BTS40K2-1EJC Data Sheet (1.2 MB, EN)

PROFET™ 12V
BTS40k2-1EJC
Single Channel, 200mΩ
Data Sheet
Rev. 1.0, 2015-11-09
Automotive Power
BTS40k2-1EJC
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
3.1
3.2
3.3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.3.1
4.3.2
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
15
15
16
16
16
17
19
6
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2
6.6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
21
21
22
23
23
23
23
25
7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.5
7.3.6
7.4
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . .
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
26
27
27
28
29
30
30
30
31
31
32
32
33
8
8.1
8.2
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Data Sheet
PROFET™ 12V
2
7
7
7
8
Rev. 1.0, 2015-11-09
BTS40k2-1EJC
8.3
8.4
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9
9.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Data Sheet
PROFET™ 12V
3
Rev. 1.0 2015-11-09
BTS40k2-1EJC
1
Overview
Application
•
Suitable for resistive, inductive and capacitive loads
•
Replaces electromechanical relays, fuses and discrete circuits
Basic Features
•
Single channel device
•
Very low stand-by current
•
3.3 V and 5 V compatible logic inputs
•
Electrostatic discharge protection (ESD)
•
Optimized electromagnetic compatibility
•
Logic ground independent from load ground
•
Very low power DMOS leakage current in OFF state
•
Green product (RoHS compliant)
•
AEC qualified
PG-DSO-8-43 EP
Description
The BTS40k2-1EJC is a 200 mΩ single channel Smart High-Side Power Switch, embedded in a PG-DSO-8-43 EP,
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is
specially designed to drive relays and lamps up to 1x R5W 12V, as well as LEDs.
Table 1
Product Summary
Parameter
Symbol
Value
Operating voltage range
VS(OP)
5 V ... 36 V
Maximum supply voltage
VS(LD)
65 V
Maximum ON state resistance at TJ = 150 °C
RDS(ON)
400 mΩ
Nominal load current
IL(NOM)
1.5 A
Typical current sense ratio
kILIS
300
Minimum current limitation
IL5(SC)
5A
Maximum standby current with load at TJ = 25 °C
IS(OFF)
500 nA
Type
Package
Marking
BTS40k2-1EJC
PG-DSO-8-43 EP
40k2-EJC
Data Sheet
4
Rev. 1.0, 2015-11-09
BTS40k2-1EJC
Overview
Diagnostic Functions
•
Proportional load current sense
•
Open load detection in ON and OFF
•
Short circuit to battery and ground indication
•
Overtemperature switch off detection
•
Stable diagnostic signal during short circuit
•
Enhanced kILIS dependency with temperature and load current
Protection Functions
•
Stable behavior during undervoltage
•
Reverse polarity protection with external components
•
Secure load turn-off during logic ground disconnection with external components
•
Overtemperature protection with restart
•
Overvoltage protection with external components
•
Enhanced short circuit operation
Data Sheet
5
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Block Diagram
2
Block Diagram
VS
voltage sensor
internal
power
supply
over
temperature
driver
logic
IN
ESD
protection
DEN
gate control
&
charge pump
T
clamp for
inductive load
over current
switch limit
load current sense and
open load detection
OUT
IS
forward voltage drop detection
GND
Figure 1
Block diagram.emf
Block Diagram for the BTS40k2-1EJC
Data Sheet
PROFET™ 12V
6
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
GND
1
8
OUT
IN
2
7
OUT
DEN
3
6
OUT
IS
4
5
NC
Pinout Single.vsd
Figure 1
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Function
1
GND
GrouND: Ground connection
2
IN
INput channel: Input signal for channel activation
3
DEN
Diagnostic ENable: Digital signal to enable/disable the diagnosis of the
device
4
IS
Sense: Sense current of the selected channel
5
NC
Not Connected: No internal connection to the chip
6, 7, 8
OUT
OUTput: Protected high side power output channel1)
Cooling Tab
VS
Voltage Supply: Battery voltage
1) All output pins must be connected together on the PCB. All pins of the output are internally connected together. PCB
traces have to be designed to withstand the maximum current which can flow.
Data Sheet
PROFET™ 12V
7
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Pin Configuration
3.3
Voltage and Current Definition
Figure 2 shows all terms used in this data sheet with the associated convention for positive values.
IS
VS
VS
IIN
IN
VIN
VDS
IDEN
IOUT
DEN
OUT
VDEN
IIS
VOUT
IS
GND
VIS
IGND
voltage and current convention .vsd
Figure 2
Voltage and Current Definition
Data Sheet
PROFET™ 12V
8
Rev. 1.0 2015-11-09
BTS40k2-1EJC
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 2
Absolute Maximum Ratings 1)
TJ = -40°C to 150°C; (unless specified otherwise)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Supply Voltages
Supply voltage
VS
-0.3
–
48
V
–
P_4.1.1
Reverse polarity voltage
-VS(REV)
0
–
28
V
t < 2 min
TA = 25 °C
RL ≥ 25 Ω
ZGND = Diode
+27 Ω
P_4.1.2
Supply voltage for short
circuit protection
VBAT(SC)
0
–
36
V
P_4.1.3
RSupply = 10 mΩ
LSupply = 5 µH
RECU= 20 mΩ
RCable= 16 mΩ/m
LCable= 1 µH/m,
l = 0 or 5 m
See Chapter 6
and Figure 28
Supply voltage for Load
dump protection
VS(LD)
–
–
65
V
2)
nRSC1
–
–
100
3)
k
cycles tON = 300ms
P_4.1.4
Voltage at INPUT pin
VIN
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.13
Current through INPUT pin
IIN
-2
–
2
mA
–
P_4.1.14
Voltage at DEN pin
VDEN
-0.3
–
–
6
7
V
–
t < 2 min
P_4.1.15
Current through DEN pin
IDEN
-2
–
2
mA
–
P_4.1.16
Voltage at IS pin
VIS
-0.3
–
VS
V
–
P_4.1.19
Current through IS pin
IIS
-25
–
50
mA
–
P_4.1.20
| IL |
–
–
IL5(SC)
A
–
P_4.1.21
RI = 2 Ω
RL = 25 Ω
P_4.1.12
Short Circuit Capability
Permanent short circuit
IN pin toggles
Input Pins
Sense Pin
Power Stage
Load current
Data Sheet
PROFET™ 12V
9
Rev. 1.0 2015-11-09
BTS40k2-1EJC
General Product Characteristics
Table 2
Absolute Maximum Ratings 1) (cont’d)
TJ = -40°C to 150°C; (unless specified otherwise)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Power dissipation (DC)
PTOT
–
–
1.8
W
TA= 85 °C
TJ < 150 °C
P_4.1.22
Maximum energy
dissipation
Single pulse
EAS
–
–
20
mJ
IL(0)= 1 A
TJ(0) = 150 °C
VS = 13.5 V
P_4.1.23
Maximum Energy
dissipation repetitive pulse
EAR
–
–
50
mJ
1Mio cycles
TA < 105 °C
VS = 13.5 V
IL(0) = 350 mA
P_4.1.25
Voltage at power transistor
VDS
–
–
65
V
–
P_4.1.26
-20
-150
–
20
20
mA
–
t < 2 min
P_4.1.27
Currents
Current through ground pin IGND
Temperatures
Junction temperature
TJ
-40
–
150
°C
–
P_4.1.28
Storage temperature
TSTG
-55
–
150
°C
–
P_4.1.30
VESD
-2
–
2
kV
4)
HBM
P_4.1.31
HBM
P_4.1.32
ESD Susceptibility
ESD susceptibility (all pins)
ESD susceptibility OUT Pin
vs. GND and VS connected
VESD
-4
–
4
kV
4)
ESD susceptibility
VESD
-500
–
500
V
5)
CDM
P_4.1.33
ESD susceptibility pin
(corner pins)
VESD
-750
–
750
V
5)
CDM
P_4.1.34
1) Not subject of production test. Specified by design.
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.
3) EOL tests according to AECQ100-012. Threshold limit for short circuit failures: 100pm. Please refer to the legal
disclaimer for short-circuit capability on the last page of this document.
4) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001.
5) “CDM” ESDA STM5.3.1 or ANSI/ESD 5.5.3.1
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Data Sheet
PROFET™ 12V
10
Rev. 1.0 2015-11-09
BTS40k2-1EJC
General Product Characteristics
4.2
Functional Range
Table 3
Functional RangeTJ = -40°C to 150°C; (unless specified otherwise)
Parameter
Nominal operating voltage
Symbol
VNOM
Values
Min.
Typ.
Max.
8
13.5
18
Unit
Note or
Test Condition
Number
V
–
P_4.2.1
2)
Extended operating voltage VS (OP)
5
–
48
V
VIN = 4.5 V
RL = 25 Ω
VDS < 0.5 V
P_4.2.2
Minimum functional supply VS(OP)_MIN
voltage
3.8
4.3
5
V
1)
VIN = 4.5 V
RL = 25 Ω
From IOUT = 0 A
to
VDS < 0.5 V; see
Figure 13
P_4.2.3
Undervoltage shutdown
VS (UV)
3
3.5
4.1
V
1)
VIN = 4.5 V
VDEN = 0 V
RL = 25 Ω
From VDS < 1 V;
to IOUT = 0 A
See Figure 13
P_4.2.4
Undervoltage shutdown
hysteresis
VS(UV)_HYS
–
850
–
mV
2)
P_4.2.13
Operating current channel
active
IGND_1
–
6
9
mA
VIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 18 V
P_4.2.5
Standby current for whole
device with load
IS (OFF)
–
0.1
0.5
µA
1)
VS = 18 V
VOUT = 0 V
VIN floating
VDEN floating
TJ ≤ 85 °C
P_4.2.7
Maximum standby current
for whole device with load
IS (OFF)_150
–
–
5
µA
VS = 18 V
VOUT = 0 V
VIN floating
VDEN floating
TJ = 150 °C
P_4.2.10
–
0.6
–
mA
2)
P_4.2.8
Standby current for whole IS (OFF_D EN)
device with load, diagnostic
active
–
VS = 18 V
VOUT = 0 V
VIN floating
VDEN = 5.5 V
1) Test at TJ = -40°C only
2) Not subject to production test. Specified by design.
Data Sheet
PROFET™ 12V
11
Rev. 1.0 2015-11-09
BTS40k2-1EJC
General Product Characteristics
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Table 4
Thermal Resistance
Parameter
Junction to soldering point
Junction to ambient
All channels active
Symbol
RthJS
RthJA
Values
Min.
Typ.
Max.
–
5
–
–
38
–
Unit
Note or
Test Condition
Number
K/W
1)
P_4.3.1
K/W
1)2)
P_4.3.2
1) Not subject to production test. Specified by design.
2) Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip
+ package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35 µm Cu).
Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to
Figure 2.
Data Sheet
PROFET™ 12V
12
Rev. 1.0 2015-11-09
BTS40k2-1EJC
General Product Characteristics
4.3.1
PCB set up
70µm
1.5mm
35µm
0.3mm
Figure 2
PCB 2s2p.vsd
2s2p PCB Cross Section
1
2
3
8
7
COOLING
TAB
VS
6
4
5
thermique So8.vsd
Figure 3
PC Board Top and Bottom View for Thermal Simulation with 600 mm2 Cooling Area
Data Sheet
PROFET™ 12V
13
Rev. 1.0 2015-11-09
BTS40k2-1EJC
General Product Characteristics
4.3.2
Thermal Impedance
Zth-ja [K/W]
100
10
1s0p-footprint
1s0p-300mm²
1s0p-600mm²
2s2p
1
0.0001
Figure 4
0.001
0.01
0.1
1
Time [s]
10
100
1000
Typical Thermal Impedance. 2s2p PCB set up according Figure 2
90
85
80
Rthja [K/W]
75
70
65
60
55
1s0p
50
45
40
0
footprint
Figure 5
100
200
300
400
500
600
700
Area [mm2]
Typical Thermal Impedance. 2s2p PCB set up according Figure 2
Data Sheet
PROFET™ 12V
14
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Power Stage
5
Power Stage
The power stage is built using an N-channel vertical power MOSFET (DMOS) with charge pump.
5.1
Output ON-state Resistance
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 6
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 6.4.
400
500
450
350
400
RDS(ON) [mΩ ]
RDS(ON) [mΩ ]
300
250
350
300
200
250
150
100
-40
Figure 6
200
-20
0
20
40
60
80
100
Junction Temperature TJ [°C]
120
140
150
160
0
5
10
15
Supply Voltage VS [V]
20
25
30
Typical ON-state Resistance
A high signal on the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,
which is optimized in terms of EMC emission.
5.2
Turn ON/OFF Characteristics with Resistive Load
Figure 7 shows the typical timing when switching a resistive load.
IN
VIN_H
VIN_L
t
VOUT
dV/dt ON
dV/dt
90% VS
tOFF_delay
70% VS
30% VS
OFF
t ON
tON_delay
tOFF
10% VS
t
Switching times.vsd
Figure 7
Switching a Resistive Load Timing
Data Sheet
PROFET™ 12V
15
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Power Stage
5.3
Inductive Load
5.3.1
Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device by
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 8 and Figure 9 for details. Nevertheless, the
maximum allowed load inductance is limited.
VS
ZDS(AZ)
VDS
INx
LOGIC
IL
VBAT
GND
VIN
OUTx
L, RL
VOUT
ZGND
Output clamp.vsd
Figure 8
Output Clamp
IN
t
V OUT
VS
t
V S-VDS(AZ)
IL
t
Switching an inductance.vsd
Figure 9
Switching an Inductive Load Timing
5.3.2
Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTS40k2-1EJC. This energy can
be calculated with following equation:
V S – V DS ( AZ )
RL × IL ⎞
L
E = V DS ( AZ ) × ------ × -------------------------------× ln ⎛ 1 – -------------------------------+ IL
⎝
RL
RL
V S – V DS ( AZ )⎠
Data Sheet
PROFET™ 12V
16
(5.1)
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Power Stage
Following equation simplifies under the assumption of RL = 0 Ω.
VS
2
1
⎞
E = --- × L × I × ⎛⎝ 1 – -------------------------------2
V S – V DS ( AZ )⎠
(5.2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 10 for
the maximum allowed energy dissipation as a function of the load current.
EAS (mJ)
100
10
1
0
0.5
1
1.5
2
2.5
3
IL(A)
Figure 10
Maximum Energy Dissipation Single Pulse, TJ_START = 150 °C; VS = 13.5V
5.4
Inverse Current Capability
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 11). The
output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that
particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV
should not be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the
channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the
appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output
state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no
protection functions are available.
Data Sheet
PROFET™ 12V
17
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Power Stage
VBAT
VS
Gate driver
IL(INV)
OL
comp.
Device
logic
INV
Comp.
VINV
OUT
GND
IS
ZGND
inverse current.vsd
Figure 11
Inverse Current Circuitry
Data Sheet
PROFET™ 12V
18
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Power Stage
5.5
Electrical Characteristics Power Stage
Table 5
Electrical Characteristics: Power Stage
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
ON-state resistance
RDS (ON)_150
300
360
400
mΩ
IL= IL4 = 1 A
VIN = 4.5 V
TJ = 150 °C
See Figure 6
P_5.5.1
ON-state resistance
RDS (ON)_25
–
200
–
mΩ
1)
P_5.5.21
TJ = 25 °C
Nominal load current
IL(NOM)1
–
1.5
–
A
1)
Output voltage drop
limitation at small load
currents
VDS (NL)
–
10
22
mV
IL = IL0 = 25 mA
P_5.5.4
See Chapter 9.3
Drain to source clamping
voltage
VDS(AZ) = [VS - VOUT]
VDS (AZ)
65
70
75
V
IDS= 20 mA
P_5.5.5
Output leakage current
TJ ≤ 85 °C
IL (OFF)
–
0.1
0.5
µA
2)
VIN floating
VOUT = 0 V
TJ ≤ 85 °C
P_5.5.6
Output leakage current
TJ = 150 °C
IL (OFF)_150
–
1
5
µA
VIN floating
VOUT = 0 V
TJ = 150 °C
P_5.5.8
Inverse current capability
IL(INV)
–
1
–
A
1)
P_5.5.9
Data Sheet
PROFET™ 12V
19
TA= 85 °C
TJ < 150 °C
P_5.5.2
VS< VOUTX
See Figure 11
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Power Stage
Table 5
Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
RL = 25 Ω
VS = 13.5 V
See Figure 7
P_5.5.11
Slew rate
30% to 70% VS
dV/ dtON
0.20
0.47
1.0
V/µs
Slew rate
70% to 30% VS
-dV/ dtOFF
0.20
0.47
1.0
V/µs
Slew rate matching
dV/dtON - dV/dtOFF
ΔdV/ dt
-0.15
0
0.15
V/µs
P_5.5.13
Turn-ON time to VOUT = 90% tON
VS
20
70
120
µs
P_5.5.14
Turn-OFF time to VOUT = 10% tOFF
VS
20
70
120
µs
P_5.5.15
-50
0
50
µs
P_5.5.16
Turn-ON time to VOUT = 10% tON_delay
VS
10
40
70
µs
P_5.5.17
Turn-OFF time to VOUT = 90% tOFF_delay
VS
10
40
70
µs
P_5.5.18
Switch ON energy
EON
–
70
–
µJ
1)
RL = 25 Ω
VOUT = 90% VS
VS = 18 V
P_5.5.19
Switch OFF energy
EOFF
–
80
–
µJ
1)
P_5.5.20
Turn-ON / OFF matching
tOFF - tON
ΔtSW
P_5.5.12
RL = 25 Ω
VOUT = 10% VS
VS = 18 V
1) Not subject to production test, specified by design.
2) Test at TJ = -40°C only
Data Sheet
PROFET™ 12V
20
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Protection Functions
6
Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction
of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside”
normal operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1
Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN
pins.
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the
BTS40k2-1EJC to ensure switching OFF the channel.
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 12 sketches
the situation.
ZGND is recommended to be a resistor in series to a diode .
ZIS(AZ)
VS
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DEN
R DEN
LOGIC
IN
R IN
IOUT(GND)
OUT
ZDESD
GND
RIS
IS
ZGND
Loss of ground protection
.vsd
Figure 12
Loss of Ground Protection with External Components
6.2
Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in
the VNOM range. Figure 13 sketches the undervoltage mechanism.
Data Sheet
PROFET™ 12V
21
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Protection Functions
VOUT
undervoltage behavior
.vsd
VS(UV)
Figure 13
Undervoltage Behavior
6.3
Overvoltage Protection
VS(OP)
VS
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.
Figure 14 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than
VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a
result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and
DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the
device was ON, prior to overvoltage, the BTS40k2-1EJC remains ON. In the case the BTS40k2-1EJC was OFF,
prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC)
and below VDS(AZ), the output transistor is still operational and follows the input. If the channel is in the ON
state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage
range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ZGND
is recommended to be a resistor in series to a diode.
ISOV
ZIS(AZ)
VS
ZD(AZ)
IS
RSENSE
VBAT
ZDS(AZ)
DEN
R DEN
LOGIC
IN
R IN
OUT
ZDESD
GND
R IS
ZGND
Overvoltage protection.vsd
Figure 14
Overvoltage Protection with External Components
Data Sheet
PROFET™ 12V
22
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Protection Functions
6.4
Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. The current
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor.
Figure 15 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the
device. Resistors RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection
stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended
value for RDEN = RIN = RSENSE = 10 kΩ. It is recommended to use a resistor in series to a diode in the ground path.
During reverse polarity, no protection functions are available.
Micro controller
protection diodes
VS
Z IS(AZ)
ZD(AZ)
IS
RSENSE
ZDS(AZ)
VDS(REV)
DEN
R DEN
LOGIC
IN
R IN
-V S(REV)
IN0
OUT
ZDESD
GND
IS
R GND
R IS
D
Reverse Polarity.vsd
Figure 15
Reverse Polarity Protection with External Components
6.5
Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTS40k2-1EJC
offers several protection mechanisms.
6.5.1
Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which
affects the current flowing in the DMOS.
6.5.2
Temperature Limitation in the Power DMOS
The channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch
OFF latches the output until the temperature has reached an acceptable value. Figure 16 gives a sketch of the
situation.
A retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch
is switched ON again, if the IN pin is still high (restart behavior).
Data Sheet
PROFET™ 12V
23
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Protection Functions
IN
t
IL
LOAD CURRENT LIMITATION PHASE
IL(x)SC
LOAD CURRENT BELOW
LIMITATION PHASE
IL(NOM)
t
TDMOS
ΔT J(SW)
TJ(SC)
ΔTJ(SW)
ΔTJ(SW)
TA
tsIS(FAULT)
t
ΔTSTEP
IIS
tsIS(OT_blank)
IIS(FAULT)
IL(NOM) / kILIS
0A
VDEN
t
tsIS(OFF )
0V
t
Hard start.vsd
Figure 16
Overload Protection
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application
dependant and cannot be described.
Data Sheet
PROFET™ 12V
24
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Protection Functions
6.6
Electrical Characteristics for the Protection Functions
Table 6
Electrical Characteristics: Protection
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
IOUT (GND)
–
0.1
–
mA
1)2)
VS = 28 V
See Figure 12
P_6.6.1
VDS (REV)
200
650
700
mV
3)
IL = - 1 A
See Figure 15
P_6.6.2
VS (AZ)
65
70
75
V
ISOV = 5 mA
See Figure 14
P_6.6.3
Load current limitation
IL5 (SC)
5
7
9
A
4)
VDS = 5 V
See Figure 16
P_6.6.4
Short circuit current during
over temperature toggling
IL (RMS)
-
1.7
-
A
2)
VIN = 4.5V
RSHORT =100 mΩ
LSHORT= 5 µH
P_6.6.12
Dynamic temperature
increase while switching
ΔTJ (SW)
–
80
–
K
5)
See Figure 16
P_6.6.8
Thermal shutdown
temperature
TJ (SC)
150
1705)
2005)
°C
3)
See Figure 16
P_6.6.10
Thermal shutdown
hysteresis
ΔTJ(SC)
–
30
–
K
3) 5)
Loss of Ground
Output leakage current
while GND disconnected
Reverse Polarity
Drain source diode voltage
during reverse polarity
Overvoltage
Overvoltage protection
Overload Condition
1)
2)
3)
4)
5)
See Figure 16
P_6.6.11
All pins are disconnected except VS and OUT.
Not Subject to production test, specified by design
Test at TJ = +150°C only
Test at TJ = -40°C only
Functional test only
Data Sheet
PROFET™ 12V
25
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
7
Diagnostic Functions
For diagnosis purpose, the BTS40k2-1EJC provides a combination of digital and analog signals at pin IS. These
signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case
DEN is activated, the sense current of the channel is enabled.
7.1
IS Pin
The BTS40k2-1EJC provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load
at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and
diagnostic mechanism is described on Figure 17. The accuracy of the sense current depends on temperature
and load current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with
other devices if these devices are using another battery feed. The consequence is that the unsupplied device
would be fed via the IS pin of the supplied device.
Vs
FAULT
IIS (FAULT)
I IS =
I L / k ILIS
ZIS(AZ)
1
1
IS
0
0
DEN
Sense schematic.vsd
Figure 17
Diagnostic Block Diagram
Data Sheet
PROFET™ 12V
26
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
7.2
SENSE Signal in Different Operating Modes
Table 7 gives a quick reference for the state of the IS pin during device operation.
Table 7
Sense Signal, Function of Operation Mode
Operation Mode
Input level Channel X
DEN
Output Level Diagnostic Output
Normal operation
OFF
H
Z
Z
Short circuit to GND
~ GND
Z
Overtemperature
Z
Z
Short circuit to VS
VS
IIS(FAULT)
Open Load
< VOL(OFF)
> VOL(OFF)1)
Z
IIS(FAULT)
Inverse current
~ VINV
IIS(FAULT)
~ VS
IIS = IL / kILIS
Current limitation
< VS
IIS(FAULT)
Short circuit to GND
~ GND
IIS(FAULT)
Overtemperature TJ(SW)
event
Z
IIS(FAULT)
Short circuit to VS
VS
IIS < IL / kILIS
Open Load
~ VS2)
IIS < IIS(OL)
Inverse current
~ VINV
IIS < IIS(OL)3)
Underload
~ VS4)
IIS(OL) < IIS < IL / kILIS
Don’t care
Z
Normal operation
Don’t care
1)
2)
3)
4)
ON
Don’t care
L
Stable with additional pull-up resistor.
The output current has to be smaller than IL(OL).
After maximum tINV.
The output current has to be higher than IL(OL).
7.3
SENSE Signal in the Nominal Current Range
Figure 18 shows the current sense as a function of the load current in the power DMOS. Usually, a pull-down
resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 Ω to limit the power
losses in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal sense current,
assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full
temperature range at a defined current.
Data Sheet
PROFET™ 12V
27
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
6
5
IIS [mA]
4
3
2
1
min/max Sense Current
typical Sense Current
0
0
0.2
0.4
0.6
0.8
IL [A]
1
1.2
1.4
1.6
BTS40k2
BTS40k2‐1EJC
Figure 18
Current Sense for Nominal Load
7.3.1
SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement,
a calibration on the application is possible. To avoid multiple calibration points at different load and
temperature conditions, the BTS40k2-1EJC allows limited derating of the kILIS value, at a given point (IL3; TJ =
+25 °C). This derating is described by the parameter ΔkILIS. Figure 19 shows the behavior of the sense current,
assuming one calibration point at nominal load at +25 °C.
The blue line indicates the ideal kILIS ratio.
The red lines indicate the derating on the parameter across temperature and voltage, assuming one
calibration point at nominal temperature and nominal battery voltage.
The black lines indicate the kILIS accuracy without calibration.
Data Sheet
PROFET™ 12V
28
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
500
calibrated k ILIS
min/max k ILIS
typical k ILIS
450
400
k ILIS
350
300
250
200
150
0
0.2
0.4
0.6
0.8
IL [A]
1
1.2
1.4
1.6
BTS40k2
BTS40k2‐1EJC
Figure 19
Improved Current Sense Accuracy with One Calibration Point
7.3.2
SENSE Signal Timing
Figure 20 shows the timing during settling and disabling of the SENSE.
V IN
t
IL
tON
tOFF
tON
90% of
IL static
t
VDEN
IIS
tsIS(ON)
90% of
IIS static
t
tsIS(LC)
tsIS(OFF)
tsIS(ON_DEN)
t
current sense settling disabling time .vsd
Figure 20
Current Sense Settling / Disabling Timing
Data Sheet
PROFET™ 12V
29
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
7.3.3
SENSE Signal in Open Load
7.3.3.1
Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the
power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE
current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 21
shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve
shows the ideal current sense.
I IS
IIS(OL)
IL
IL(OL)
Sense for OL .vsd
Figure 21
Current Sense Ratio for Low Currents
7.3.3.2
Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to
be taken into account. Figure 22 gives a sketch of the situation. Ileakage defines the leakage current in the
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion,
etc... in the application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized
by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is
switched to the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can
be used as well for short circuit to battery detection, see Chapter 7.3.4.
Data Sheet
PROFET™ 12V
30
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
Vbat
SOL
VS
R OL
IIS(FAULT)
OL
comp.
OUT
IS
ILOFF
Ileakage
GND
Rleakage
VOL(OFF)
R PD
RIS
ZGND
Open Load in OFF.vsd
Figure 22
Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3
Open Load Diagnostic Timing
Figure 23 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open
load in OFF diagnosis request, otherwise the diagnosis can be wrong.
Load is present
Open load
VIN
VOUT
t
VS-V OL(OFF)
RDS(ON) x IL
shutdown with load
t
IOUT
IIS
tsIS(FAULT_OL_ON_OFF)
t
tsIS(LC)
Error Settling Disabling Time.vsd
Figure 23
Sense Signal in Open Load Timing
7.3.4
SENSE Signal in Short Circuit to VS
t
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTS40k2-1EJC, which can be recognized at the current
sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In
that case, an external resistor to ground RSC_VS is required. Figure 24 gives a sketch of the situation.
Data Sheet
PROFET™ 12V
31
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
Vbat
VS
IIS(FAULT)
VBAT
OL
comp.
IS
OUT
V OL(OFF)
GND
RIS
IS
ZGND
RSC_VS
Short circuit to Vs.vsd
Figure 24
Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5
SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has a thermal restart behavior, such that when the overtemperature or the exceed dynamic
temperature condition has disappeared, the DMOS is reactivated if the IN is still at logic level one. If the DEN
pin is activated the SENSE is not toggling with the resstart mechanism and remains to IIS(FAULT).
7.3.6
SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal will indicate open load in OFF state and indicate open load in
ON state.
Data Sheet
PROFET™ 12V
32
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
7.4
Electrical Characteristics Diagnostic Function
Table 8
Electrical Characteristics: Diagnostics
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS-VOL (OFF)
4
–
6
V
VIN = 0 V
VDEN = 4.5 V
See Figure 23
P_7.5.1
Open load detection
threshold in ON state
IL (OL)
5
–
15
mA
VIN= VDEN = 4.5 V
IIS(OL)= 33 μA
See Figure 21
P_7.5.2
IS pin leakage current when IIS_(DI S)
sense is disabled
–
0.02
1
µA
VIN = 4.5 V
VDEN = 0 V
IL = IL4 = 1 A
P_7.5.4
VS - VIS
1
–
3.5
V
2)
VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
P_7.5.6
6
15
35
mA
VIS = VIN = VDSEL = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
See Figure 17
P_7.5.7
65
70
75
V
IIS = 5 mA
See Figure 17
P_7.5.3
Sense Pin
Sense signal saturation
voltage
Sense signal maximum
current in fault condition
(RANGE)
IIS (FAULT)
Sense pin maximum voltage VIS (AZ)
VS to IS
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
Current sense ratio
IL0 = 10 mA
kILIS0
-50%
330
+50%
Current sense ratio
IL1 = 0.05 A
k ILIS1
-40%
300
+40%
Current sense ratio
IL2 = 0.2 A
kILIS2
-15%
300
+15%
P_7.5.10
Current sense ratio
IL3 = 0.5 A
kILIS3
-11%
300
+11%
P_7.5.11
Current sense ratio
IL4 = 1 A
kILIS4
-9%
300
+9%
P_7.5.12
kILIS de-rating with current
and temperature
ΔkILIS
-5
0
+5
Data Sheet
PROFET™ 12V
33
VIN = 4.5 V
VDEN = 4.5 V
See Figure 18
TJ = -40 °C; 150 °C
%
2)
kILIS3 versus kILIS2
See Figure 19
P_7.5.8
P_7.5.9
P_7.5.17
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
Table 8
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Current sense settling time tsIS (ON)
to kILIS function stable after
positive input slope on both
INput and DEN
–
–
150
µs
VDEN = VIN = 0 to 4.5 V P_7.5.18
VS = 13.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 0.5 A
See Figure 20
Current sense settling time tsIS (ON_DEN)
with load current stable and
transition of the DEN
–
–
10
µs
VIN= 4.5 V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 0.5 A
See Figure 20
–
–
15
µs
P_7.5.20
VIN = 4.5 V
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL2 = 0.2 A to IL = IL3
= 0.5 A
See Figure 20
–
–
50
µs
VIN= 0V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 13.5 V
See Figure 23
P_7.5.22
–
150
–
µs
2)
P_7.5.23
–
150
µs
1)
Diagnostic Timing in Normal Condition
Current sense settling time
to IIS stable after positive
input slope on current load
tsIS (LC)
2)
P_7.5.19
Diagnostic Timing in Open Load Condition
Current sense settling time
to IIS stable for open load
detection in OFF state
Current sense settling time
to IIS stable for open load
detection in ON-OFF
transition
tsIS
(FAULT_OL_OFF)
tsIS
(FAULT_OL_ON_
OFF)
VIN = 4.5 to 0V
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 13.5 V
Diagnostic Timing in Overload Condition
Current sense settling time
to IIS stable for overload
detection
Data Sheet
PROFET™ 12V
tsIS (FAULT)
–
34
VIN = VDEN = 0 to 4.5 V P_7.5.24
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V
See Figure 16
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Diagnostic Functions
Table 8
Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Current sense over
temperature blanking time
tsIS(OC_blank)
–
350
–
µs
2)
VIN = VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V to 0 V
See Figure 16
P_7.5.32
Diagnostic disable time
DEN transition to
IIS < 50% IL /kILIS
tsIS (OFF)
–
–
20
µs
VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 0.5 A
See Figure 20
P_7.5.25
1) Test at TJ = -40°C only
2) Not subject to production test, specified by design
Data Sheet
PROFET™ 12V
35
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Input Pins
8
Input Pins
8.1
Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin
is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state.
The input circuitry is compatible with PWM applications. Figure 25 shows the electrical equivalent input
circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not
module ground) via an 10kΩ input resistor.
IN
GND
Figure 25
Input Pin Circuitry
8.2
DEN Pin
Input circuitry .vsd
The DEN pins enable and disable the diagnostic functionality of the device. This pin has the same structure as
the INput pin, please refer to Figure 25.
8.3
Input Pin Voltage
The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set
by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and
depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a
hysteresis is implemented. This ensures a certain immunity to noise.
Data Sheet
PROFET™ 12V
36
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Input Pins
8.4
Electrical Characteristics
Table 9
Electrical Characteristics: Input Pins
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note or
Test Condition
Number
INput Pin Characteristics
Low level input voltage
range
VIN (L)
-0.3
–
0.8
V
P_8.4.1
High level input voltage
range
VIN (H)
2
–
6
V
P_8.4.2
Input voltage hysteresis
VIN (HYS)
–
250
–
mV
1)
P_8.4.3
Low level input current
IIN (L)
1
10
25
µA
VIN = 0.8 V
P_8.4.4
High level input current
IIN (H)
2
10
25
µA
VIN = 5.5 V
P_8.4.5
Low level input voltage
range
VDEN (L)
-0.3
–
0.8
V
–
P_8.4.6
High level input voltage
range
VDEN (H)
2
–
6
V
–
P_8.4.7
Input voltage hysteresis
VDEN (HYS)
–
250
–
mV
1)
P_8.4.8
Low level input current
IDEN (L)
1
10
25
µA
VDEN = 0.8V
P_8.4.9
High level input current
IDEN (H)
2
10
25
µA
VDEN = 5.5 V
P_8.4.10
DEN Pin
1) Not subject to production test, specified by design
Data Sheet
PROFET™ 12V
37
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Application Information
9
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
VBAT
Voltage Regulator
T1
OUT
VS
GND
Z
C VS
ROL
VDD
VS
I/O
R DEN
I/O
R IN
DEN
Micro
controller
OUT
IN
OUT4
C OUT
RPD
OUT3
A/D
IS
R SENSE
GND
CSENSE
RIS
GND
R GND
D
Figure 26
Application Diagram with BTS40k2-1EJC
Note: This is a very simplified example of an application circuit. The function must be verified in the real
application.
Data Sheet
PROFET™ 12V
38
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Application Information
Table 10
Bill of Material
Reference Value
Purpose
RIN
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
Guarantee BTS40k2-1EJC channel is OFF during loss of ground
RDEN
10 kΩ
Protection of the microcontroller during overvoltage, reverse polarity
RPD
47 kΩ
Polarization of the output for short circuit to VS detection
Improve BTS40k2-1EJC immunity to electomagnetic noise
RROL
1.5 kΩ
Ensures polarization of the BTS40k2-1EJC output during open load in OFF
diagnostic
RIS
1.2 kΩ
Sense resistor
RSENSE
10 kΩ
Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro
controller specification.
CSENSE
100 pF
Sense signal filtering.
COUT
10nF
Protection of the device during ESD and BCI
RGND
27 Ω
Protection of the BTS40k2-1EJC during overvoltage
D
BAS21
Protection of the BTS40k2-1EJC during reverse polarity
Z
58V Zener
diode
Protection of the device during overvoltage
CVS
100 nF
Filtering of voltage spikes at the battery line
T1
BC 807
Switch the battery voltage for open load in OFF diagnostic
9.1
Further Application Information
•
Please contact us to get the pin FMEA
•
Existing App. Notes
•
For further information you may visit http://www.infineon.com/profet
Data Sheet
PROFET™ 12V
39
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Package Outlines
10
Package Outlines
0.35 x 45˚
1.27
0.41±0.09 2)
0.2
M
0.19 +0.06
0.08 C
Seating Plane
C A-B D 8x
0.64 ±0.25
D
0.2
6 ±0.2
8˚ MAX.
C
0.1 C D 2x
1.7 MAX.
Stand Off
(1.45)
0.1+0
-0.1
3.9 ±0.11)
M
D 8x
Bottom View
8
1
5
1
4
8
4
5
2.65 ±0.2
3 ±0.2
A
B
4.9 ±0.11)
0.1 C A-B 2x
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width
3) JEDEC reference MS-012 variation BA
Figure 27
PG-DSO-8-27-PO V01
PG-DSO-8-43 EP (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
PROFET™ 12V
40
Rev. 1.0 2015-11-09
BTS40k2-1EJC
Revision History
11
Revision History
Version
Date
Changes
1.0
2015-11-09
Creation of the document
Data Sheet
PROFET™ 12V
41
Rev. 1.0 2015-11-09
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I2RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, myd™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,
SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
www.infineon.com
Edition 2015-11-09
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Legal Disclaimer for short-circuit capability
Infineon disclaims any warranties and liabilities,
whether expressed nor implied, for any shortcircuit failures below the threshold limit.
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of noninfringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.