Data Sheet

LPC4370
32-bit ARM Cortex-M4 + 2 x M0 MCU; 282 kB SRAM; Ethernet;
two HS USBs; 80 Msps 12-bit ADC; configurable peripherals
Rev. 2.3 — 15 March 2016
Product data sheet
1. General description
The LPC4370 are ARM Cortex-M4 based microcontrollers for embedded applications
which include an ARM Cortex-M0 coprocessor and an ARM Cortex-M0 subsystem for
managing peripherals, 282 kB of SRAM, advanced configurable peripherals such as the
State Configurable Timer (SCTimer/PWM) and the Serial General Purpose I/O (SGPIO)
interface, two high-speed USB controllers, Ethernet, LCD, an external memory controller,
and multiple digital and analog peripherals, including a high-speed 12-bit ADC. The
LPC4370 operate at CPU frequencies of up to 204 MHz.
The ARM Cortex-M4 is a 32-bit core that offers system enhancements such as low power
consumption, enhanced debug features, and a high level of support block integration. The
ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture with
separate local instruction and data buses as well as a third bus for peripherals, and
includes an internal prefetch unit that supports speculative branching. The ARM
Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A
hardware floating-point processor is integrated in the core.
The LPC4370 include an application ARM Cortex-M0 coprocessor and a second ARM
Cortex-M0 subsystem for managing the SGPIO and SPI peripherals. The ARM Cortex-M0
core is an energy-efficient and easy-to-use 32-bit core which is code- and tool-compatible
with the Cortex-M4 core. Both Cortex-M0 cores offer up to 204 MHz performance with a
simple instruction set and reduced code size. In LPC43x0, the Cortex-M0 coprocessor
hardware multiply is implemented as a 32-cycle iterative multiplier.
2. Features and benefits
 Main Cortex-M4 processor
 ARM Cortex-M4 processor, running at frequencies of up to 204 MHz.
 ARM Cortex-M4 built-in Memory Protection Unit (MPU) supporting eight regions.
 ARM Cortex-M4 built-in Nested Vectored Interrupt Controller (NVIC).
 Hardware floating-point unit.
 Non-maskable Interrupt (NMI) input.
 JTAG and Serial Wire Debug (SWD), serial trace, eight breakpoints, and four watch
points.
 Enhanced Trace Module (ETM) and Enhanced Trace Buffer (ETB) support.
 System tick timer.
 Cortex-M0 coprocessor
 ARM Cortex-M0 coprocessor capable of off-loading the main ARM Cortex-M4
processor.
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller





LPC4370
Product data sheet
 Running at frequencies of up to 204 MHz.
 JTAG and built-in NVIC.
Cortex-M0 subsystem
 ARM Cortex-M0 processor controlling the SPI and SGPIO peripherals residing on
a separate AHB multilayer matrix with direct access to 2 kB + 16 kB of SRAM.
 Running at frequencies of up to 204 MHz.
 Connected via a core-to-core bridge to the main AHB multilayer matrix and the
main ARM Cortex-M4 processor.
 JTAG and built-in NVIC.
On-chip memory
 264 kB SRAM for code and data use on the main AHB multilayer matrix plus 18 kB
of SRAM on the Cortex-M0 subsystem.
 Multiple SRAM blocks with separate bus access. Two SRAM blocks can be
powered down individually.
 64 kB ROM containing boot code and on-chip software drivers.
 64-bit + 256 bit general-purpose One-Time Programmable (OTP) memory.
Configurable digital peripherals
 Serial GPIO (SGPIO) interface.
 State Configurable Timer (SCTimer/PWM) subsystem on AHB.
 Global Input Multiplexer Array (GIMA) allows to cross-connect multiple inputs and
outputs to event driven peripherals like the timers, SCTimer/PWM, and ADC0/1.
Serial interfaces
 Quad SPI Flash Interface (SPIFI) with four lanes and up to 52 MB per second.
 10/100T Ethernet MAC with RMII and MII interfaces and DMA support for high
throughput at low CPU load. Support for IEEE 1588 time stamping/advanced time
stamping (IEEE 1588-2008 v2).
 One High-speed USB 2.0 Host/Device/OTG interface with DMA support and
on-chip high-speed PHY.
 One High-speed USB 2.0 Host/Device interface with DMA support, on-chip
full-speed PHY and ULPI interface to external high-speed PHY.
 USB interface electrical test software included in ROM USB stack.
 One 550 UART with DMA support and full modem interface.
 Three 550 USARTs with DMA and synchronous mode support and a smart card
interface conforming to ISO7816 specification. One USART with IrDA interface.
 Two C_CAN 2.0B controllers with one channel each. Use of C_CAN controller
excludes operation of all other peripherals connected to the same bus bridge. See
Figure 1 and Ref. 1.
 Two SSP controllers with FIFO and multi-protocol support. Both SSPs with DMA
support.
 One SPI controller.
 One Fast-mode Plus I2C-bus interface with monitor mode and with open-drain I/O
pins conforming to the full I2C-bus specification. Supports data rates of up to
1 Mbit/s.
 One standard I2C-bus interface with monitor mode and with standard I/O pins.
 Two I2S interfaces, each with DMA support and with one input and one output.
Digital peripherals
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
2 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller




LPC4370
Product data sheet
 External Memory Controller (EMC) supporting external SRAM, ROM, NOR flash,
and SDRAM devices.
 LCD controller with DMA support and a programmable display resolution of up to
1024 H  768 V. Supports monochrome and color STN panels and TFT color
panels; supports 1/2/4/8 bpp Color Look-Up Table (CLUT) and 16/24-bit direct pixel
mapping.
 Secure Digital Input Output (SD/MMC) card interface.
 Eight-channel General-Purpose DMA (GPDMA) controller can access all memories
on the AHB and all DMA-capable AHB slaves.
 164 General-Purpose Input/Output (GPIO) pins with configurable pull-up/pull-down
resistors and open-drain mode.
 GPIO registers are located on the AHB for fast access. GPIO ports have DMA
support.
 Up to eight GPIO pins can be selected from all GPIO pins as edge and level
sensitive interrupt sources.
 Two GPIO group interrupt modules enable an interrupt based on a programmable
pattern of input states of a group of GPIO pins.
 Four general-purpose timer/counters with capture and match capabilities.
 One motor control Pulse Width Modulator (PWM) for three-phase motor control.
 One Quadrature Encoder Interface (QEI).
 Repetitive Interrupt timer (RI timer).
 Windowed watchdog timer (WWDT).
 Ultra-low power Real-Time Clock (RTC) on separate power domain with 256 bytes
of battery powered backup registers.
 Alarm timer; can be battery powered.
Analog peripherals
 One 10-bit DAC with DMA support and a data conversion rate of 400 kSamples/s.
LBGA256 package only.
 Two 8-channel, 10-bit ADCs (ADC0/1) with DMA support and a data conversion
rate of 400 kSamples/s for a total of 16 independent channels. The 10-bit ADCs
are only available on the LBGA256 package.
 One 6-channel, 12-bit high-speed ADC (ADCHS) with DMA support and a data
conversion rate of 80 MSamples/s.
Unique ID for each device.
Clock generation unit
 Crystal oscillator with an operating range of 1 MHz to 25 MHz.
 12 MHz Internal RC (IRC) oscillator trimmed to 1 % accuracy over temperature and
voltage.
 Ultra-low power Real-Time Clock (RTC) crystal oscillator.
 Three PLLs allow CPU operation up to the maximum CPU rate without the need for
a high-frequency crystal. The second PLL is dedicated to the High-speed USB, the
third PLL can be used as audio PLL.
 Clock output.
Power
 Single 3.3 V (2.2 V to 3.6 V) power supply with on-chip DC-to-DC converter for the
core supply and the RTC power domain.
 RTC power domain can be powered separately by a 3 V battery supply.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
3 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
 Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep
power-down.
 Processor wake-up from Sleep mode via wake-up interrupts from various
peripherals.
 Wake-up from Deep-sleep, Power-down, and Deep power-down modes via
external interrupts and interrupts generated by battery powered blocks in the RTC
power domain.
 Brownout detect with four separate thresholds for interrupt and forced reset.
 Power-On Reset (POR).
 Available as LBGA256 and TFBGA100 packages.
3. Applications




LPC4370
Product data sheet
Motor control
Power management
White goods
RFID readers
 Embedded audio applications
 Industrial automation
 e-metering
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
4 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
4. Ordering information
Table 1.
Ordering information
Type number
Package
Name
Description
Version
LPC4370FET256
LBGA256
Plastic low profile ball grid array package; 256 balls; body 17  17  1 mm
SOT740-2
LPC4370FET100
TFBGA100 Plastic thin fine-pitch ball grid array package; 100 balls; body 9  9  0.7 mm SOT926-1
4.1 Ordering options
Table 2.
Ordering options
Total SRAM
LCD
Ethernet
USB0 (Host, Device,
OTG)
USB1 (Host, Device)/
ULPI interface
10-bit ADC channels
ADC0/ADC1
12-bit
ADC channels
Motor control PWM
QEI
GPIO
Package
Type number
LPC4370FET256
282 kB
yes
yes
yes
yes/yes
8/8
6
yes
yes
164
LBGA256
LPC4370FET100
282 kB
no
yes
yes
yes/no
n/a
3
no
no
49
TFBGA100
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
5 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
5. Block diagram
slaves
LPC4370
SUBSYSTEM AHB MULTILAYER MATRIX
system
bus
masters
2 kB LOCAL SRAM
16 kB LOCAL SRAM
ARM
CORTEX-M0
SPI
SUBSYSTEM
SGPIO
TEST/DEBUG
INTERFACE
CORE-CORE
BRIDGE
TEST/DEBUG
INTERFACE
MPU
FPU
TEST/DEBUG
INTERFACE
HIGH-SPEED PHY
ARM
CORTEX-M4
system bus
D-code bus
I-code bus
ETHERNET
10/100
MAC
IEEE 1588
DMA
HIGH-SPEED
USB0
HOST/
DEVICE/OTG
HIGH-SPEED
USB1
HOST/DEVICE
LCD(1)
SD/
MMC
ARM
CORTEX-M0
masters
master
AHB MULTILAYER MATRIX
slaves
BRIDGE 0
BRIDGE 1
BRIDGE 2
BRIDGE 3
BRIDGE
BRIDGE
128 kB LOCAL SRAM
72 kB LOCAL SRAM
I2C1
CGU
64 kB ROM
RI TIMER
USART0
MOTOR
CONTROL
PWM
USART2
10-bit DAC
CCU1
BACKUP REGISTERS
UART1
I2C0
USART3
C_CAN0
CCU2
POWER MODE CONTROL
SSP0
I2S0
TIMER2
10-bit ADC0
RGU
SPIFI
TIMER0
I2S1
CONFIGURATION
REGISTERS
TIMER3
10-bit ADC1
EVENT ROUTER
EMC
TIMER1
C_CAN1
SSP1
OTP MEMORY
12-bit ADC (ADCHS)
WWDT
ALARM TIMER
32 kB AHB SRAM
16 +16 kB AHB SRAM
SCT
SCU
GPIO
INTERRUPTS
QEI
RTC
RTC OSC
GIMA
HS GPIO
12 MHz IRC
GPIO GROUP0
INTERRUPT
RTC POWER DOMAIN
GPIO GROUP1
INTERRUPT
= connected to GPDMA
002aag606
(1) Not available on all parts (see Table 2).
Fig 1.
LPC4370 Block diagram
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
6 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
6. Pinning information
6.1 Pinning
LPC4370FET256
ball A1
index area
2
1
4
3
6
5
8
7
10
9
12
11
14
13
ball A1
index area
16
LPC4370FET100
1
15
A
2
3
4
5
6
7
8
A
B
C
B
E
C
D
F
D
G
E
H
J
F
L
G
K
M
H
N
J
P
R
K
T
002aag608
002aag607
Transparent top view
Transparent top view
Fig 2.
9 10
Pin configuration LBGA256 package
Fig 3.
Pin configuration TFBGA100 package
6.2 Pin description
On the LPC4370, digital pins are grouped into 16 ports, named P0 to P9 and PA to PF,
with up to 20 pins used per port. Each digital pin can support up to eight different digital
functions, including General Purpose I/O (GPIO), selectable through the System
Configuration Unit (SCU) registers. The pin name is not indicative of the GPIO port
assigned to it.
Not all functions listed in Table 3 are available on all packages. See Table 2 for availability
of USB0, USB1, Ethernet, and LCD functions.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
7 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Type
Description
[2]
TFBGA100
LBGA256
Symbol
Reset state
Table 3.
Pin description
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
Multiplexed digital pins
P0_0
P0_1
L3
M2
G2
G1
[3]
[3]
I; PU I/O
GPIO0[0] — General purpose digital input/output pin.
I/O
SSP1_MISO — Master In Slave Out for SSP1.
I
ENET_RXD1 — Ethernet receive data 1 (RMII/MII interface).
I/O
SGPIO0 — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
I2S0_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
I/O
I2S1_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
I; PU I/O
GPIO0[1] — General purpose digital input/output pin.
I/O
SSP1_MOSI — Master Out Slave in for SSP1.
I
ENET_COL — Ethernet Collision detect (MII interface).
I/O
SGPIO1 — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
ENET_TX_EN — Ethernet transmit enable (RMII/MII interface).
I/O
P1_0
P1_1
P2
R2
LPC4370
Product data sheet
H1
K2
[3]
[3]
I; PU I/O
I2S1_TX_SDA — I2S1 transmit data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
GPIO0[4] — General purpose digital input/output pin.
I
CTIN_3 — SCT input 3. Capture input 1 of timer 1.
I/O
EMC_A5 — External memory address line 5.
-
R — Function reserved.
-
R — Function reserved.
I/O
SSP0_SSEL — Slave Select for SSP0.
I/O
SGPIO7 — General purpose digital input/output pin.
-
R — Function reserved.
I; PU I/O
GPIO0[8] — General purpose digital input/output pin. Boot pin (see Table 5).
O
CTOUT_7 — SCT output 7. Match output 3 of timer 1.
I/O
EMC_A6 — External memory address line 6.
I/O
SGPIO8 — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SSP0_MISO — Master In Slave Out for SSP0.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
8 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P1_3
P1_4
P1_5
K1
P5
T3
R5
LPC4370
Product data sheet
J1
J2
J4
[3]
[3]
[3]
[3]
Type
R3
Description
[2]
TFBGA100
P1_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO0[9] — General purpose digital input/output pin. Boot pin (see Table 5).
O
CTOUT_6 — SCT output 6. Match output 2 of timer 1.
I/O
EMC_A7 — External memory address line 7.
I/O
SGPIO9 — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SSP0_MOSI — Master Out Slave in for SSP0.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO0[10] — General purpose digital input/output pin.
O
CTOUT_8 — SCT output 8. Match output 0 of timer 2.
I/O
SGPIO10 — General purpose digital input/output pin.
O
EMC_OE — LOW active Output Enable signal.
O
USB0_IND1 — USB0 port indicator LED control
output 1.
I/O
SSP1_MISO — Master In Slave Out for SSP1.
-
R — Function reserved.
O
SD_RST — SD/MMC reset signal for MMC4.4 card.
I; PU I/O
GPIO0[11] — General purpose digital input/output pin.
O
CTOUT_9 — SCT output 9. Match output 1 of timer 2.
I/O
SGPIO11 — General purpose digital input/output pin.
O
EMC_BLS0 — LOW active Byte Lane select signal 0.
O
USB0_IND0 — USB0 port indicator LED control output 0.
I/O
SSP1_MOSI — Master Out Slave in for SSP1.
-
R — Function reserved.
O
SD_VOLT1 — SD/MMC bus voltage select output 1.
I; PU I/O
GPIO1[8] — General purpose digital input/output pin.
O
CTOUT_10 — SCT output 10. Match output 2 of timer 2.
-
R — Function reserved.
O
EMC_CS0 — LOW active Chip Select 0 signal.
I
USB0_PWR_FAULT — Port power fault signal indicating overcurrent
condition; this signal monitors over-current on the USB bus (external circuitry
required to detect over-current condition).
I/O
SSP1_SSEL — Slave Select for SSP1.
I/O
SGPIO15 — General purpose digital input/output pin.
O
SD_POW — SD/MMC power monitor output.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
9 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P1_7
K4
T5
G4
[3]
[3]
Type
T4
Description
[2]
TFBGA100
P1_6
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO1[9] — General purpose digital input/output pin.
I
CTIN_5 — SCT input 5. Capture input 2 of timer 2.
-
R — Function reserved.
O
EMC_WE — LOW active Write Enable signal.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO14 — General purpose digital input/output pin.
I/O
SD_CMD — SD/MMC command signal.
I; PU I/O
GPIO1[0] — General purpose digital input/output pin.
I
U1_DSR — Data Set Ready input for UART1.
O
CTOUT_13 — SCT output 13. Match output 1 of timer 3.
I/O
EMC_D0 — External memory data line 0.
O
USB0_PPWR — VBUS drive signal (towards external charge pump or
power management unit); indicates that VBUS must be driven (active HIGH).
Add a pull-down resistor to disable the power switch at reset. This signal has
opposite polarity compared to the USB_PPWR used on other NXP LPC
parts.
P1_8
P1_9
R7
T7
LPC4370
Product data sheet
H5
J5
[3]
[3]
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO1[1] — General purpose digital input/output pin.
O
U1_DTR — Data Terminal Ready output for UART1.
O
CTOUT_12 — SCT output 12. Match output 0 of
timer 3.
I/O
EMC_D1 — External memory data line 1.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
SD_VOLT0 — SD/MMC bus voltage select output 0.
I; PU I/O
GPIO1[2] — General purpose digital input/output pin.
O
U1_RTS — Request to Send output for UART1.
O
CTOUT_11 — SCT output 11. Match output 3 of timer 2.
I/O
EMC_D2 — External memory data line 2.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
SD_DAT0 — SD/MMC data bus line 0.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
10 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P1_11
P1_12
P1_13
H6
T9
R9
R10
LPC4370
Product data sheet
J7
K7
H8
[3]
[3]
[3]
[3]
Type
R8
Description
[2]
TFBGA100
P1_10
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO1[3] — General purpose digital input/output pin.
I
U1_RI — Ring Indicator input for UART1.
O
CTOUT_14 — SCT output 14. Match output 2 of timer 3.
I/O
EMC_D3 — External memory data line 3.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
SD_DAT1 — SD/MMC data bus line 1.
I; PU I/O
GPIO1[4] — General purpose digital input/output pin.
I
U1_CTS — Clear to Send input for UART1.
O
CTOUT_15 — SCT output 15. Match output 3 of timer 3.
I/O
EMC_D4 — External memory data line 4.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
SD_DAT2 — SD/MMC data bus line 2.
I; PU I/O
GPIO1[5] — General purpose digital input/output pin.
I
U1_DCD — Data Carrier Detect input for UART1.
-
R — Function reserved.
I/O
EMC_D5 — External memory data line 5.
I
T0_CAP1 — Capture input 1 of timer 0.
-
R — Function reserved.
I/O
SGPIO8 — General purpose digital input/output pin.
I/O
SD_DAT3 — SD/MMC data bus line 3.
I; PU I/O
GPIO1[6] — General purpose digital input/output pin.
O
U1_TXD — Transmitter output for UART1.
-
R — Function reserved.
I/O
EMC_D6 — External memory data line 6.
I
T0_CAP0 — Capture input 0 of timer 0.
-
R — Function reserved.
I/O
SGPIO9 — General purpose digital input/output pin.
I
SD_CD — SD/MMC card detect input.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
11 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P1_15
P1_16
P1_17
J8
T12
M7
M8
LPC4370
Product data sheet
K8
H9
H10
[3]
[3]
[3]
[4]
Type
R11
Description
[2]
TFBGA100
P1_14
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO1[7] — General purpose digital input/output pin.
I
U1_RXD — Receiver input for UART1.
-
R — Function reserved.
I/O
EMC_D7 — External memory data line 7.
O
T0_MAT2 — Match output 2 of timer 0.
-
R — Function reserved.
I/O
SGPIO10 — General purpose digital input/output pin.
-
R — Function reserved.
I; PU I/O
GPIO0[2] — General purpose digital input/output pin.
O
U2_TXD — Transmitter output for USART2.
I/O
SGPIO2 — General purpose digital input/output pin.
I
ENET_RXD0 — Ethernet receive data 0 (RMII/MII interface).
O
T0_MAT1 — Match output 1 of timer 0.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO0[3] — General purpose digital input/output pin.
I
U2_RXD — Receiver input for USART2.
I/O
SGPIO3 — General purpose digital input/output pin.
I
ENET_CRS — Ethernet Carrier Sense (MII interface).
O
T0_MAT0 — Match output 0 of timer 0.
-
R — Function reserved.
-
R — Function reserved.
I
ENET_RX_DV — Ethernet Receive Data Valid (RMII/MII interface).
I; PU I/O
GPIO0[12] — General purpose digital input/output pin.
I/O
U2_UCLK — Serial clock input/output for USART2 in synchronous mode.
-
R — Function reserved.
I/O
ENET_MDIO — Ethernet MIIM data input and output.
I
T0_CAP3 — Capture input 3 of timer 0.
O
CAN1_TD — CAN1 transmitter output.
I/O
SGPIO11 — General purpose digital input/output pin.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
12 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P1_19
P1_20
J10
M11
M10
K9
K10
[3]
[3]
[3]
Type
N12
Description
[2]
TFBGA100
P1_18
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
I/O
U2_DIR — RS-485/EIA-485 output enable/direction control for USART2.
-
R — Function reserved.
O
ENET_TXD0 — Ethernet transmit data 0 (RMII/MII interface).
O
T0_MAT3 — Match output 3 of timer 0.
I
CAN1_RD — CAN1 receiver input.
I/O
SGPIO12 — General purpose digital input/output pin.
-
R — Function reserved.
I; PU I
T16
G10
[3]
ENET_TX_CLK (ENET_REF_CLK) — Ethernet Transmit Clock (MII
interface) or Ethernet Reference Clock (RMII interface).
I/O
SSP1_SCK — Serial clock for SSP1.
-
R — Function reserved.
-
R — Function reserved.
O
CLKOUT — Clock output pin.
-
R — Function reserved.
O
I2S0_RX_MCLK — I2S receive master clock.
I/O
I2S1_TX_SCK — Transmit Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
I; PU I/O
GPIO0[15] — General purpose digital input/output pin.
I/O
SSP1_SSEL — Slave Select for SSP1.
-
R — Function reserved.
O
ENET_TXD1 — Ethernet transmit data 1 (RMII/MII interface).
I
T0_CAP2 — Capture input 2 of timer 0.
-
R — Function reserved.
I/O
SGPIO13 — General purpose digital input/output pin.
P2_0
GPIO0[13] — General purpose digital input/output pin.
I; PU I/O
R — Function reserved.
SGPIO4 — General purpose digital input/output pin.
O
U0_TXD — Transmitter output for USART0.
I/O
EMC_A13 — External memory address line 13.
O
USB0_PPWR — VBUS drive signal (towards external charge pump or
power management unit); indicates that VBUS must be driven (active HIGH).
Add a pull-down resistor to disable the power switch at reset. This signal has
opposite polarity compared to the USB_PPWR used on other NXP LPC
parts.
LPC4370
Product data sheet
I/O
GPIO5[0] — General purpose digital input/output pin.
-
R — Function reserved.
I
T3_CAP0 — Capture input 0 of timer 3.
O
ENET_MDC — Ethernet MIIM clock.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
13 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P2_2
P2_3
P2_4
G7
M15
J12
K11
LPC4370
Product data sheet
F5
D8
D9
[3]
[3]
[4]
[4]
Type
N15
Description
[2]
TFBGA100
P2_1
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
SGPIO5 — General purpose digital input/output pin.
I
U0_RXD — Receiver input for USART0.
I/O
EMC_A12 — External memory address line 12.
I
USB0_PWR_FAULT — Port power fault signal indicating overcurrent
condition; this signal monitors over-current on the USB bus (external circuitry
required to detect over-current condition).
I/O
GPIO5[1] — General purpose digital input/output pin.
-
R — Function reserved.
I
T3_CAP1 — Capture input 1 of timer 3.
-
R — Function reserved.
I; PU I/O
SGPIO6 — General purpose digital input/output pin.
I/O
U0_UCLK — Serial clock input/output for USART0 in synchronous mode.
I/O
EMC_A11 — External memory address line 11.
O
USB0_IND1 — USB0 port indicator LED control output 1.
I/O
GPIO5[2] — General purpose digital input/output pin.
I
CTIN_6 — SCT input 6. Capture input 1 of timer 3.
I
T3_CAP2 — Capture input 2 of timer 3.
-
R — Function reserved.
I; PU I/O
SGPIO12 — General purpose digital input/output pin.
I/O
I2C1_SDA — I2C1 data input/output (this pin does not use a specialized I2C
pad).
O
U3_TXD — Transmitter output for USART3.
I
CTIN_1 — SCT input 1. Capture input 1 of timer 0. Capture input 1 of timer
2.
I/O
GPIO5[3] — General purpose digital input/output pin.
-
R — Function reserved.
O
T3_MAT0 — Match output 0 of timer 3.
I
USB0_PWR_EN — VBUS drive signal (towards external charge pump or
power management unit); indicates that Vbus must be driven (active HIGH).
I; PU I/O
SGPIO13 — General purpose digital input/output pin.
I/O
I2C1_SCL — I2C1 clock input/output (this pin does not use a specialized I2C
pad).
I
U3_RXD — Receiver input for USART3.
I
CTIN_0 — SCT input 0. Capture input 0 of timer 0, 1, 2, 3.
I/O
GPIO5[4] — General purpose digital input/output pin.
-
R — Function reserved.
O
T3_MAT1 — Match output 1 of timer 3.
I
USB0_PWR_FAULT — Port power fault signal indicating overcurrent
condition; this signal monitors over-current on the USB bus (external circuitry
required to detect over-current condition).
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
14 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
D10
[4]
Type
K14
Description
[2]
TFBGA100
P2_5
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
SGPIO14 — General purpose digital input/output pin.
I
CTIN_2 — SCT input 2. Capture input 2 of timer 0.
I
USB1_VBUS — Monitors the presence of USB1 bus power.
Note: This signal must be HIGH for USB reset to occur.
P2_6
P2_7
P2_8
K16
H14
J16
LPC4370
Product data sheet
G9
C10
C6
[3]
[3]
[3]
I
ADCTRIG1 — ADC trigger input 1.
I/O
GPIO5[5] — General purpose digital input/output pin.
-
R — Function reserved.
O
T3_MAT2 — Match output 2 of timer 3.
O
USB0_IND0 — USB0 port indicator LED control output 0.
I; PU I/O
SGPIO7 — General purpose digital input/output pin.
I/O
U0_DIR — RS-485/EIA-485 output enable/direction control for USART0.
I/O
EMC_A10 — External memory address line 10.
O
USB0_IND0 — USB0 port indicator LED control
output 0.
I/O
GPIO5[6] — General purpose digital input/output pin.
I
CTIN_7 — SCT input 7.
I
T3_CAP3 — Capture input 3 of timer 3.
-
R — Function reserved.
I; PU I/O
GPIO0[7] — General purpose digital input/output pin. If this pin is pulled
LOW at reset, the part enters ISP mode using USART0.
O
CTOUT_1 — SCT output 1. Match output 1 of timer 0.
I/O
U3_UCLK — Serial clock input/output for USART3 in synchronous mode.
I/O
EMC_A9 — External memory address line 9.
-
R — Function reserved.
-
R — Function reserved.
O
T3_MAT3 — Match output 3 of timer 3.
-
R — Function reserved.
I; PU I/O
SGPIO15 — General purpose digital input/output pin. Boot pin (see Table 5).
O
CTOUT_0 — SCT output 0. Match output 0 of timer 0.
I/O
U3_DIR — RS-485/EIA-485 output enable/direction control for USART3.
I/O
EMC_A8 — External memory address line 8.
I/O
GPIO5[7] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
15 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P2_10
P2_11
P2_12
B10
G16
F16
E15
LPC4370
Product data sheet
E8
A9
B9
[3]
[3]
[3]
[3]
Type
H16
Description
[2]
TFBGA100
P2_9
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO1[10] — General purpose digital input/output pin. Boot pin (see
Table 5).
O
CTOUT_3 — SCT output 3. Match output 3 of timer 0.
I/O
U3_BAUD — Baud pin for USART3.
I/O
EMC_A0 — External memory address line 0.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO0[14] — General purpose digital input/output pin.
O
CTOUT_2 — SCT output 2. Match output 2 of timer 0.
O
U2_TXD — Transmitter output for USART2.
I/O
EMC_A1 — External memory address line 1.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO1[11] — General purpose digital input/output pin.
O
CTOUT_5 — SCT output 5. Match output 1 of timer 1.
I
U2_RXD — Receiver input for USART2.
I/O
EMC_A2 — External memory address line 2.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO1[12] — General purpose digital input/output pin.
O
CTOUT_4 — SCT output 4. Match output 0 of timer 1.
-
R — Function reserved.
I/O
EMC_A3 — External memory address line 3.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
U2_UCLK — Serial clock input/output for USART2 in synchronous mode.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
16 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P3_0
A10
F13
A8
[3]
[3]
Type
C16
Description
[2]
TFBGA100
P2_13
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
I
CTIN_4 — SCT input 4. Capture input 2 of timer 1.
-
R — Function reserved.
I/O
EMC_A4 — External memory address line 4.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
U2_DIR — RS-485/EIA-485 output enable/direction control for USART2.
I; PU I/O
P3_2
G11
F11
LPC4370
Product data sheet
F7
G6
[3]
[3]
I2S0_RX_SCK — I2S receive clock. It is driven by the master and received
by the slave. Corresponds to the signal SCK in the I2S-bus specification.
O
I2S0_RX_MCLK — I2S receive master clock.
I/O
I2S0_TX_SCK — Transmit Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
O
I2S0_TX_MCLK — I2S transmit master clock.
I/O
SSP0_SCK — Serial clock for SSP0.
-
R — Function reserved.
-
R — Function reserved.
P3_1
GPIO1[13] — General purpose digital input/output pin.
R — Function reserved.
I; PU I/O
I2S0_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
I/O
I2S0_RX_WS — Receive Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
I
CAN0_RD — CAN receiver input.
O
USB1_IND1 — USB1 Port indicator LED control output 1.
I/O
GPIO5[8] — General purpose digital input/output pin.
-
R — Function reserved.
O
LCD_VD15 — LCD data.
-
R — Function reserved.
I; PU I/O
I2S0_TX_SDA — I2S transmit data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
I/O
I2S0_RX_SDA — I2S Receive data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
O
CAN0_TD — CAN transmitter output.
O
USB1_IND0 — USB1 Port indicator LED control output 0.
I/O
GPIO5[9] — General purpose digital input/output pin.
-
R — Function reserved.
O
LCD_VD14 — LCD data.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
17 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P3_4
P3_5
P3_6
A7
A15
C12
B13
LPC4370
Product data sheet
B8
B7
C7
[5]
[3]
[3]
[3]
Type
B14
Description
[2]
TFBGA100
P3_3
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I/O
SPI_SCK — Serial clock for SPI.
I/O
SSP0_SCK — Serial clock for SSP0.
O
SPIFI_SCK — Serial clock for SPIFI.
O
CGU_OUT1 — CGU spare clock output 1.
-
R — Function reserved.
O
I2S0_TX_MCLK — I2S transmit master clock.
I/O
I2S1_TX_SCK — Transmit Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
I; PU I/O
GPIO1[14] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SPIFI_SIO3 — I/O lane 3 for SPIFI.
O
U1_TXD — Transmitter output for UART 1.
I/O
I2S0_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
I/O
I2S1_RX_SDA — I2S1 Receive data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
O
LCD_VD13 — LCD data.
I; PU I/O
GPIO1[15] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SPIFI_SIO2 — I/O lane 2 for SPIFI.
I
U1_RXD — Receiver input for UART 1.
I/O
I2S0_TX_SDA — I2S transmit data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
I/O
I2S1_RX_WS — Receive Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
O
LCD_VD12 — LCD data.
I; PU I/O
GPIO0[6] — General purpose digital input/output pin.
I/O
SPI_MISO — Master In Slave Out for SPI.
I/O
SSP0_SSEL — Slave Select for SSP0.
I/O
SPIFI_MISO — Input 1 in SPIFI quad mode; SPIFI output IO1.
-
R — Function reserved.
I/O
SSP0_MISO — Master In Slave Out for SSP0.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
18 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P3_8
P4_0
P4_1
D7
C10
D5
A1
E7
-
-
[3]
[3]
[3]
[6]
[13]
LPC4370
Product data sheet
Type
C11
Description
[2]
TFBGA100
P3_7
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I/O
SPI_MOSI — Master Out Slave In for SPI.
I/O
SSP0_MISO — Master In Slave Out for SSP0.
I/O
SPIFI_MOSI — Input I0 in SPIFI quad mode; SPIFI output IO0.
I/O
GPIO5[10] — General purpose digital input/output pin.
I/O
SSP0_MOSI — Master Out Slave in for SSP0.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
I
SPI_SSEL — Slave Select for SPI. Note that this pin in an input pin only.
The SPI in master mode cannot drive the CS input on the slave. Any GPIO
pin can be used for SPI chip select in master mode.
I/O
SSP0_MOSI — Master Out Slave in for SSP0.
I/O
SPIFI_CS — SPIFI serial flash chip select.
I/O
GPIO5[11] — General purpose digital input/output pin.
I/O
SSP0_SSEL — Slave Select for SSP0.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO2[0] — General purpose digital input/output pin.
O
MCOA0 — Motor control PWM channel 0, output A.
I
NMI — External interrupt input to NMI.
-
R — Function reserved.
-
R — Function reserved.
O
LCD_VD13 — LCD data.
I/O
U3_UCLK — Serial clock input/output for USART3 in synchronous mode.
-
R — Function reserved.
I; PU I/O
GPIO2[1] — General purpose digital input/output pin.
O
CTOUT_1 — SCT output 1. Match output 1 of timer 0.
O
LCD_VD0 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
O
LCD_VD19 — LCD data.
O
U3_TXD — Transmitter output for USART3.
I
ENET_COL — Ethernet Collision detect (MII interface).
AI
ADC0_1 — ADC0, input channel 1. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
19 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P4_3
-
C2
-
[3]
[6]
[13]
P4_4
P4_5
B1
D2
LPC4370
Product data sheet
-
-
[6]
[3]
Type
D3
Description
[2]
TFBGA100
P4_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO2[2] — General purpose digital input/output pin.
O
CTOUT_0 — SCT output 0. Match output 0 of timer 0.
O
LCD_VD3 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
O
LCD_VD12 — LCD data.
I
U3_RXD — Receiver input for USART3.
I/O
SGPIO8 — General purpose digital input/output pin.
I; PU I/O
GPIO2[3] — General purpose digital input/output pin.
O
CTOUT_3 — SCT output 3. Match output 3 of timer 0.
O
LCD_VD2 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
O
LCD_VD21 — LCD data.
I/O
U3_BAUD — Baud pin for USART3.
I/O
SGPIO9 — General purpose digital input/output pin.
AI
ADC0_0 — ADC0, input channel 0. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU I/O
GPIO2[4] — General purpose digital input/output pin.
O
CTOUT_2 — SCT output 2. Match output 2 of timer 0.
O
LCD_VD1 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
O
LCD_VD20 — LCD data.
I/O
U3_DIR — RS-485/EIA-485 output enable/direction control for USART3.
I/O
SGPIO10 — General purpose digital input/output pin.
O
DAC — DAC output. Configure the pin as GPIO input and use the analog
function select register in the SCU to select the DAC.
I; PU I/O
GPIO2[5] — General purpose digital input/output pin.
O
CTOUT_5 — SCT output 5. Match output 1 of timer 1.
O
LCD_FP — Frame pulse (STN). Vertical synchronization pulse (TFT).
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO11 — General purpose digital input/output pin.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
20 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P4_7
P4_8
-
H4
E2
-
-
[3]
[3]
[3]
Type
C1
Description
[2]
TFBGA100
P4_6
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
O;
PU
O
CTOUT_4 — SCT output 4. Match output 0 of timer 1.
O
LCD_ENAB/LCDM — STN AC bias drive or TFT data enable input.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO12 — General purpose digital input/output pin.
O
LCD_DCLK — LCD panel clock.
I
GP_CLKIN — General purpose clock input to the CGU.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
I2S1_TX_SCK — Transmit Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
I/O
I2S0_TX_SCK — Transmit Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
I; PU -
L2
LPC4370
Product data sheet
-
[3]
R — Function reserved.
I
CTIN_5 — SCT input 5. Capture input 2 of timer 2.
O
LCD_VD9 — LCD data.
-
R — Function reserved.
I/O
GPIO5[12] — General purpose digital input/output pin.
O
LCD_VD22 — LCD data.
O
CAN1_TD — CAN1 transmitter output.
I/O
P4_9
GPIO2[6] — General purpose digital input/output pin.
I; PU -
SGPIO13 — General purpose digital input/output pin.
R — Function reserved.
I
CTIN_6 — SCT input 6. Capture input 1 of timer 3.
O
LCD_VD11 — LCD data.
-
R — Function reserved.
I/O
GPIO5[13] — General purpose digital input/output pin.
O
LCD_VD15 — LCD data.
I
CAN1_RD — CAN1 receiver input.
I/O
SGPIO14 — General purpose digital input/output pin.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
21 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P5_0
P5_1
P5_2
-
N3
P3
R4
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
M3
Description
[2]
TFBGA100
P4_10
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I
CTIN_2 — SCT input 2. Capture input 2 of timer 0.
O
LCD_VD10 — LCD data.
-
R — Function reserved.
I/O
GPIO5[14] — General purpose digital input/output pin.
O
LCD_VD14 — LCD data.
-
R — Function reserved.
I/O
SGPIO15 — General purpose digital input/output pin.
I; PU I/O
GPIO2[9] — General purpose digital input/output pin.
O
MCOB2 — Motor control PWM channel 2, output B.
I/O
EMC_D12 — External memory data line 12.
-
R — Function reserved.
I
U1_DSR — Data Set Ready input for UART 1.
I
T1_CAP0 — Capture input 0 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO2[10] — General purpose digital input/output pin.
I
MCI2 — Motor control PWM channel 2, input.
I/O
EMC_D13 — External memory data line 13.
-
R — Function reserved.
O
U1_DTR — Data Terminal Ready output for UART 1. Can also be configured
to be an RS-485/EIA-485 output enable signal for UART 1.
I
T1_CAP1 — Capture input 1 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO2[11] — General purpose digital input/output pin.
I
MCI1 — Motor control PWM channel 1, input.
I/O
EMC_D14 — External memory data line 14.
-
R — Function reserved.
O
U1_RTS — Request to Send output for UART 1. Can also be configured to
be an RS-485/EIA-485 output enable signal for UART 1.
I
T1_CAP2 — Capture input 2 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
22 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P5_4
P5_5
P5_6
-
P9
P10
T13
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
T8
Description
[2]
TFBGA100
P5_3
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO2[12] — General purpose digital input/output pin.
I
MCI0 — Motor control PWM channel 0, input.
I/O
EMC_D15 — External memory data line 15.
-
R — Function reserved.
I
U1_RI — Ring Indicator input for UART 1.
I
T1_CAP3 — Capture input 3 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO2[13] — General purpose digital input/output pin.
O
MCOB0 — Motor control PWM channel 0, output B.
I/O
EMC_D8 — External memory data line 8.
-
R — Function reserved.
I
U1_CTS — Clear to Send input for UART 1.
O
T1_MAT0 — Match output 0 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO2[14] — General purpose digital input/output pin.
O
MCOA1 — Motor control PWM channel 1, output A.
I/O
EMC_D9 — External memory data line 9.
-
R — Function reserved.
I
U1_DCD — Data Carrier Detect input for UART 1.
O
T1_MAT1 — Match output 1 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO2[15] — General purpose digital input/output pin.
O
MCOB1 — Motor control PWM channel 1, output B.
I/O
EMC_D10 — External memory data line 10.
-
R — Function reserved.
O
U1_TXD — Transmitter output for UART 1.
O
T1_MAT2 — Match output 2 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
23 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P6_0
P6_1
P6_2
-
M12
R15
L13
LPC4370
Product data sheet
H7
G5
J9
[3]
[3]
[3]
[3]
Type
R12
Description
[2]
TFBGA100
P5_7
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO2[7] — General purpose digital input/output pin.
O
MCOA2 — Motor control PWM channel 2, output A.
I/O
EMC_D11 — External memory data line 11.
-
R — Function reserved.
I
U1_RXD — Receiver input for UART 1.
O
T1_MAT3 — Match output 3 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
I2S0_RX_MCLK — I2S receive master clock.
-
R — Function reserved.
-
R — Function reserved.
I/O
I2S0_RX_SCK — Receive Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[0] — General purpose digital input/output pin.
O
EMC_DYCS1 — SDRAM chip select 1.
I/O
U0_UCLK — Serial clock input/output for USART0 in synchronous mode.
I/O
I2S0_RX_WS — Receive Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
-
R — Function reserved.
I
T2_CAP0 — Capture input 2 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[1] — General purpose digital input/output pin.
O
EMC_CKEOUT1 — SDRAM clock enable 1.
I/O
U0_DIR — RS-485/EIA-485 output enable/direction control for USART0.
I/O
I2S0_RX_SDA — I2S Receive data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
-
R — Function reserved.
I
T2_CAP1 — Capture input 1 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
24 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P6_4
P6_5
P6_6
-
R16
P16
L14
LPC4370
Product data sheet
F6
F9
-
[3]
[3]
[3]
[3]
Type
P15
Description
[2]
TFBGA100
P6_3
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO3[2] — General purpose digital input/output pin.
I
USB0_PWR_EN — VBUS drive signal (towards external charge pump or
power management unit); indicates that the VBUS signal must be driven
(active HIGH).
I/O
SGPIO4 — General purpose digital input/output pin.
O
EMC_CS1 — LOW active Chip Select 1 signal.
-
R — Function reserved.
I
T2_CAP2 — Capture input 2 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[3] — General purpose digital input/output pin.
I
CTIN_6 — SCT input 6. Capture input 1 of timer 3.
O
U0_TXD — Transmitter output for USART0.
O
EMC_CAS — LOW active SDRAM Column Address Strobe.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[4] — General purpose digital input/output pin.
O
CTOUT_6 — SCT output 6. Match output 2 of timer 1.
I
U0_RXD — Receiver input for USART0.
O
EMC_RAS — LOW active SDRAM Row Address Strobe.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO0[5] — General purpose digital input/output pin.
O
EMC_BLS1 — LOW active Byte Lane select signal 1.
I/O
SGPIO5 — General purpose digital input/output pin.
I
USB0_PWR_FAULT — Port power fault signal indicating overcurrent
condition; this signal monitors over-current on the USB bus (external circuitry
required to detect over-current condition).
-
R — Function reserved.
I
T2_CAP3 — Capture input 3 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
25 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P6_8
P6_9
P6_10
-
H13
J15
H15
LPC4370
Product data sheet
-
F8
-
[3]
[3]
[3]
[3]
Type
J13
Description
[2]
TFBGA100
P6_7
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I/O
EMC_A15 — External memory address line 15.
I/O
SGPIO6 — General purpose digital input/output pin.
O
USB0_IND1 — USB0 port indicator LED control output 1.
I/O
GPIO5[15] — General purpose digital input/output pin.
O
T2_MAT0 — Match output 0 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
I/O
EMC_A14 — External memory address line 14.
I/O
SGPIO7 — General purpose digital input/output pin.
O
USB0_IND0 — USB0 port indicator LED control output 0.
I/O
GPIO5[16] — General purpose digital input/output pin.
O
T2_MAT1 — Match output 1 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[5] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
O
EMC_DYCS0 — SDRAM chip select 0.
-
R — Function reserved.
O
T2_MAT2 — Match output 2 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[6] — General purpose digital input/output pin.
O
MCABORT — Motor control PWM, LOW-active fast abort.
-
R — Function reserved.
O
EMC_DQMOUT1 — Data mask 1 used with SDRAM and static devices.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
26 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P6_12
P7_0
P7_1
C9
G15
B16
C14
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
H12
Description
[2]
TFBGA100
P6_11
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO3[7] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
O
EMC_CKEOUT0 — SDRAM clock enable 0.
-
R — Function reserved.
O
T2_MAT3 — Match output 3 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO2[8] — General purpose digital input/output pin.
O
CTOUT_7 — SCT output 7. Match output 3 of timer 1.
-
R — Function reserved.
O
EMC_DQMOUT0 — Data mask 0 used with SDRAM and static devices.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[8] — General purpose digital input/output pin.
O
CTOUT_14 — SCT output 14. Match output 2 of timer 3.
-
R — Function reserved.
O
LCD_LE — Line end signal.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO4 — General purpose digital input/output pin.
I; PU I/O
GPIO3[9] — General purpose digital input/output pin.
O
CTOUT_15 — SCT output 15. Match output 3 of timer 3.
I/O
I2S0_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
O
LCD_VD19 — LCD data.
O
LCD_VD7 — LCD data.
-
R — Function reserved.
O
U2_TXD — Transmitter output for USART2.
I/O
SGPIO5 — General purpose digital input/output pin.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
27 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P7_3
P7_4
P7_5
-
C13
C8
A7
LPC4370
Product data sheet
-
-
-
[3]
[3]
[6]
[6]
Type
A16
Description
[2]
TFBGA100
P7_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO3[10] — General purpose digital input/output pin.
I
CTIN_4 — SCT input 4. Capture input 2 of timer 1.
I/O
I2S0_TX_SDA — I2S transmit data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
O
LCD_VD18 — LCD data.
O
LCD_VD6 — LCD data.
-
R — Function reserved.
I
U2_RXD — Receiver input for USART2.
I/O
SGPIO6 — General purpose digital input/output pin.
I; PU I/O
GPIO3[11] — General purpose digital input/output pin.
I
CTIN_3 — SCT input 3. Capture input 1 of timer 1.
-
R — Function reserved.
O
LCD_VD17 — LCD data.
O
LCD_VD5 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[12] — General purpose digital input/output pin.
O
CTOUT_13 — SCT output 13. Match output 1 of timer 3.
-
R — Function reserved.
O
LCD_VD16 — LCD data.
O
LCD_VD4 — LCD data.
O
TRACEDATA[0] — Trace data, bit 0.
-
R — Function reserved.
-
R — Function reserved.
AI
ADC0_4 — ADC0, input channel 4. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU I/O
GPIO3[13] — General purpose digital input/output pin.
O
CTOUT_12 — SCT output 12. Match output 0 of timer 3.
-
R — Function reserved.
O
LCD_VD8 — LCD data.
O
LCD_VD23 — LCD data.
O
TRACEDATA[1] — Trace data, bit 1.
-
R — Function reserved.
-
R — Function reserved.
AI
ADC0_3 — ADC0, input channel 3. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
28 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P7_7
-
B6
-
[3]
[6]
[13]
P8_0
E5
-
[4]
[13]
P8_1
H5
LPC4370
Product data sheet
-
[4]
Type
C7
Description
[2]
TFBGA100
P7_6
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO3[14] — General purpose digital input/output pin.
O
CTOUT_11 — SCT output 1. Match output 3 of timer 2.
-
R — Function reserved.
O
LCD_LP — Line synchronization pulse (STN). Horizontal synchronization
pulse (TFT).
-
R — Function reserved.
O
TRACEDATA[2] — Trace data, bit 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO3[15] — General purpose digital input/output pin.
O
CTOUT_8 — SCT output 8. Match output 0 of timer 2.
-
R — Function reserved.
O
LCD_PWR — LCD panel power enable.
-
R — Function reserved.
O
TRACEDATA[3] — Trace data, bit 3.
O
ENET_MDC — Ethernet MIIM clock.
I/O
SGPIO7 — General purpose digital input/output pin.
AI
ADC1_6 — ADC1, input channel 6. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU I/O
GPIO4[0] — General purpose digital input/output pin.
I
USB0_PWR_FAULT — Port power fault signal indicating overcurrent
condition; this signal monitors over-current on the USB bus (external circuitry
required to detect over-current condition).
-
R — Function reserved.
I
MCI2 — Motor control PWM channel 2, input.
I/O
SGPIO8 — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
O
T0_MAT0 — Match output 0 of timer 0.
I; PU I/O
GPIO4[1] — General purpose digital input/output pin.
O
USB0_IND1 — USB0 port indicator LED control output 1.
-
R — Function reserved.
I
MCI1 — Motor control PWM channel 1, input.
I/O
SGPIO9 — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
O
T0_MAT1 — Match output 1 of timer 0.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
29 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P8_3
P8_4
P8_5
-
J3
J2
J1
LPC4370
Product data sheet
-
-
-
[4]
[3]
[3]
[3]
Type
K4
Description
[2]
TFBGA100
P8_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO4[2] — General purpose digital input/output pin.
O
USB0_IND0 — USB0 port indicator LED control output 0.
-
R — Function reserved.
I
MCI0 — Motor control PWM channel 0, input.
I/O
SGPIO10 — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
O
T0_MAT2 — Match output 2 of timer 0.
I; PU I/O
GPIO4[3] — General purpose digital input/output pin.
I/O
USB1_ULPI_D2 — ULPI link bidirectional data line 2.
-
R — Function reserved.
O
LCD_VD12 — LCD data.
O
LCD_VD19 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
O
T0_MAT3 — Match output 3 of timer 0.
I; PU I/O
GPIO4[4] — General purpose digital input/output pin.
I/O
USB1_ULPI_D1 — ULPI link bidirectional data line 1.
-
R — Function reserved.
O
LCD_VD7 — LCD data.
O
LCD_VD16 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
I
T0_CAP0 — Capture input 0 of timer 0.
I; PU I/O
GPIO4[5] — General purpose digital input/output pin.
I/O
USB1_ULPI_D0 — ULPI link bidirectional data line 0.
-
R — Function reserved.
O
LCD_VD6 — LCD data.
O
LCD_VD8 — LCD data.
-
R — Function reserved.
-
R — Function reserved.
I
T0_CAP1 — Capture input 1 of timer 0.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
30 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
-
[3]
Type
K3
Description
[2]
TFBGA100
P8_6
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
I
USB1_ULPI_NXT — ULPI link NXT signal. Data flow control signal from the
PHY.
-
R — Function reserved.
O
LCD_VD5 — LCD data.
O
LCD_LP — Line synchronization pulse (STN). Horizontal synchronization
pulse (TFT).
-
R — Function reserved.
-
R — Function reserved.
I
P8_7
P8_8
P9_0
K1
L1
T1
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
GPIO4[6] — General purpose digital input/output pin.
I; PU I/O
T0_CAP2 — Capture input 2 of timer 0.
GPIO4[7] — General purpose digital input/output pin.
O
USB1_ULPI_STP — ULPI link STP signal. Asserted to end or interrupt
transfers to the PHY.
-
R — Function reserved.
O
LCD_VD4 — LCD data.
O
LCD_PWR — LCD panel power enable.
-
R — Function reserved.
-
R — Function reserved.
I
T0_CAP3 — Capture input 3 of timer 0.
I; PU -
R — Function reserved.
I
USB1_ULPI_CLK — ULPI link CLK signal. 60 MHz clock generated by the
PHY.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
CGU_OUT0 — CGU spare clock output 0.
O
I2S1_TX_MCLK — I2S1 transmit master clock.
I; PU I/O
GPIO4[12] — General purpose digital input/output pin.
O
MCABORT — Motor control PWM, LOW-active fast abort.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I
ENET_CRS — Ethernet Carrier Sense (MII interface).
I/O
SGPIO0 — General purpose digital input/output pin.
I/O
SSP0_SSEL — Slave Select for SSP0.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
31 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
-
[3]
Type
N6
Description
[2]
TFBGA100
P9_1
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
O
MCOA2 — Motor control PWM channel 2, output A.
-
R — Function reserved.
-
R — Function reserved.
I/O
I2S0_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
I
ENET_RX_ER — Ethernet receive error (MII interface).
I/O
SGPIO1 — General purpose digital input/output pin.
I/O
P9_2
P9_3
P9_4
N8
M6
N10
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
GPIO4[13] — General purpose digital input/output pin.
I; PU I/O
SSP0_MISO — Master In Slave Out for SSP0.
GPIO4[14] — General purpose digital input/output pin.
O
MCOB2 — Motor control PWM channel 2, output B.
-
R — Function reserved.
-
R — Function reserved.
I/O
I2S0_TX_SDA — I2S transmit data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
I
ENET_RXD3 — Ethernet receive data 3 (MII interface).
I/O
SGPIO2 — General purpose digital input/output pin.
I/O
SSP0_MOSI — Master Out Slave in for SSP0.
I; PU I/O
GPIO4[15] — General purpose digital input/output pin.
O
MCOA0 — Motor control PWM channel 0, output A.
O
USB1_IND1 — USB1 Port indicator LED control output 1.
-
R — Function reserved.
-
R — Function reserved.
I
ENET_RXD2 — Ethernet receive data 2 (MII interface).
I/O
SGPIO9 — General purpose digital input/output pin.
O
U3_TXD — Transmitter output for USART3.
I; PU -
R — Function reserved.
O
MCOB0 — Motor control PWM channel 0, output B.
O
USB1_IND0 — USB1 Port indicator LED control output 0.
-
R — Function reserved.
I/O
GPIO5[17] — General purpose digital input/output pin.
O
ENET_TXD2 — Ethernet transmit data 2 (MII interface).
I/O
SGPIO4 — General purpose digital input/output pin.
I
U3_RXD — Receiver input for USART3.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
32 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
P9_6
-
L11
-
[3]
[3]
Type
M9
Description
[2]
TFBGA100
P9_5
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU O
MCOA1 — Motor control PWM channel 1, output A.
O
USB1_VBUS_EN — USB1 VBUS power enable.
-
R — Function reserved.
I/O
GPIO5[18] — General purpose digital input/output pin.
O
ENET_TXD3 — Ethernet transmit data 3 (MII interface).
I/O
SGPIO3 — General purpose digital input/output pin.
O
U0_TXD — Transmitter output for USART0.
I; PU I/O
L12
-
[3]
MCOB1 — Motor control PWM channel 1, output B.
I
USB1_PWR_FAULT — USB1 Port power fault signal indicating over-current
condition; this signal monitors over-current on the USB1 bus (external
circuitry required to detect over-current condition).
-
R — Function reserved.
-
R — Function reserved.
I
ENET_COL — Ethernet Collision detect (MII interface).
I/O
SGPIO8 — General purpose digital input/output pin.
J14
LPC4370
Product data sheet
-
[4]
U0_RXD — Receiver input for USART0.
I; PU -
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
I2S1_RX_MCLK — I2S1 receive master clock.
O
CGU_OUT1 — CGU spare clock output 1.
PA_1
GPIO4[11] — General purpose digital input/output pin.
O
I
PA_0
R — Function reserved.
I; PU I/O
R — Function reserved.
GPIO4[8] — General purpose digital input/output pin.
I
QEI_IDX — Quadrature Encoder Interface INDEX input.
-
R — Function reserved.
O
U2_TXD — Transmitter output for USART2.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
33 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PA_3
PA_4
PB_0
-
H11
G13
B15
LPC4370
Product data sheet
-
-
-
[4]
[4]
[3]
[3]
Type
K15
Description
[2]
TFBGA100
PA_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
GPIO4[9] — General purpose digital input/output pin.
I
QEI_PHB — Quadrature Encoder Interface PHB input.
-
R — Function reserved.
I
U2_RXD — Receiver input for USART2.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU I/O
GPIO4[10] — General purpose digital input/output pin.
I
QEI_PHA — Quadrature Encoder Interface PHA input.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_9 — SCT output 9. Match output 1 of timer 2.
-
R — Function reserved.
I/O
EMC_A23 — External memory address line 23.
I/O
GPIO5[19] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_10 — SCT output 10. Match output 2 of timer 2.
O
LCD_VD23 — LCD data.
-
R — Function reserved.
I/O
GPIO5[20] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
34 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PB_2
PB_3
PB_4
-
B12
A13
B11
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
A14
Description
[2]
TFBGA100
PB_1
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I
USB1_ULPI_DIR — ULPI link DIR signal. Controls the ULP data line
direction.
O
LCD_VD22 — LCD data.
-
R — Function reserved.
I/O
GPIO5[21] — General purpose digital input/output pin.
O
CTOUT_6 — SCT output 6. Match output 2 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D7 — ULPI link bidirectional data line 7.
O
LCD_VD21 — LCD data.
-
R — Function reserved.
I/O
GPIO5[22] — General purpose digital input/output pin.
O
CTOUT_7 — SCT output 7. Match output 3 of timer 1.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D6 — ULPI link bidirectional data line 6.
O
LCD_VD20 — LCD data.
-
R — Function reserved.
I/O
GPIO5[23] — General purpose digital input/output pin.
O
CTOUT_8 — SCT output 8. Match output 0 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D5 — ULPI link bidirectional data line 5.
O
LCD_VD15 — LCD data.
-
R — Function reserved.
I/O
GPIO5[24] — General purpose digital input/output pin.
I
CTIN_5 — SCT input 5. Capture input 2 of timer 2.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
35 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PB_6
-
A6
-
[3]
[6]
[13]
PC_0
D4
-
[6]
[13]
PC_1
E4
LPC4370
Product data sheet
-
[3]
Type
A12
Description
[2]
TFBGA100
PB_5
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D4 — ULPI link bidirectional data line 4.
O
LCD_VD14 — LCD data.
-
R — Function reserved.
I/O
GPIO5[25] — General purpose digital input/output pin.
I
CTIN_7 — SCT input 7.
O
LCD_PWR — LCD panel power enable.
-
R — Function reserved.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D3 — ULPI link bidirectional data line 3.
O
LCD_VD13 — LCD data.
-
R — Function reserved.
I/O
GPIO5[26] — General purpose digital input/output pin.
I
CTIN_6 — SCT input 6. Capture input 1 of timer 3.
O
LCD_VD19 — LCD data.
-
R — Function reserved.
AI
ADC0_6 — ADC0, input channel 6. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU -
R — Function reserved.
I
USB1_ULPI_CLK — ULPI link CLK signal. 60 MHz clock generated by the
PHY.
-
R — Function reserved.
I/O
ENET_RX_CLK — Ethernet Receive Clock (MII interface).
O
LCD_DCLK — LCD panel clock.
-
R — Function reserved.
-
R — Function reserved.
I/O
SD_CLK — SD/MMC card clock.
AI
ADC1_1 — ADC1 and ADC0, input channel 1. Configure the pin as input
(USB_ULPI_CLK) and use the ADC function select register in the SCU to
select the ADC.
I; PU I/O
USB1_ULPI_D7 — ULPI link bidirectional data line 7.
-
R — Function reserved.
I
U1_RI — Ring Indicator input for UART 1.
O
ENET_MDC — Ethernet MIIM clock.
I/O
GPIO6[0] — General purpose digital input/output pin.
-
R — Function reserved.
I
T3_CAP0 — Capture input 0 of timer 3.
O
SD_VOLT0 — SD/MMC bus voltage select output 0.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
36 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PC_3
PC_4
-
F5
F4
-
-
[3]
[6]
[3]
Type
F6
Description
[2]
TFBGA100
PC_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I/O
USB1_ULPI_D6 — ULPI link bidirectional data line 6.
-
R — Function reserved.
I
U1_CTS — Clear to Send input for UART 1.
O
ENET_TXD2 — Ethernet transmit data 2 (MII interface).
I/O
GPIO6[1] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
O
SD_RST — SD/MMC reset signal for MMC4.4 card.
I; PU I/O
USB1_ULPI_D5 — ULPI link bidirectional data line 5.
-
R — Function reserved.
O
U1_RTS — Request to Send output for UART 1. Can also be configured to
be an RS-485/EIA-485 output enable signal for UART 1.
O
ENET_TXD3 — Ethernet transmit data 3 (MII interface).
I/O
GPIO6[2] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
O
SD_VOLT1 — SD/MMC bus voltage select output 1.
AI
ADC1_0 — ADC1, input channel 0. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D4 — ULPI link bidirectional data line 4.
-
R — Function reserved.
ENET_TX_EN — Ethernet transmit enable (RMII/MII interface).
PC_5
G4
LPC4370
Product data sheet
-
[3]
I/O
GPIO6[3] — General purpose digital input/output pin.
-
R — Function reserved.
I
T3_CAP1 — Capture input 1 of timer 3.
I/O
SD_DAT0 — SD/MMC data bus line 0.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D3 — ULPI link bidirectional data line 3.
-
R — Function reserved.
O
ENET_TX_ER — Ethernet Transmit Error (MII interface).
I/O
GPIO6[4] — General purpose digital input/output pin.
-
R — Function reserved.
I
T3_CAP2 — Capture input 2 of timer 3.
I/O
SD_DAT1 — SD/MMC data bus line 1.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
37 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PC_7
PC_8
PC_9
-
G5
N4
K2
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
H6
Description
[2]
TFBGA100
PC_6
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D2 — ULPI link bidirectional data line 2.
-
R — Function reserved.
I
ENET_RXD2 — Ethernet receive data 2 (MII interface).
I/O
GPIO6[5] — General purpose digital input/output pin.
-
R — Function reserved.
I
T3_CAP3 — Capture input 3 of timer 3.
I/O
SD_DAT2 — SD/MMC data bus line 2.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D1 — ULPI link bidirectional data line 1.
-
R — Function reserved.
I
ENET_RXD3 — Ethernet receive data 3 (MII interface).
I/O
GPIO6[6] — General purpose digital input/output pin.
-
R — Function reserved.
O
T3_MAT0 — Match output 0 of timer 3.
I/O
SD_DAT3 — SD/MMC data bus line 3.
I; PU -
R — Function reserved.
I/O
USB1_ULPI_D0 — ULPI link bidirectional data line 0.
-
R — Function reserved.
I
ENET_RX_DV — Ethernet Receive Data Valid (RMII/MII interface).
I/O
GPIO6[7] — General purpose digital input/output pin.
-
R — Function reserved.
O
T3_MAT1 — Match output 1 of timer 3.
I
SD_CD — SD/MMC card detect input.
I; PU -
R — Function reserved.
I
USB1_ULPI_NXT — ULPI link NXT signal. Data flow control signal from the
PHY.
-
R — Function reserved.
I
ENET_RX_ER — Ethernet receive error (MII interface).
I/O
GPIO6[8] — General purpose digital input/output pin.
-
R — Function reserved.
O
T3_MAT2 — Match output 2 of timer 3.
O
SD_POW — SD/MMC power monitor output.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
38 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PC_11
-
L5
-
[3]
[3]
Type
M5
Description
[2]
TFBGA100
PC_10
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU O
USB1_ULPI_STP — ULPI link STP signal. Asserted to end or interrupt
transfers to the PHY.
I
U1_DSR — Data Set Ready input for UART 1.
-
R — Function reserved.
I/O
GPIO6[9] — General purpose digital input/output pin.
-
R — Function reserved.
O
T3_MAT3 — Match output 3 of timer 3.
I/O
SD_CMD — SD/MMC command signal.
I; PU -
PC_13
L6
M1
LPC4370
Product data sheet
-
-
[3]
[3]
R — Function reserved.
I
USB1_ULPI_DIR — ULPI link DIR signal. Controls the ULPI data line
direction.
I
U1_DCD — Data Carrier Detect input for UART 1.
-
R — Function reserved.
I/O
GPIO6[10] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
PC_12
R — Function reserved.
SD_DAT4 — SD/MMC data bus line 4.
I; PU -
R — Function reserved.
-
R — Function reserved.
O
U1_DTR — Data Terminal Ready output for UART 1. Can also be configured
to be an RS-485/EIA-485 output enable signal for UART 1.
-
R — Function reserved.
I/O
GPIO6[11] — General purpose digital input/output pin.
I/O
SGPIO11 — General purpose digital input/output pin.
I/O
I2S0_TX_SDA — I2S transmit data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
I/O
SD_DAT5 — SD/MMC data bus line 5.
I; PU -
R — Function reserved.
-
R — Function reserved.
O
U1_TXD — Transmitter output for UART 1.
-
R — Function reserved.
I/O
GPIO6[12] — General purpose digital input/output pin.
I/O
SGPIO12 — General purpose digital input/output pin.
I/O
I2S0_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
I/O
SD_DAT6 — SD/MMC data bus line 6.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
39 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PD_0
PD_1
PD_2
-
N2
P1
R1
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
N1
Description
[2]
TFBGA100
PC_14
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
-
R — Function reserved.
I
U1_RXD — Receiver input for UART 1.
-
R — Function reserved.
I/O
GPIO6[13] — General purpose digital input/output pin.
I/O
SGPIO13 — General purpose digital input/output pin.
O
ENET_TX_ER — Ethernet Transmit Error (MII interface).
I/O
SD_DAT7 — SD/MMC data bus line 7.
I; PU -
R — Function reserved.
O
CTOUT_15 — SCT output 15. Match output 3 of timer 3.
O
EMC_DQMOUT2 — Data mask 2 used with SDRAM and static devices.
-
R — Function reserved.
I/O
GPIO6[14] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO4 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
-
R — Function reserved.
O
EMC_CKEOUT2 — SDRAM clock enable 2.
-
R — Function reserved.
I/O
GPIO6[15] — General purpose digital input/output pin.
O
SD_POW — SD/MMC power monitor output.
-
R — Function reserved.
I/O
SGPIO5 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
O
CTOUT_7 — SCT output 7. Match output 3 of timer 1.
I/O
EMC_D16 — External memory data line 16.
-
R — Function reserved.
I/O
GPIO6[16] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO6 — General purpose digital input/output pin.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
40 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PD_4
PD_5
PD_6
-
T2
P6
R6
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
P4
Description
[2]
TFBGA100
PD_3
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
O
CTOUT_6 — SCT output 7. Match output 2 of timer 1.
I/O
EMC_D17 — External memory data line 17.
-
R — Function reserved.
I/O
GPIO6[17] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO7 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
O
CTOUT_8 — SCT output 8. Match output 0 of timer 2.
I/O
EMC_D18 — External memory data line 18.
-
R — Function reserved.
I/O
GPIO6[18] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO8 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
O
CTOUT_9 — SCT output 9. Match output 1 of timer 2.
I/O
EMC_D19 — External memory data line 19.
-
R — Function reserved.
I/O
GPIO6[19] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO9 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
O
CTOUT_10 — SCT output 10. Match output 2 of timer 2.
I/O
EMC_D20 — External memory data line 20.
-
R — Function reserved.
I/O
GPIO6[20] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO10 — General purpose digital input/output pin.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
41 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PD_8
PD_9
PD_10
-
P8
T11
P11
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
T6
Description
[2]
TFBGA100
PD_7
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I
CTIN_5 — SCT input 5. Capture input 2 of timer 2.
I/O
EMC_D21 — External memory data line 21.
-
R — Function reserved.
I/O
GPIO6[21] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO11 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
I
CTIN_6 — SCT input 6. Capture input 1 of timer 3.
I/O
EMC_D22 — External memory data line 22.
-
R — Function reserved.
I/O
GPIO6[22] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO12 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
O
CTOUT_13 — SCT output 13. Match output 1 of timer 3.
I/O
EMC_D23 — External memory data line 23.
-
R — Function reserved.
I/O
GPIO6[23] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SGPIO13 — General purpose digital input/output pin.
I; PU -
R — Function reserved.
I
CTIN_1 — SCT input 1. Capture input 1 of timer 0. Capture input 1 of timer
2.
O
EMC_BLS3 — LOW active Byte Lane select signal 3.
-
R — Function reserved.
I/O
GPIO6[24] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
42 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PD_12
PD_13
PD_14
-
N11
T14
R13
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
N9
Description
[2]
TFBGA100
PD_11
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
-
R — Function reserved.
O
EMC_CS3 — LOW active Chip Select 3 signal.
-
R — Function reserved.
I/O
GPIO6[25] — General purpose digital input/output pin.
I/O
USB1_ULPI_D0 — ULPI link bidirectional data line 0.
O
CTOUT_14 — SCT output 14. Match output 2 of timer 3.
-
R — Function reserved.
I; PU -
R — Function reserved.
-
R — Function reserved.
O
EMC_CS2 — LOW active Chip Select 2 signal.
-
R — Function reserved.
I/O
GPIO6[26] — General purpose digital input/output pin.
-
R — Function reserved.
O
CTOUT_10 — SCT output 10. Match output 2 of timer 2.
-
R — Function reserved.
I; PU -
R — Function reserved.
I
CTIN_0 — SCT input 0. Capture input 0 of timer 0, 1, 2, 3.
O
EMC_BLS2 — LOW active Byte Lane select signal 2.
-
R — Function reserved.
I/O
GPIO6[27] — General purpose digital input/output pin.
-
R — Function reserved.
O
CTOUT_13 — SCT output 13. Match output 1 of timer 3.
-
R — Function reserved.
I; PU -
R — Function reserved.
-
R — Function reserved.
O
EMC_DYCS2 — SDRAM chip select 2.
-
R — Function reserved.
I/O
GPIO6[28] — General purpose digital input/output pin.
-
R — Function reserved.
O
CTOUT_11 — SCT output 11. Match output 3 of timer 2.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
43 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PD_16
PE_0
PE_1
-
R14
P14
N14
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
T15
Description
[2]
TFBGA100
PD_15
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
-
R — Function reserved.
I/O
EMC_A17 — External memory address line 17.
-
R — Function reserved.
I/O
GPIO6[29] — General purpose digital input/output pin.
I
SD_WP — SD/MMC card write protect input.
O
CTOUT_8 — SCT output 8. Match output 0 of timer 2.
-
R — Function reserved.
I; PU -
R — Function reserved.
-
R — Function reserved.
I/O
EMC_A16 — External memory address line 16.
-
R — Function reserved.
I/O
GPIO6[30] — General purpose digital input/output pin.
O
SD_VOLT2 — SD/MMC bus voltage select output 2.
O
CTOUT_12 — SCT output 12. Match output 0 of timer 3.
-
R — Function reserved.
I; PU -
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
EMC_A18 — External memory address line 18.
I/O
GPIO7[0] — General purpose digital input/output pin.
O
CAN1_TD — CAN1 transmitter output.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
EMC_A19 — External memory address line 19.
I/O
GPIO7[1] — General purpose digital input/output pin.
I
CAN1_RD — CAN1 receiver input.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
44 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PE_3
PE_4
PE_5
-
K12
K13
N16
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
M14
Description
[2]
TFBGA100
PE_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU I
ADCTRIG0 — ADC trigger input 0.
I
CAN0_RD — CAN receiver input.
-
R — Function reserved.
I/O
EMC_A20 — External memory address line 20.
I/O
GPIO7[2] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CAN0_TD — CAN transmitter output.
I
ADCTRIG1 — ADC trigger input 1.
I/O
EMC_A21 — External memory address line 21.
I/O
GPIO7[3] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
I
NMI — External interrupt input to NMI.
-
R — Function reserved.
I/O
EMC_A22 — External memory address line 22.
I/O
GPIO7[4] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_3 — SCT output 3. Match output 3 of timer 0.
O
U1_RTS — Request to Send output for UART 1. Can also be configured to
be an RS-485/EIA-485 output enable signal for UART 1.
I/O
EMC_D24 — External memory data line 24.
I/O
GPIO7[5] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
45 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PE_7
PE_8
PE_9
-
F15
F14
E16
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
M16
Description
[2]
TFBGA100
PE_6
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
O
CTOUT_2 — SCT output 2. Match output 2 of timer 0.
I
U1_RI — Ring Indicator input for UART 1.
I/O
EMC_D25 — External memory data line 25.
I/O
GPIO7[6] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_5 — SCT output 5. Match output 1 of timer 1.
I
U1_CTS — Clear to Send input for UART1.
I/O
EMC_D26 — External memory data line 26.
I/O
GPIO7[7] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_4 — SCT output 4. Match output 0 of timer 0.
I
U1_DSR — Data Set Ready input for UART 1.
I/O
EMC_D27 — External memory data line 27.
I/O
GPIO7[8] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
I
CTIN_4 — SCT input 4. Capture input 2 of timer 1.
I
U1_DCD — Data Carrier Detect input for UART 1.
I/O
EMC_D28 — External memory data line 28.
I/O
GPIO7[9] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
46 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PE_11
PE_12
PE_13
-
D16
D15
G14
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
E14
Description
[2]
TFBGA100
PE_10
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I
CTIN_3 — SCT input 3. Capture input 1 of timer 1.
O
U1_DTR — Data Terminal Ready output for UART 1. Can also be configured
to be an RS-485/EIA-485 output enable signal for UART 1.
I/O
EMC_D29 — External memory data line 29.
I/O
GPIO7[10] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_12 — SCT output 12. Match output 0 of timer 3.
O
U1_TXD — Transmitter output for UART 1.
I/O
EMC_D30 — External memory data line 30.
I/O
GPIO7[11] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_11 — SCT output 11. Match output 3 of
timer 2.
I
U1_RXD — Receiver input for UART 1.
I/O
EMC_D31 — External memory data line 31.
I/O
GPIO7[12] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O
CTOUT_14 — SCT output 14. Match output 2 of timer 3.
I/O
I2C1_SDA — I2C1 data input/output (this pin does not use a specialized I2C
pad).
O
EMC_DQMOUT3 — Data mask 3 used with SDRAM and static devices.
I/O
GPIO7[13] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
47 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PE_15
PF_0
PF_1
-
E13
D12
E11
LPC4370
Product data sheet
-
-
-
[3]
[3]
[3]
[3]
Type
C15
Description
[2]
TFBGA100
PE_14
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
EMC_DYCS3 — SDRAM chip select 3.
I/O
GPIO7[14] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I; PU -
R — Function reserved.
O;
PU
O
CTOUT_0 — SCT output 0. Match output 0 of timer 0.
I/O
I2C1_SCL — I2C1 clock input/output (this pin does not use a specialized I2C
pad).
O
EMC_CKEOUT3 — SDRAM clock enable 3.
I/O
GPIO7[15] — General purpose digital input/output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
I/O
SSP0_SCK — Serial clock for SSP0.
I
GP_CLKIN — General purpose clock input to the CGU.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
I2S1_TX_MCLK — I2S1 transmit master clock.
I; PU -
R — Function reserved.
-
R — Function reserved.
I/O
SSP0_SSEL — Slave Select for SSP0.
-
R — Function reserved.
I/O
GPIO7[16] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO0 — General purpose digital input/output pin.
-
R — Function reserved.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
48 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PF_3
PF_4
PF_5
-
E10
D10
E9
LPC4370
Product data sheet
-
H4
-
[3]
[3]
[3]
[6]
Type
D11
Description
[2]
TFBGA100
PF_2
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
O
U3_TXD — Transmitter output for USART3.
I/O
SSP0_MISO — Master In Slave Out for SSP0.
-
R — Function reserved.
I/O
GPIO7[17] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO1 — General purpose digital input/output pin.
-
R — Function reserved.
I; PU -
R — Function reserved.
O;
PU
I
U3_RXD — Receiver input for USART3.
I/O
SSP0_MOSI — Master Out Slave in for SSP0.
-
R — Function reserved.
I/O
GPIO7[18] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO2 — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SSP1_SCK — Serial clock for SSP1.
I
GP_CLKIN — General purpose clock input to the CGU.
O
TRACECLK — Trace clock.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
I2S0_TX_MCLK — I2S transmit master clock.
I/O
I2S0_RX_SCK — I2S receive clock. It is driven by the master and received
by the slave. Corresponds to the signal SCK in the I2S-bus specification.
I; PU -
R — Function reserved.
I/O
U3_UCLK — Serial clock input/output for USART3 in synchronous mode.
I/O
SSP1_SSEL — Slave Select for SSP1.
O
TRACEDATA[0] — Trace data, bit 0.
I/O
GPIO7[19] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO4 — General purpose digital input/output pin.
-
R — Function reserved.
AI
ADC1_4 — ADC1, input channel 4. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
49 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
PF_7
PF_8
-
B7
E6
-
-
[6]
[6]
[6]
[13]
LPC4370
Product data sheet
Type
E7
Description
[2]
TFBGA100
PF_6
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I/O
U3_DIR — RS-485/EIA-485 output enable/direction control for USART3.
I/O
SSP1_MISO — Master In Slave Out for SSP1.
O
TRACEDATA[1] — Trace data, bit 1.
I/O
GPIO7[20] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO5 — General purpose digital input/output pin.
I/O
I2S1_TX_SDA — I2S1 transmit data. It is driven by the transmitter and read
by the receiver. Corresponds to the signal SD in the I2S-bus specification.
AI
ADC1_3 — ADC1, input channel 3. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU -
R — Function reserved.
I/O
U3_BAUD — Baud pin for USART3.
I/O
SSP1_MOSI — Master Out Slave in for SSP1.
O
TRACEDATA[2] — Trace data, bit 2.
I/O
GPIO7[21] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO6 — General purpose digital input/output pin.
I/O
I2S1_TX_WS — Transmit Word Select. It is driven by the master and
received by the slave. Corresponds to the signal WS in the I2S-bus
specification.
AI/
O
ADC1_7 — ADC1, input channel 7 or band gap output. Configure the pin as
GPIO input and use the ADC function select register in the SCU to select the
ADC.
I; PU -
R — Function reserved.
I/O
U0_UCLK — Serial clock input/output for USART0 in synchronous mode.
I
CTIN_2 — SCT input 2. Capture input 2 of timer 0.
O
TRACEDATA[3] — Trace data, bit 3.
I/O
GPIO7[22] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO7 — General purpose digital input/output pin.
-
R — Function reserved.
AI
ADC0_2 — ADC0, input channel 2. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
50 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
-
[6]
[13]
PF_10
A3
-
[6]
[13]
PF_11
A2
-
[6]
[13]
LPC4370
Product data sheet
Type
D6
Description
[2]
TFBGA100
PF_9
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I; PU -
R — Function reserved.
I/O
U0_DIR — RS-485/EIA-485 output enable/direction control for USART0.
O
CTOUT_1 — SCT output 1. Match output 1 of timer 0.
-
R — Function reserved.
I/O
GPIO7[23] — General purpose digital input/output pin.
-
R — Function reserved.
I/O
SGPIO3 — General purpose digital input/output pin.
-
R — Function reserved.
AI
ADC1_2 — ADC1, input channel 2. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU -
R — Function reserved.
O
U0_TXD — Transmitter output for USART0.
-
R — Function reserved.
-
R — Function reserved.
I/O
GPIO7[24] — General purpose digital input/output pin.
-
R — Function reserved.
I
SD_WP — SD/MMC card write protect input.
-
R — Function reserved.
AI
ADC0_5 — ADC0, input channel 5. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
I; PU -
R — Function reserved.
I
U0_RXD — Receiver input for USART0.
-
R — Function reserved.
-
R — Function reserved.
I/O
GPIO7[25] — General purpose digital input/output pin.
-
R — Function reserved.
O
SD_VOLT2 — SD/MMC bus voltage select output 2.
-
R — Function reserved.
AI
ADC1_5 — ADC1, input channel 5. Configure the pin as GPIO input and use
the ADC function select register in the SCU to select the ADC.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
51 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
K3
Type
TFBGA100
N5
Description
[2]
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
Clock pins
CLK0
CLK1
CLK2
CLK3
T10
D14
P12
-
K6
-
[5]
[5]
[5]
[5]
O;
PU
O;
PU
O;
PU
O;
PU
O
EMC_CLK0 — SDRAM clock 0.
O
CLKOUT — Clock output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SD_CLK — SD/MMC card clock.
O
EMC_CLK01 — SDRAM clock 0 and clock 1 combined.
I/O
SSP1_SCK — Serial clock for SSP1.
I
ENET_TX_CLK (ENET_REF_CLK) — Ethernet Transmit Clock (MII
interface) or Ethernet Reference Clock (RMII interface).
O
EMC_CLK1 — SDRAM clock 1.
O
CLKOUT — Clock output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
CGU_OUT0 — CGU spare clock output 0.
-
R — Function reserved.
O
I2S1_TX_MCLK — I2S1 transmit master clock.
O
EMC_CLK3 — SDRAM clock 3.
O
CLKOUT — Clock output pin.
-
R — Function reserved.
-
R — Function reserved.
I/O
SD_CLK — SD/MMC card clock.
O
EMC_CLK23 — SDRAM clock 2 and clock 3 combined.
O
I2S0_TX_MCLK — I2S transmit master clock.
I/O
I2S1_RX_SCK — Receive Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
O
EMC_CLK2 — SDRAM clock 2.
O
CLKOUT — Clock output pin.
-
R — Function reserved.
-
R — Function reserved.
-
R — Function reserved.
O
CGU_OUT1 — CGU spare clock output 1.
-
R — Function reserved.
I/O
I2S1_RX_SCK — Receive Clock. It is driven by the master and received by
the slave. Corresponds to the signal SCK in the I2S-bus specification.
Debug pins
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
52 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
A6
[3]
I
Type
L4
Description
[2]
TFBGA100
DBGEN
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I
JTAG interface control signal. Also used for boundary scan. To use the part
in functional mode, connect this pin in one of the following ways:
•
Leave DBGEN open. The DBGEN pin is pulled up internally by a 50 kΩ
resistor.
•
•
Tie DBGEN to VDDIO.
Pull DBGEN up to VDDIO with an external pull-up resistor.
TCK/SWDCLK
J5
H2
[3]
TRST
M4
B4
[3]
I; PU I
Test Reset for JTAG interface.
TMS/SWDIO
K6
C4
[3]
I; PU I
Test Mode Select for JTAG interface (default) or SW debug data
input/output.
TDO/SWO
K5
H3
[3]
O
TDI
J4
G3
[3]
I; PU I
Test Data In for JTAG interface.
F2
E1
[7]
-
USB0 bidirectional D+ line.
-
I/O
USB0 bidirectional D line.
-
I/O
VBUS pin (power on USB cable). This pin includes an internal pull-down
resistor of 64 k (typical)  16 k.
I
Indicates to the transceiver whether connected as an A-device (USB0_ID
LOW) or B-device (USB0_ID HIGH). For OTG this pin has an internal pull-up
resistor.
I; F
I
O
Test Clock for JTAG interface (default) or Serial Wire (SW) clock.
Test Data Out for JTAG interface (default) or SW trace output.
USB0 pins
USB0_DP
USB0_DM
G2
E2
[7]
USB0_VBUS
F1
E3
[7]
I/O
[8]
USB0_ID
H2
F1
[9]
-
USB0_RREF
H1
F3
[9]
-
USB1_DP
F12
E9
[10]
-
I/O
USB1 bidirectional D+ line.
USB1_DM
G12
E10
[10]
-
I/O
USB1 bidirectional D line.
I2C0_SCL
L15
D6
[11]
I; F
I/O
I2C clock input/output. Open-drain output (for I2C-bus compliance).
I2C0_SDA
L16
E6
[11]
I; F
I/O
I2C data input/output. Open-drain output (for I2C-bus compliance).
12.0 k (accuracy 1 %) on-board resistor to ground for current reference.
USB1 pins
I2C-bus
pins
Reset and wake-up pins
RESET
D9
B6
[12]
I; IA
I
External reset input: A LOW-going pulse as short as 50 ns on this pin resets
the device, causing I/O ports and peripherals to take on their default states,
and processor execution to begin at address 0. This pin does not have an
internal pull-up.
WAKEUP0
A9
A4
[12]
I; IA
I
External wake-up input; can raise an interrupt and can cause wake-up from
any of the low power modes. A pulse with a duration > 45 ns wakes up the
part. This pin does not have an internal pull-up.
WAKEUP1
A10
-
[12]
I; IA
I
External wake-up input; can raise an interrupt and can cause wake-up from
any of the low power modes. A pulse with a duration > 45 ns wakes up the
part. This pin does not have an internal pull-up.
WAKEUP2
C9
-
[12]
I; IA
I
External wake-up input; can raise an interrupt and can cause wake-up from
any of the low power modes. A pulse with a duration > 45 ns wakes up the
part. This pin does not have an internal pull-up.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
53 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
-
LPC4370
Product data sheet
[12]
I; IA
Type
D8
Description
[2]
TFBGA100
WAKEUP3
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
I
External wake-up input; can raise an interrupt and can cause wake-up from
any of the low power modes. A pulse with a duration > 45 ns wakes up the
part. This pin does not have an internal pull-up.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
54 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
E3
A2
[9]
I; IA
I
12-bit high-speed ADC input channel 0.
ADCHS_1
C3
A1
[9]
I; IA
I
12-bit high-speed ADC input channel 1.
I; IA
I
12-bit high-speed ADC input channel 2.
Type
ADCHS_0
[2]
TFBGA100
Description
LBGA256
Symbol
Reset state
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
ADC pins
ADCHS_2
A4
B3
[9]
ADCHS_3
A5
-
[9]
I; IA
I
12-bit high-speed ADC input channel 3.
ADCHS_4
C6
-
[9]
I; IA
I
12-bit high-speed ADC input channel 4.
-
[9]
I; IA
I
12-bit high-speed ADC input channel 5.
I; IA
I/O
12-bit high-speed ADC reference voltage output or negative differential
input.
ADCHS_5
B3
ADCHS_NEG
B5
A3
[9]
ADC0_7
C5
-
[9]
I; IA
I
10-bit ADC0 input channel 7.
RTC_ALARM
A11
C3
[12]
-
O
RTC controlled output. This pin has an internal pull-up. The reset state of this
pin is LOW after POR. For all other types of reset, the reset state depends
on the state of the RTC alarm interrupt.
RTCX1
A8
A5
[9]
-
I
Input to the RTC 32 kHz ultra-low power oscillator circuit.
B5
[9]
-
O
Output from the RTC 32 kHz ultra-low power oscillator circuit.
B1
[9]
-
I
Input to the oscillator circuit and internal clock generator circuits.
C1
[9]
-
O
Output from the oscillator amplifier.
RTC
RTCX2
B8
Crystal oscillator pins
XTAL1
XTAL2
D1
E1
Power and ground pins
USB0_VDDA
3V3_DRIVER
F3
D1
-
-
Separate analog 3.3 V power supply for driver.
USB0
_VDDA3V3
G3
D2
-
-
USB 3.3 V separate power supply voltage.
USB0_VSSA
_TERM
H3
D3
-
-
Dedicated analog ground for clean reference for termination resistors.
USB0_VSSA
_REF
G1
F2
-
-
Dedicated clean analog ground for generation of reference currents and
voltages.
VDDA
B4
B2
-
-
Analog power supply and 10-bit ADC reference voltage.
VBAT
B10
C5
-
-
RTC power supply: 3.3 V on this pin supplies power to the RTC.
VDDREG
F10,
F9,
L8,
L7
E4,
E5,
F4
-
Main regulator power supply. Tie the VDDREG and VDDIO pins to a
common power supply to ensure the same ramp-up time for both supply
voltages.
VPP
E8
-
-
OTP programming voltage.
LPC4370
Product data sheet
-
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
55 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
VDDIO
D7,
F10,
E12, K5
F7,
F8,
G10,
H10,
J6,
J7,
K7,
L9,
L10,
N7,
N13
VDD
-
-
VSS
G9,
H7,
J10,
J11,
K8
VSSIO
VSSA
Type
Description
[2]
Reset state
LBGA256
Symbol
TFBGA100
Table 3.
Pin description …continued
LCD, Ethernet, USB0, and USB1 functions are not available on all parts. See Table 2.
-
-
I/O power supply. Tie the VDDREG and VDDIO pins to a common power
supply to ensure the same ramp-up time for both supply voltages.
-
-
-
Ground.
C4,
D13,
G6,
G7,
G8,
H8,
H9,
J8,
J9,
K9,
K10,
M13,
P7,
P13
C8,
D4,
D5,
G8,
J3,
J6
-
-
Ground.
B2
C2
-
-
Analog ground.
B9
-
-
-
n.c.
Power supply for main regulator, I/O, and OTP.
Not connected
[1]
- = not pinned out.
[2]
I = input, O = output, AI/O analog input/output, IA = inactive; PU = pull-up enabled (weak pull-up resistor pulls up pin to VDD(IO)); F =
floating. Reset state reflects the pin state at reset without boot code operation.
[3]
5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDD(IO) present; if VDD(IO) not present, do not exceed 3.3 V); provides digital I/O
functions with TTL levels and hysteresis; normal drive strength.
[4]
5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDD(IO) present; if VDD(IO) not present, do not exceed 3.3 V) providing digital I/O
functions with TTL levels, and hysteresis; high drive strength.
[5]
5 V tolerant pad with 15 ns glitch filter (5 V tolerant if VDD(IO) present; if VDD(IO) not present, do not exceed 3.3 V) providing high-speed
digital I/O functions with TTL levels and hysteresis.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
56 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
[6]
5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input or output (5 V tolerant if VDD(IO) present;
if VDD(IO) not present, do not exceed 3.3 V). When configured as a ADC input or DAC output, the pin is not 5 V tolerant and the digital
section of the pad must be disabled by setting the pin to an input function and disabling the pull-up resistor through the pin’s SFSP
register.
[7]
5 V tolerant transparent analog pad.
[8]
For maximum load CL = 6.5 F and maximum resistance Rpd = 80 k, the VBUS signal takes about 2 s to fall from VBUS = 5 V to VBUS
= 0.2 V when it is no longer driven.
[9]
Transparent analog pad. Not 5 V tolerant.
[10] Pad provides USB functions (5 V tolerant if VDD(IO) present; if VDD(IO) not present, do not exceed 3.3 V). It is designed in accordance
with the USB specification, revision 2.0 (Full-speed and Low-speed mode only).
[11] Open-drain 5 V tolerant digital I/O pad, compatible with I2C-bus Fast Mode Plus specification. This pad requires an external pull-up to
provide output functionality. When power is switched off, this pin connected to the I2C-bus is floating and does not disturb the I2C lines.
[12] 5 V tolerant pad with 20 ns glitch filter; provides digital I/O functions with open-drain output with weak pull-up resistor and hysteresis.
[13] To minimize interference on the 12-bit ADC signal lines, do not configure the digital signal as output when using the 12-bit ADC. See
Table 45.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
57 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7. Functional description
7.1 Architectural overview
The ARM Cortex-M4 includes three AHB-Lite buses: the system bus, the I-code bus, and
the D-code bus. The I-code and D-code core buses allow for concurrent code and data
accesses from different slave ports.
The LPC4370 use a multi-layer AHB matrix to connect the ARM Cortex-M4 buses and
other bus masters to peripherals in a flexible manner that optimizes performance by
allowing peripherals that are on different slaves ports of the matrix to be accessed
simultaneously by different bus masters.
An ARM Cortex-M0 coprocessor is included in the LPC4370, capable of off-loading the
main ARM Cortex-M4 application processor. Most peripheral interrupts are connected to
both processors. The processors communicate with each other via an interprocessor
communication protocol.
7.2 ARM Cortex-M4 processor
The ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture
with separate local instruction and data buses as well as a third bus for peripherals, and
includes an internal prefetch unit that supports speculative branching. The ARM
Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A
hardware floating-point processor is integrated in the core. The processor includes a
NVIC with up to 53 interrupts.
7.3 ARM Cortex-M0 processors
The ARM Cortex-M0 processors are general purpose, 32-bit microprocessors, which offer
high performance and very low power consumption. The ARM Cortex-M0 processor uses
a 3-stage pipeline von Neumann architecture and a small but powerful instruction set
providing high-end processing hardware. The processors each incorporate an NVIC with
32 interrupts. In LPC43x0, the Cortex-M0 coprocessor hardware multiply is implemented
as a 32-cycle iterative multiplier.
7.3.1 ARM Cortex-M0 coprocessor
The M0 coprocessor resides on the same AHB multi-layer matrix as the main Cortex-M0
core. The coprocessor can be used to off-load multiple tasks from the main Cortex-M4
processor.
7.3.2 ARM Cortex-M0 subsytem
The Cortex-M0 subsystem can be used to manage the SGPIO and SPI peripherals on the
M0 subsystem multilayer matrix but any other peripheral as well. The M0 subsystem is
separated by a bridge from the main AHB matrix. The M0 subsystem AHB matrix has two
SRAM blocks which allows to run the Cortex-M0 subsytem at full speed independently
from the main matrix.
One application of using the subsystem is to reduce power, for example when the main
matrix runs at a very low speed and the M0 subsystem monitors activity and increases the
main matrix speed when needed.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
58 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
One of the two SRAM blocks connected to the subsystem AHB matrix is typically used for
code running on the M0 subsystem and the other SRAM block for data. This allows other
bus masters to access the data SRAM without interrupting the M0 processor instruction
fetches and thereby stalling the M0 subsystem.
The M0 subsystem matrix runs at an asynchronous speed from the main matrix. This
allows to operate the SGPIO at any desired frequency. The M0 subsystem can control the
SGPIO in a deterministic way, without incurring latency that occurs when the M4 controls
the SGPIO through a bridge.
7.4 Interprocessor communication
The ARM Cortex-M4 and ARM Cortex-M0 interprocessor communication is based on
using shared SRAM as mailbox and one processor raising an interrupt on the other
processor's NVIC, for example after it has delivered a new message in the mailbox. The
receiving processor can reply by raising an interrupt on the sending processor's NVIC to
acknowledge the message.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
59 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.5 AHB multilayer matrix
TEST/DEBUG
INTERFACE
TEST/DEBUG
INTERFACE
ARM
CORTEX-M4
ARM
CORTEX-M0
System
IDbus code code
bus bus
HIGH-SPEED PHY
DMA
0
ETHERNET
USB0
USB1
LCD
SD/
MMC
masters
1
slaves
64 kB ROM
128 kB LOCAL SRAM
72 kB LOCAL SRAM
SPIFI
SGPIO
32 kB AHB SRAM
16 kB + 16 kB
AHB SRAM
EXTERNAL
MEMORY
CONTROLLER
AHB PERIPHERALS
REGISTER
INTERFACES
APB, RTC
DOMAIN
PERIPHERALS
AHB MULTILAYER MATRIX
= master-slave connection
Fig 4.
002aaf873
AHB multilayer matrix master and slave connections
7.6 Nested Vectored Interrupt Controller (NVIC)
The NVIC is an integral part of the Cortex-M4. The tight coupling to the CPU allows for low
interrupt latency and efficient processing of late arriving interrupts.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
60 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Each ARM Cortex-M0 coprocessor has its own NVIC with 32 vectored interrupts. Most
peripheral interrupts are shared between the two Cortex-M0cores and the Cortex-M4
NVICs.
7.6.1 Features
• ARM Cortex-M4 NVIC:
– Controls system exceptions and peripheral interrupts.
– Up to 53 vectored interrupts.
– Eight programmable interrupt priority levels with hardware priority level masking.
– Relocatable vector table.
– Non-Maskable Interrupt (NMI).
– Software interrupt generation.
• ARM Cortex-M0 and ARM Cortex-M0 subsystem NVIC:
– Control system exceptions and peripheral interrupts.
– Up to 32 vectored interrupts.
– Four programmable priority levels with hardware priority level masking.
7.6.2 Interrupt sources
Each peripheral device has one interrupt line connected to the NVIC but may have several
interrupt flags. Individual interrupt flags may also represent more than one interrupt
source.
7.7 System Tick timer (SysTick)
The ARM Cortex-M4 includes a system tick timer (SysTick) that is intended to generate a
dedicated SYSTICK exception at a 10 ms interval.
Remark: The SysTick is not included in the ARM Cortex-M0 core.
7.8 Event router
The event router combines various internal signals, interrupts, and the external interrupt
pins (WAKEUP[3:0]) to create an interrupt in the NVIC if enabled and to create a wake-up
signal to the ARM core and the CCU for waking up from Sleep, Deep-sleep, Power-down,
and Deep power-down modes. Individual events can be configured as edge or level
sensitive and can be enabled or disabled in the event router. The event router can be
battery powered.
The following events if enabled in the event router can create a wake-up signal and/or an
interrupt:
•
•
•
•
•
LPC4370
Product data sheet
External pins WAKEUP0/1/2/3 and RESET
Alarm timer, RTC, WWDT, BOD interrupts
C_CAN and QEI interrupts
Ethernet, USB0, USB1 signals
Selected outputs of combined timers (SCT and timer0/1/3)
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
61 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.9 Global Input Multiplexer Array (GIMA)
The GIMA allows to route signals to event-driven peripheral targets like the SCT, timers,
event router, or the ADCs.
7.9.1 Features
•
•
•
•
•
Single selection of a source.
Signal inversion.
Can capture a pulse if the input event source is faster than the target clock.
Synchronization of input event and target clock.
Single-cycle pulse generation for target.
7.10 System Tick timer (SysTick)
The ARM Cortex-M4 includes a system tick timer (SYSTICK) that is intended to generate
a dedicated SYSTICK exception at a 10 ms interval.
7.11 On-chip static RAM
The LPC4370 support 200 kB local SRAM and an additional 64 kB AHB SRAM with
separate bus master access for higher throughput and individual power control for low
power operation. See Section 7.23.9.1 “Memory retention in Power-down modes”.
7.12 In-System Programming (ISP)
In-System programming (ISP) is programming or reprogramming the on-chip SRAM
memory, using the boot loader software and the USART0 serial port. This can be done
when the part resides in the end-user board. ISP allows to load data into on-chip SRAM
and execute code from on-chip SRAM.
7.13 Boot ROM
The internal ROM memory is used to store the boot code of the LPC4370. After a reset,
the ARM processor will start its code execution from this memory.
The boot ROM memory includes the following features:
• ROM memory size is 64 kB.
• Supports booting from UART interfaces and external static memory such as NOR
flash, SPI flash, quad SPI flash.
• Includes APIs for OTP programming.
• Includes a flexible USB device stack that supports Human Interface Device (HID),
Mass Storage Class (MSC), and Device Firmware Upgrade (DFU) drivers.
Several boot modes are available depending on the values of the OTP bits BOOT_SRC. If
the OTP memory is not programmed or the BOOT_SRC bits are all zero, the boot mode is
determined by the states of the boot pins P2_9, P2_8, P1_2, and P1_1.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
62 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 4.
Boot mode when OTP BOOT_SRC bits are programmed
Boot mode BOOT_SRC BOOT_SRC BOOT_SRC
bit 3
bit 2
bit 1
BOOT_SRC Description
bit 0
Pin state
0
0
0
0
Boot source is defined by the reset state of P1_1,
P1_2, P2_8 pins, and P2_9. See Table 5.
USART0
0
0
0
1
Boot from device connected to USART0 using pins
P2_0 and P2_1.
SPIFI
0
0
1
0
Boot from Quad SPI flash connected to the SPIFI
interface using pins P3_3 to P3_8.
EMC 8-bit
0
0
1
1
Boot from external static memory (such as NOR
flash) using CS0 and an 8-bit data bus.
EMC 16-bit
0
1
0
0
Boot from external static memory (such as NOR
flash) using CS0 and a 16-bit data bus.
EMC 32-bit
0
1
0
1
Boot from external static memory (such as NOR
flash) using CS0 and a 32-bit data bus.
USB0
0
1
1
0
Boot from USB0.
USB1
0
1
1
1
Boot from USB1.
SPI (SSP)
1
0
0
0
Boot from SPI flash connected to the SSP0
interface on P3_3 (function SSP0_SCK), P3_6
(function SSP0_SSEL), P3_7 (function
SSP0_MISO), and P3_8 (function SSP0_MOSI)[1].
USART3
1
0
0
1
Boot from device connected to USART3 using pins
P2_3 and P2_4.
[1]
The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI.
Remark: Pin functions for SPIFI and SSP0 boot are different.
Table 5.
Boot mode when OPT BOOT_SRC bits are zero
Boot mode
Pins
Description
P2_9
P2_8
P1_2
P1_1
USART0
LOW
LOW
LOW
LOW
Boot from device connected to USART0 using pins
P2_0 and P2_1.
SPIFI
LOW
LOW
LOW
HIGH
Boot from Quad SPI flash connected to the SPIFI
interface on P3_3 to P3_8[1].
EMC 8-bit
LOW
LOW
HIGH
LOW
Boot from external static memory (such as NOR
flash) using CS0 and an 8-bit data bus.
EMC 16-bit
LOW
LOW
HIGH
HIGH
Boot from external static memory (such as NOR
flash) using CS0 and a 16-bit data bus.
EMC 32-bit
LOW
HIGH
LOW
LOW
Boot from external static memory (such as NOR
flash) using CS0 and a 32-bit data bus.
USB0
LOW
HIGH
LOW
HIGH
Boot from USB0
USB1
LOW
HIGH
HIGH
LOW
Boot from USB1.
SPI (SSP)
LOW
HIGH
HIGH
HIGH
Boot from SPI flash connected to the SSP0
interface on P3_3 (function SSP0_SCK), P3_6
(function SSP0_SSEL), P3_7 (function
SSP0_MISO), and P3_8 (function SSP0_MOSI)[1].
USART3
HIGH
LOW
LOW
LOW
Boot from device connected to USART3 using pins
P2_3 and P2_4.
[1]
The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
63 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Remark: Pin functions for SPIFI and SSP0 boot are different.
7.14 Memory mapping
The memory map shown in Figure 5 and Figure 6 is global to both the Cortex-M4 and the
Cortex-M0 processors and all SRAM is shared between both processors. Each processor
uses its own ARM private bus memory map for the NVIC and other system functions.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
64 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
LPC4370
4 GB
0xFFFF FFFF
reserved
0xE010 0000
ARM private bus
reserved
SPIFI data
256 MB dynamic external memory DYCS3
256 MB dynamic external memory DYCS2
reserved
peripheral bit band alias region
reserved
0xE000 0000
0x8800 0000
0x8000 0000
0x7000 0000
0x6000 0000
0x4400 0000
0x4200 0000
0x4010 2000
SGPIO
SPI
reserved
high-speed GPIO
reserved
reserved
0x2000 0000
0x1F00 0000
0x1E00 0000
0x1D00 0000
0x1C00 0000
12-bit ADC (ADCHS)
16 MB static external memory CS3
APB peripherals #3
16 MB static external memory CS2
reserved
16 MB static external memory CS1
APB peripherals #2
16 MB static external memory CS0
reserved
APB peripherals #1
reserved
reserved
APB peripherals #0
0x1800 0000
0x1400 0000
clocking/reset peripherals
16 kB M0 SUBSYSTEM SRAM
RTC domain peripherals
SPIFI data
reserved
256 MB dynamic external memory DYCS1
64 kB ROM
128 MB dynamic external memory DYCS0
reserved
32 kB local SRAM
0x400F 1000
0x400F 0000
0x400E 0000
0x400D 0000
0x400C 0000
0x400B 0000
0x400A 0000
0x4009 0000
0x4008 0000
0x4005 0000
0x4004 0000
0x4000 0000
0x3000 0000
0x2800 0000
0x2400 0000
32 MB AHB SRAM bit banding
0x2200 0000
32 kB + 8 kB local SRAM
reserved
reserved
16 kB AHB SRAM
32 kB local SRAM
16 kB AHB SRAM
0x2001 0000
0x1008 0000
0x1001 8000
0x400F 2000
reserved
0x1008 A000
0x1002 0000
0x400F 4000
0x4001 2000
AHB peripherals
1 GB
reserved
0x1009 2000
0x400F 8000
0x4006 0000
2 kB M0 SUBSYSTEM SRAM
0x1041 0000
0x1040 0000
0x4010 0000
reserved
0x1800 4800
0x1800 4000
0x4010 1000
16 kB AHB SRAM
96 kB local SRAM
16 kB AHB SRAM
0x1000 0000
local SRAM/
external static memory banks
0 GB
256 MB shadow area
0x2000 C000
0x2000 8000
0x2000 4000
0x2000 0000
0x1000 0000
0x0000 0000
002aag610
Fig 5.
LPC4370 Memory mapping (overview)
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
65 of 161
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
0x400E 5000
reserved
0x400E 4000
10-bit ADC1
0x400E 3000
10-bit ADC0
0x400E 2000
C_CAN0
0x400E 1000
DAC
0x400E 0000
0x400C 8000
I2C1
0x400C 7000
0x400C 6000
QEI
Rev. 2.3 — 15 March 2016
timer2
0x400C 2000
USART3
0x400C 1000
USART2
0x400C 0000
0x400B 0000
RI timer
APB2
peripherals
reserved
reserved
12-bit ADC (ADCHS)
APB3 peripherals
reserved
C_CAN1
APB2 peripherals
reserved
APB1 peripherals
reserved
motor control PWM
APB0 peripherals
GPIO GROUP1 interrupt
reserved
GPIO GROUP0 interrupt
GPIO interrupts
clocking/reset peripherals
SCU
0x4008 5000
timer1
0x4008 4000
timer0
0x4008 3000
SSP0
0x4008 2000
UART1 w/ modem
0x4008 1000
USART0
0x4008 0000
WWDT
RTC domain peripherals
APB0
peripherals
0x4010 1000
RGU
0x4005 3000
CCU2
0x4005 2000
CCU1
0x4005 1000
CGU
0x4005 0000
0x4010 0000
reserved
0x400F 4000
0x4004 7000
RTC
0x4004 6000
0x400F 2000
OTP controller
0x4004 5000
event router
0x4004 4000
CREG
0x4004 3000
0x400F 1000
0x400F 0000
RTC domain
peripherals
0x400E 0000
power mode control
0x4004 2000
backup registers
0x4004 1000
alarm timer
0x4004 0000
0x400A 0000
ethernet
0x4001 2000
0x4001 0000
0x4009 0000
reserved
0x4000 9000
0x4008 0000
LCD
0x4000 8000
USB1
0x4000 7000
USB0
0x4000 6000
EMC
0x4000 5000
SD/MMC
0x4000 4000
SPIFI
0x4000 3000
0x400D 0000
0x400C 0000
0x400B 0000
0x4006 0000
0x4005 0000
0x4004 0000
reserved
0x4001 2000
AHB peripherals
0x4000 0000
SRAM memories
external memory banks
AHB
peripherals
DMA
0x4000 2000
reserved
0x4000 1000
SCT
0x4000 0000
0x0000 0000
66 of 161
© NXP B.V. 2016. All rights reserved.
002aag611
Fig 6.
LPC4370 Memory mapping (peripherals)
LPC4370
0x4008 6000
0x4010 2000
clocking
reset control
peripherals
0x400F 8000
high-speed GPIO
APB1
peripherals
0x4200 0000
0x4006 0000
0x4005 4000
reserved
reserved
I2S1
I2S0
I2C0
0x4400 0000
reserved
32-bit ARM Cortex-M4/M0 microcontroller
All information provided in this document is subject to legal disclaimers.
0x400C 3000
0x4008 A000
0x4008 9000
0x4008 8000
0x4008 7000
peripheral bit band alias region
SPI
SSP1
0x400A 0000
0x6000 0000
reserved
SGPIO
timer3
0x400A 1000
external memories and
ARM private bus
GIMA
0x400C 4000
0x400A 4000
0x400A 3000
0x400A 2000
0xFFFF FFFF
APB3
peripherals
reserved
0x400C 5000
0x400A 5000
NXP Semiconductors
LPC4370
Product data sheet
LPC4370
0x400F 0000
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.15 One-Time Programmable (OTP) memory
The OTP provides 64-bit + 256 bit of memory for general purpose use.
7.16 General Purpose I/O (GPIO)
The LPC4370 provide 8 GPIO ports with up to 31 GPIO pins each.
Device pins that are not connected to a specific peripheral function are controlled by the
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate
registers allow setting or clearing any number of outputs simultaneously. The value of the
output register may be read back as well as the current state of the port pins.
All GPIO pins default to inputs with pull-up resistors enabled on reset.
7.16.1 Features
• Accelerated GPIO functions:
– GPIO registers are located on the AHB so that the fastest possible I/O timing can
be achieved.
– Mask registers allow treating sets of port bits as a group, leaving other bits
unchanged.
– All GPIO registers are byte and half-word addressable.
– Entire port value can be written in one instruction.
• Bit-level set and clear registers allow a single instruction set or clear of any number of
bits in one port.
• Direction control of individual bits.
• All I/O default to inputs after reset.
• Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or
level-sensitive GPIO interrupt request (GPIO interrupts).
• Two GPIO group interrupts can be triggered by any pin or pins in each port (GPIO
group0 and group1 interrupts).
7.17 Configurable digital peripherals
7.17.1 State Configurable Timer (SCT) subsystem
The SCT allows a wide variety of timing, counting, output modulation, and input capture
operations. The inputs and outputs of the SCT are shared with the capture and match
inputs/outputs of the 32-bit general purpose counter/timers.
The SCT can be configured as two 16-bit counters or a unified 32-bit counter. In the
two-counter case, in addition to the counter value the following operational elements are
independent for each half:
• State variable.
• Limit, halt, stop, and start conditions.
• Values of Match/Capture registers, plus reload or capture control values.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
67 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
In the two-counter case, the following operational elements are global to the SCT, but the
last three can use match conditions from either counter:
•
•
•
•
•
7.17.1.1
Clock selection
Inputs
Events
Outputs
Interrupts
Features
•
•
•
•
•
•
•
•
Two 16-bit counters or one 32-bit counter.
Counter(s) clocked by bus clock or selected input.
Up counter(s) or up-down counter(s).
State variable allows sequencing across multiple counter cycles.
Event combines input or output condition and/or counter match in a specified state.
Events control outputs and interrupts.
Selected event(s) can limit, halt, start, or stop a counter.
Supports:
– 8 inputs (one input connected internally)
– 16 outputs
– 16 match/capture registers
– 16 events
– 32 states
7.17.2 Serial GPIO (SGPIO)
The Serial GPIOs offer standard GPIO functionality enhanced with features to accelerate
serial stream processing.
7.17.2.1
Features
• Each SGPIO input/output slice can be used to perform a serial to parallel or parallel to
serial data conversion.
• 16 SGPIO input/output slices each with a 32-bit FIFO that can shift the input value
from a pin or an output value to a pin with every cycle of a shift clock.
•
•
•
•
LPC4370
Product data sheet
Each slice is double-buffered.
Interrupt is generated on a full FIFO, shift clock, or pattern match.
Slices can be concatenated to increase buffer size.
Each slice has a 32-bit pattern match filter.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
68 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.18 AHB peripherals
7.18.1 General Purpose DMA (GPDMA)
The DMA controller allows peripheral-to memory, memory-to-peripheral,
peripheral-to-peripheral, and memory-to-memory transactions. Each DMA stream
provides unidirectional serial DMA transfers for a single source and destination. For
example, a bidirectional port requires one stream for transmit and one for receives. The
source and destination areas can each be either a memory region or a peripheral for
master 1, but only memory for master 0.
7.18.1.1
Features
• Eight DMA channels. Each channel can support an unidirectional transfer.
• 16 DMA request lines.
• Single DMA and burst DMA request signals. Each peripheral connected to the DMA
Controller can assert either a burst DMA request or a single DMA request. The DMA
burst size is set by programming the DMA Controller.
• Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and
peripheral-to-peripheral transfers are supported.
• Scatter or gather DMA is supported through the use of linked lists. This means that
the source and destination areas do not have to occupy contiguous areas of memory.
• Hardware DMA channel priority.
• AHB slave DMA programming interface. The DMA Controller is programmed by
writing to the DMA control registers over the AHB slave interface.
• Two AHB bus masters for transferring data. These interfaces transfer data when a
DMA request goes active. Master 1 can access memories and peripherals (except
SGPIO and SPI). Master 0 can access memories on the main AHB matrix and
peripherals and memories on the M0SUB bus.
• 32-bit AHB master bus width.
• Incrementing or non-incrementing addressing for source and destination.
• Programmable DMA burst size. The DMA burst size can be programmed to more
efficiently transfer data.
• Internal four-word FIFO per channel.
• Supports 8, 16, and 32-bit wide transactions.
• Big-endian and little-endian support. The DMA Controller defaults to little-endian
mode on reset.
• An interrupt to the processor can be generated on a DMA completion or when a DMA
error has occurred.
• Raw interrupt status. The DMA error and DMA count raw interrupt status can be read
prior to masking.
7.18.2 SPI Flash Interface (SPIFI)
The SPI Flash Interface allows low-cost serial flash memories to be connected to the ARM
Cortex-M4 processor with little performance penalty compared to parallel flash devices
with higher pin count.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
69 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
After a few commands configure the interface at startup, the entire flash content is
accessible as normal memory using byte, halfword, and word accesses by the processor
and/or DMA channels. Erasure and programming are handled by simple sequences of
commands.
Many serial flash devices use a half-duplex command-driven SPI protocol for device setup
and initialization and then move to a half-duplex, command-driven 4-bit protocol for
normal operation. Different serial flash vendors and devices accept or require different
commands and command formats. SPIFI provides sufficient flexibility to be compatible
with common flash devices and includes extensions to help insure compatibility with future
devices.
7.18.2.1
Features
•
•
•
•
•
Interfaces to serial flash memory in the main memory map.
Supports classic and 4-bit bidirectional serial protocols.
Half-duplex protocol compatible with various vendors and devices.
Data rates of up to 52 MB per second.
Supports DMA access.
7.18.3 SD/MMC card interface
The SD/MMC card interface supports the following modes to control:
•
•
•
•
Secure Digital memory (SD version 3.0).
Secure Digital I/O (SDIO version 2.0).
Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1).
MultiMedia Cards (MMC version 4.4).
7.18.4 External Memory Controller (EMC)
The LPC4370 EMC is a Memory Controller peripheral offering support for asynchronous
static memory devices such as RAM, ROM, and flash. In addition, it can be used as an
interface with off-chip memory-mapped devices and peripherals.
7.18.4.1
Features
• Dynamic memory interface support including single data rate SDRAM.
• Asynchronous static memory device support including RAM, ROM, and flash, with or
without asynchronous page mode.
•
•
•
•
•
Low transaction latency.
Read and write buffers to reduce latency and to improve performance.
8/16/32 data and 24 address lines wide static memory support.
16 bit and 32 bit wide chip select SDRAM memory support.
Static memory features include:
– Asynchronous page mode read
– Programmable Wait States
– Bus turnaround delay
– Output enable and write enable delays
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
70 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
– Extended wait
• Four chip selects for synchronous memory and four chip selects for static memory
devices.
• Power-saving modes dynamically control EMC_CKEOUT and EMC_CLK signals to
SDRAMs.
• Dynamic memory self-refresh mode controlled by software.
• Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row
address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB
parts, with 4, 8, 16, or 32 data bits per device.
• Separate reset domains allow the for auto-refresh through a chip reset if desired.
• SDRAM clock can run at full or half the Cortex-M4 core frequency.
Note: Synchronous static memory devices (synchronous burst mode) are not supported.
7.18.5 High-speed USB Host/Device/OTG interface (USB0)
The USB OTG module allows the LPC4370 to connect directly to a USB Host such as a
PC (in device mode) or to a USB Device in host mode.
7.18.5.1
Features
•
•
•
•
•
•
•
•
Contains UTMI+ compliant transceiver (PHY).
Complies with Universal Serial Bus specification 2.0.
Complies with USB On-The-Go supplement.
Complies with Enhanced Host Controller Interface Specification.
Supports auto USB 2.0 mode discovery.
Supports all high-speed USB-compliant peripherals.
Supports all full-speed USB-compliant peripherals.
Supports software Host Negotiation Protocol (HNP) and Session Request Protocol
(SRP) for OTG peripherals.
• Supports interrupts.
• This module has its own, integrated DMA engine.
• USB interface electrical test software included in ROM USB stack.
7.18.6 High-speed USB Host/Device interface with ULPI (USB1)
The USB1 interface can operate as a full-speed USB Host/Device interface or can
connect to an external ULPI PHY for High-speed operation.
7.18.6.1
Features
•
•
•
•
Complies with Universal Serial Bus specification 2.0.
Complies with Enhanced Host Controller Interface Specification.
Supports auto USB 2.0 mode discovery.
Supports all high-speed USB-compliant peripherals if connected to external ULPI
PHY.
• Supports all full-speed USB-compliant peripherals.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
71 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
• Supports interrupts.
• This module has its own, integrated DMA engine.
• USB interface electrical test software included in ROM USB stack.
7.18.7 LCD controller
Remark: The LCD controller is available on the LPC4370FET256 parts. See Table 2.
The LCD controller provides all of the necessary control signals to interface directly to a
variety of color and monochrome LCD panels. Both STN (single and dual panel) and TFT
panels can be operated. The display resolution is selectable and can be up to 1024  768
pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mode.
An on-chip 512-byte color palette allows reducing bus utilization (i.e. memory size of the
displayed data) while still supporting a large number of colors.
The LCD interface includes its own DMA controller to allow it to operate independently of
the CPU and other system functions. A built-in FIFO acts as a buffer for display data,
providing flexibility for system timing. Hardware cursor support can further reduce the
amount of CPU time needed to operate the display.
7.18.7.1
Features
•
•
•
•
AHB master interface to access frame buffer.
Setup and control via a separate AHB slave interface.
Dual 16-deep programmable 64-bit wide FIFOs for buffering incoming display data.
Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays
with 4-bit or 8-bit interfaces.
• Supports single and dual-panel color STN displays.
• Supports Thin Film Transistor (TFT) color displays.
• Programmable display resolution including, but not limited to: 320  200, 320  240,
640  200, 640  240, 640  480, 800  600, and 1024  768.
•
•
•
•
•
•
•
•
•
•
•
•
LPC4370
Product data sheet
Hardware cursor support for single-panel displays.
15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support.
1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN.
1, 2, 4, or 8 bpp palettized color displays for color STN and TFT.
16 bpp true-color non-palettized for color STN and TFT.
24 bpp true-color non-palettized for color TFT.
Programmable timing for different display panels.
256 entry, 16-bit palette RAM, arranged as a 128  32-bit RAM.
Frame, line, and pixel clock signals.
AC bias signal for STN, data enable signal for TFT panels.
Supports little and big-endian, and Windows CE data formats.
LCD panel clock may be generated from the peripheral clock, or from a clock input
pin.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
72 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.18.8 Ethernet
7.18.8.1
Features
•
•
•
•
10/100 Mbit/s
DMA support
Power management remote wake-up frame and magic packet detection
Supports both full-duplex and half-duplex operation
– Supports CSMA/CD Protocol for half-duplex operation.
– Supports IEEE 802.3x flow control for full-duplex operation.
– Optional forwarding of received pause control frames to the user application in
full-duplex operation.
– Back-pressure support for half-duplex operation.
– Automatic transmission of zero-quanta pause frame on deassertion of flow control
input in full-duplex operation.
• Supports IEEE1588 time stamping and IEEE 1588 advanced time stamping (IEEE
1588-2008 v2).
7.19 Digital serial peripherals
7.19.1 UART1
The LPC4370 contain one UART with standard transmit and receive data lines, UART1
also provides a full modem control handshake interface and support for RS-485/9-bit
mode allowing both software address detection and automatic address detection using
9-bit mode.
UART1 includes a fractional baud rate generator. Standard baud rates such as 115200 Bd
can be achieved with any crystal frequency above 2 MHz.
7.19.1.1
Features
•
•
•
•
•
Maximum UART data bit rate of 8 MBit/s.
16 B Receive and Transmit FIFOs.
Register locations conform to 16C550 industry standard.
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
Built-in fractional baud rate generator covering wide range of baud rates without a
need for external crystals of particular values.
• Auto baud capabilities and FIFO control mechanism that enables software flow
control implementation.
• Equipped with standard modem interface signals. This module also provides full
support for hardware flow control.
• Support for RS-485/9-bit/EIA-485 mode (UART1).
• DMA support.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
73 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.19.2 USART0/2/3
The LPC4370 contain three USARTs. In addition to standard transmit and receive data
lines, the USARTs support a synchronous mode.
The USARTs include a fractional baud rate generator. Standard baud rates such as
115200 Bd can be achieved with any crystal frequency above 2 MHz.
7.19.2.1
Features
•
•
•
•
•
Maximum UART data bit rate of 8 MBit/s.
16 B Receive and Transmit FIFOs.
Register locations conform to 16C550 industry standard.
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
Built-in fractional baud rate generator covering wide range of baud rates without a
need for external crystals of particular values.
• Auto baud capabilities and FIFO control mechanism that enables software flow
control implementation.
•
•
•
•
•
Support for RS-485/9-bit/EIA-485 mode.
USART3 includes an IrDA mode to support infrared communication.
All USARTs have DMA support.
Support for synchronous mode at a data bit rate of up to 8 Mbit/s.
Smart card mode conforming to ISO7816 specification
7.19.3 SPI serial I/O controller
The LPC4370 contain one SPI controller. SPI is a full duplex serial interface designed to
handle multiple masters and slaves connected to a given bus. Only a single master and a
single slave can communicate on the interface during a given data transfer. During a data
transfer the master always sends 8 bits to 16 bits of data to the slave, and the slave
always sends 8 bits to 16 bits of data to the master.
7.19.3.1
Features
•
•
•
•
•
•
Maximum SPI data bit rate 25 MHz in master and slave modes.
Compliant with SPI specification
Synchronous, serial, full duplex communication
Combined SPI master and slave
Maximum data bit rate of one eighth of the input clock rate
8 bits to 16 bits per transfer
7.19.4 SSP serial I/O controller
Remark: The LPC4370 contain two SSP controllers.
The SSP controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can
interact with multiple masters and slaves on the bus. Only a single master and a single
slave can communicate on the bus during a given data transfer. The SSP supports full
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
74 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the
slave and from the slave to the master. In practice, often only one of these data flows
carries meaningful data.
7.19.4.1
Features
• Maximum SSP speed in full-duplex mode of 25 Mbit/s; for transmit only 50 Mbit/s
(master) and 15 Mbit/s (slave).
• Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National
Semiconductor Microwire buses
•
•
•
•
•
Synchronous serial communication
Master or slave operation
8-frame FIFOs for both transmit and receive
4-bit to 16-bit frame
DMA transfers supported by GPDMA
7.19.5 I2C-bus interface
Remark: The LPC4370 each contain two I2C-bus interfaces.
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line
(SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the
capability to both receive and send information (such as memory). Transmitters and/or
receivers can operate in either master or slave mode, depending on whether the chip has
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be
controlled by more than one bus master connected to it.
7.19.5.1
Features
• I2C0 is a standard I2C compliant bus interface with open-drain pins. I2C0 also
supports Fast mode plus with bit rates up to 1 Mbit/s.
•
•
•
•
•
•
I2C1 uses standard I/O pins with bit rates of up to 400 kbit/s (Fast I2C-bus).
Easy to configure as master, slave, or master/slave.
Programmable clocks allow versatile rate control.
Bidirectional data transfer between masters and slaves.
Multi-master bus (no central master).
Arbitration between simultaneously transmitting masters without corruption of serial
data on the bus.
• Serial clock synchronization allows devices with different bit rates to communicate via
one serial bus.
• Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer.
• The I2C-bus can be used for test and diagnostic purposes.
• All I2C-bus controllers support multiple address recognition and a bus monitor mode.
7.19.6 I2S interface
Remark: The LPC4370 each contain two I2S-bus interfaces.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
75 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
The I2S-bus provides a standard communication interface for digital audio applications.
The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line,
and one word select signal. The basic I2S-bus connection has one master, which is
always the master, and one slave. The I2S-bus interface provides a separate transmit and
receive channel, each of which can operate as either a master or a slave.
7.19.6.1
Features
• Both I2S interfaces have separate input/output channels, each of which can operate in
master or slave mode.
• Capable of handling 8-bit, 16-bit, and 32-bit word sizes.
• Mono and stereo audio data supported.
• The sampling frequency can range from 16 kHz to 192 kHz (16, 22.05, 32, 44.1, 48,
96, 192) kHz.
• Support for an audio master clock.
• Configurable word select period in master mode (separately for I2S-bus input and
output).
• Two 8-word FIFO data buffers are provided, one for transmit and one for receive.
• Generates interrupt requests when buffer levels cross a programmable boundary.
• Two DMA requests for each I2S interface, controlled by programmable buffer levels.
These are connected to the GPDMA block.
• Controls include reset, stop and mute options separately for I2S-bus input and I2S-bus
output.
7.19.7 C_CAN
Remark: The LPC4370 each contain two C_CAN controllers. Use of C_CAN controller
excludes operation of all other peripherals connected to the same bus bridge. See
Figure 1.
Controller Area Network (CAN) is the definition of a high performance communication
protocol for serial data communication. The C_CAN controller is designed to provide a full
implementation of the CAN protocol according to the CAN Specification Version 2.0B. The
C_CAN controller allows to build powerful local networks with low-cost multiplex wiring by
supporting distributed real-time control with a very high level of reliability.
7.19.7.1
Features
•
•
•
•
•
•
•
Conforms to protocol version 2.0 parts A and B.
Supports bit rate of up to 1 Mbit/s.
Supports 32 Message Objects.
Each Message Object has its own identifier mask.
Provides programmable FIFO mode (concatenation of Message Objects).
Provides maskable interrupts.
Supports Disabled Automatic Retransmission (DAR) mode for time-triggered CAN
applications.
• Provides programmable loop-back mode for self-test operation.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
76 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.20 Counter/timers and motor control
7.20.1 General purpose 32-bit timers/external event counters
The LPC4370 include four 32-bit timer/counters. The timer/counter is designed to count
cycles of the system derived clock or an externally-supplied clock. It can optionally
generate interrupts, generate timed DMA requests, or perform other actions at specified
timer values, based on four match registers. Each timer/counter also includes two capture
inputs to trap the timer value when an input signal transitions, optionally generating an
interrupt.
7.20.1.1
Features
• A 32-bit timer/counter with a programmable 32-bit prescaler.
• Counter or timer operation.
• Two 32-bit capture channels per timer, that can take a snapshot of the timer value
when an input signal transitions. A capture event may also generate an interrupt.
• Four 32-bit match registers that allow:
– Continuous operation with optional interrupt generation on match.
– Stop timer on match with optional interrupt generation.
– Reset timer on match with optional interrupt generation.
• Up to four external outputs corresponding to match registers, with the following
capabilities:
– Set LOW on match.
– Set HIGH on match.
– Toggle on match.
– Do nothing on match.
• Up to two match registers can be used to generate timed DMA requests.
7.20.2 Motor control PWM
The motor control PWM is a specialized PWM supporting 3-phase motors and other
combinations. Feedback inputs are provided to automatically sense rotor position and use
that information to ramp speed up or down. An abort input is also provided that causes the
PWM to immediately release all motor drive outputs. At the same time, the motor control
PWM is highly configurable for other generalized timing, counting, capture, and compare
applications.
7.20.3 Quadrature Encoder Interface (QEI)
A quadrature encoder, also known as a 2-channel incremental encoder, converts angular
displacement into two pulse signals. By monitoring both the number of pulses and the
relative phase of the two signals, the user can track the position, direction of rotation, and
velocity. In addition, a third channel, or index signal, can be used to reset the position
counter. The quadrature encoder interface decodes the digital pulses from a quadrature
encoder wheel to integrate position over time and determine direction of rotation. In
addition, the QEI can capture the velocity of the encoder wheel.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
77 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.20.3.1
Features
•
•
•
•
•
•
•
•
•
•
Tracks encoder position.
Increments/decrements depending on direction.
Programmable for 2 or 4 position counting.
Velocity capture using built-in timer.
Velocity compare function with “less than” interrupt.
Uses 32-bit registers for position and velocity.
Three position compare registers with interrupts.
Index counter for revolution counting.
Index compare register with interrupts.
Can combine index and position interrupts to produce an interrupt for whole and
partial revolution displacement.
• Digital filter with programmable delays for encoder input signals.
• Can accept decoded signal inputs (clk and direction).
7.20.4 Repetitive Interrupt (RI) timer
The repetitive interrupt timer provides a free-running 32-bit counter which is compared to
a selectable value, generating an interrupt when a match occurs. Any bits of the
timer/compare can be masked such that they do not contribute to the match detection.
The repetitive interrupt timer can be used to create an interrupt that repeats at
predetermined intervals.
7.20.4.1
Features
• 32-bit counter. Counter can be free-running or be reset by a generated interrupt.
• 32-bit compare value.
• 32-bit compare mask. An interrupt is generated when the counter value equals the
compare value, after masking. This allows for combinations not possible with a simple
compare.
7.20.5 Windowed WatchDog Timer (WWDT)
The purpose of the watchdog is to reset the controller if software fails to periodically
service it within a programmable time window.
7.20.5.1
Features
• Internally resets chip if not periodically reloaded during the programmable time-out
period.
• Optional windowed operation requires reload to occur between a minimum and
maximum time period, both programmable.
• Optional warning interrupt can be generated at a programmable time prior to
watchdog time-out.
• Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be
disabled.
• Incorrect feed sequence causes reset or interrupt if enabled.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
78 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
• Flag to indicate watchdog reset.
• Programmable 24-bit timer with internal prescaler.
• Selectable time period from (Tcy(WDCLK)  256  4) to (Tcy(WDCLK)  224  4) in
multiples of Tcy(WDCLK)  4.
7.21 Analog peripherals
7.21.1 12-bit high-speed Analog-to-Digital Converter (ADCHS)
7.21.1.1
Features
•
•
•
•
•
•
•
•
•
•
12-bit high-speed ADC.
Six single-sided input channels or one differential input channel.
Descriptor based conversion sequence for single or multiple inputs.
Integrated 14-bit timer.
Automatic high/low threshold detection.
Power-down mode.
Measurement range of 0 V to 1.2 V.
12-bit conversion rate of 80 MSamples/s.
Conversion on transition on input pin or various internal signals.
Output FIFO with DMA support.
7.21.2 10-bit Analog-to-Digital Converter (ADC0/1)
7.21.2.1
Features
•
•
•
•
•
•
•
10-bit successive approximation analog to digital converter.
Input multiplexing among 8 pins per ADC for a total of 16 individual channels.
Power-down mode.
Measurement range 0 to VDDA.
Sampling frequency up to 400 kSamples/s.
Burst conversion mode for single or multiple inputs.
Optional conversion on transition on ADCTRIG0 or ADCTRIG1 pins, combined timer
outputs 8 or 15, or the PWM output MCOA2.
• Individual result registers for each A/D channel to reduce interrupt overhead.
• DMA support.
7.21.3 Digital-to-Analog Converter (DAC)
7.21.3.1
Features
•
•
•
•
LPC4370
Product data sheet
10-bit resolution
Monotonic by design (resistor string architecture)
Controllable conversion speed
Low power consumption
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
79 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.22 Peripherals in the RTC power domain
7.22.1 RTC
The Real Time Clock (RTC) is a set of counters for measuring time when system power is
on, and optionally when it is off. It uses very little power when its registers are not being
accessed by the CPU, especially reduced power modes. The RTC is clocked by a
separate 32 kHz oscillator that produces a 1 Hz internal time reference. The RTC is
powered by its own power supply pin, VBAT.
7.22.1.1
Features
• Measures the passage of time to maintain a calendar and clock. Provides seconds,
minutes, hours, day of month, month, year, day of week, and day of year.
• Ultra-low power design to support battery powered systems. Uses power from the
CPU power supply when it is present.
•
•
•
•
•
Dedicated battery power supply pin.
RTC power supply is isolated from the rest of the chip.
Calibration counter allows adjustment to better than 1 sec/day with 1 sec resolution.
Periodic interrupts can be generated from increments of any field of the time registers.
Alarm interrupt can be generated for a specific date/time.
7.22.2 Alarm timer
The alarm timer is a 16-bit timer and counts down at 1 kHz from a preset value generating
alarms in intervals of up to 1 min. The counter triggers a status bit when it reaches 0x00
and asserts an interrupt if enabled.
The alarm timer is part of the RTC power domain and can be battery powered.
7.23 System control
7.23.1 Configuration registers (CREG)
The following settings are controlled in the configuration register block:
•
•
•
•
•
•
•
BOD trip settings
Oscillator output
DMA-to-peripheral muxing
Ethernet mode
Memory mapping
Timer/USART inputs
Enabling the USB controllers
In addition, the CREG block contains the part identification and part configuration
information.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
80 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.23.2 System Control Unit (SCU)
The system control unit determines the function and electrical mode of the digital pins. By
default function 0 is selected for all pins with pull-up enabled. For pins that support a
digital and analog function, the ADC function select registers in the SCU enable the
analog function.
A separate set of analog I/Os for the ADCs and the DAC as well as most USB pins are
located on separate pads and are not controlled through the SCU.
In addition, the clock delay register for the SDRAM EMC_CLK pins and the registers that
select the pin interrupts are located in the SCU.
7.23.3 Clock Generation Unit (CGU)
The Clock Generator Unit (CGU) generates several base clocks. The CGU outputs are
unrelated in frequency and phase and can have different clock sources within the CGU.
One CGU output is routed to the CLKOUT pins.
Within each clock area there may be multiple branch clocks, which offers very flexible
control for power-management purposes. All branch clocks are outputs of one of two
Clock Control Units (CCUs) and can be controlled independently. Branch clocks derived
from the same base clock are synchronous in frequency and phase.
7.23.4 Internal RC oscillator (IRC)
The IRC is used as the clock source for the WWDT and/or as the clock that drives the
PLLs and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is
trimmed to 1 % accuracy over the entire voltage and temperature range.
Upon power-up or any chip reset, the LPC4370 use the IRC as the clock source. Software
may later switch to one of the other available clock sources.
7.23.5 PLL0USB (for USB0)
PLL0 is a dedicated PLL for the USB0 High-speed controller.
PLL0 accepts an input clock frequency from an external oscillator in the range of 14 kHz
to 25 MHz. The input frequency is multiplied up to a high frequency with a Current
Controlled Oscillator (CCO). The CCO operates in the range of 4.3 MHz to 550 MHz.
7.23.6 PLL0AUDIO (for audio)
The audio PLL PLL0AUDIO is a general purpose PLL with a very small step size. This
PLL accepts an input clock frequency derived from an external oscillator or internal IRC.
The input frequency is multiplied up to a high frequency with a Current Controlled
Oscillator (CCO). A sigma-delta converter modulates the PLL divider ratios to obtain the
desired output frequency. The output frequency can be set as a multiple of the sampling
frequency fs to 32fs, 64fs, 128  fs, 256  fs, 384  fs, 512  fs and the sampling
frequency fs can range from 16 kHz to 192 kHz (16, 22.05, 32, 44.1, 48, 96,192) kHz.
Many other frequencies are possible as well.
7.23.7 System PLL1
The PLL1 accepts an input clock frequency from an external oscillator in the range of
1 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current
Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
81 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop
to keep the CCO within its frequency range while the PLL is providing the desired output
frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output
clock. Since the minimum output divider value is 2, it is insured that the PLL output has a
50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be
enabled by software. The program must configure and activate the PLL, wait for the PLL
to lock, and then connect to the PLL as a clock source. The PLL settling time is 100 s.
7.23.8 Reset Generation Unit (RGU)
The RGU allows generation of independent reset signals for individual blocks and
peripherals on the LPC4370.
7.23.9 Power control
The LPC4370 feature several independent power domains to control power to the core
and the peripherals (see Figure 7). The RTC and its associated peripherals (the alarm
timer, the CREG block, the OTP controller, the back-up registers, and the event router)
are located in the RTC power-domain which can be powered by a battery supply or the
main regulator. A power selector switch ensures that the RTC block is always powered on.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
82 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
LPC43xx
VDDIO
to I/O pads
to cores
VSS
REGULATOR
to memories,
peripherals,
oscillators,
PLLs
VDDREG
MAIN POWER DOMAIN
ULTRA LOW-POWER
REGULATOR
VBAT
to RTC
domain
peripherals
RESET/WAKE-UP
CONTROL
to RTC I/O
pads (Vps)
RESET
WAKEUP0/1/2/3
BACKUP REGISTERS
RTCX1
RTCX2
32 kHz
OSCILLATOR
REAL-TIME CLOCK
ALARM
ALWAYS-ON/RTC POWER DOMAIN
DAC
VDDA
VSSA
ADC
ADC POWER DOMAIN
OTP
VPP
OTP POWER DOMAIN
USB0_VDDA3V_DRIVER
USB0_VDDA3V3
USB0
USB0 POWER DOMAIN
002aag378
Fig 7.
Power domains
7.23.9.1
Memory retention in Power-down modes
Table 6 shows which parts of the SRAM memory are preserved in Sleep mode and the
various power-down modes.
In addition, all FIFO memory contained in the peripheral blocks (USB0/1, LCD, CAN,
Ethernet, USART0/2/3, UART) is retained in Sleep mode and Deep-sleep mode but not in
Power-down mode and Deep-power-down mode.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
83 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 6.
Memory retention
Mode
128 kB local
SRAM
starting at
0x1000 0000
64 kB Local
8 kB local SRAM
SRAM starting starting at
at
0x1009 0000
0x1008 0000
16 + 2 kB M0
subsystem
SRAM starting at
location
0x1800 0000
64 kB AHB
SRAM
starting at
0x2000 0000
256 byte
backup
registers at
0x4004 1000
(RTC power
domain)
Sleep mode
yes
yes
yes
yes
yes
yes
Deep-sleep mode
yes
yes
yes
yes
yes
yes
Power-down mode no
no
yes
no
no
yes
Power-down mode no
with M0SUB
SRAM maintained
no
yes
yes
no
yes
Deep power-down no
mode
no
no
no
no
yes
7.23.9.2
Power Management Controller (PMC)
The PMC controls the power to the cores, peripherals, and memories.
The LPC4370 support the following power modes in order from highest to lowest power
consumption:
1. Active mode
2. Sleep mode
3. Power-down modes:
a. Deep-sleep mode
b. Power-down mode
c. Deep power-down mode
Active mode and sleep mode apply to the state of the core. In a multi-core system, any
core can be in active or sleep mode independently of the other core.
If the core is in Active mode, it is fully operational and can access peripherals and
memories as configured by software. If the core is in Sleep mode, it receives no clocks,
but peripherals and memories can remain running.
Any core can enter sleep mode from active mode independently of the other cores and
while the other cores remain in active mode or are in sleep mode.
Power-down modes apply to the entire system. In the Power-down modes, all cores and
all peripherals except for peripherals in the always-on power domain are shut down.
Memories can remain powered for retaining memory contents as defined by the individual
power-down mode.
Any core in active mode can put the part into one of the three power down modes if the
core is enabled to do so. If both the M4 core and the two M0 cores are enabled for
power-down, then the system enters power-down only once all three cores have received
a WFI or WFE instruction.
Wake-up from sleep mode is caused by an interrupt or event in the core’s NVIC. An
interrupt is captured in the NVIC and an event is captured in the Event router. Both cores
can wake up from sleep mode independently of each other.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
84 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Wake-up from the Power-down modes, Deep-sleep, Power-down, and Deep power-down,
is caused by an event on the WAKEUP pins or an event from the RTC or alarm timer.
When waking up from Deep power-down mode, the part resets and attempts to boot. After
booting, the M4 core is in active mode and both M0 cores remain in the reset state until
the reset is released by software.
7.24 Serial Wire Debug/JTAG
Debug and trace functions are integrated into the ARM Cortex-M4. Serial wire debug and
trace functions are supported in addition to a standard JTAG debug and parallel trace
functions. The ARM Cortex-M4 is configured to support up to eight breakpoints and four
watch points.
The ARM Cortex-M0 coprocessors support JTAG boundary scan only.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
85 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
8. Limiting values
Table 7.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]
Symbol
Parameter
Conditions
Min
Max
Unit
VDD(REG)(3V3)
regulator supply voltage
(3.3 V)
on pin VDDREG
0.5
3.6
V
VDD(IO)
input/output supply
voltage
on pin VDDIO
0.5
3.6
V
VDDA(3V3)
analog supply voltage
(3.3 V)
on pin VDDA
0.5
3.6
V
VBAT
battery supply voltage
on pin VBAT
0.5
3.6
V
Vprog(pf)
polyfuse programming
voltage
on pin VPP
0.5
3.6
V
VI
input voltage
only valid when the VDD(IO)  2.2 V
5 V tolerant I/O pins
0.5
5.5
V
ADC/DAC pins and digital I/O
pins configured for an analog
function
0.5
VDDA(3V3)
V
USB0 pins USB0_DP;
USB0_DM;USB0_VBUS
0.3
5.25
V
USB0 pins USB0_ID;
USB0_RREF
0.3
3.6
V
USB1 pins USB1_DP and
USB1_DM
0.3
5.25
V
[2]
IDD
supply current
per supply pin
[3]
-
100
mA
ISS
ground current
per ground pin
[3]
-
100
mA
Ilatch
I/O latch-up current
(0.5VDD(IO)) < VI < (1.5VDD(IO));
-
100
mA
Tstg
storage temperature
65
+150
C
Ptot(pack)
total power dissipation
(per package)
based on package heat transfer,
not device power consumption
-
1.5
W
VESD
electrostatic discharge
voltage
human body model; all pins
+2000
V
Tj < 125 C
[1]
[4]
[5]
The following applies to the limiting values:
a) This product includes circuitry designed for the protection of its internal devices from the damaging effects of excessive static
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless
otherwise noted.
c) The limiting values are stress ratings only and operating the part at these values is not recommended and proper operation is not
guaranteed. The conditions for functional operation are specified in Table 10.
[2]
Including voltage on outputs in 3-state mode.
[3]
The peak current is limited to 25 times the corresponding maximum current.
[4]
Dependent on package type.
[5]
Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
86 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
9. Thermal characteristics
The average chip junction temperature, Tj (C), can be calculated using the following
equation:
T j = T amb +  P D  R th  j – a  
(1)
• Tamb = ambient temperature (C),
• Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)
• PD = sum of internal and I/O power dissipation
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of
the I/O pins is often small and many times can be negligible. However it can be significant
in some applications.
Table 8.
Thermal characteristics
VDD = 2.2 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified;
Symbol
Parameter
Tj(max)
maximum junction
temperature
Table 9.
Symbol
Conditions
Min
Typ
Max
Unit
-
-
125
C
Thermal resistance value (BGA package)
Parameter
Conditions
Thermal resistance in C/W ±15 %
LBGA256
Rth(j-a)
Rth(j-c)
TFBGA100
thermal resistance from
junction to ambient
JEDEC (4.5 in  4 in); still air 29
46
8-layer (4.5 in  3 in); still air 24
37
thermal resistance from
junction to case
14
11
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
87 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
10. Static characteristics
Table 10. Static characteristics
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ[1]
Max
Unit
2.2
-
3.6
V
2.2
-
3.6
V
Supply pins
VDD(IO)
input/output supply
voltage
VDD(REG)(3V3)
regulator supply voltage
(3.3 V)
VDDA(3V3)
analog supply voltage
(3.3 V)
[2]
on pin VDDA
2.2
-
3.6
V
on pins
USB0_VDDA3V3_
DRIVER and
USB0_VDDA3V3
3.0
3.3
3.6
V
battery supply voltage
[2]
2.2
-
3.6
V
Vprog(pf)
polyfuse programming
voltage
on pin VPP (for OTP)
[3]
2.7
-
3.6
V
Iprog(pf)
polyfuse programming
current
on pin VPP; OTP
programming time 
1.6 ms
-
-
30
mA
IDD(REG)(3V3)
regulator supply current Active mode; M0 cores in
(3.3 V)
reset; code
-
6.6
-
mA
25.3
-
mA
VBAT
while(1){}
executed from RAM; all
peripherals disabled;
PLL1 enabled
IDD(REG)(3V3)
CCLK = 12 MHz
[4]
CCLK = 60 MHz
[4]
CCLK = 120 MHz
[4]
-
48.4
-
mA
CCLK = 180 MHz
[4]
-
72.0
-
mA
CCLK = 204 MHz
[4]
-
81.5
-
mA
[4][5]
-
5.0
-
mA
deep-sleep mode
[4]
-
30
-
A
power-down mode
[4]
-
15
-
A
power-down mode with
M0SUB SRAM retained
[4]
-
-
A
regulator supply current after WFE/WFI instruction
(3.3 V)
executed from RAM; all
peripherals disabled;M0
cores in reset
sleep mode
[4][6]
-
0.03
-
A
deep power-down
mode; VBAT floating
[4]
-
2
-
A
active mode; VBAT = 3.2 V;
VDD(REG)(3V3) = 3.6 V.
[7]
-
0
-
nA
deep power-down
mode
IBAT
LPC4370
Product data sheet
battery supply current
20
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
88 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 10. Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
IBAT
Parameter
battery supply current
Conditions
VDD(REG)(3V3) = 3.3 V;
VBAT = 3.6 V
deep-sleep mode
IDD(IO)
I/O supply current
power-down mode
[8]
deep power-down
mode
[8]
deep sleep mode
IDDA
Analog supply current
on pin VDDA;
Typ[1]
Max
Unit
-
2
-
A
-
2
-
A
-
2
-
A
-
1
-
A
-
1
-
A
[9]
-
0.05
-
A
[11]
-
0.4
-
power-down mode
deep power-down mode
Min
[8]
A
deep sleep mode
power-down mode
[11]
-
0.4
-
deep power-down
mode
[11]
-
0.007
-
A
A
RESET,RTC_ALARM, WAKEUPn pins
VIH
HIGH-level input
voltage
[10]
0.8  (Vps  0.35)
5.5
VIL
LOW-level input voltage
[10]
0
0.3  (Vps  V
0.1)
Vhys
hysteresis voltage
[10]
0.05  (Vps  0.35)
-
V
Vo
output voltage
[10]
-
Vps - 0.2
-
V
-
-
5.2
pF
-
V
Standard I/O pins - normal drive strength
CI
input capacitance
ILL
LOW-level leakage
current
VI = 0 V; on-chip pull-up
resistor disabled
-
3
-
nA
ILH
HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-
3
-
nA
VI = 5 V
-
-
20
nA
IOZ
OFF-state output
current
VO = 0 V to VDD(IO);
on-chip pull-up/down
resistors disabled;
absolute value
-
3
-
nA
VI
input voltage
pin configured to provide
a digital function;
0
-
5.5
V
0
-
3.6
V
0
-
VDD(IO)
V
VDD(IO)  2.2 V
VDD(IO) = 0 V
VO
output voltage
VIH
HIGH-level input
voltage
0.7 
VDD(IO)
-
5.5
V
VIL
LOW-level input voltage
0
-
0.3 
VDD(IO)
V
Vhys
hysteresis voltage
0.1 
VDD(IO)
-
-
V
LPC4370
Product data sheet
output active
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
89 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 10. Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ[1]
Max
Unit
VOH
HIGH-level output
voltage
IOH = 6 mA
VDD(IO) 
0.4
-
-
V
VOL
LOW-level output
voltage
IOL = 6 mA
-
-
0.4
V
IOH
HIGH-level output
current
VOH = VDD(IO)  0.4 V
6
-
-
mA
IOL
LOW-level output
current
VOL = 0.4 V
6
-
-
mA
IOHS
HIGH-level short-circuit drive HIGH; connected to
output current
ground
[12]
-
-
86.5
mA
IOLS
LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[12]
-
-
76.5
mA
Ipd
pull-down current
VI = 5 V
[14]
-
93
-
A
-
62
-
A
-
10
-
[15]
[16]
Ipu
pull-up current
VI = 0 V
[14]
[15]
[16]
VDD(IO) < VI  5 V
Rs
series resistance
on I/O pins with analog
function; analog function
enabled
A

200
I/O pins - high drive strength
CI
input capacitance
ILL
LOW-level leakage
current
ILH
HIGH-level leakage
current
-
-
2
pF
VI = 0 V; on-chip pull-up
resistor disabled
-
3
-
nA
VI = VDD(IO); on-chip
pull-down resistor
disabled
-
3
-
nA
VI = 5 V
-
-
20
nA
-
3
-
nA
0
-
5.5
V
IOZ
OFF-state output
current
VO = 0 V to VDD(IO);
on-chip pull-up/down
resistors disabled;
absolute value
VI
input voltage
pin configured to provide
a digital function;
VDD(IO)  2.2 V
VDD(IO) = 0 V
0
-
3.6
V
0
-
VDD(IO)
V
HIGH-level input
voltage
0.7 
VDD(IO)
-
5.5
V
VIL
LOW-level input voltage
0
-
0.3 
VDD(IO)
V
Vhys
hysteresis voltage
0.1 
VDD(IO)
-
-
V
VO
output voltage
VIH
LPC4370
Product data sheet
output active
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
90 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 10. Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Ipd
Parameter
pull-down current
Conditions
VI = VDD(IO)
[14]
Min
Typ[1]
Max
Unit
-
62
-
A
-
62
-
A
-
10
-
A
[15]
[16]
Ipu
pull-up current
VI = 0 V
[14]
[15]
[16]
VDD(IO) < VI  5 V
I/O pins - high drive strength: standard drive mode
IOH
HIGH-level output
current
VOH = VDD(IO)  0.4 V
4
-
-
mA
IOL
LOW-level output
current
VOL = 0.4 V
4
-
-
mA
IOHS
HIGH-level short-circuit drive HIGH; connected to
output current
ground
[12]
-
-
32
mA
IOLS
LOW-level short-circuit
output current
[12]
-
-
32
mA
drive LOW; connected to
VDD(IO)
I/O pins - high drive strength: medium drive mode
IOH
HIGH-level output
current
VOH = VDD(IO)  0.4 V
8
-
-
mA
IOL
LOW-level output
current
VOL = 0.4 V
8
-
-
mA
IOHS
HIGH-level short-circuit drive HIGH; connected to
output current
ground
[12]
-
-
65
mA
IOLS
LOW-level short-circuit
output current
[12]
-
-
63
mA
drive LOW; connected to
VDD(IO)
I/O pins - high drive strength: high drive mode
IOH
HIGH-level output
current
VOH = VDD(IO)  0.4 V
14
-
-
mA
IOL
LOW-level output
current
VOL = 0.4 V
14
-
-
mA
IOHS
HIGH-level short-circuit drive HIGH; connected to
output current
ground
[12]
-
-
113
mA
IOLS
LOW-level short-circuit
output current
[12]
-
-
110
mA
drive LOW; connected to
VDD(IO)
I/O pins - high drive strength: ultra-high drive mode
IOH
HIGH-level output
current
VOH = VDD(IO)  0.4 V
20
-
-
mA
IOL
LOW-level output
current
VOL = 0.4 V
20
-
-
mA
IOHS
HIGH-level short-circuit drive HIGH; connected to
output current
ground
[12]
-
-
165
mA
IOLS
LOW-level short-circuit
output current
[12]
-
-
156
mA
-
-
2
pF
drive LOW; connected to
VDD(IO)
I/O pins - high-speed
CI
LPC4370
Product data sheet
input capacitance
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
91 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 10. Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ[1]
Max
Unit
ILL
LOW-level leakage
current
VI = 0 V; on-chip pull-up
resistor disabled
-
3
-
nA
ILH
HIGH-level leakage
current
VI = VDD(IO); on-chip
pull-down resistor
disabled
-
3
-
nA
VI = 5 V
-
-
20
nA
-
3
-
nA
0
-
5.5
V
IOZ
OFF-state output
current
VO = 0 V to VDD(IO);
on-chip pull-up/down
resistors disabled;
absolute value
VI
input voltage
pin configured to provide
a digital function;
VDD(IO)  2.2 V
VDD(IO) = 0 V
0
-
3.6
V
0
-
VDD(IO)
V
HIGH-level input
voltage
0.7 
VDD(IO)
-
5.5
V
VIL
LOW-level input voltage
0
-
0.3 
VDD(IO)
V
Vhys
hysteresis voltage
0.1 
VDD(IO)
-
-
V
VOH
HIGH-level output
voltage
IOH = 8 mA
VDD(IO) 
0.4
-
-
V
VOL
LOW-level output
voltage
IOL = 8 mA
-
-
0.4
V
IOH
HIGH-level output
current
VOH = VDD(IO)  0.4 V
8
-
-
mA
IOL
LOW-level output
current
VOL = 0.4 V
8
-
-
mA
IOHS
HIGH-level short-circuit drive HIGH; connected to
output current
ground
[12]
-
-
86
mA
IOLS
LOW-level short-circuit
output current
drive LOW; connected to
VDD(IO)
[12]
-
-
76
mA
Ipd
pull-down current
VI = VDD(IO)
[14]
-
62
-
A
-
62
-
A
-
0
-
A
VO
output voltage
VIH
output active
[15]
[16]
pull-up current
Ipu
VI = 0 V
[14]
[15]
[16]
VDD(IO) < VI  5 V
Open-drain
I2C0-bus
pins
VIH
HIGH-level input
voltage
0.7 
VDD(IO)
-
-
V
VIL
LOW-level input voltage
0
0.14
0.3 
VDD(IO)
V
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
92 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 10. Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Vhys
hysteresis voltage
VOL
LOW-level output
voltage
IOLS = 3 mA
ILI
input leakage current
VI = VDD(IO)
[13]
VI = 5 V
Min
Typ[1]
Max
Unit
0.1 
VDD(IO)
-
-
V
-
-
0.4
V
-
4.5
-
A
-
-
10
A
Oscillator pins
Vi(XTAL1)
input voltage on pin
XTAL1
0.5
-
1.2
V
Vo(XTAL2)
output voltage on pin
XTAL2
0.5
-
1.2
V
Cio
input/output
capacitance
-
-
0.8
pF
0
-
5.25
V
[17]
USB0 pins[18]
VI
input voltage
on pins USB0_DP;
USB0_DM; USB0_VBUS
VDD(IO)  2.2 V
0
-
3.6
V
Rpd
pull-down resistance
on pin USB0_VBUS
VDD(IO) = 0 V
48
64
80
k
VIC
common-mode input
voltage
high-speed mode
50
200
500
mV
full-speed/low-speed
mode
800
-
2500
mV
chirp mode
50
-
600
mV
100
400
1100
mV
[18]
-
-
10
A
[19]
-
-
5.25
V
differential input voltage
Vi(dif)
USB1 pins
(USB1_DP/USB1_DM)[18]
IOZ
OFF-state output
current
VBUS
bus supply voltage
VDI
differential input
sensitivity voltage
(D+)  (D)
0.2
-
-
V
VCM
differential common
mode voltage range
includes VDI range
0.8
-
2.5
V
Vth(rs)se
single-ended receiver
switching threshold
voltage
0.8
-
2.0
V
VOL
LOW-level output
voltage for
low-/full-speed
-
-
0.18
V
LPC4370
Product data sheet
0 V < VI < 3.3 V
RL of 1.5 k to 3.6 V
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
93 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 10. Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ[1]
Max
Unit
VOH
HIGH-level output
voltage (driven) for
low-/full-speed
RL of 15 k to GND
2.8
-
3.5
V
Ctrans
transceiver capacitance pin to GND
-
-
20
pF
ZDRV
driver output
with 33  series resistor;
impedance for driver
steady state drive
which is not high-speed
capable
36
-
44.1

[20]
[1]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.
[2]
The recommended operating condition for the battery supply is VDD(REG)(3V3) > VBAT + 0.2 V. See Figure 15.
[3]
Pin VPP should either be not connected (when OTP does not need to be programmed) or tied to pins VDDIO and VDDREG to ensure
the same ramp-up time for both supply voltages.
[4]
VDD(REG)(3V3) = 3.3 V; VDD(IO) = 3.3 V; Tamb = 25 C.
[5]
PLL1 disabled; IRC running; CCLK = 12 MHz.
[6]
VBAT = 3.6 V.
[7]
VDD(IO) = VDDA = 3.6 V; over entire frequency range CCLK = 12 MHz to 180 MHz.
[8]
On pin VBAT; Tamb = 25 C.
[9]
VDD(REG)(3V3) = 3.3 V; VDD(IO) = 3.3 V. Input leakage increases when VDD(IO) is floating or grounded. It is recommended to keep
VDD(REG)(3V3) and VDD(IO) powered in deep power-down mode.
[10] Vps corresponds to the output of the power switch (see Figure 7) which is determined by the greater of VBAT and VDD(Reg)(3V3).
[11] VDDA(3V3) = 3.3 V; Tamb = 25 C.
[12] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
[13] To VSS.
[14] The values specified are simulated and absolute values.
[15] The weak pull-up resistor is connected to the VDD(IO) rail and pulls up the I/O pin to the VDD(IO) level.
[16] The input cell disables the weak pull-up resistor when the applied input voltage exceeds VDD(IO).
[17] The parameter value specified is a simulated value excluding bond capacitance.
[18] For USB operation 3.0 V  VDD((IO)  3.6 V. Guaranteed by design.
[19] VDD(IO) present.
[20] Includes external resistors of 33   1 % on D+ and D.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
94 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
10.1 Power consumption
002aah611
100
IDD(REG)(3V3)
IDD(REG)(3V3)
(mA)
(mA)
204 MHz
80
180 MHz
60
120 MHz
40
60 MHz
20
12 MHz
0
2.2
2.4
2.6
2.8
3
3.2
3.4
VDD(REG)(3V3) (V)
3.6
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from SRAM; M0 cores in
reset; internal pull-up resistors disabled; PLL1 enabled; IRC enabled; all peripherals disabled; all
peripheral clocks disabled.
Fig 8.
Typical supply current versus regulator supply voltage VDD(REG)(3V3) in active
mode
002aah612
100
IDD(REG)(3V3)
IDD(REG)(3V3)
(mA)
(mA)
204 MHz
80
180 MHz
60
120 MHz
40
60 MHz
20
12 MHz
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD(REG)(3V3) = 3.3 V, Active mode entered executing code while(1){} from SRAM;M0
cores in reset; internal pull-up resistors disabled; PLL1 enabled; IRC enabled; all peripherals
disabled; all peripheral clocks disabled.
Fig 9.
LPC4370
Product data sheet
Typical supply current versus temperature in Active mode
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
95 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
002aah613
100
IDD(REG)(3V3)
IDD(REG)(3V3)
(mA)
(mA)
85 °C
C
25 °C
C
-40 °C
C
80
60
40
20
0
12
36
60
84
108
132
156
180
CCLK frequency (MHz)
204
Conditions: VDD(REG)(3V3) = 3.3 V; Active mode entered executing code while(1){} from SRAM;M0
cores in reset; internal pull-up resistors disabled; PLL1 enabled; IRC enabled; all peripherals
disabled; all peripheral clocks disabled.
Fig 10. Typical supply current versus frequency in Active mode
002aah153
10
IDD(REG)(3V3)
(
(mA)
8
6
4
2
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD(REG)(3V3) = 3.3 V; M0 cores in reset; internal pull-up resistors disabled; PLL1
enabled; IRC enabled; all peripherals disabled; all peripheral clocks disabled; core clock CCLK =
12 MHz.
Fig 11. Typical supply current versus temperature in Sleep mode
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
96 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
002aah154
300
IDD(REG)(3V3)
)(
(μA)
240
180
120
60
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD(REG)(3V3) = 3.3 V; VBAT floating; VDD(IO) = 3.3 V.
Fig 12. Typical supply current versus temperature in Deep-sleep mode
002aah155
50
IDD(REG)(3V3)
)(
(μA)
40
30
20
10
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD(REG)(3V3) = 3.3 V; VBAT floating; VDD(IO) = 3.3 V.
Fig 13. Typical supply current versus temperature in Power-down mode
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
97 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
002aah156
10
IDD(REG)(3V3)
DD(REG
(μA)
8
6
4
2
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD(REG)(3V3) = 3.3 V; VBAT floating; VDD(IO) = 3.3 V.
Fig 14. Typical supply current versus temperature in Deep power-down mode
002aah150
80
IBAT
(μA)
60
40
20
0
-0.4
-0.2
0
0.2
0.4
VBAT - VDD(REG)(3V3) (V)
0.6
Conditions: VDD(REG)(3V3) = 3.0 V; CCLK = 12 MHz.
Fig 15. Typical battery supply current in Active mode
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
98 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
002aah157
10
IBAT
(μA)
8
6
VBAT = 3.6 V
3.0 V
2.2 V
4
2
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD(REG)(3V3), VDD(IO) floating.
Fig 16. Typical battery supply versus temperature in Deep power-down mode
10.2 Peripheral power consumption
The typical power consumption at T = 25 C for each individual peripheral is measured as
follows:
1. Enable all branch clocks and measure the current IDD(REG)(3V3).
2. Disable the branch clock to the peripheral to be measured and keep all other branch
clocks enabled.
3. Calculate the difference between measurement 1 and 2. The result is the peripheral
power consumption.
Table 11.
Peripheral power consumption
Peripheral
Branch clock
IDD(REG)(3V3) in mA
Branch clock
Branch clock
frequency = 48 MHz frequency = 96 MHz
M0 subsystem core
LPC4370
Product data sheet
CLK_PERIPH_CORE
2.4
4.8
M0 coprocessor
CLK_M4_M0APP
3.3
6.6
I2C1
CLK_APB3_I2C1
0.01
0.02
I2C0
CLK_APB1_I2C0
0.02
0.01
DAC
CLK_APB3_DAC
0.01
0.02
ADC0 (10-bit)
CLK_APB3_ADC0
0.05
0.05
ADC1 (10-bit)
CLK_APB3_ADC1
0.04
0.04
CAN0
CLK_APB3_CAN0
0.17
0.17
CAN1
CLK_APB1_CAN1
0.17
0.17
MOTOCON
CLK_APB1_MOTOCON
0.05
0.05
I2S
CLK_APB1_I2S
0.11
0.11
SPIFI
CLK_SPIFI,
CLK_M4_SPIFI
0.95
1.85
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
99 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 11.
Peripheral power consumption
Peripheral
Branch clock
IDD(REG)(3V3) in mA
Branch clock
Branch clock
frequency = 48 MHz frequency = 96 MHz
GPIO
LPC4370
Product data sheet
CLK_M4_GPIO
0.66
1.31
LCD
CLK_M4_LCD
0.85
1.72
ETHERNET
CLK_M4_ETHERNET
1.05
2.09
UART0
CLK_M4_UART0,
CLK_APB0_UART0
0.3
0.38
UART1
CLK_M4_UART1,
CLK_APB0_UART1
0.27
0.48
UART2
CLK_M4_UART2,
CLK_APB2_UART2
0.27
0.47
UART3
CLK_M4_USART3,
CLK_APB2_UART3
0.29
0.49
TIMER0
CLK_M4_TIMER0
0.07
0.14
TIMER1
CLK_M4_TIMER1
0.07
0.14
TIMER2
CLK_M4_TIMER2
0.07
0.15
TIMER3
CLK_M4_TIMER3
0.06
0.11
SDIO
CLK_M4_SDIO,
CLK_SDIO
0.79
1.37
SCT
CLK_M4_SCT
0.52
1.05
SSP0
CLK_M4_SSP0,
CLK_APB0_SSP0
0.12
0.21
SSP1
CLK_M4_SSP1,
CLK_APB2_SSP1
0.15
0.28
DMA
CLK_M4_DMA
1.88
3.71
WWDT
CLK_M4_WWDT
0.05
0.08
QEI
CLK_M4_QEI
0.33
0.68
USB0
CLK_M4_USB0,
CLK_USB0
1.46
3.32
USB1
CLK_M4_USB1,
CLK_USB1
2.83
5.03
RITIMER
CLK_M4_RITIMER
0.04
0.08
EMC
CLK_M4_EMC,
CLK_M4_EMC_DIV
3.6
6.97
SCU
CLK_M4_SCU
0.09
0.23
CREG
CLK_M4_CREG
0.37
0.72
SGPIO
CLK_PERIPH_SGPIO
0.1
0.17
SPI
CLK_SPI
0.07
0.11
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
100 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 12.
Peripheral power consumption 12-bit ADCHS
Peripheral
Branch clock
IDD(REG)(3V3) in mA
Branch clock
Branch clock
frequency = 39 MHz frequency = 78 MHz
Conditions
ADCHS (12-bit ADC) CLK_ADCHS,
CLK_M4_ADCH
1.1
2.3
Peripheral power consumption;
no ADC conversions
ADCHS (12-bit ADC) CLK_ADCHS,
CLK_M4_ADCH
28.5
41.6
Peripheral power consumption;
ADC converting samples at
CLK_ADCHS frequency
10.3 BOD and band gap static characteristics
Table 13. BOD static characteristics[1]
Tamb = 25 C; simulated values for nominal processing.
Symbol
Parameter
Conditions
Vth
threshold voltage
interrupt level 0
Min
Typ
Max
Unit
assertion
-
2.75
-
V
de-assertion
-
2.92
-
V
assertion
-
2.85
-
V
de-assertion
-
3.00
-
V
assertion
-
2.95
-
V
de-assertion
-
3.12
-
V
assertion
-
3.05
-
V
de-assertion
-
3.19
-
V
interrupt level 1
interrupt level 2
interrupt level 3
reset level 0
assertion
-
1.70
-
V
de-assertion
-
1.85
-
V
assertion
-
1.80
-
V
de-assertion
-
1.95
-
V
assertion
-
1.90
-
V
de-assertion
-
2.05
-
V
assertion
-
2.00
-
V
de-assertion
-
2.15
-
V
reset level 1
reset level 2
reset level 3
[1]
LPC4370
Product data sheet
Interrupt and reset levels are selected by writing to the BODLV1/2 bits in the control register CREGE0, see
the LPC43xx user manual.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
101 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 14. Band gap characteristics
VDDA(3V3) over specified ranges; Tamb = 40 C to +85 C; unless otherwise specified
Symbol Parameter
Vref(bg)
[1]
LPC4370
Product data sheet
Conditions
band gap reference Tamb = 40 C to +85 C
voltage
[1]
Min
Typ
Max
Unit
0.621
0.6425
0.664
mV
Based on characterization, not tested in production.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
102 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
10.4 Electrical pin characteristics
002aah030
15
-40 °C
25 °C
85 °C
IOL
(mA)
12
9
6
3
0
0
0.1
0.2
0.3
0.4
0.5
VOL (V)
0.6
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V.
Fig 17. Normal-drive pins; typical LOW level output current IOL versus LOW level output
voltage VOL
002aah039
3.6
VOH
(V)
3.2
2.8
T = 85 °C
25 °C
-40 °C
2.4
2.0
0
12
24
36
IOH (mA)
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V.
Fig 18. Normal-drive pins; typical HIGH level output voltage VOH versus HGH level output
current IOH
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
103 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
002aah040
15
-40 °C
25 °C
85 °C
IOL
(mA)
12
002aah041
25
IOL
(mA)
20
9
15
6
10
3
5
0
-40 °C
25 °C
85 °C
0
0
0.1
0.2
0.3
0.4
0.5
VOL (V)
0.6
0
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; normal-drive;
EHD = 0x0.
0.2
0.3
0.4
0.5
VOL (V)
0.6
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V;
medium-drive; EHD = 0x1.
002aah043
40
IOL
(mA)
0.1
002aah044
60
IOL
(mA)
32
-40 °C
25 °C
85 °C
24
-40 °C
25 °C
85 °C
45
30
16
15
8
0
0
0
0.1
0.2
0.3
0.4
0.5
VOL (V)
0.6
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; high-drive;
EHD = 0x2.
0
0.1
0.2
0.3
0.4
0.5
VOL (V)
0.6
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; ultra
high-drive; EHD = 0x3.
Fig 19. High-drive pins; typical LOW level output current IOL versus LOW level output voltage VOL
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
104 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
002aah047
3.6
VOH
(V)
002aah048
3.6
VOH
(V)
3.2
3.2
-40 °C
25 °C
85 °C
2.8
-40 °C
25 °C
85 °C
2.8
2.4
2.4
2.0
2.0
0
8
16
24
0
16
32
IOH (mA)
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; normal-drive;
EHD = 0x0.
002aah049
3.6
48
IOH (mA)
VOH
(V)
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V;
medium-drive; EHD = 0x1.
002aah050
3.6
VOH
(V)
3.2
3.2
-40 °C
25 °C
85 °C
2.8
-40 °C
25 °C
85 °C
2.8
2.4
2.4
2.0
2.0
0
32
64
96
0
IOH (mA)
40
80
120
IOH (mA)
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; high-drive;
EHD = 0x2.
Conditions: VDD(REG)(3V3) = VDD(IO) = 3.3 V; ultra
high-drive; EHD = 0x3.
Fig 20. High-drive pins; typical HIGH level output voltage VOH versus HGH level output current IOH
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
105 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
002aag625
+20
Ipu
(μA)
0
-20
T = 25 °C
-40 °C
-40
-60
-80
0
1
2
3
4
5
VI (V)
Conditions: VDD(IO)) = 3.3 V. Simulated values. Values at T = 25 C are typical values. Values at
T = 40 C correspond to minimum values.
Fig 21. Typical pull-up current Ipu versus input voltage VI
002aag626
120
Ipd
(μA)
90
60
T =25 °C
-40 °C
30
0
0
1
2
3
4
5
VI (V)
Conditions: VDD(IO)) = 3.3 V. Simulated values. Values at T = 25 C are typical values. Values at
T = 40 C correspond to maximum values.
Fig 22. Typical pull-down current Ipd versus input voltage VI
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
106 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11. Dynamic characteristics
11.1 Wake-up times
Table 15.
Dynamic characteristic: Wake-up from Deep-sleep, Power-down, and Deep
power-down modes
Tamb = 40 C to +85 C
Symbol Parameter
twake
Min
Typ[1]
3
Tcy(clk)
5  Tcy(clk) -
ns
from Deep-sleep and
Power-down mode
12
51
-
s
from Deep power-down mode
-
250
-
s
after reset
-
250
-
s
Conditions
[2]
wake-up time from Sleep mode
Max
Unit
[1]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[2]
Tcy(clk) = 1/CCLK with CCLK = CPU clock frequency.
11.2 External clock for oscillator in slave mode
Remark: The input voltage on the XTAL1/2 pins must be  1.2 V (see Table 10). For
connecting the oscillator to the XTAL pins, also see Section 13.2 and Section 13.4.
Table 16. Dynamic characteristic: external clock
Tamb = 40 C to +85 C; VDD(IO) over specified ranges.[1]
Symbol
Parameter
fosc
oscillator frequency
1
25
MHz
Tcy(clk)
clock cycle time
40
1000
ns
tCHCX
clock HIGH time
Tcy(clk)  0.4
Tcy(clk)  0.6
ns
tCLCX
clock LOW time
Tcy(clk)  0.4
Tcy(clk)  0.6
ns
[1]
Conditions
Min
Max
Unit
Parameters are valid over operating temperature range unless otherwise specified.
tCHCX
tCLCX
Tcy(clk)
002aag698
Fig 23. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
107 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.3 Crystal oscillator
Table 17. Dynamic characteristic: oscillator
Tamb = 40 C to +85 C; VDD(IO) over specified ranges; 2.2 V  VDD(REG)(3V3)  3.6 V.[1]
Symbol
Parameter
Conditions
Low-frequency mode (1 MHz - 20
tjit(per)
period jitter time
period jitter time
Typ[2]
Max
Unit
MHz)[5]
5 MHz crystal
[3][4]
-
13.2
-
ps
10 MHz crystal
-
6.6
-
ps
15 MHz crystal
-
4.8
-
ps
-
4.3
-
ps
-
3.7
-
ps
High-frequency mode (20 MHz - 25
tjit(per)
Min
MHz)[6]
20 MHz crystal
[3][4]
25 MHz crystal
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
[3]
Indicates RMS period jitter.
[4]
PLL-induced jitter is not included.
[5]
Select HF = 0 in the XTAL_OSC_CTRL register.
[6]
Select HF = 1 in the XTAL_OSC_CTRL register.
11.4 IRC oscillator
Table 18. Dynamic characteristic: IRC oscillator
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V.[1]
LPC4370
Product data sheet
Symbol
Parameter
Conditions
Min
Typ[2]
Max
Unit
fosc(RC)
internal RC oscillator
frequency
-
11.82
12.0
12.18
MHz
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
108 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.5 GPCLKIN
Table 19. Dynamic characteristic: GPCLKIN
Tamb = 25 C; 2.4 V  VDD(REG)(3V3)  3.6 V
Symbol
Parameter
Min
Typ
Max
Unit
GP_CLKIN
input frequency
-
-
25
MHz
11.6 I/O pins
Table 20. Dynamic characteristic: I/O pins[1]
Tamb = 40 C to +85 C; 2.7 V  VDD(IO)  3.6 V.
Symbol Parameter
Conditions
Min
Typ
Max Unit
Standard I/O pins - normal drive strength
tr
rise time
pin configured as output; EHS = 1
[2][3]
1.0
-
2.5
ns
tf
fall time
pin configured as output; EHS = 1
[2][3]
0.9
-
2.5
ns
pin configured as output; EHS = 0
[2][3]
1.9
-
4.3
ns
pin configured as output; EHS = 0
[2][3]
1.9
-
4.0
ns
tr
tf
rise time
fall time
tr
rise time
pin configured as input
[4]
0.3
-
1.3
ns
tf
fall time
pin configured as input
[4]
0.2
-
1.2
ns
I/O pins - high drive strength
tr
rise time
pin configured as output; standard
drive mode (EHD = 0x0)
[2][5]
4.3
-
7.9
ns
tf
fall time
pin configured as output; standard
drive mode (EHD = 0x0)
[2][5]
4.7
-
8.7
ns
tr
rise time
pin configured as output; medium
drive mode (EHD = 0x1)
[2][5]
3.2
-
5.7
ns
tf
fall time
pin configured as output; medium
drive mode (EHD = 0x1)
[2][5]
3.2
-
5.5
ns
tr
rise time
pin configured as output; high drive
mode (EHD = 0x2)
[2][5]
2.9
-
4.9
ns
tf
fall time
pin configured as output; high drive
mode (EHD = 0x2)
[2][5]
2.5
-
3.9
ns
tr
rise time
pin configured as output; ultra-high
drive mode (EHD = 0x3)
[2][5]
2.8
-
4.7
ns
tf
fall time
pin configured as output; ultra-high
drive mode (EHD = 0x3)
[2][5]
2.4
-
3.4
ns
tr
rise time
pin configured as input
[4]
0.3
-
1.3
ns
pin configured as input
[4]
0.2
-
1.2
ns
pin configured as output; EHS = 1
[2][3]
350
-
670
ps
pin configured as output; EHS = 1
[2][3]
450
-
730
ps
tf
fall time
I/O pins - high-speed
tr
tf
tr
rise time
pin configured as output; EHS = 0
1.0
-
1.9
ns
tf
fall time
pin configured as output; EHS = 0
[2][3]
1.0
-
2.0
ns
pin configured as input
[4]
0.3
-
1.3
ns
pin configured as input
[4]
0.2
-
1.2
ns
tf
[1]
Product data sheet
fall time
[2][3]
tr
LPC4370
rise time
rise time
fall time
Simulated data.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
109 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
[2]
Simulated using 10 cm of 50 Ω PCB trace with 5 pF receiver input. Rise and fall times measured between
80 % and 20 % of the full output signal level.
[3]
The slew rate is configured in the system control block in the SFSP registers using the EHS bit. See the
LPC43xx user manual.
[4]
CL = 20 pF. Rise and fall times measured between 90 % and 10 % of the full input signal level.
[5]
The drive modes are configured in the system control block in the SFSP registers using the EHD bit. See
the LPC43xx user manual.
11.7 RTC oscillator
Table 21. Dynamic characteristic: RTC oscillator
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V or 2.2 V  VBAT  3.6 V[1]; typical CRTCX1/2 =
20 pF; also see Section 13.3.
Symbol
Parameter
Conditions
Min
Typ[2]
Max
Unit
fi(RTC)
RTC input frequency
-
-
32.768
-
kHz
IDD(RTC)
RTC supply current
280
800
nA
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
11.8 I2C-bus
Table 22. Dynamic characteristic: I2C-bus pins
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V.[1]
Symbol
Parameter
Conditions
Min
Max
Unit
fSCL
SCL clock frequency
Standard-mode
0
100
kHz
Fast-mode
0
400
kHz
Fast-mode Plus
0
1
MHz
of both SDA and
SCL signals
-
300
ns
20 + 0.1  Cb
300
ns
[3][4][5][6]
fall time
tf
Standard-mode
Fast-mode
Fast-mode Plus
tLOW
tHIGH
tHD;DAT
tSU;DAT
LOW period of the SCL clock
HIGH period of the SCL clock
data hold time
data set-up time
[2][3][7]
[8][9]
-
120
ns
Standard-mode
4.7
-
s
Fast-mode
1.3
-
s
Fast-mode Plus
0.5
-
s
Standard-mode
4.0
-
s
Fast-mode
0.6
-
s
Fast-mode Plus
0.26
-
s
Standard-mode
0
-
s
Fast-mode
0
-
s
Fast-mode Plus
0
-
s
Standard-mode
250
-
ns
Fast-mode
100
-
ns
Fast-mode Plus
50
-
ns
[1]
Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification UM10204 for details.
[2]
tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
110 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
[3]
A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to
bridge the undefined region of the falling edge of SCL.
[4]
Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.
[5]
The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines
without exceeding the maximum specified tf.
[6]
In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should
allow for this when considering bus timing.
[7]
The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or
tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
[8]
tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the
acknowledge.
[9]
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.
tf
SDA
tSU;DAT
70 %
30 %
70 %
30 %
tHD;DAT
tf
70 %
30 %
SCL
tVD;DAT
tHIGH
70 %
30 %
70 %
30 %
70 %
30 %
tLOW
1 / fSCL
S
002aaf425
Fig 24. I2C-bus pins clock timing
11.9 I2S-bus interface
Table 23. Dynamic characteristics: I2S-bus interface pins
Tamb = 25 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V; CL = 20 pF. Conditions and data
refer to I2S0 and I2S1 pins. Simulated values.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
common to input and output
tr
rise time
-
4
-
ns
tf
fall time
-
4
-
ns
tWH
pulse width HIGH
on pins I2Sx_TX_SCK
and I2Sx_RX_SCK
36
-
-
ns
tWL
pulse width LOW
on pins I2Sx_TX_SCK
and I2Sx_RX_SCK
36
-
-
ns
output
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
111 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 23. Dynamic characteristics: I2S-bus interface pins
Tamb = 25 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V; CL = 20 pF. Conditions and data
refer to I2S0 and I2S1 pins. Simulated values.
Symbol
tv(Q)
Parameter
Conditions
data output valid time on pin I2Sx_TX_SDA
[1]
on pin I2Sx_TX_WS
Min
Typ
Max
Unit
-
4.4
-
ns
-
4.3
-
ns
-
0
-
ns
input
tsu(D)
data input set-up time on pin I2Sx_RX_SDA
[1]
on pin I2Sx_RX_WS
th(D)
data input hold time
on pin I2Sx_RX_SDA
0.20
[1]
on pin I2Sx_RX_WS
[1]
ns
-
3.7
-
ns
-
3.9
-
ns
Clock to the I2S-bus interface BASE_APB1_CLK = 150 MHz; peripheral clock to the I2S-bus interface
PCLK = BASE_APB1_CLK / 12. I2S clock cycle time Tcy(clk) = 79.2 ns; corresponds to the SCK signal in the
I2S-bus specification.
Tcy(clk)
tf
tr
I2Sx_TX_SCK
tWH
tWL
I2Sx_TX_SDA
tv(Q)
I2Sx_TX_WS
002aag497
tv(Q)
Fig 25. I2S-bus timing (transmit)
Tcy(clk)
tf
tr
I2Sx_RX_SCK
tWH
tWL
I2Sx_RX_SDA
tsu(D)
th(D)
I2Sx_RX_WS
tsu(D)
th(D)
002aag498
Fig 26. I2S-bus timing (receive)
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
112 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.10 USART interface
Table 24. USART dynamic characteristics
Tamb = 40 C to 85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V; CL = 20 pF. EHS = 1
for all pins. Simulated values.
Symbol
Parameter
Min
Max
Unit
USART master (in synchronous mode)
tsu(D)
data input set-up time
26.6
-
ns
th(D)
data input hold time
0
-
ns
tv(Q)
data output valid time
0
8.8
ns
USART slave (in synchronous mode)
tsu(D)
data input set-up time
1.2
-
ns
th(D)
data input hold time
0.4
-
ns
tv(Q)
data output valid time
5.5
24
ns
Tcy(clk)
SCLK (FES = 1)
SCLK (FES = 0)
tv(Q)
tv(Q)
START
TXD
BIT0
th(D)
tsu(D)
START
RXD
BIT1
BIT0
BIT1
aaa-016717
Fig 27. USART timing
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
113 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.11 SSP interface
Table 25. Dynamic characteristics: SSP pins in SPI mode
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V; CL = 20 pF. Sampled at 10 % and 90 % of the
signal level; EHS = 1 for all pins. Simulated values.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1/(25.5  106)
-
-
s
when only transmitting
1/(51 
-
-
s
13.6
-
-
ns
SSP master
Tcy(clk)
clock cycle time
[1]
full-duplex mode
106)
tDS
data set-up time
in SPI mode
tDH
data hold time
in SPI mode
3.8
-
-
ns
tv(Q)
data output valid
time
in SPI mode
-
-
6.0
ns
th(Q)
data output hold
time
in SPI mode
1.1
-
-
ns
tlead
lead time
continuous transfer mode
Tcy(clk) + 3.2
-
Tcy(clk) + 6.1
ns
SPI mode; CPOL = 0;
CPHA = 1
0.5  Tcy(clk) + 3.2
-
0.5  Tcy(clk) + 6.1 ns
SPI mode; CPOL = 1;
CPHA = 0
Tcy(clk) + 3.2
-
Tcy(clk) + 6.1
SPI mode; CPOL = 1;
CPHA = 1
0.5  Tcy(clk) + 3.2
-
0.5  Tcy(clk) + 6.1 ns
synchronous serial
frame mode
0.5  Tcy(clk) + 3.2
-
0.5  Tcy(clk) + 6.1 ns
microwire frame format
Tcy(clk) + 3.2
-
Tcy(clk) + 6.1
ns
continuous transfer mode
0.5  Tcy(clk)
-
-
ns
SPI mode; CPOL = 0;
CPHA = 1
Tcy(clk)
-
-
ns
SPI mode; CPOL = 1;
CPHA = 0
0.5  Tcy(clk)
-
-
ns
SPI mode; CPOL = 1;
CPHA = 1
Tcy(clk)
-
-
ns
synchronous serial
frame mode
Tcy(clk)
-
-
ns
microwire frame format
0.5  Tcy(clk)
-
-
ns
SPI mode; CPOL = 0;
CPHA = 0
tlag
lag time
ns
SPI mode; CPOL = 0;
CPHA = 0
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
114 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 25. Dynamic characteristics: SSP pins in SPI mode
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V; CL = 20 pF. Sampled at 10 % and 90 % of the
signal level; EHS = 1 for all pins. Simulated values.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
td
delay time
continuous transfer mode
-
0.5  Tcy(clk)
-
ns
SPI mode; CPOL = 0;
CPHA = 1
-
n/a
-
ns
SPI mode; CPOL = 1;
CPHA = 0
-
0.5  Tcy(clk)
-
ns
SPI mode; CPOL = 1;
CPHA = 1
-
n/a
-
ns
synchronous serial
frame mode
-
Tcy(clk)
-
ns
microwire frame format
-
n/a
-
ns
-
-
204
MHz
1/(11 106)
-
-
s
SPI mode; CPOL = 0;
CPHA = 0
SSP slave
PCLK
Peripheral clock
frequency
Tcy(clk)
clock cycle time
[2]
tDS
data set-up time
in SPI mode
1.15
-
-
ns
tDH
data hold time
in SPI mode
0.5
-
-
ns
tv(Q)
data output valid
time
in SPI mode
-
-
[4  (1/PCLK)] + 3 ns
th(Q)
data output hold
time
in SPI mode
5.1
-
-
ns
tlead
lead time
continuous transfer mode
Tcy(clk) + 2.2
-
-
ns
SPI mode; CPOL = 0;
CPHA = 1
0.5  Tcy(clk) + 2.2
-
-
ns
SPI mode; CPOL = 1;
CPHA = 0
Tcy(clk) + 2.2
-
-
ns
SPI mode; CPOL = 1;
CPHA = 1
0.5  Tcy(clk) + 2.2
-
-
ns
synchronous serial
frame mode
0.5  Tcy(clk) + 2.2
-
-
ns
microwire frame format
Tcy(clk) + 2.2
-
-
ns
SPI mode; CPOL = 0;
CPHA = 0
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
115 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 25. Dynamic characteristics: SSP pins in SPI mode
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V; CL = 20 pF. Sampled at 10 % and 90 % of the
signal level; EHS = 1 for all pins. Simulated values.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tlag
lag time
continuous transfer mode
0.5Tcy(clk) + 0.2
-
-
ns
SPI mode; CPOL = 0;
CPHA = 1
Tcy(clk) + 0.2
-
-
ns
SPI mode; CPOL = 1;
CPHA = 0
0.5  Tcy(clk) + 0.2
-
-
ns
SPI mode; CPOL = 1;
CPHA = 1
Tcy(clk) + 0.2
-
-
ns
synchronous serial
frame mode
Tcy(clk) + 0.2
-
-
ns
microwire frame format
0.5  Tcy(clk)
-
-
ns
-
0.5  Tcy(clk)
-
ns
SPI mode; CPOL = 0;
CPHA = 1
-
n/a
-
ns
SPI mode; CPOL = 1;
CPHA = 0
-
0.5  Tcy(clk)
-
ns
SPI mode; CPOL = 1;
CPHA = 1
-
n/a
-
ns
synchronous serial
frame mode
-
Tcy(clk)
-
ns
microwire frame format
-
n/a
-
ns
SPI mode; CPOL = 0;
CPHA = 0
delay time
td
continuous transfer mode
SPI mode; CPOL = 0;
CPHA = 0
[1]
Tcy(clk) = (SSPCLKDIV  (1 + SCR)  CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the
main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0
register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register).
[2]
Tcy(clk) 12  Tcy(PCLK).
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
116 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.12 SPI interface
Table 26. Dynamic characteristics: SPI
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V. Simulated values.
Symbol
Parameter
Tcy(PCLK)
PCLK cycle time
Tcy(clk)
clock cycle time
Conditions
Min
Typ
Max
5
[1]
Unit
ns
40
-
-
ns
Master
tDS
data set-up time
7.2
-
-
ns
tDH
data hold time
0
-
-
ns
tv(Q)
data output valid time
-
-
3.7
ns
th(Q)
data output hold time
-
-
1.2
ns
tDS
data set-up time
1.2
-
-
ns
tDH
data hold time
3  Tcy(PCLK) + 0.54
-
-
ns
tv(Q)
data output valid time
-
-
3  Tcy(PCLK) + 9.7 ns
th(Q)
data output hold time
-
-
2  Tcy(PCLK) + 7.1 ns
Slave
[1]
Tcy(clk) = 8/BASE_SPI_CLK. Tcy(PCLK) = 1/BASE_SPI_CLK.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
117 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.13 SSP/SPI timing diagrams
Tcy(clk)
SCK (CPOL = 0)
SCK (CPOL = 1)
SSEL
MOSI (CPHA = 0)
tv(Q)
th(Q)
DATA VALID (MSB)
DATA VALID
DATA VALID (MSB)
DATA VALID (LSB)
DATA VALID (MSB)
IDLE
tDH
tDS
MISO (CPHA = 0)
MOSI (CPHA = 1)
td
tlag
tlead
DATA VALID
DATA VALID (MSB)
DATA VALID (LSB)
tv(Q)
th(Q)
DATA VALID (LSB)
DATA VALID
tDS
MISO (CPHA = 1)
DATA VALID (LSB)
DATA VALID (MSB)
IDLE
DATA VALID (MSB)
tDH
DATA VALID
DATA VALID (MSB)
DATA VALID (MSB)
aaa-013462
Fig 28. SSP master mode timing (SPI mode)
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
118 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Tcy(clk)
SCK (CPOL = 0)
SCK (CPOL = 1)
tDS
MOSI
DATA VALID
tDH
DATA VALID
tv(Q)
MISO
th(Q)
DATA VALID
tDS
MOSI
DATA VALID
tDH
DATA VALID
tv(Q)
MISO
DATA VALID
CPHA = 1
DATA VALID
th(Q)
CPHA = 0
DATA VALID
002aae830
Fig 29. SSP slave timing in SPI mode
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
119 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.14 SPIFI
Table 27. Dynamic characteristics: SPIFI
Tamb = 40 C to 85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V. CL = 20 pF. Sampled
at 90 % and 10 % of the signal level. EHS = 1 for all pins. Simulated values.
Symbol
Parameter
Min
Max
Unit
Tcy(clk)
clock cycle time
9.6
-
ns
tDS
data set-up time
2.8
-
ns
tDH
data hold time
0
-
ns
tv(Q)
data output valid time
-
2.6
ns
th(Q)
data output hold time
0.8
-
ns
Tcy(clk)
SPIFI_SCK
tv(Q)
SPIFI data out
DATA VALID
th(Q)
DATA VALID
tDS
SPIFI data in
DATA VALID
tDH
DATA VALID
002aah409
Fig 30. SPIFI timing
11.15 SGPIO timing
The following considerations apply to SGPIO timing:
• SGPIO input signals are synchronized by the internal clock SGPIO_CLOCK. To
guarantee that no samples are missed, all input signals should have a duration of at
least one SGPIO_CLOCK cycle plus the set-up and hold times.
• When an external clock input is used to generate output data, synchronization causes
a latency of at least one SGPIO_CLOCK cycle. The maximum output data rate is one
output every two SGPIO_CLOCK cycles.
• Synchronization also causes a latency of one SGPIO_CLOCK cycle when sampling
several inputs. This may cause inputs with very similar timings to be sampled with a
difference of one SGPIO_CLOCK cycle.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
120 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 28. Dynamic characteristics: SGPIO
Tamb = 40 C to +85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V. Simulated values.
Symbol
Parameter
Min
Typ
Max
Unit
tsu(D)
data input set-up time
th(D)
data input hold time
[1]
2
-
-
ns
TSGPIO + 2
-
-
ns
data input set-up time sampled by
SGPIO_CLOCK
[1]
tsu(D)
TSGPIO + 2
-
-
ns
th(D)
data input hold time
[1]
TSGPIO + 2
-
-
ns
tv(Q)
data output valid time
[1]
-
-
2 x TSGPIO
ns
data output hold time
[1]
TSGPIO
-
tv(Q)
data output valid time
sampled by
SGPIO_CLOCK
[1]
3
-
3
ns
th(Q)
data output hold time
sampled by
SGPIO_CLOCK
[1]
3
-
3
ns
th(Q)
[1]
Conditions
sampled by
SGPIO_CLOCK
ns
SGPIO_CLOCK is the internally generated SGPIO clock. TSGPIO = 1/fSGPIO_CLOCK.
SGPIO_CLOCK
CLKINext
sync(CLKINext) = CLKINi
th(D)
tsu(D)
DIN
DINi
sync(DIN)
DINi
tv(Q)
CLKout
th(Q)
Dout
DQi
002aah668
Fig 31. SGPIO timing
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
121 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.16 External memory interface
Table 29. Dynamic characteristics: Static asynchronous external memory interface
CL = 22 pF for EMC_Dn CL = 20 pF for all others; Tamb = 40 C to 85 C; 2.2 V  VDD(REG)(3V3)  3.6 V;
2.7 V  VDD(IO)  3.6 V; values guaranteed by design. Timing parameters are given for single memory access cycles. In a
normal read operation, the EMC changes the address while CS is asserted which results in multiple memory accesses.
Symbol
Parameter[1]
Conditions
Min
Typ
Max
Uni
t
3.1
-
1.6
ns
0.6 + Tcy(clk) 
WAITOEN
-
1.3 + Tcy(clk) 
WAITOEN
ns
0.7
-
1.8
ns
0.6 + (WAITRD 
WAITOEN + 1) 
Tcy(clk)
-
0.4 +
ns
(WAITRD 
WAITOEN + 1) 
Tcy(clk)
Read cycle parameters
tCSLAV
CS LOW to address valid
time
tCSLOEL
CS LOW to OE LOW time
tCSLBLSL
CS LOW to BLS LOW time
[2]
PB = 1
[2]
tOELOEH
OE LOW to OE HIGH time
tam
memory access time
-
-
16 +
(WAITRD 
WAITOEN +1) 
Tcy(clk)
ns
th(D)
data input hold time
16
-
-
ns
tCSHBLSH
CS HIGH to BLS HIGH time PB = 1
0.4
-
1.9
ns
tCSHOEH
CS HIGH to OE HIGH time
0.4
-
1.4
ns
tOEHANV
OE HIGH to address invalid PB = 1
tCSHEOR
CS HIGH to end of read
time
[3]
tCSLSOR
CS LOW to start of read
time
[4]
2.0
-
2.6
ns
2.0
-
0
ns
0
-
1.8
ns
Write cycle parameters
tCSLAV
CS LOW to address valid
time
3.1
-
1.6
ns
tCSLDV
CS LOW to data valid time
3.1
-
1.5
ns
tCSLWEL
CS LOW to WE LOW time
1.5+
-
0.2+
ns
PB = 1
(WAITWEN + 1) 
Tcy(clk)
(WAITWEN + 1)
 Tcy(clk)
tCSLBLSL
CS LOW to BLS LOW time
PB = 1
0.7
-
1.8
tWELWEH
WE LOW to WE HIGH time
PB = 1
[2]
0.6 + (WAITWR 
WAITWEN + 1) 
Tcy(clk)
-
0.4 +
ns
(WAITWR 
WAITWEN + 1) 
Tcy(clk)
tWEHDNV
WE HIGH to data invalid
time
PB = 1
[2]
0.9 + Tcy(clk)
-
2.3 + Tcy(clk)
ns
tWEHEOW
WE HIGH to end of write
time
PB = 1
[2]
0.4 + Tcy(clk)
-
0.3 + Tcy(clk)
ns
CS LOW to BLS LOW
PB = 0
0.7+
-
1.8+
ns
tCSLBLSL
[5]
(WAITWEN + 1) 
Tcy(clk)
LPC4370
Product data sheet
ns
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
(WAITWEN + 1)
 Tcy(clk)
© NXP B.V. 2016. All rights reserved.
122 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 29. Dynamic characteristics: Static asynchronous external memory interface …continued
CL = 22 pF for EMC_Dn CL = 20 pF for all others; Tamb = 40 C to 85 C; 2.2 V  VDD(REG)(3V3)  3.6 V;
2.7 V  VDD(IO)  3.6 V; values guaranteed by design. Timing parameters are given for single memory access cycles. In a
normal read operation, the EMC changes the address while CS is asserted which results in multiple memory accesses.
Symbol
Parameter[1]
tBLSLBLSH
BLS LOW to BLS HIGH time PB = 0
tBLSHEOW
BLS HIGH to end of write
time
PB = 0
tBLSHDNV
BLS HIGH to data invalid
time
PB = 0
tCSHEOW
CS HIGH to end of write
time
tBLSHDNV
BLS HIGH to data invalid
time
tWEHANV
WE HIGH to address invalid PB = 1
time
Conditions
Min
Typ
Max
Uni
t
[2]
0.9 + (WAITWR 
WAITWEN + 1) 
Tcy(clk)
-
ns
0.1 +
(WAITWR 
WAITWEN + 1) 
Tcy(clk)
[2]
1.9 + Tcy(clk)
-
0.5 + Tcy(clk)
ns
[2]
2.5 + Tcy(clk)
-
1.4 + Tcy(clk)
ns
[5]
2.0
-
0
ns
2.5
-
1.4
ns
0.9 + Tcy(clk)
-
2.4 + Tcy(clk)
ns
[5]
PB = 1
[1]
Parameters specified for 40 % of VDD(IO) for rising edges and 60 % of VDD(IO) for falling edges.
[2]
Tcy(clk) = 1/CCLK (see LPC43xx User manual).
[3]
End Of Read (EOR): longest of tCSHOEH, tOEHANV, tCSHBLSH.
[4]
Start Of Read (SOR): longest of tCSLAV, tCSLOEL, tCSLBLSL.
[5]
End Of Write (EOW): earliest of address not valid or EMC_BLSn HIGH.
EMC_An
tCSLAV
tCSLAV
tOEHANV
tCSHEOW
EMC_CSn
tCSLOEL
tOELOEH
EMC_OE
tCSHOEH
tBLSHEOW
tCSLBLSL tBLSLBLSH
EMC_BLSn
EMC_WE
tCSLDV
tam
tCSHEOR
tCSLSOR
tBLSHDNV
th(D)
EMC_Dn
SOR
EOR
EOW
002aag699
Fig 32. External static memory read/write access (PB = 0)
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
123 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
EMC_An
tCSLAV
tCSLAV
tOEHANV
tCSHEOW
EMC_CSn
tCSLOEL
tOELOEH
EMC_OE
tCSLBLSL
tCSHOEH
tCSLBLSL
EMC_BLSn
tCSHBLSH
tCSLWEL tWELWEH
tWEHEOW
EMC_WE
tBLSHDNV
tam
tCSHEOR
th(D)
tCSLSOR
tCSLDV
tWEHDNV
EMC_Dn
SOR
EOR
EOW
002aag700
Fig 33. External static memory read/write access (PB = 1)
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
124 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 30. Dynamic characteristics: Dynamic external memory interface
Simulated data over temperature and process range; CL = 10 pF for EMC_DYCSn, EMC_RAS, EMC_CAS, EMC_WE,
EMC_An; CL = 9 pF for EMC_Dn; CL = 5 pF for EMC_DQMOUTn, EMC_CLKn, EMC_CKEOUTn; Tamb = 40 C to 85 C;
2.2 V  VDD(REG)(3V3)  3.6 V; VDD(IO) =3.3 V  10 %; RD = 1 (see LPC43xx User manual); EMC_CLKn delays CLK0_DELAY
= CLK1_DELAY = CLK2_DELAY = CLK3_DELAY = 0.
Symbol
Parameter
Min
Typ
Max
Unit
Tcy(clk)
clock cycle time
8.4
-
-
ns
3.1 + 0.5  Tcy(clk)
5.1 + 0.5  Tcy(clk)
ns
-
ns
4.9 + 0.5  Tcy(clk)
ns
Common to read and write cycles
td(DYCSV)
DYCS delay time
-
th(DYCS)
DYCS hold time
0.3 + 0.5  Tcy(clk) 0.9 + 0.5  Tcy(clk)
td(RASV)
row address strobe valid delay time
-
th(RAS)
row address strobe hold time
0.5 + 0.5  Tcy(clk) 1.1 + 0.5  Tcy(clk)
td(CASV)
column address strobe valid delay time
-
th(CAS)
column address strobe hold time
0.3 + 0.5  Tcy(clk) 0.9 + 0.5  Tcy(clk)
td(WEV)
WE valid delay time
-
th(WE)
WE hold time
1.3 + 0.5  Tcy(clk) 1.4 + 0.5  Tcy(clk)
td(DQMOUTV)
DQMOUT valid delay time
-
th(DQMOUT)
DQMOUT hold time
0.2 + 0.5  Tcy(clk) 0.8 + 0.5  Tcy(clk)
td(AV)
address valid delay time
-
th(A)
address hold time
0.3 + 0.5  Tcy(clk) 0.9 + 0.5  Tcy(clk)
-
ns
td(CKEOUTV)
CKEOUT valid delay time
-
3.1 + 0.5  Tcy(clk)
5.1 + 0.5  Tcy(clk)
ns
th(CKEOUT)
CKEOUT hold time
0.5  Tcy(clk)
0.7 + 0.5  Tcy(clk)
-
ns
3.1 + 0.5  Tcy(clk)
2.9 + 0.5  Tcy(clk)
3.2 + 0.5  Tcy(clk)
3.1 + 0.5  Tcy(clk)
3.8 + 0.5  Tcy(clk)
-
ns
4.6 + 0.5  Tcy(clk)
ns
-
ns
5.9 + 0.5  Tcy(clk)
ns
-
ns
5.0 + 0.5  Tcy(clk)
ns
-
ns
6.3 + 0.5  Tcy(clk)
ns
Read cycle parameters
tsu(D)
data input set-up time
1.5
0.5
-
ns
th(D)
data input hold time
2.2
0.8
-
ns
Write cycle parameters
td(QV)
data output valid delay time
-
3.8 + 0.5  Tcy(clk)
6.2 + 0.5  Tcy(clk)
ns
th(Q)
data output hold time
0.5  Tcy(clk)
0.7 + 0.5  Tcy(clk)
-
ns
Table 31.
Dynamic characteristics: Dynamic external memory interface; EMC_CLK[3:0]
delay values
Tamb = 40 C to 85 C; VDD(IO) =3.3 V  10 %; 2.2 V  VDD(REG)(3V3)  3.6 V.
Symbol
Parameter
Conditions
td
delay time
delay value
CLKn_DELAY = 0
[1]
LPC4370
Product data sheet
Min
Typ
Max
Unit
[1]
0.0
0.0
0.0
ns
CLKn_DELAY = 1
[1]
0.4
0.5
0.8
ns
CLKn_DELAY = 2
[1]
0.7
1.0
1.7
ns
CLKn_DELAY = 3
[1]
1.1
1.6
2.5
ns
CLKn_DELAY = 4
[1]
1.4
2.0
3.3
ns
CLKn_DELAY = 5
[1]
1.7
2.6
4.1
ns
CLKn_DELAY = 6
[1]
2.1
3.1
4.9
ns
CLKn_DELAY = 7
[1]
2.5
3.6
5.8
ns
Program the EMC_CLKn delay values in the EMCDELAYCLK register (see the LPC43xx User manual).
The delay values must be the same for all SDRAM clocks EMC_CLKn: CLK0_DELAY = CLK1_DELAY =
CLK2_DELAY = CLK3_DELAY.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
125 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
EMC_CLKn
delay > 0
EMC_CLKn delay td; programmable CLKn_DELAY
Tcy(clk)
EMC_CLKn
delay = 0
td(xV) - td
EMC_DYCSn,
EMC_RAS,
EMC_CAS,
EMC_WE,
EMC_CKEOUTn,
EMC_A[22:0],
EMC_DQMOUTn
td(xV)
th(x) - td
th(x)
td(QV) - td
td(QV)
th(Q) - td
th(Q)
EMC_D[31:0]
write
tsu(D)
th(D)
EMC_D[31:0]
read; delay > 0
tsu(D)
th(D)
EMC_D[31:0]
read; delay = 0
002aag703
For the programmable EMC_CLK[3:0] clock delays CLKn_DELAY, see Table 31.
Remark: For SDRAM operation, set CLK0_DELAY = CLK1_DELAY = CLK2_DELAY = CLK3_DELAY in the EMCDELAYCLK
register.
Fig 34. SDRAM timing
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
126 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.17 USB interface
Table 32. Dynamic characteristics: USB0 and USB1 pins (full-speed)
CL = 50 pF; Rpu = 1.5 k on D+ to VDD(IO); 3.0 V  VDD(IO)  3.6 V.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tr
rise time
10 % to 90 %
4
-
20
ns
tf
fall time
10 % to 90 %
4
-
20
ns
tFRFM
differential rise and fall time
matching
tr / tf
90
-
111.11
%
VCRS
output signal crossover voltage
1.3
-
2.0
V
tFEOPT
source SE0 interval of EOP
see Figure 35
160
-
175
ns
tFDEOP
source jitter for differential transition
to SE0 transition
see Figure 35
2
-
+5
ns
tJR1
receiver jitter to next transition
18.5
-
+18.5
ns
tJR2
receiver jitter for paired transitions
10 % to 90 %
9
-
+9
ns
tEOPR1
EOP width at receiver
must reject as
EOP; see
Figure 35
[1]
40
-
-
ns
tEOPR2
EOP width at receiver
must accept as
EOP; see
Figure 35
[1]
82
-
-
ns
[1]
Characterized but not implemented as production test. Guaranteed by design.
Remark: If only USB0 (HS USB) is used, the pins VDDREG and VDDIO can be at
different voltages within the operating range but should have the same ramp up time. If
USB1(FS USB) is used, the pins VDDREG and VDDIO should be a minimum of 3.0 V and
be tied together.
TPERIOD
crossover point
extended
crossover point
differential
data lines
source EOP width: tFEOPT
differential data to
SE0/EOP skew
n × TPERIOD + tFDEOP
receiver EOP width: tEOPR1, tEOPR2
002aab561
Fig 35. Differential data-to-EOP transition skew and EOP width
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
127 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 33.
Symbol
Static characteristics: USB0 PHY pins[1]
Parameter
Conditions
Min
Typ
Max
Unit
-
68
-
mW
total supply current
-
18
-
mA
during transmit
-
31
-
mA
during receive
-
14
-
mA
with driver tri-stated
-
14
-
mA
-
7
-
mA
-
15
-
mW
High-speed mode
Pcons
IDDA(3V3) analog supply current (3.3 V)
IDDD
[2]
power consumption
on pin USB0_VDDA3V3_DRIVER;
[3]
digital supply current
Full-speed/low-speed mode
Pcons
IDDA(3V3) analog supply current (3.3 V)
IDDD
[2]
power consumption
on pin USB0_VDDA3V3_DRIVER;
total supply current
-
3.5
-
mA
during transmit
-
5
-
mA
during receive
-
3
-
mA
with driver tri-stated
-
3
-
mA
-
3
-
mA
-
24
-
A
with driver tri-stated
-
24
-
A
with OTG functionality enabled
-
3
-
mA
-
30
-
A
for VBUS valid
4.4
-
-
V
digital supply current
Suspend mode
IDDA(3V3) analog supply current (3.3 V)
IDDD
digital supply current
VBUS detector outputs
threshold voltage
Vth
Vhys
[1]
hysteresis voltage
for session end
0.2
-
0.8
V
for A valid
0.8
-
2
V
for B valid
2
-
4
V
for session end
-
150
10
mV
A valid
-
200
10
mV
B valid
-
200
10
mV
Characterized but not implemented as production test.
[2]
Total average power consumption.
[3]
The driver is active only 20 % of the time.
11.18 Ethernet
Remark: The timing characteristics of the ENET_MDC and ENET_MDIO signals comply
with the IEEE standard 802.3.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
128 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 34. Dynamic characteristics: Ethernet
Tamb = 40 C to 85 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V. Values guaranteed by
design.
Symbol Parameter
Conditions
Min
Max
Unit
[1]
-
50
MHz
clock duty cycle
[1]
50
50
%
tsu
set-up time
for ENET_TXDn, ENET_TX_EN,
ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2]
4
-
ns
th
hold time
for ENET_TXDn, ENET_TX_EN,
ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2]
2
-
ns
clock frequency
for ENET_TX_CLK
[1]
-
25
MHz
[1]
RMII mode
clock frequency
fclk
clk
for ENET_RX_CLK
MII mode
fclk
clk
clock duty cycle
50
50
%
tsu
set-up time
for ENET_TXDn, ENET_TX_EN,
ENET_TX_ER
[1][2]
4
-
ns
th
hold time
for ENET_TXDn, ENET_TX_EN,
ENET_TX_ER
[1][2]
2
-
ns
fclk
clock frequency
for ENET_RX_CLK
[1]
-
25
MHz
clock duty cycle
[1]
50
50
%
tsu
set-up time
for ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2]
4
-
ns
th
hold time
for ENET_RXDn, ENET_RX_ER,
ENET_RX_DV
[1][2]
2
-
ns
clk
[1]
Output drivers can drive a load  25 pF accommodating over 12 inch of PCB trace and the input
capacitance of the receiving device.
[2]
Timing values are given from the point at which the clock signal waveform crosses 1.4 V to the valid input or
output level.
ENET_RX_CLK
ENET_TX_CLK
ENET_RXD[n]
ENET_RX_DV
ENET_RX_ER
ENET_TXD[n]
ENET_TX_EN
ENET_TX_ER
tsu
th
002aag210
Fig 36. Ethernet timing
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
129 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
11.19 SD/MMC
Table 35. Dynamic characteristics: SD/MMC
Tamb = 40 C to 85 C, 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V, CL = 20 pF.
SAMPLE_DELAY = 0x9, DRV_DELAY = 0xD in the SDDELAY register sampled at 90 % and 10 %
of the signal level, EHS = 1 for SD_CLK pin, EHS = 1 for SD_DATn and SD_CMD pins. Simulated
values.
Symbol Parameter
Conditions
Min
Max
Unit
52
MHz
-
ns
fclk
clock frequency
on pin SD_CLK; data transfer mode
tsu(D)
data input set-up time
on pins SD_DATn as inputs
on pins SD_CMD as inputs
5.2
-
ns
th(D)
data input hold time
on pins SD_DATn as inputs
0.4
-
ns
on pins SD_CMD as inputs
0
-
3.9
ns
td(QV)
data output valid delay
time
on pins SD_DATn as outputs
15.3
ns
on pins SD_CMD as outputs
-
16
ns
th(Q)
data output hold time
on pins SD_DATn as outputs
4
-
ns
on pins SD_CMD as outputs
4
-
ns
Tcy(clk)
SD_CLK
td(QV)
th(Q)
SD_CMD (O)
SD_DATn (O)
tsu(D)
th(D)
SD_CMD (I)
SD_DATn (I)
002aag204
Fig 37. SD/MMC timing
11.20 LCD
Table 36. Dynamic characteristics: LCD
Tamb = 25 C; 2.2 V  VDD(REG)(3V3)  3.6 V; 2.7 V  VDD(IO)  3.6 V; CL = 20 pF. Simulated values.
Symbol Parameter
LPC4370
Product data sheet
fclk
clock frequency
td(QV)
data output valid
delay time
th(Q)
data output hold time
Conditions
Min
Typ
Max
Unit
on pin LCD_DCLK
-
50
-
MHz
-
17
ns
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
8.5
-
ns
© NXP B.V. 2016. All rights reserved.
130 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
12. ADC/DAC electrical characteristics
Table 37. 12-bit ADC characteristics
VDDA(3V3) over specified ranges; Tamb = 40 C to +85 C; unless otherwise specified.
Symbol
Parameter
VDC
DC input common mode
level
Cin
input capacitance
Ri
Conditions
Min
Typ
Max
Unit
0.1
0.5
0.9
V
single ended
-
4.5
-
pF
input resistance
single ended; per selected
positive or negative input pin
-
5
-
k
Vi(range)
input voltage range
differential, peak-to-peak
0.72
0.8
0.88
V
fc(ADC)
ADC conversion
frequency
12-bit resolution
-
-
80
MSamples/s
fc(ADC) = 10 Msamples/s; fin = 1 MHz; bias current bits CRS[3:0] = 0000[1]
INL
integral non-linearity
-
1.1
-
LSB
DNL
differential non-linearity
-
0.7
-
LSB
ENOB
effective number of bits
-
10.4
-
-
SNR
signal-to-noise ratio
-
64.0
-
dB
THD
total harmonic distortion
-
73
-
dB
SFDR
spurious free dynamic
range
-
80
-
dB
HD2
second harmonic
distortion
-
84
-
dB
HD3
third harmonic distortion
-
75
-
dB
fc(ADC) = 60 Msamples/s; fin = 1 MHz; bias current bits CRS[3:0] =
0011[1]
INL
integral non-linearity
-
1.2
-
LSB
DNL
differential non-linearity
-
0.7
-
LSB
ENOB
effective number of bits
-
10.1
-
-
SNR
signal-to-noise ratio
-
63
-
dB
THD
total harmonic distortion
-
72
-
dB
SFDR
spurious free dynamic
range
-
75
-
dB
HD2
second harmonic
distortion
-
79
-
dB
HD3
third harmonic distortion
-
75
-
dB
[1]
fin = signal input frequency. The bias current is programmable. Higher bias current allows for a higher ADC conversion frequency at
higher power consumption.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
131 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 38. 10-bit ADC characteristics
VDDA(3V3) over specified ranges; Tamb = 40 C to +85 C; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
VIA
Cia
ED
differential linearity error 2.7 V  VDDA(3V3)  3.6 V
EL(adj)
integral non-linearity
analog input voltage
0
-
VDDA(3V3)
V
analog input
capacitance
-
-
2
pF
[1][2]
-
0.8
-
LSB
-
1.0
-
LSB
[3]
-
0.8
-
LSB
2.2 V  VDDA(3V3) < 2.7 V
2.7 V  VDDA(3V3)  3.6 V
-
1.5
-
LSB
[4]
-
0.15
-
LSB
-
0.15
-
LSB
[5]
-
0.3
-
%
-
0.35
-
%
-
3
-
LSB
LSB
2.2 V  VDDA(3V3) < 2.7 V
EO
offset error
EG
gain error
2.7 V  VDDA(3V3)  3.6 V
2.2 V  VDDA(3V3) < 2.7 V
2.7 V  VDDA(3V3)  3.6 V
2.2 V  VDDA(3V3) < 2.7 V
2.7 V  VDDA(3V3)  3.6 V
ET
absolute error
Rvsi
voltage source interface see Figure 39
resistance
Ri
input resistance
fclk(ADC)
ADC clock frequency
fc(ADC)
ADC conversion
frequency
[6]
2.7 V  VDDA(3V3)  3.6 V
[7][8]
10-bit resolution; 11 clock
cycles
Unit
-
4
-
-
-
1/(7  fclk(ADC) k
 Cia)
-
-
1.2
M
-
-
4.5
MHz
-
-
400
kSamples/s
1.5
MSamples/s
2-bit resolution; 3 clock
cycles
[1]
The ADC is monotonic, there are no missing codes.
[2]
The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 38.
[3]
The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after
appropriate adjustment of gain and offset errors. See Figure 38.
[4]
The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the
ideal curve. See Figure 38.
[5]
The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset
error, and the straight line which fits the ideal transfer curve. See Figure 38.
[6]
The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated
ADC and the ideal transfer curve. See Figure 38.
[7]
Tamb = 25 C; maximum sampling frequency fs = 4.5 MHz and analog input capacitance Cia = 2 pF.
[8]
Input resistance Ri depends on the sampling frequency fs: Ri = 2 k + 1 / (fs  Cia).
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
132 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
offset
error
EO
gain
error
EG
1023
1022
1021
1020
1019
1018
(2)
7
code
out
(1)
6
5
(5)
4
(4)
3
(3)
2
1 LSB
(ideal)
1
0
1
2
3
4
5
6
7
1018
1019
1020
1021
1022
1023
1024
VIA (LSBideal)
offset error
EO
1 LSB =
VDDA(3V3) − VSSA
1024
002aaf959
(1) Example of an actual transfer curve.
(2) The ideal transfer curve.
(3) Differential linearity error (ED).
(4) Integral non-linearity (EL(adj)).
(5) Center of a step of the actual transfer curve.
(6) VDDA refers to VDDA(3V3) on pin VDDA and VSSA to analog ground on pin VSSA.
Fig 38. 10-bit ADC characteristics
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
133 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Rvsi
LPC43xx
2 kΩ (analog pin)
2.2 kΩ (multiplexed pin)
ADC0_n/ADC1_n
Rs
ADC
COMPARATOR
Cia = 2 pF
VEXT
VSS
002aag704
Rs  1/((7  fclk(ADC)  Cia)  2 k
Fig 39. ADC interface to pins
Table 39. DAC characteristics
VDDA(3V3) over specified ranges; Tamb = 40 C to +85 C; unless otherwise specified
Symbol
ED
Parameter
Conditions
differential linearity error
2.7 V  VDDA(3V3)  3.6 V
[1]
2.2 V  VDDA(3V3) < 2.7 V
EL(adj)
integral non-linearity
code = 0 to 975
[1]
Min
Typ
Max
Unit
-
0.8
-
LSB
-
1.0
-
LSB
-
1.0
-
LSB
-
1.5
-
LSB
-
0.8
-
LSB
-
1.0
-
LSB
-
0.3
-
%
-
1.0
-
%
-
-
200
pF
1
-
-
k
2.7 V  VDDA(3V3)  3.6 V
2.2 V  VDDA(3V3) < 2.7 V
offset error
EO
2.7 V  VDDA(3V3)  3.6 V
[1]
2.2 V  VDDA(3V3) < 2.7 V
gain error
EG
2.7 V  VDDA(3V3)  3.6 V
[1]
2.2 V  VDDA(3V3) < 2.7 V
CL
load capacitance
RL
load resistance
[1]
settling time
ts
[1]
In the DAC CR register, bit BIAS = 0 (see the LPC43xx user manual).
[2]
Settling time is calculated within 1/2 LSB of the final value.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
0.4

© NXP B.V. 2016. All rights reserved.
134 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
13. Application information
13.1 LCD panel signal usage
Table 40.
LCD panel connections for STN single panel mode
External pin
4-bit mono STN single panel
8-bit mono STN single panel
Color STN single panel
LPC43xx pin
used
LCD function
LPC43xx pin
used
LCD function
LPC43xx pin
used
LCD function
LCD_VD[23:8]
-
-
-
-
-
-
LCD_VD7
-
-
P8_4
UD[7]
P8_4
UD[7]
LCD_VD6
-
-
P8_5
UD[6]
P8_5
UD[6]
LCD_VD5
-
-
P8_6
UD[5]
P8_6
UD[5]
LCD_VD4
-
-
P8_7
UD[4]
P8_7
UD[4]
LCD_VD3
P4_2
UD[3]
P4_2
UD[3]
P4_2
UD[3]
LCD_VD2
P4_3
UD[2]
P4_3
UD[2]
P4_3
UD[2]
LCD_VD1
P4_4
UD[1]
P4_4
UD[1]
P4_4
UD[1]
LCD_VD0
P4_1
UD[0]
P4_1
UD[0]
P4_1
UD[0]
LCD_LP
P7_6
LCDLP
P7_6
LCDLP
P7_6
LCDLP
LCD_ENAB/
LCDM
P4_6
LCDENAB/
LCDM
P4_6
LCDENAB/
LCDM
P4_6
LCDENAB/
LCDM
LCD_FP
P4_5
LCDFP
P4_5
LCDFP
P4_5
LCDFP
LCD_DCLK
P4_7
LCDDCLK
P4_7
LCDDCLK
P4_7
LCDDCLK
LCD_LE
P7_0
LCDLE
P7_0
LCDLE
P7_0
LCDLE
LCD_PWR
P7_7
CDPWR
P7_7
LCDPWR
P7_7
LCDPWR
GP_CLKIN
PF_4
LCDCLKIN
PF_4
LCDCLKIN
PF_4
LCDCLKIN
Table 41.
LCD panel connections for STN dual panel mode
External pin
4-bit mono STN dual panel
8-bit mono STN dual panel
Color STN dual panel
LPC43xx pin
used
LCD function
LPC43xx pin
used
LCD function
LPC43xx pin
used
LCD function
LCD_VD[23:16] -
-
-
-
-
-
LCD_VD15
-
-
PB_4
LD[7]
PB_4
LD[7]
LCD_VD14
-
-
PB_5
LD[6]
PB_5
LD[6]
LCD_VD13
-
-
PB_6
LD[5]
PB_6
LD[5]
LCD_VD12
-
-
P8_3
LD[4]
P8_3
LD[4]
LCD_VD11
P4_9
LD[3]
P4_9
LD[3]
P4_9
LD[3]
LCD_VD10
P4_10
LD[2]
P4_10
LD[2]
P4_10
LD[2]
LCD_VD9
P4_8
LD[1]
P4_8
LD[1]
P4_8
LD[1]
LCD_VD8
P7_5
LD[0]
P7_5
LD[0]
P7_5
LD[0]
LCD_VD7
-
-
UD[7]
P8_4
UD[7]
LCD_VD6
-
-
P8_5
UD[6]
P8_5
UD[6]
LCD_VD5
-
-
P8_6
UD[5]
P8_6
UD[5]
LCD_VD4
-
-
P8_7
UD[4]
P8_7
UD[4]
LCD_VD3
P4_2
UD[3]
P4_2
UD[3]
P4_2
UD[3]
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
135 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 41.
LCD panel connections for STN dual panel mode
External pin
4-bit mono STN dual panel
8-bit mono STN dual panel
Color STN dual panel
LPC43xx pin
used
LCD function
LPC43xx pin
used
LCD function
LPC43xx pin
used
LCD function
LCD_VD2
P4_3
UD[2]
P4_3
UD[2]
P4_3
UD[2]
LCD_VD1
P4_4
UD[1]
P4_4
UD[1]
P4_4
UD[1]
LCD_VD0
P4_1
UD[0]
P4_1
UD[0]
P4_1
UD[0]
LCD_LP
P7_6
LCDLP
P7_6
LCDLP
P7_6
LCDLP
LCD_ENAB/
LCDM
P4_6
LCDENAB/
LCDM
P4_6
LCDENAB/
LCDM
P4_6
LCDENAB/
LCDM
LCD_FP
P4_5
LCDFP
P4_5
LCDFP
P4_5
LCDFP
LCD_DCLK
P4_7
LCDDCLK
P4_7
LCDDCLK
P4_7
LCDDCLK
LCD_LE
P7_0
LCDLE
P7_0
LCDLE
P7_0
LCDLE
LCD_PWR
P7_7
LCDPWR
P7_7
LCDPWR
P7_7
LCDPWR
GP_CLKIN
PF_4
LCDCLKIN
PF_4
LCDCLKIN
PF_4
LCDCLKIN
Table 42.
External
pin
LCD panel connections for TFT panels
TFT 12 bit (4:4:4
mode)
TFT 16 bit (5:6:5 mode)
TFT 16 bit (1:5:5:5 mode) TFT 24 bit
LPC43xx
pin used
LCD
function
LPC43xx
pin used
LCD
function
LPC43xx pin LCD
used
function
LPC43xx
pin used
LCD
function
LCD_VD23 PB_0
BLUE3
PB_0
BLUE4
PB_0
BLUE4
PB_0
BLUE7
LCD_VD22 PB_1
BLUE2
PB_1
BLUE3
PB_1
BLUE3
PB_1
BLUE6
LCD_VD21 PB_2
BLUE1
PB_2
BLUE2
PB_2
BLUE2
PB_2
BLUE5
LCD_VD20 PB_3
BLUE0
PB_3
BLUE1
PB_3
BLUE1
PB_3
BLUE4
LCD_VD19 -
-
P7_1
BLUE0
P7_1
BLUE0
P7_1
BLUE3
LCD_VD18 -
-
-
-
P7_2
intensity
P7_2
BLUE2
LCD_VD17 -
-
-
-
-
-
P7_3
BLUE1
LCD_VD16 -
-
-
-
-
-
P7_4
BLUE0
LCD_VD15 PB_4
GREEN3
PB_4
GREEN5
PB_4
GREEN4
PB_4
GREEN7
LCD_VD14 PB_5
GREEN2
PB_5
GREEN4
PB_5
GREEN3
PB_5
GREEN6
LCD_VD13 PB_6
GREEN1
PB_6
GREEN3
PB_6
GREEN2
PB_6
GREEN5
LCD_VD12 P8_3
GREEN0
P8_3
GREEN2
P8_3
GREEN1
P8_3
GREEN4
LCD_VD11
-
P4_9
GREEN1
P4_9
GREEN0
P4_9
GREEN3
-
LCD_VD10 -
-
P4_10
GREEN0
P4_10
intensity
P4_10
GREEN2
LCD_VD9
-
-
-
-
-
-
P4_8
GREEN1
LCD_VD8
-
-
-
-
-
-
P7_5
GREEN0
LCD_VD7
P8_4
RED3
P8_4
RED4
P8_4
RED4
P8_4
RED7
LCD_VD6
P8_5
RED2
P8_5
RED3
P8_5
RED3
P8_5
RED6
LCD_VD5
P8_6
RED1
P8_6
RED2
P8_6
RED2
P8_6
RED5
LCD_VD4
P8_7
RED0
P8_7
RED1
P8_7
RED1
P8_7
RED4
LCD_VD3
-
-
P4_2
RED0
P4_2
RED0
P4_2
RED3
LCD_VD2
-
-
-
-
P4_3
intensity
P4_3
RED2
LCD_VD1
-
-
-
-
-
-
P4_4
RED1
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
136 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 42.
External
pin
LCD panel connections for TFT panels
TFT 12 bit (4:4:4
mode)
TFT 16 bit (5:6:5 mode)
TFT 16 bit (1:5:5:5 mode) TFT 24 bit
LPC43xx
pin used
LPC43xx
pin used
LPC43xx pin LCD
used
function
LCD
function
LCD
function
LPC43xx
pin used
LCD
function
LCD_VD0
-
-
-
-
-
-
P4_1
RED0
LCD_LP
P7_6
LCDLP
P7_6
LCDLP
P7_6
LCDLP
P7_6
LCDLP
LCDENAB/
LCDM
P4_6
LCDENAB/ P4_6
LCDM
LCD_ENAB P4_6
/LCDM
LCDENAB/ P4_6
LCDM
LCD_FP
P4_5
LCDENAB/
LCDM
LCDFP
P4_5
LCDFP
P4_5
LCDFP
P4_5
LCDFP
LCD_DCLK P4_7
LCDDCLK
P4_7
LCDDCLK
P4_7
LCDDCLK
P4_7
LCDDCLK
LCD_LE
P7_0
LCDLE
P7_0
LCDLE
P7_0
LCDLE
P7_0
LCDLE
LCD_PWR
P7_7
LCDPWR
P7_7
LCDPWR
P7_7
LCDPWR
P7_7
LCDPWR
GP_CLKIN
PF_4
LCDCLKIN PF_4
LCDCLKIN
PF_4
LCDCLKIN PF_4
LCDCLKIN
13.2 Crystal oscillator
The crystal oscillator is controlled by the XTAL_OSC_CTRL register in the CGU (see
LPC43xx user manual).
The crystal oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be
boosted to a higher frequency, up to the maximum CPU operating frequency, by the PLL.
The oscillator can operate in one of two modes: slave mode and oscillation mode.
• In slave mode the input clock signal should be coupled by means of a capacitor of
100 pF (CC in Figure 40), with an amplitude of at least 200 mV (rms). The XTAL2 pin
in this configuration can be left unconnected.
• External components and models used in oscillation mode are shown in Figure 41,
and in Table 43 and Table 44. Since the feedback resistance is integrated on chip,
only a crystal and the capacitances CX1 and CX2 need to be connected externally in
case of fundamental mode oscillation (the fundamental frequency is represented by L,
CL and RS). Capacitance CP in Figure 41 represents the parallel package
capacitance and should not be larger than 7 pF. Parameters FC, CL, RS and CP are
supplied by the crystal manufacturer.
Table 43.
Fundamental oscillation
frequency
Maximum crystal series
resistance RS
External load capacitors
CX1, CX2
2 MHz
< 200 
33 pF, 33 pF
< 200 
39 pF, 39 pF
< 200 
56 pF, 56 pF
< 200 
18 pF, 18 pF
< 200 
39 pF, 39 pF
4 MHz
8 MHz
LPC4370
Product data sheet
Recommended values for CX1/X2 in oscillation mode (crystal and external
components parameters) low frequency mode
< 200 
56 pF, 56 pF
< 200 
18 pF, 18 pF
< 200 
39 pF, 39 pF
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
137 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 43.
Recommended values for CX1/X2 in oscillation mode (crystal and external
components parameters) low frequency mode
Fundamental oscillation
frequency
Maximum crystal series
resistance RS
External load capacitors
CX1, CX2
12 MHz
< 160 
18 pF, 18 pF
< 160 
39 pF, 39 pF
16 MHz
< 120 
18 pF, 18 pF
< 80 
33 pF, 33 pF
<100 
18 pF, 18 pF
< 80 
33 pF, 33 pF
20 MHz
Table 44.
Recommended values for CX1/X2 in oscillation mode (crystal and external
components parameters) high frequency mode
Fundamental oscillation
frequency
Maximum crystal series
resistance RS
External load capacitors CX1,
Cx2
15 MHz
< 80 
18 pF, 18 pF
20 MHz
< 80 
39 pF, 39 pF
< 100 
47 pF, 47 pF
LPC43xx
XTAL1
Ci
100 pF
Cg
002aag379
Fig 40. Slave mode operation of the on-chip oscillator
LPC43xx
L
XTAL1
XTAL2
=
CL
CP
XTAL
RS
CX1
CX2
002aag380
Fig 41. Oscillator modes with external crystal model used for CX1/CX2 evaluation
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
138 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
13.3 RTC oscillator
In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances CRTCX1 and
CRTCX2 need to be connected externally. Typical capacitance values for CRTCX1 and
CRTCX2 are CRTCX1/2 = 20 (typical)  4 pF.
An external clock can be connected to RTCX1 if RTCX2 is left open. The recommended
amplitude of the clock signal is Vi(RMS) = 100 mV to 200 mV with a coupling capacitance of
5 pF to 10 pF. Vi(RMS) must be lower than 450 mV. See Figure 40 for a similar slave-mode
set-up that uses the crystal oscillator.
LPC43xx
RTCX1
RTCX2
XTAL
CRTCX1
CRTCX2
002aah148
Fig 42. RTC 32 kHz oscillator circuit
13.4 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines
Connect the crystal on the PCB as close as possible to the oscillator input and output pins
of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of third overtone
crystal usage have a common ground plane. Also connect the external components to the
ground plain. To keep the noise coupled in via the PCB as small as possible, make loops
and parasitics as small as possible. Choose smaller values of Cx1 and Cx2 if parasitics
increase in the PCB layout.
13.5 Standard I/O pin configuration
Figure 43 shows the possible pin modes for standard I/O pins with analog input function:
•
•
•
•
•
•
Digital output driver enabled/disabled
Digital input: Pull-up enabled/disabled
Digital input: Pull-down enabled/disabled
Digital input: Repeater mode enabled/disabled
Digital input: Input buffer enabled/disabled
Analog input
The default configuration for standard I/O pins is input with pull-up enabled. The weak
MOS devices provide a drive capability equivalent to pull-up and pull-down resistors.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
139 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
VDDIO
ESD
enable output driver
data output from core
PIN
slew rate bit EHS
input buffer enable bit EZI
data input to core
glitch
filter
filter select bit ZIF
pull-up enable bit EPUN
ESD
pull-down enable bit EPD
analog I/O
VSSIO
002aah028
The glitch filter rejects pulses of typical 12 ns width.
Fig 43. Standard I/O pin configuration with analog input
13.6 Reset pin configuration
Vps
Vps
Vps
Rpu
reset
ESD
20 ns RC
GLITCH FILTER
PIN
ESD
VSS
002aag702
Fig 44. Reset pin configuration
13.7 Suggested USB interface solutions
The USB device can be connected to the USB as self-powered device (see Figure 45) or
bus-powered device (see Figure 46).
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
140 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
On the LPC4370, USBn_VBUS pins are 5 V tolerant only when VDDIO is applied and at
operating voltage level. Therefore, if the USBn_VBUS function is connected to the USB
connector and the device is self-powered, the USBn_VBUS pins must be protected for
situations when VDDIO = 0 V.
If VDDIO is always at operating level while VBUS = 5 V, the USBn_VBUS pin can be
connected directly to the VBUS pin on the USB connector.
For systems where VDDIO can be 0 V and VBUS is directly applied to the USBn_VBUS
pins, precautions must be taken to reduce the voltage to below 3.6 V, which is the
maximum allowable voltage on the USBn_VBUS pins in this case.
One method is to use a voltage divider to connect the USBn_VBUS pins to VBUS on the
USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be
greater than 0.7VDDIO to indicate a logic HIGH while below the 3.6 V allowable maximum
voltage.
For the following operating conditions
VBUSmax = 5.25 V
VDDIO = 3.6 V,
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.
For bus-powered devices, a regulator powered by USB can provide 3.3 V to VDDIO
whenever bus power is present and ensure that power to the USBn_VBUS pins is always
present when the 5 V VBUS signal is applied. See Figure 46.
Remark: Applying 5 V to the USBn_VBUS pins for a short time while the regulator ramps
up might compromise the long-term reliability of the part but does not affect its function.
LPC43xx
VDDIO
R2
R3
USBn_VBUS
VBUS
USB-B
connector
USB
aaa-013458
Fig 45. USB interface on a self-powered device where USBn_VBUS = 5 V
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
141 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
LPC43xx
VDDIO
REGULATOR
USBn_VBUS
VBUS
USB-B
connector
USB
aaa-013459
Fig 46. USB interface on a bus-powered device
Remark: If the VBUS function of the USB1 interface is not connected, configure the pin
function for GPIO using the function control bits in the SYSCON block.
VDDIO
R1
LPC43xx
T2
T1
R2
R3
USBn_VBUS
VBUS
USB-B
connector
USB
aaa-013460
Fig 47. USB interface for USB operating in OTG mode
Remark: In OTG mode, it is important to be able to detect the VBUS level and to charge
and discharge VBUS. This requires adding active devices that disconnect the link when
VDDIO is not present.
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
142 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
13.8 Minimizing interference between digital signals and 12-bit ADC
signals
To reduce interference from digital signals to the high-speed 12-bit ADC inputs, do not
configure digital pins that are pinned out close to the ADC signals as outputs when using
the 12-bit ADC. For the BGA256 package, the pins with interfering signals are shown in
Table 45.
Table 45.
12-bit ADC signal interferences for BGA256 package
12-bit ADC signal
LBGA256
ball
Interfering pins
LBGA256 ball
ADCHS_0
E3
P4_3, PC_0
C2, D4
ADCHS_1
C3
P4_1, P8_0, PC_0
A1, E5, D4
ADCHS_2
A4
PF_10, PF_11
A3, A2
ADCHS_3
A5
PF_9, PF_10
D6, A3
ADCHS_4
C6
P7_7, PB_6
B6, A6
ADCHS_5
B3
PF_11
A2
ADCHS_NEG
B5
P7_7, PF_8
B6, E6
13.9 12-bit ADCHS input selection
The high-speed, 12-bit ADCHS operates with an internally generated 1.2 V power supply.
The input range for an ADC channel is 800 mV (peak-to-peak) in a band from 0 V to 1.2 V.
The input range Vin_pos is defined by Vin_pos = Vin_neg +/- 400 mV where Vin_neg can
be either generated internally or supplied by the external pin ADCHS_NEG.
The internally generated reference voltage is Vin_neg = 500 mV making the allowed input
voltage Vin_pos on any ADC channel 100 mV  Vin_pos  900 mV. See Figure 48.
ADC out
input range
+2047
0
Vin_pos
-2048
Vin_neg - 400 mV
Vin_neg
Vin_neg + 400 mV
aaa-009653
Fig 48. ADCHS input range
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
143 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
The allowed input range for Vin_neg, if supplied externally on pin ADCHS_NEG, is
350 mV  Vin_neg  900 mV. See Figure 49.
Vin_pos
(mV)
1200
800
750
450
400
0
Vin_neg (mV)
400
350
800
850
aaa-009654
Fig 49. Positive input voltage as a function of the externally supplied negative voltage
Vin_neg (on pin ADCHS_NEG)
For the internally generated negative reference voltage Vin_neg = 500 mV, one of the
following circuits are recommended for the ADC channel input:
1. Inverting single-ended with gain = 1 or for input range 0 V to 3.3 V
2. Non-inverting single-ended with gain = 1
3. Non-inverting singe-ended for input range 0 V to 3.3 V
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
144 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
13.9.1 Inverting single-ended circuit
For the inverting single-ended circuit only one op-amp is needed. A 1.24 V shunt voltage
reference is used for creating an offset voltage of 450 mV. The disadvantage is that the
signal output of the circuit is inverted. However, this can be easily solved in software by
subtracting the ADC output from 4095, which is the maximum value of the 12-bit result.
(2)
R4
R2
R2
Vout = Vcom --------------------   1 + ------- – Vin_pos ------R3 + R4 
R1
R1
R2
5V
Vout
R1
100 mV - 900 mV
Vin_pos
0 V - 800 mV (R1 = R2)
0 V - 3.3 V (R1 = 10 x R2)
R5
Vcom
to ADCHS_n
R3
5V
1.24 V
R4
aaa-009655
Fig 50. Inverting single-ended circuit for 12-bit ADCHS input
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
145 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
13.9.2 Non-inverting single-ended circuit with gain = 1
The advantage of having a non-inverting circuit comes at the cost of adding an additional
op-amp for a high-impedance voltage reference to prevent the reference level being
influenced by the input signal. This circuit is recommended for an input voltage from
100 mV to 800 mV using the internal negative reference voltage.
(3)
Vout = Vin_pos + Vcom (for R3 = R4 and R1 = R2)
Vout
Vin_pos
R1
100 mV - 900 mV
to ADCHS_n
0 V - 800 mV
R3
R2
R4
R6
R7
5V
Vcom
R5
1.24 V
aaa-009656
Fig 51. Non-inverting single-ended circuit with gain = 1 for 12-bit ADCHS input
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
146 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
13.9.3 Non-inverting single-ended circuit for input 0 V to 3.3 V
The advantage of having a non-inverting circuit comes at the cost of adding an additional
op-amp for a high-impedance voltage reference to prevent the reference level being
influenced by the input signal. This circuit is recommended for an input voltage from 0 V to
3.3 V using the internal negative reference voltage.
(4)
R1
Vout = Vcom -------------------R1 + R2
(5)
R3
Vcom =  1.24 V  -------------------R3 + R4
Vout
100 mV - 900 mV
R1
Vin_pos
to ADCHS_n
0 V - 3.3 V
R2
Vcom
R3
5V
1.24 V
R4
aaa-009657
Fig 52. Non-inverting single-ended circuit for input 0 V to 3.3 V for 12-bit ADCHS input
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
147 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
14. Package outline
LBGA256: plastic low profile ball grid array package; 256 balls; body 17 x 17 x 1 mm
A
B
D
SOT740-2
ball A1
index area
A2
A
E
A1
detail X
C
e1
e
y
y1 C
∅v M C A B
b
1/2 e
∅w M C
T
R
e
P
N
M
L
K
J
e2
H
G
1/2 e
F
E
D
C
B
A
ball A1
index area
1
3
2
5
4
7
6
9
8
11
10
13
12
15
14
16
X
5
0
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max
A1
A2
b
D
E
e
e1
e2
v
w
y
y1
mm
1.55
0.45
0.35
1.1
0.9
0.55
0.45
17.2
16.8
17.2
16.8
1
15
15
0.25
0.1
0.12
0.35
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
JEITA
SOT740-2
---
MO-192
---
EUROPEAN
PROJECTION
ISSUE DATE
05-06-16
05-08-04
Fig 53. Package outline LBGA256 package
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
148 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
TFBGA100: plastic thin fine-pitch ball grid array package; 100 balls; body 9 x 9 x 0.7 mm
B
D
SOT926-1
A
ball A1
index area
A2
E
A
A1
detail X
e1
e
∅v
∅w
b
1/2 e
C
M
M
C A B
C
y
y1 C
K
J
e
H
G
F
e2
E
D
1/2 e
C
B
A
ball A1
index area
1
2
3
4
5
6
7
8
9
10
X
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max
A1
A2
b
D
E
e
e1
e2
v
w
y
y1
mm
1.2
0.4
0.3
0.8
0.65
0.5
0.4
9.1
8.9
9.1
8.9
0.8
7.2
7.2
0.15
0.05
0.08
0.1
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
JEITA
SOT926-1
---
---
---
EUROPEAN
PROJECTION
ISSUE DATE
05-12-09
05-12-22
Fig 54. Package outline of the TFBGA100 package
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
149 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
15. Soldering
Footprint information for reflow soldering of LBGA256 package
SOT740-2
Hx
P
P
Hy
see detail X
Generic footprint pattern
Refer to the package outline drawing for actual layout
solder land
solder paste deposit
solder land plus solder paste
SL
SP
occupied area
SR
solder resist
detail X
DIMENSIONS in mm
P
SL
SP
SR
1.00
0.450
0.450
0.600
Hx
Hy
17.500 17.500
sot740-2_fr
Fig 55. Reflow soldering of the LBGA256 package
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
150 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Footprint information for reflow soldering of TFBGA100 package
SOT926-1
Hx
P
P
Hy
see detail X
Generic footprint pattern
Refer to the package outline drawing for actual layout
solder land
solder paste deposit
solder land plus solder paste
SL
SP
occupied area
SR
solder resist
detail X
DIMENSIONS in mm
P
SL
SP
SR
Hx
Hy
0.80
0.330
0.400
0.480
9.400
9.400
sot926-1_fr
Fig 56. Reflow soldering of the TFBGA100 package
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
151 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
16. Abbreviations
Table 46.
LPC4370
Product data sheet
Abbreviations
Acronym
Description
ADC
Analog-to-Digital Converter
AHB
Advanced High-performance Bus
APB
Advanced Peripheral Bus
API
Application Programming Interface
BOD
BrownOut Detection
CAN
Controller Area Network
CMAC
Cipher-based Message Authentication Code
CSMA/CD
Carrier Sense Multiple Access with Collision Detection
DAC
Digital-to-Analog Converter
DC-DC
Direct Current-to-Direct Current
DMA
Direct Memory Access
GPIO
General Purpose Input/Output
IRC
Internal RC
IrDA
Infrared Data Association
JTAG
Joint Test Action Group
LCD
Liquid Crystal Display
LSB
Least Significant Bit
MAC
Media Access Control
MCU
MicroController Unit
MIIM
Media Independent Interface Management
n.c.
not connected
OHCI
Open Host Controller Interface
OTG
On-The-Go
PHY
Physical Layer
PLL
Phase-Locked Loop
PMC
Power Mode Control
PWM
Pulse Width Modulator
RIT
Repetitive Interrupt Timer
RMII
Reduced Media Independent Interface
SDRAM
Synchronous Dynamic Random Access Memory
SIMD
Single Instruction Multiple Data
SPI
Serial Peripheral Interface
SSI
Serial Synchronous Interface
SSP
Synchronous Serial Port
UART
Universal Asynchronous Receiver/Transmitter
ULPI
UTMI+ Low Pin Interface
USART
Universal Synchronous Asynchronous Receiver/Transmitter
USB
Universal Serial Bus
UTMI
USB2.0 Transceiver Macrocell Interface
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
152 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
17. References
[1]
LPC4370
Product data sheet
LPC4370 Errata sheet.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
153 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
18. Revision history
Table 47.
Revision history
Document ID
Release date Data sheet status
Change notice Supersedes
LPC4370 v.2.3
20160315
-
Modifications:
LPC4370 v.2.2
Modifications:
•
Product data sheet
LPC4371_70 v.2.2
Updated Table 30 “Dynamic characteristics: Dynamic external memory interface”:
Read cycle parameters th(D) min value is 2.2 ns and max value is “-”.
20151118
Product data sheet
2015110031
LPC4371_70 v.2.1
•
Added GPCLKIN section and table. See Section 11.5 “GPCLKIN” and Table 19
“Dynamic characteristic: GPCLKIN”.
•
Updated SSP slave and SSP master values in Table 25 “Dynamic characteristics:
SSP pins in SPI mode”. Updated footnote 2 to: Tcy(clk) 12  Tcy(PCLK).
– removed tv(Q), data output valid time in SPI mode, minimum value of 3 ´ (1/PCLK)
from SSP slave mode.
– added units to td, delay time, for SSP slave and master mode.
LPC4370 v.2.1
LPC4370
Product data sheet
20150423
Product data sheet
-
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
LPC4371_70 v.2
© NXP B.V. 2016. All rights reserved.
154 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 47.
Revision history …continued
Document ID
LPC4370
Product data sheet
Release date Data sheet status
Change notice Supersedes
•
•
•
•
•
Updated Section 1 “General description”.
•
Table note 2, the recommended operating condition for the battery supply is
VDD(REG)(3V3) > VBAT + 0.2 V is corrected in Table 10.
•
•
•
•
•
•
Updated USART dynamic characteristics table. See Table 24.
•
•
Table 20 “Dynamic characteristic: I/O pins[1]” added.
•
Description of internal pull-up resistor configuration added for RESET, WAKEUPn,
and ALARM pins. See Table 3.
•
•
•
•
Description of DEBUG pin updated.
•
•
Reset state of the RTC alarm pin RTC_ALARM added. See Table 3.
•
Parameter tCSLWEL with condition PB = 1 corrected: (WAITWEN + 1)  Tcy(clk) added.
See Table 29 “Dynamic characteristics: Static asynchronous external memory
interface”.
•
Parameter tCSLBLSL with condition PB = 0 corrected: (WAITWEN + 1)  Tcy(clk) added.
See Table 29 “Dynamic characteristics: Static asynchronous external memory
interface”.
•
Updated USB dynamic characteristics table. See Table 32:
tr Min 4 ns, Max 20 ns; tf Min 4 ns, Max 20 ns; tFRFM Min 90 %, Max 111.11 %
•
•
•
Added band gap characteristics table. See Table 14.
VO for RTC_ALARM pin added in Table 10.
RTC_ALARM and WAKEUPn pins added to Table 10.
Maximum value for Vi(RMS) added in Section 13.3 “RTC oscillator”.
Polarity of EMC_CKEOUT and EMC_DQMOUT corrected. Both signals are active
HIGH.
Added USART timing diagram. See Figure 27.
Updated SD/MMC dynamic characteristics table. See Table 35.
Updated SPIFI dynamic characteristics table. See Table 27.
Added SSP slave timing data. See Table 25.
Parameter CI corrected for high-drive pins (changed from 2 pF to 5.2 pF). See
Table 10.
IRC accuracy changed from 1 % to 1.5 % over the full temperature range. See
Table 18 “Dynamic characteristic: IRC oscillator”.
Input range for PLL1 corrected: 1 MHz to 25 MHz. See Section 7.23.7 “System PLL1”
Section 13.7 “Suggested USB interface solutions” added.
SSP master mode timing diagram updated with SSEL timing parameters. See Figure
28 “SSP master mode timing (SPI mode)”.
IEEE standard 802.3 compliance added to Section 11.18. Covers Ethernet dynamic
characteristics of ENET_MDIO and ENET_MDC signals.
Updated Table 2: added motor control PWM instead of PWM.
Added a remark to Table 32.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
155 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 47.
Revision history …continued
Document ID
Release date Data sheet status
Change notice Supersedes
LPC4370 v.2
20131021
-
Modifications:
Modifications:
Modifications:
LPC4370
Product data sheet
LPC4371_70 v.1.1
•
•
•
•
Part LPC4371 removed.
•
•
•
•
•
•
OTP memory size available for general-purpose use corrected.
•
•
•
LPC4371_70 v.1.1
Product data sheet
LCD added to part LPC4370.
Data sheet title changed to LPC4370.
VADC renamed to ADCHS throughout the document. Pin VADC_NEG renamed to
ADCHS_NEG.
SD/MMC timing parameters corrected. See Table 34.
Band gap characteristics removed.
Description of RESET pin updated in Table 3.
Table note 9 added in Table 10.
Minimum value of parameter VDC changed to 0.1 V. See Table 36 “12-bit ADC
characteristics”.
Section 13.9 “12-bit ADCHS input selection” added.
Table 12 “Peripheral power consumption 12-bit ADCHS” added.
Data sheet status changed to Product data sheet.
20130211
Objective data sheet
-
LPC4371_70 v.1
•
SSP0 boot pin functions corrected in Table 5 and Table 4. Pin P3_3 = SSP0_SCK, pin
P3_6 = SSP0_SSEL, pin P3_7 = SSP0_MISO, pin P3_8 = SSP0_MOSI.
•
Section 13.7 “Minimizing interference between digital signals and 12-bit ADC signals”
added. Pin description table updated with Table note 13.
•
•
•
•
•
TFBGA100 package added.
•
•
Table 23 “Dynamic characteristics: SPIFI” added.
•
•
Band gap characteristics added. See Table 13 and Figure 17.
•
•
•
Table 7 “Limiting values” updated.
Parameter name IDD(ADC) changed to IDDA in Table 10.
Minimum value for parameter VIL changed to 0 V in Table 10.
Added note to limit data in Table 25 “Dynamic characteristics: Static asynchronous
external memory interface” to single memory accesses.
Power consumption in active mode corrected. See parameter IDD(REG)(3V3) in Table 10
and graphs Figure 8, Figure 9, and Figure 10.
Value of parameter IDD(REG)(3V3) in deep power-down increased to 0.03 μA in
Table 10.
Value of parameter IDD(IO) in deep power-down increased to 0.05 μA in Table 10.
Figure 4 “AHB multilayer matrix master and slave connections” updated.
Parameter ILH (High-level leakage current) for condition VI = 5 V changed to 20 nA
(max). See Table 10.
•
Parameter VDDA(3V3) added for pins USB0_VDDA3V3_DRIVER and
USB0_VDDA3V3 in Table 10.
•
•
•
•
Maximum speed for SPI added in Section 7.19.3.
•
SPI timing data added. See Table 22.
SPIFI speed changed to 53 MB/s.
Section 7.23.9.1 “Memory retention in Power-down modes” added.
IDD(REG)(3V3) for Power-down mode with M0SUB SRAM memory retained added in
Table 10.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
156 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Table 47.
Revision history …continued
Document ID
Modifications:
LPC4371_70 v.1
Modifications:
LPC4370
Product data sheet
Release date Data sheet status
•
•
•
Change notice Supersedes
SGPIO timing data added. See Table 24.
SPI and SGPIO peripheral power consumption added in Table 11.
Corrected max voltage on pins USB0_DP, USB0_DM, USB0_VBUS, USB1_DP, and
USB1_DM in Table 7 and Table 10 to be consistent with USB specifications.
20120808
Objective data sheet
-
LPC43A50_30_20 v.0.5
•
•
•
•
Power consumption data in Section 10 “Static characteristics” updated.
•
SWD removed for ARM Cortex-M0 core.
BOD levels updated in Table 12.
12-bit ADC characterisation added in Table 33.
Pinout corrected for the LBGA256 package in Table 3: Function ADCHS_3 moved to
ball A5 and Function ADCHS_NEG moved to ball B5.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
157 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
19. Legal information
19.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
19.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
19.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
LPC4370
Product data sheet
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
158 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
19.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP B.V.
20. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
159 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
21. Contents
1
General description . . . . . . . . . . . . . . . . . . . . . . 1
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4
Ordering information . . . . . . . . . . . . . . . . . . . . . 5
4.1
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 5
5
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6
Pinning information . . . . . . . . . . . . . . . . . . . . . . 7
6.1
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7
7
Functional description . . . . . . . . . . . . . . . . . . 58
7.1
Architectural overview . . . . . . . . . . . . . . . . . . 58
7.2
ARM Cortex-M4 processor . . . . . . . . . . . . . . . 58
7.3
ARM Cortex-M0 processors . . . . . . . . . . . . . . 58
7.3.1
ARM Cortex-M0 coprocessor . . . . . . . . . . . . . 58
7.3.2
ARM Cortex-M0 subsytem . . . . . . . . . . . . . . . 58
7.4
Interprocessor communication . . . . . . . . . . . . 59
7.5
AHB multilayer matrix . . . . . . . . . . . . . . . . . . . 60
7.6
Nested Vectored Interrupt Controller (NVIC) . 60
7.6.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.6.2
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 61
7.7
System Tick timer (SysTick) . . . . . . . . . . . . . . 61
7.8
Event router . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.9
Global Input Multiplexer Array (GIMA) . . . . . . 62
7.9.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.10
System Tick timer (SysTick) . . . . . . . . . . . . . . 62
7.11
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 62
7.12
In-System Programming (ISP) . . . . . . . . . . . . 62
7.13
Boot ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.14
Memory mapping . . . . . . . . . . . . . . . . . . . . . . 64
7.15
One-Time Programmable (OTP) memory . . . 67
7.16
General Purpose I/O (GPIO) . . . . . . . . . . . . . 67
7.16.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.17
Configurable digital peripherals . . . . . . . . . . . 67
7.17.1
State Configurable Timer (SCT) subsystem . . 67
7.17.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.17.2
Serial GPIO (SGPIO) . . . . . . . . . . . . . . . . . . . 68
7.17.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.18
AHB peripherals . . . . . . . . . . . . . . . . . . . . . . . 69
7.18.1
General Purpose DMA (GPDMA) . . . . . . . . . . 69
7.18.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.18.2
SPI Flash Interface (SPIFI). . . . . . . . . . . . . . . 69
7.18.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.18.3
SD/MMC card interface . . . . . . . . . . . . . . . . . 70
7.18.4
External Memory Controller (EMC). . . . . . . . . 70
7.18.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.18.5
High-speed USB Host/Device/OTG interface
(USB0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.18.5.1
7.18.6
7.18.6.1
7.18.7
7.18.7.1
7.18.8
7.18.8.1
7.19
7.19.1
7.19.1.1
7.19.2
7.19.2.1
7.19.3
7.19.3.1
7.19.4
7.19.4.1
7.19.5
7.19.5.1
7.19.6
7.19.6.1
7.19.7
7.19.7.1
7.20
7.20.1
7.20.1.1
7.20.2
7.20.3
7.20.3.1
7.20.4
7.20.4.1
7.20.5
7.20.5.1
7.21
7.21.1
7.21.1.1
7.21.2
7.21.2.1
7.21.3
7.21.3.1
7.22
7.22.1
7.22.1.1
7.22.2
7.23
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-speed USB Host/Device interface with
ULPI (USB1) . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LCD controller . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital serial peripherals. . . . . . . . . . . . . . . . .
UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
USART0/2/3 . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI serial I/O controller . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSP serial I/O controller. . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2S interface . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C_CAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Counter/timers and motor control . . . . . . . . .
General purpose 32-bit timers/external event
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motor control PWM . . . . . . . . . . . . . . . . . . . .
Quadrature Encoder Interface (QEI) . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Repetitive Interrupt (RI) timer. . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Windowed WatchDog Timer (WWDT) . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog peripherals . . . . . . . . . . . . . . . . . . . . .
12-bit high-speed Analog-to-Digital Converter
(ADCHS) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10-bit Analog-to-Digital Converter
(ADC0/1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital-to-Analog Converter (DAC). . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peripherals in the RTC power domain . . . . . .
RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alarm timer. . . . . . . . . . . . . . . . . . . . . . . . . . .
System control . . . . . . . . . . . . . . . . . . . . . . . .
71
71
71
72
72
73
73
73
73
73
74
74
74
74
74
75
75
75
75
76
76
76
77
77
77
77
77
78
78
78
78
78
79
79
79
79
79
79
79
80
80
80
80
80
continued >>
LPC4370
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2.3 — 15 March 2016
© NXP B.V. 2016. All rights reserved.
160 of 161
LPC4370
NXP Semiconductors
32-bit ARM Cortex-M4/M0 microcontroller
7.23.1
Configuration registers (CREG) . . . . . . . . . . . 80
7.23.2
System Control Unit (SCU). . . . . . . . . . . . . . . 81
7.23.3
Clock Generation Unit (CGU) . . . . . . . . . . . . . 81
7.23.4
Internal RC oscillator (IRC). . . . . . . . . . . . . . . 81
7.23.5
PLL0USB (for USB0) . . . . . . . . . . . . . . . . . . . 81
7.23.6
PLL0AUDIO (for audio) . . . . . . . . . . . . . . . . . 81
7.23.7
System PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.23.8
Reset Generation Unit (RGU). . . . . . . . . . . . . 82
7.23.9
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.23.9.1 Memory retention in Power-down modes . . . . 83
7.23.9.2 Power Management Controller (PMC) . . . . . . 84
7.24
Serial Wire Debug/JTAG. . . . . . . . . . . . . . . . . 85
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 86
9
Thermal characteristics . . . . . . . . . . . . . . . . . 87
10
Static characteristics. . . . . . . . . . . . . . . . . . . . 88
10.1
Power consumption . . . . . . . . . . . . . . . . . . . . 95
10.2
Peripheral power consumption . . . . . . . . . . . . 99
10.3
BOD and band gap static characteristics . . . 101
10.4
Electrical pin characteristics . . . . . . . . . . . . . 103
11
Dynamic characteristics . . . . . . . . . . . . . . . . 107
11.1
Wake-up times . . . . . . . . . . . . . . . . . . . . . . . 107
11.2
External clock for oscillator in slave mode . . 107
11.3
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . 108
11.4
IRC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 108
11.5
GPCLKIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.6
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.7
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 110
11.8
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.9
I2S-bus interface . . . . . . . . . . . . . . . . . . . . . . 111
11.10
USART interface. . . . . . . . . . . . . . . . . . . . . . 113
11.11
SSP interface . . . . . . . . . . . . . . . . . . . . . . . . 114
11.12
SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.13
SSP/SPI timing diagrams . . . . . . . . . . . . . . . 118
11.14
SPIFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.15
SGPIO timing . . . . . . . . . . . . . . . . . . . . . . . . 120
11.16
External memory interface . . . . . . . . . . . . . . 122
11.17
USB interface . . . . . . . . . . . . . . . . . . . . . . . 127
11.18
Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
11.19
SD/MMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.20
LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12
ADC/DAC electrical characteristics . . . . . . . 131
13
Application information. . . . . . . . . . . . . . . . . 135
13.1
LCD panel signal usage . . . . . . . . . . . . . . . . 135
13.2
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . 137
13.3
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 139
13.4
XTAL and RTCX Printed Circuit Board
(PCB) layout guidelines . . . . . . . . . . . . . . . . 139
13.5
Standard I/O pin configuration . . . . . . . . . . . 139
13.6
Reset pin configuration . . . . . . . . . . . . . . . . . 140
13.7
13.8
13.9
13.9.1
13.9.2
13.9.3
14
15
16
17
18
19
19.1
19.2
19.3
19.4
20
21
Suggested USB interface solutions . . . . . . .
Minimizing interference between digital
signals and 12-bit ADC signals . . . . . . . . . .
12-bit ADCHS input selection . . . . . . . . . . .
Inverting single-ended circuit . . . . . . . . . . . .
Non-inverting single-ended circuit
with gain = 1 . . . . . . . . . . . . . . . . . . . . . . . .
Non-inverting single-ended circuit for input
0 V to 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . .
Package outline. . . . . . . . . . . . . . . . . . . . . . .
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . .
Legal information . . . . . . . . . . . . . . . . . . . . .
Data sheet status . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . .
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
140
143
143
145
146
147
148
150
152
153
154
158
158
158
158
159
159
160
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2016.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 15 March 2016
Document identifier: LPC4370
Similar pages