RENESAS H7N0308AB

H7N0308AB
Silicon N Channel MOS FET
High Speed Power Switching
ADE-208-1569B(Z)
3rd. Edition
Aug. 2002
Features
• Low on-resistance
• RDS(on) = 3.8 mΩ typ.
• Low drive current
• 4.5 V gate drive device can be driven from 5 V source
Outline
TO-220AB
D
G
S
1
2
3
1. Gate
2. Drain
(Frange)
3. Source
H7N0308AB
Absolute Maximum Ratings
(Ta = 25°C)
Item
Symbol
Ratings
Unit
Drain to source voltage
VDSS
30
V
Gate to source voltage
VGSS
±20
V
Drain current
ID
70
A
280
A
Drain peak current
ID(pulse)
Body-drain diode reverse drain current
IDR
Channel dissipation
Pch
Channel to Case Thermal Impedance
Note 1
70
A
100
W
θch-c
1.25
°C/W
Channel temperature
Tch
150
°C
Storage temperature
Tstg
–55 to +150
°C
Notes: 1. PW ≤ 10 µs, duty cycle ≤ 1 %
2. Value at Tc = 25°C
Rev.2, Aug. 2002, page 2 of 9
Note 2
H7N0308AB
Electrical Characteristics
(Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
V
Test Conditions
Drain to source breakdown voltage V(BR)DSS
30
—
—
Gate to source breakdown voltage
V(BR)GSS
±20
—
—
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
Zero gate voltage drain current
IDSS
—
—
10
µA
VDS = 30 V, VGS = 0
Gate to source cutoff voltage
VGS(off)
1.0
—
2.5
V
ID = 1 mA, VDS = 10 V
Static drain to source on state
RDS(on)
—
3.8
4.8
mΩ
ID = 35 A, VGS = 10 V
—
6.0
8.5
mΩ
ID = 35 A, VGS = 4.5 V
|yfs|
54
90
—
S
ID = 35 A, VDS = 10 V
Input capacitance
Ciss
—
3350
—
pF
VDS = 10 V
Output capacitance
Coss
—
840
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
480
—
pF
f = 1MHz
Total gate charge
Qg
—
52
—
nc
VDD = 10 V
Gate to source charge
Qgs
—
11
—
nc
VGS = 10 V
Gate to drain charge
Qgd
—
10
—
nc
ID = 70 A
Turn-on delay time
td(on)
—
30
—
ns
VGS = 10 V, ID = 35 A
Rise time
tr
—
370
—
ns
RL =0.29 Ω
Turn-off delay time
td(off)
—
80
—
ns
Rg =4.7 Ω
Fall time
tf
—
27
—
ns
Body–drain diode forward voltage
VDF
—
0.93
—
V
IF = 70 A, VGS = 0
—
60
—
ns
IF = 70 A, VGS = 0
diF/ dt =50 A/µs
resistance
Forward transfer admittance
Body–drain diode reverse recovery trr
time
ID = 10 mA, VGS = 0
IG = ±100 µA, VDS = 0
Note 1
Note 1
Note 1
Note 1
Notes: 1. Pulse test
Rev.2, Aug. 2002, page 3 of 9
H7N0308AB
Main Characteristics
Power vs. Temperature Derating
Maximum Safe Operation Area
ID (A)
500
120
80
40
10
Op
0µ
s
era
tio PW
n
=
10
ms
1 Operation in
this area is
limited by RDS(on)
0.1
50
100
Case Temperature
150
200
Tc (°C)
0.01
0.1 0.3
1
3
10
30
100
Drain to Source Voltage VDS (V)
Typical Output Characteristics
Pulse Test
4.5 V
V DS = 10 V
Pulse Test
3.5 V
(A)
80
Typical Transfer Characteristics
100
10V
ID
100
60
Drain Current
ID (A)
s
DC
µs
10
Tc = 25°C
1 shot Pulse
0
Drain Current
10
1m
100
Drain Current
Channel Dissipation
Pch (W)
160
3V
40
20
80
60
40
25°C
Tc = 75°C
-25°C
20
VGS = 2.5 V
0
2
4
6
Drain to Source Voltage
Rev.2, Aug. 2002, page 4 of 9
8
VDS
10
(V)
0
1
2
3
Gate to Source Voltage
4
VGS
5
(V)
H7N0308AB
300
200
I D = 50 A
100
10 A
0
Drain to Source On State Resistance
RDS(on) (mΩ)
20 A
4
8
12
Gate to Source Voltage
I D = 10 A, 20 A
10
I D = 50 A
8
V GS = 4.5 V
6
4
10 A, 20 A, 50 A
2
0
-25
Static Drain to Source on State Resistance
vs. Drain Current
100
Pulse Test
30
10 V
GS = 4.5 V
3
10 V
0
25 50 75 100 125 150
Case Temperature Tc (°C)
10 V
1
0.3
0.1
1
16
20
VGS (V)
Static Drain to Source on State Resistance
vs. Temperature
12
Pulse Test
Drain to Source On State Resistance
RDS(on) (mΩ)
Pulse Test
3
10
100 300
30
Drain Current ID (A)
1000
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |yfs| (S)
(mV)
400
Drain to Source Voltage
500
VDS(on)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
1000
300
Tc = -25°C
100
30
75°C
25°C
10
3
1
V DS = 10 V
Pulse Test
1
3
10
Drain Current
30
100
ID (A)
Rev.2, Aug. 2002, page 5 of 9
H7N0308AB
Typical Capacitance vs.
Drain to Source Voltage
Body-Drain Diode Reverse
Recovery Time
10000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
100
50
20
Ciss
3000
1000
Coss
Crss
300
10
0.1
di / dt = 50 A / µs
V GS = 0, Ta = 25°C
VGS = 0
f = 1 MHz
100
0
0.3
1
3
10
30
100
Reverse Drain Current IDR (A)
10
VDD = 5 V
10 V
20 V
30
(V)
16
12
V DS
8
20
10
0
V DD = 20 V
10 V
5V
20
40
60
80
Gate Charge Qg (nc)
Rev.2, Aug. 2002, page 6 of 9
4
0
100
40
50
(V)
V GS = 10 V , VDS = 10 V
500 Rg = 4.7 Ω, duty < 1 %
Switching Time t (ns)
40
V GS
30
Switching Characteristics
1000
20
VGS
I D = 70 A
Gate to Source Voltage
Drain to Source Voltage
VDS (V)
Dynamic Input Characteristics
50
20
Drain to Source Voltage VDS
tr
200
t d(off)
100
50
t d(on)
20
10
0.1
tf
0.3
1
3
Drain Current
10
30
ID (A)
100
H7N0308AB
Reverse Drain Current vs.
Souece to Drain Voltage
Reverse Drain Current IDR (A)
100
80
10 V
60
V GS = 0, -5V
5V
40
20
Pulse Test
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
VSD
2.0
(V)
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
3
Tc = 25°C
1
D=1
0.5
0.3
0.1
0.03
0.2
θ ch - c(t) = γs (t) • θ ch - c
θ ch - c = 1.25°C/ W, Tc = 25°C
0.1
0.05
0.02
e
1
0.0 puls
t
o
h
1s
PDM
D=
PW
T
PW
T
0.01
10 µ
100 µ
1m
10 m
100 m
1
10
Pulse Width PW (s)
Rev.2, Aug. 2002, page 7 of 9
H7N0308AB
Package Dimensions
As of January, 2002
Unit: mm
2.79 ± 0.2
11.5 MAX
10.16 ± 0.2
9.5
+0.1
φ 3.6 –0.08
1.26 ± 0.15
15.0 ± 0.3
6.4
18.5 ± 0.5
1.27
+0.2
–0.1
8.0
4.44 ± 0.2
7.8 ± 0.5
1.5 MAX
0.76 ± 0.1
2.54 ± 0.5
2.54 ± 0.5
14.0 ± 0.5
2.7 MAX
0.5 ± 0.1
Hitachi Code
JEDEC
JEITA
Mass (reference value)
Rev.2, Aug. 2002, page 8 of 9
TO-220AB
Conforms
Conforms
1.8 g
H7N0308AB
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe Ltd.
Electronic Components Group
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585200
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00
Singapore 049318
Tel : <65>-6538-6533/6538-8577
Fax : <65>-6538-6933/6538-3877
URL : http://semiconductor.hitachi.com.sg
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen
Postfach 201, D-85619 Feldkirchen
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road
Hung-Kuo Building
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon Hong Kong
Tel : <852>-2735-9218
Fax : <852>-2730-0281
URL : http://semiconductor.hitachi.com.hk
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.
Colophon 6.0
Rev.2, Aug. 2002, page 9 of 9