
14.5. Sensor Front-End
Parameter
Value
Unit
HIGHSPEED
0 = Slow mode
1 = Fast mode
GAINMIN
0 … 41
GAINMAX
0 … 41
FIELDTHRES_MIN
0 … 100
%
FIELDTHRES_MAX
0 … 100
%
14.5.1. HIGHSPEED Parameter
The HIGHSPEED parameter defines the main frequency for the DSP.
• HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.
• HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.
For better noise performance, the Slow Mode must be enabled.
14.5.2. GAINMIN and GAINMAX Parameters
The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on
(VX)²+ (VY)² + (VZ)² = (Amplitude)² = (Radius)²
and it targets an amplitude of 90% of the ADC input span.
The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the
applied magnetic flux density (Amplitude).
GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range,
the outputs are set in diagnostic low.
14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters
The strength of the applied field is constantly calculated in a background process. The value of this field
can be read out with the PTC-04 and
FIELDTHRES_MIN & FIELDTHRES_MAX define the boundaries within the actual field strength (Radius)
is allowed to vary. Outside this range, the outputs are set in diagnostic low.
3901090333
Rev. Preliminary
Page 23 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
14.6. FILTER
Parameter
Value
Unit
FHYST
0 … 11 ; step 0.04
deg
FILTER
0… 6
FSWAP
0
1
The MLX90333 includes 3 types of filters:
• Hysteresis Filter: programmable by the FHYST parameter
• Low Pass FIR Filters controlled with the Filter parameter
• Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and
FILTER A2
Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the
filtering is active on the output transfer function.
14.6.1. Hysteresis Filter
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step
is smaller than the programmed FHYST parameter value. The output value is modified when the
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the
noise level.
Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not
wish this feature, please set it to “0”.
14.6.2. FIR Filters
The MLX90333 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described
below:
yn =
j
1
j
∑a
i =0
∑a x
i =0
i n −i
i
The characteristics of the filters no 0 to 5 is given in the Table 1.
Filter No (j)
Type
Coefficients a0… a5
Title
90% Response Time
99% Response Time
Efficiency RMS (dB)
Efficiency P2P (dB)
0
Disable
N/A
No Filter
1
1
0
0
1
2
3
4
Finite Impulse Response
110000
121000
133100
111100
Extra Light
Light
2
3
4
4
2
3
4
4
2.9
4.0
4.7
5.6
2.9
3.6
5.0
6.1
5
122210
5
5
6.2
7.0
Table 1 - FIR Filters Selection Table
3901090333
Rev. Preliminary
Page 24 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
FIR and HYST Filters : Step response Comparative Plot
40000
x(n)
fir(n)
hyst(n)
[0..65535] Scale
38000
36000
34000
32000
30000
0
5
10
15
Milliseconds
20
25
30
FIR and HYST Filter : Gaussian white noise response
[0..65535] Scale
40200
40150
x(n)
fir(n)
40100
hyst(n)
40050
40000
39950
39900
39850
39800
0
50
100
150
Milliseconds
Figure 13 - Step Response and Noise Response for FIR (No 3) and FHYST=10
14.6.3. IIR Filters
The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is
given in Figure 14. Only the parameter A1 and A2 are configurable (See Table 2).
b0 = 1
x(n)
y(n)
Z-1
Z-1
-a1
b1 = 2
Z-1
Z-1
b2 = 1
-a2
Figure 14 - IIR Diagram
3901090333
Rev. Preliminary
Page 25 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
Filter No
Type
Title
90% Response Time
Efficiency RMS (dB)
Efficiency P2P (dB)
Coefficient A1
Coefficient A2
2nd
11
9.9
12.9
26112
10752
16
11.4
14.6
28160
12288
6
Order Infinite Impulse Response (IIR)
Medium & Strong
26
40
52
13.6
15.3
16.2
17.1
18.8
20
29120
30208
31296
12992
13952
14976
100
>20
>20
31784
15412
Table 2 - IIR Filter Selection Table
The Figure 15 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.
IIR Filter - Gaussian White Noise Response
40200
[0…65535] Scale
40150
x(n)
40100
y(n)
40050
40000
39950
39900
39850
39800
0
50
100
150
Time
Figure 15 - Noise Response for the IIR Filter
3901090333
Rev. Preliminary
Page 26 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
14.7. Programmable Diagnostic Settings
Parameter
Value
0
1
0
3131h
RESONFAULT
EEHAMHOLE
Unit
14.7.1. RESONFAULT Parameter
This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the
parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to
activate the self diagnostic modes (See section 15).
Note that in the User Interface (MLX90333UI), the RESONFAULT is split in two bits:
• DRESONFAULT: disable the reset in case of a fault.
• DOUTINFAULT: disable output in diagnostic low in case of fault.
14.7.2. EEHAMHOLE Parameter
The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is
detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory
recovery).
14.8. Lock
Parameter
Value
0
1
0
1
MLXLOCK
LOCK
Unit
14.8.1. MLXLOCK Parameter
MLXLOCK locks all the parameters set by Melexis.
14.8.2. LOCK Parameter
LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the
EEPROM values anymore.
Note that the lock bit should be set by the solver function “MemLock”.
3901090333
Rev. Preliminary
Page 27 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
15.
MLX90333 Self Diagnostic
The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure
modes (“fail-safe”).
Action
ROM CRC Error at start up
(64 words including Intelligent
Watch Dog - IWD)
ROM CRC Error (Operation Background task)
RAM Test Fail (Start up)
Effect on Outputs
Diagnostic low(21)
CPU Reset (20)
Enter Endless Loop:
- Progress (watchdog
Acknowledge)
- Set Outputs in Diagnostic low
CPU Reset
Immediate Diagnostic low
Diagnostic low
Calibration Data CRC Error
(Start-Up)
Hamming Code Recovery
Hamming Code Recovery Error
(Start-Up)
Calibration Data CRC Error
(Operation - Background)
Dead Zone Alpha
Dead Zone Beta
CPU Reset
Immediate Diagnostic low
CPU Reset
Immediate Diagnostic low
Set Outputs in Diagnostic low.
Normal Operation until the “dead
zone” is left.
Set Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode, and No CPU Reset
If recovery
Immediate Diagnostic low
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Set Outputs in Diagnostic low
Normal mode, and CPU Reset If
recovery
Immediate Diagnostic low
ADC Clipping
(ADC Output is 0000h or
7FFFh)
Radius Overflow ( > 100% ) or
Radius Underflow
( < 50 % )
Field Clipping
(Radius < FIELDTHRES_LOW
or Radius >
FIELDTHRES_HIGH)
Rough Offset Clipping
(RO is < 0d or > 127d)
Gain Clipping
(Gain < GAINMIN or GAIN >
GAINMAX)
DAC Monitor (Digital to Analog
converter)
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
MLX90333 Fault Mode continues…
20
All the outputs are already
in Diagnostic low (start-up)
Start-Up Time is increased
by 3 ms if successful
recovery
See 14.7.2
Immediate recovery if the
“dead zone” is left
Immediate Diagnostic low
Immediate Diagnostic low
(50 % - 100 %)
No magnet / field too high
See also 14.5.2
Immediate Diagnostic low
Immediate Diagnostic low
See also 14.5.2
Immediate Diagnostic low
CPU reset means
1.
2.
3.
4.
21
Remark
All the outputs are already
in Diagnostic low - (start-up)
Core Reset (same as Power-On-Reset). It induces a typical start up time.
Periphery Reset (same as Power-On-Reset)
Fault Flag/Status Lost
The reset can be disabled by clearing the RESONFAULT bit (See 14.7.1)
Refer to section 7 for the Diagnostic Output Level specifications
3901090333
Rev. Preliminary
Page 28 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
…MLX90333 Fault Mode
Fault Mode
ADC Monitor (Analog to Digital
Converter)
Undervoltage Mode
Action
Set Outputs in Diagnostic low.
Normal Mode with immediate
recovery without CPU Reset
Effect on Outputs
Immediate Diagnostic low
At Start-Up, wait Until VDD > 3V.
- VDD < POR level =>
Outputs high impedance
During operation, CPU Reset after
3 ms debouncing
Remark
ADC Inputs are Shorted
Firmware Flow Error
CPU Reset
- POR level < VDD < 3 V =>
Outputs in Diagnostic low.
Immediate Diagnostic low
Read/Write Access out of
physical memory
Write Access to protected area
(IO and RAM Words)
Unauthorized entry in
“SYSTEM” Mode
VDD > 7 V
CPU Reset
Immediate Diagnostic low
Intelligent Watchdog
(Observer)
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
CPU Reset
Immediate Diagnostic low
100% Hardware detection
Set Output High Impedance
(Analog)
100% Hardware detection
VDD > 9.4 V
IC is switched off (internal supply)
CPU Reset on recovery
Broken VSS
CPU Reset on recovery
Broken VDD
CPU Reset on recovery
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High(21)
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
Pull down resistive load =>
Diag. Low
Pull up resistive load =>
Diag. High
3901090333
Rev. Preliminary
Page 29 of 38
100% Hardware detection
100% Hardware detection.
Pull down load ≤ 10 kΩ to
meet Diag Low spec: < 4%
VDD
No valid diagnostic for
VPULLUP = VDD.
Pull up load (≤ 10kΩ) to
VPULLUP > 8 V to meet Diag
Hi spec > 96% Vdd.
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
16.
Recommended Application Diagrams
16.1. Analog Output Wiring with the MLX90333 in SOIC Package
ECU
5V
Vdd
8
1
Vdd
C1
100nF
GND
Vss
MLX90333
Test 1
NotUsed
C2
100nF
Vdig
C3
100nF
ADC
Test 2
5
4
Out 2
C6
4.7nF
R1
10k
Out 1
Out 1
R2
10k
C4
100nF
Out 2
C5
4.7nF
Figure 16 – Recommended wiring for the MLX90333 in SOIC8 package
16.2. PWM Low Side Output Wiring
ECU
5V
Vdd
8
1
Vdd
C1
100nF
GND
Vss
MLX90333
Test 1
NotUsed
C2
100nF
Vdig
ADC
5
PWM 1
PWM 1
C6
4.7nF
5V
Test 2
4
PWM 2
C3
4.7nF
R1
1k
R2
1k
C4
4.7nF
PWM 2
C5
4.7nF
Figure 17 – Recommended wiring for a PWM Low Side Output configuration
3901090333
Rev. Preliminary
Page 30 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
16.3. Analog Output Wiring with the MLX90333 in TSSOP Package
ECU
VDD1
Vdd1
GND1
C31
100nF
16
C1
100nF
GND1
GND1
1
C2
100nF
Vdig1
Out2_1
Vss1
Out1_1
Out1_1
Vdd1
C4
100nF
MLX90316
C62
100nF
Out2_2
Out1_2
C32
100nF
Out2_1
VDD2
Vdd2
GND2
Vdd2
Vss2
10K
4.7nF
9
8
ADC
GND2
Vdig2
C5
100nF
C61
100nF
GND2
Out1_2
Out2_2
Figure 18 – Recommended wiring for the MLX90333 in TSSOP16 package (dual die).
16.4. Serial Protocol
Generic schematics for single slave and dual slave applications are described.
SPI Master
GND
5V
8
1
Vdd
C1
100nF
Vdd
_SS
Vss
MLX90333
_SS
Test 0
R4
C2
100nF
Vdig
SCLK
R5
Test 1
SCLK
MOSI
MISO
MOSI
5
4
/SS
R3
MOSI
R1
R2
3.3V/5V
Figure 19 – MLX90333 − Single Die − Serial Protocol Mode
3901090333
Rev. Preliminary
Page 31 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
μCtrl
Pull-up
90316
Supply
Supply Supply R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω)
(V)
(V)
(V)
5V μCtrl w/o O.D. w/o 3.3V
5V
5V
5V
100
1000
20,000
1000
5V μCtrl w/o O.D. w/ 3.3V
5V
3.3V
5V
150
1000
N/A
1000
3.3V μCtrl w/o O.D. (23)
3.3V
3.3V
5V
150
1000
N/A
N/A
5V μCtrl w/ O.D. w/o 3.3V (24)
5V
5V
5V
100
1000
20,000
1000
3.3V μCtrl w/ O.D.
3.3V
3.3V
5V
150
1000
N/A
N/A
Table 3 - Resistor Values for Common Specific Applications
Application Type
23
24
R5 (Ω)
MOS
Type
20,000
20,000
N/A
20,000
N/A
BS170
BS170
BS170
N/A
N/A
μCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series)
μCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR )
3901090333
Rev. Preliminary
Page 32 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
17. Standard information regarding manufacturability of Melexis
products with different soldering processes
Our products are classified and qualified regarding soldering technology, solderability and moisture
sensitivity level according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
•
IPC/JEDEC J-STD-020
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices
(Classification reflow profiles according to table 5-2)
EIA/JEDEC JESD22-A113
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(Reflow profiles according to table 2)
Melexis Working Instruction 341901308
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
•
EN60749-20
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat
EIA/JEDEC JESD22-B106 and EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Melexis Working Instruction 341901309
Iron Soldering THD’s (Through Hole Devices)
•
•
EN60749-15
Resistance to soldering temperature for through-hole mounted devices
Melexis Working Instruction 341901309
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EIA/JEDEC JESD22-B102 and EN60749-21
Solderability
Melexis Working Instruction 3304312
For all soldering technologies deviating from above mentioned standard conditions (regarding peak
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests
have to be agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance
of adhesive strength between device and board.
For more information on the lead free topic please see quality page at our website:
http://www.melexis.com/quality.aspx
18.
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901090333
Rev. Preliminary
Page 33 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
19.
Package Information
19.1. SOIC8 - Package Dimensions
1.27 TYP
NOTES:
3.81
3.99**
4.80
4.98*
5.80
6.20**
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or
gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion
(shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion.
Allowable dambar protrusion shall be 0.08 mm total in
excess of the dimension at maximum material condition.
Dambar cannot be located on the lower radius of the foot.
1.37
1.57
1.52
1.72
0.19
0.25
0°
8°
0.100
0.250
0.36
0.46***
0.41
1.27
Out 1
MOSI/MISO
Test 1
Vdig
Vss
19.2. SOIC8 - Pinout and Marking
8
Marking :
Part Number MLX90333 (3 digits)
Die Version (3 digits)
5
333
333Bxx
123456
123456
Bottom
3901090333
Rev. Preliminary
WW
Out 2
SCLK
\SS
Test 0
YY
Lot number (6 digits)
Week Date code (2 digits)
Year Date code (2 digits)
4
Vdd
1
Bxx
TOP
Page 34 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
19.3. SOIC8 - IMC Positionning
CW
8
7
6
5
CCW
0.46 +/- 0.06
COS
1.25
1.65
1
2
3
4
1.96
2.26
SIN
3901090333
Rev. Preliminary
Page 35 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
19.4. TSSOP16 - Package Dimensions
0.65 TYP
12O TYP
0.20 TYP
0.09 MIN
1.0 DIA
4.30
4.50**
6.4 TYP
0.09 MIN
1.0
12O TYP
0.50
0.75
0O
8O
1.0
1.0 TYP
0.85
0.95
4.90
5.10*
1.1 MAX
0.19
0.30***
0.09
0.20
0.05
0.15
NOTES:
All dimensions are in millimeters (anlges in degrees).
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at
maximum material condition. Dambar cannot be located on the lower radius of the foot.
3901090333
Rev. Preliminary
Page 36 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
19.5. TSSOP16 - Pinout and Marking
16
1
Vdig_1
Test1_1
Vss_1
Out1_1/MOSI/MISO_1
Vdd_1
Out2_1/SCLK_1
333Bxx
123456
Test0_1
_SS_2
Out2_2/SCLK_2
Test0_2
Vdd_2
9
8
Out1_2/MOSI/MISO_2
Test1_2
_SS_1
Marking :
Vss_2
Vdig_2
Part Number MLX90316 (3 digits)
Die Version (3 digits)
Bxx
333
Top
123456
Bottom
YY
Lot number (6 digits)
WW
Week Date code (2 digits)
Year Date code (2 digits)
19.6. TSSOP16 - IMC Positionning
CW
COS 2
16
9
Die 1
Die 2
SIN 2
SIN 1
0.30 +/- 0.06
CCW
1.95
2.45
1
8
1.84
2.04
COS 1
2.76
2.96
3901090333
Rev. Preliminary
Page 37 of 38
Data Sheet
May 07
MLX90333
Triaxis 3D-Joystick Position Sensor
20.
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement.
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,
prior to designing this product into a system, it is necessary to check with Melexis for current information.
This product is intended for use in normal commercial applications. Applications requiring extended
temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional
processing by Melexis for each application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not
be liable to recipient or any third party for any damages, including but not limited to personal injury,
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow
out of Melexis’ rendering of technical or other services.
© 2007 Melexis N.V. All rights reserved.
For the latest version of this document, go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Africa, Asia:
America:
Phone: +32 1367 0495
E-mail: [email protected]
Phone: +1 603 223 2362
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901090333
Rev. Preliminary
Page 38 of 38
Data Sheet
May 07