BTS41K0S-ME-N Data Sheet (1.4 MB, EN)

BTS41k0S-ME-N
Smart High-Side NMOS-Power Switch
Datasheet
Rev 1.1, 2012-05-08
Automotive Power
BTS41k0S-ME-N
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6
Typical Performance Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7
7.1
7.2
7.3
7.4
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Application Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Package outlines and footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Datasheet
2
6
6
7
7
14
14
15
16
17
Rev 1.1, 2012-05-08
Smart High-Side NMOS-Power Switch
1
BTS41k0S-ME-N
Overview
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Current controlled input
Capable of driving all kind of loads (inductive, capacitive and resitive)
Negative voltage clamped at output with inductive loads
Current limitation
Very low standby current
Thermal shutdown with restart
Overload protection
Short circuit protection
Overvoltage protection (including load dump)
Reverse battery protection
Loss of GND and loss of Vbb protection
ESD-Protection
Improved electromagnetic compatibility (EMC)
Green Product (RoHS compliant)
AEC Qualified
PG-SOT223-4
Description
The BTS41k0S-ME-N is a protected 1 Ω single channel Smart High-Side NMOS-Power Switch in a PG-SOT2234 package with charge pump and current controlled input, monolithically integrated in a smart power technology.
Product Summary
Overvoltage protection VS(AZ) = min.62V
Operating voltage range 4,9V < VS < 45V
On-state resistance RON typ 1Ω
Operating Temperature range Tj = -40°C to 150°C
Application
•
•
•
•
All types of resistive, inductive and capacitive loads in automotive applications
Current controlled power switch for 12V, 24V and 45V DC automotive and industrial applications
Driver for electromagnetic relays
Signal amplifier
Type
Package
Marking
BTS41k0S-ME-N
PG-SOT223-4
41k0SN
Datasheet
3
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Block Diagram and Terms
2
Block Diagram and Terms
BTS41k0S-ME-N
2, 4
VS
Control
Circuit
Temperature
Sensor
RIN
3
OUT
1
IN
Figure 1
Block diagram
Voltage- and Current-Definitions:
Switching Times and Slew Rate Definitions:
IIN
BTS41k0S-ME-N
2, 4
IIN(ON)
0
VS
VOUT
IS
IIN(OFF )
VDS
90%
VON
Control
Circuit
dV/tOFF
Temperature
Sensor
3
1
40%
30%
dV/t ON
IL
10%
0
RL
I IN
OUT
VOUT
IN
70%
VS
RIN
VIN
Datasheet
t ON
t
tOFF
IL
0
GND
Figure 2
t
+VS
OFF
ON
OFF
t
Terms - parameter definition
4
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
4
1
2
Figure 3
Pin configuration top view, PG-SOT223-4
3.2
Pin Definitions and Functions
Pin
Symbol Function
3
1
IN
Input, activates the power switch in case of connection to GND
2
VS
Supply voltage
3
OUT
Output to the load
4
VS
Supply voltage
Datasheet
5
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute maximum ratings 1)Tj = -40°C to 150°C all voltages with respect to ground,
currents flowing into the device unless otherwise specified in “Terms”
Pos.
Parameter
Symbol
Limit values
Min.
Unit
Conditions
Max.
Supply voltage VS
4.1.1
Voltage
60
VS
V
Output stage OUT
4.1.2
Output Current; (Short circuit current see
electrical characteristics)
I OUT
Input Current
I IN
-15
15
mA
A
self limited
Input IN
4.1.3
Temperatures
4.1.4
Junction Temperature
Tj
-40
150
°C
4.1.5
Storage Temperature
Tstg
-55
150
°C
1.7
W
1000
mJ
93.5
127
V
V
-1
1
kV
HBM2)
-5
5
kV
HBM2)
Power dissipation
4.1.6
P tot
Ta = 25 °C
Device on 50mm*50mm*1.5mm epoxy PCB
FR4 with 6 cm2 (one layer, 70mm thick)
copper area for Vbb connection. PCB is
vertical without blown air
Inductive load switch-off energy dissipation
4.1.7
Tj = 150 °C; IL=0.15A; single pulse 1)
EAS
Load dump protection
4.1.8
VLoadDump =VA + VS
RL=2Ω; td = 400ms; VIN = H or L
IL=0.15A; VS= 13.5V
VLoadDump
VS= 27V
VLoadDump
VLoadDump is set up without the device under
test connected to the generator per ISO
7637-1 and DIN 40839
ESD Susceptibility
4.1.9
ESD susceptibility (input pin)
4.1.10
ESD susceptibility (all other pins)
VESD
VESD
1) Not subject to production test, specified by design
2) ESD susceptibility HBM according to EIA/JESD 22-A 114.
Note: Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated protection
functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are
considered as “outside” the normal operating range. Protection functions are not designed for continuous or repetitive
operation.
Datasheet
6
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
General Product Characteristics
4.2
Pos.
Functional Range
Parameter
4.2.1
Nominal Operating Voltage
4.2.2
Standby Current
Symbol Limit values
VS
IS(off)
Unit
Conditions
Min.
Max.
4.9
45
V
VS increasing
2
10
uA
IN open
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
This thermal data was generated in accordance to JEDEC JESD51 standards.
More information on www.jedec.org.
Thermal Resistance1)
Table 1
Pos.
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Test Condition
4.3.1
Thermal Resistance - Junction to Rthj-pin4
soldering point, pin4
15
K/W
4.3.2
Thermal Resistance - Junction to RthJA_1s0p
Ambient - 1s0p, minimal footprint
86
K/W
2)
4.3.3
Thermal Resistance - Junction to RthJA_1s0p_600mm
Ambient - 1s0p, 600mm2
60
K/W
3)
1) Not subject to production test, specified by design
2) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, footprint; the Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70µm Cu.
3) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board, 600mm2; the Product
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1x 70µm Cu.
Datasheet
7
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Electrical Characteristics
5
Electrical Characteristics
VS = 9V to 45V; Tj = -40°C to 150°C; all voltages with respect to ground, currents flowing into the device
unless otherwise specified in chapter “Block Diagram and Terms”); typical values at Vs = 13.5V, Tj = 25°C
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
Powerstage (PMOS and Diode to GND)
5.0.1
NMOS ON Resistance
RDSON
0.8
1.5
Ω
IOUT= 150mA;
Tj = 25°C;
5.0.2
NMOS ON Resistance
RDSON
1.5
3.0
Ω
IOUT= 150mA;
Tj = 150°C;
IN conected to GND
IN conected to GND
5.0.3
NMOS ON Resistance
RDSON
5.0.4
Nominal Load Current 1);
device on PCB 2)
IL(nom)
2
5
Ω
IOUT= 50mA;
Tj = 25°C;
VS = 6V;
IN conected to GND
0.2
A
Ta = 85°C;
Tj = 150°C;
Timings of Power Stages
5.0.5
Turn ON Time 3) (to 90% of Vout);
VS to GND transition of VIN
tON
125 4)
5.0.6
Turn ON Time 3) (to 90% of Vout);
VS to GND transition of VIN
tON
5.0.7
Turn OFF Time 3) (to 10% of Vout);
GND to VS transition of VIN
tOFF
5.0.8
Turn OFF Time 3) (to 10% of Vout);
GND to VS transition of VIN
tOFF
5.0.9
ON-Slew Rate 3) (10 to 30% of Vout); dVOUT /
dtON
VS to GND transition of VIN
5.0.10
ON-Slew Rate 3) (10 to 30% of Vout); dVOUT /
VS to GND transition of VIN
dtON
5.0.11
OFF-Slew Rate 3) ;
(70 to 40% of Vout);
GND to VS transition of VIN
dVOUT /
dtOFF
5.0.12
OFF-Slew Rate 3) ;
(70 to 40% of Vout);
GND to VS transition of VIN
dVOUT /
dtOFF
1.7
4.0
V / μs VS=13.5V;
RL = 270Ω
Tj = 25°C
IS(off)
2
10
μA
45
100
175 4)
40
140
6 4)
1.3
4.0
8 4)
μs
VS=13.5V;
RL = 270Ω
μs
VS=13.5V;
RL = 270Ω;
Tj = 25°C
μs
VS=13.5V;
RL = 270Ω
μs
VS=13.5V;
RL = 270Ω;
Tj = 25°C
V / μs VS=13.5V;
RL = 270Ω
V / μs VS=13.5V;
RL = 270Ω
Tj = 25°C
V / μs VS=13.5V;
RL = 270Ω
Standby current consumption
5.0.13
Standby current
Datasheet
8
IN open
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Electrical Characteristics
VS = 9V to 45V; Tj = -40°C to 150°C; all voltages with respect to ground, currents flowing into the device
unless otherwise specified in chapter “Block Diagram and Terms”); typical values at Vs = 13.5V, Tj = 25°C
Pos.
Parameter
Symbol
Limit Values
Min.
Protection functions
Conditions
A
Tj = -40°C; VS = 13.5V
tm = 100µs
Tj = 25°C; VS = 13.5V
tm = 100µs
Tj =150°C; VS = 13.5V
tm = 100µs
Max.
5)
5.0.14
Initial peak short circuit current limit IL(SCp)
IN conected to GND
5.0.15
Initial peak short circuit current limit IL(SCp)
IN conected to GND
5.0.16
Initial peak short circuit current limit IL(SCp)
IN conected to GND
5.0.17
Repetitive short circuit current limit IL(SCr)
IN conected to GND
5.0.18
Typ.
Unit
Output clamp at
VOUT = VS - VON(CL)
1.2
0.9
A
0.2
A
0.7
VON(CL)
60
VS(AZ)
62
150
A
V
IS = 4mA
V
IS = 1mA
(inductive load switch off)
5.0.19
Overvoltage protection
VOUT = VS - VON(CL)
5.0.20
Thermal overload
trip temperature 4)
TjTrip
5.0.21
Thermal hysteresis 4)
THYS
68
°C
10
°C
Input interface
5.0.22
Off state input current
IIN(off)
0.05
mA
5.0.23
Off state input current
IIN(off)
0.04
mA
5.0.24
On state input current;
IN connected to GND 6)
IIN(on)
0.3
1.0
mA
5.0.25
Input resistance
RIN
1.0
2.5
kΩ
0.2
A
0.5
Tj = -25°C; RL = 270Ω
VOUT =< 0.1V
Tj = 150°C; RL = 270Ω
VOUT =< 0.1V
Reverse Battery
5.0.26
5.0.27
IDRev
Forward voltage of the drain-source VFDS
Continuous reverse drain current
770
reverse diode
mV
IFDS = 200mA
IIN =< 0.05mA
1) Nominal Load Current is limited by the current limitation; see protection function data
2) Device on 50mm x 50mm x 1,5mm epoxy FR4 PCB with 6cm² (one layer copper 70um thick) copper area for supply voltage
connection. PCB in vertical position with blown air
3) Timing values only with high input slewrates (trIN = tfIN <= 50ns); otherwise slower
4) Not tested in production
5) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet.
Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous
repetitive operation.
6) Driver circuit must be able to sink currents > 1mA
Datasheet
9
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Typical Performance Graphs
6
Typical Performance Graphs
Transient Thermal Impedance ZthJA versus
Pulse Time tp @ 6cm² heatsink area (D= tp/T)
Transient Thermal Impedance ZthJA versus
Pulse Time tp @ min footprint (D= tp/T)
On-Resistance RDSONversus
Junction Temperature Tj @ VS = 9V; IL =150mA
On-Resistance RDSON versus
Supply Voltage VS = Vbb @ IL = 150mA; Tj= par.
Datasheet
10
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Typical Performance Graphs
Switch ON Time tON versus
Junction Temperature Tj @ RL = 270Ω; VS= par.
Switch OFF Time tOFFversus
Junction Temperature Tj @ RL = 270Ω; VS= par.
ON Slewrate SRON versus
Junction Temperature Tj @ RL = 270Ω; VS= par.
OFF Slewrate SROFF versus
Junction Temperature Tj @ RL = 270Ω; VS= par.
Datasheet
11
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Typical Performance Graphs
Initial Peak Short Circuit Current Limt IL(SCp) versus Initial Short Circuit Shutdown Time toff(SC) versus
Junction Temperature Tj @ VS=13,5V; tm=100μs
Junction Start-Temperature Tj start ; VS= parameter
Initial Peak Short Circuit Current Limt IL(SCp) versus Current Limtation Characteristic IL(SC) versus
Supply Voltage VS = Vbb @ Tj= parameter; tm=100μs Drain Source Voltage Drop VON @ VS=13,5V
Datasheet
12
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Typical Performance Graphs
Stand By Current Consumption Is(off) versus
Junction Temperature Tj @ pin IN open )
Datasheet
13
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Application Information
7
Application Information
7.1
Application Diagram
The following information is given as a hint for the implementation of the device only and shall not be regarded as
a description or warranty for a certain functionality, condition or quality of the device.
Electronic Control Unit
BTS41k0S-ME-N
Wire
Harness
VS
complexLOAD 2, 4
CS
220nF
Control
Circuit
RIN
Chassis 3
Temperature
Sensor
3
Vc trl
ON
t
Vctrl
OUT
1
OFF
Wire
Harness
COUT
complex
LOAD
IN
1nF
Infineon
BCR 1xx
Chassis 2
Chassis 1
Figure 4
Application Diagram
The BTS41k0S-ME-N can be connected directly to the battery of a supply network. It is recommended to place a
ceramic capacitor (e.g. CS = 220nF) between supply and GND of the ECU to avoid line disturbances. Wire harness
inductors/resistors are sketched in the application circuit above.
The complex load (resistive, capacitive or inductive) must be connected to the output pin OUT.
A built-in current limit protects the device against destruction.
The BTS41k0S-ME-N can be switched on and off with a low power levelshifter switch e.g. Infineon BCR1xx.
The IN pin must be pulled down to GND potential to switch the BTS41k0S-ME-N on. If no current is pulled down,
the IN-node will float up to VS potential by an internal pull up. In this mode the BTS41k0S-ME-N is deactivated with
very low current consumption.
The output voltage slope is controlled during on and off transistion to minimize emissions. Only a small Cercap
COUT =1nF is recommended to attenuate RF noise.
In the following chapters the main features, some typical waverforms and the protection behaviour of the
BTS41k0S-ME-N is shown. For further details please refer to application notes on the Infineon homepage.
Datasheet
14
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Application Information
Special features
BTS41k0S-ME-N
2, 4
ZD 1
BTS41k0S-ME-N
VS
2, 4
ZD2
ZD1
D1
V ON
D1
Control
circuit
V B att
Temperature
Sensor
RIN
M1
3
Temperature
Sensor
R IN
OUT
VF M1
Control
circuit
IRev
ZD2
V FZD 1
M1
3
1
OUT
IRev1
1
IN
ZL
ZL
V ESD
V OU T
IN
VS
V Rev
7.2
IRev2
If Over-Voltage is applied to the V S-Pin:
Voltage is limited to VZD1; Current can be calculated :
IZD1 = (VS – VZD1) / RIN
In case of ESD Pulse on the input pin there is in both
polarities a peak current IINpeak ~ VESD / RIN
The control unit is protected in both cases by the
Zenerdiode ZD1
BTS41k0S-ME-N
2, 4
ZD 1
If reverse Voltage is applied to the device :
1.) Current via Load Resistance RL :
IRev1 = (VRev – VFM1) / RL
2.) Current via Input Resistance RIN :
IREV2 = (V Rev – VFZD1) / RIN
Both currents will sum up to:
IRev = IRev1+ IREV2
BTS41k0S-ME-N
VS
2, 4
ZD2
ZD1
M1
3
3
V OUT
OFF
Datasheet
EL
LL
ER
RL
ON
t
OFF t
When an inductive load is switched off a current path
must be established until the current is sloped down
to zero (all energy removed from the inductive load ).
For that purpose the series combination ZD 2 and D1
is connceted between Gate and Drain of the power
DMOS.
When the device is switched off, the voltage at OUT
turns negative until V ON(CL) is reached.
The Voltage on the incutive load is the difference
between V ON(CL) and VS.
Figure 5
OUT
1
IN
LL
ON
ELoad
Temperature
Sensor
R IN
OUT
IL
V ON(CL )
Control
circuit
V Batt
Temperature
Sensor
1
D1
V ON(CL )
D1
Control
circuit
IN
EBatt
ZD2
M1
RIN
VS
Energy stored in the load inductance is given by :
EL= IL²*L/2
While demagnetizing the load inductance the energy
dissipated by the Power -DMOS is:
EAS = ES + EL – ER
With an approximate solution for R L > 0Ω:
EAS = (IL*L) / (2*RL)*(VS+VON(CL))*ln((1+(IL*RL) / VON(CL))
Special Feature descriptions
15
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Application Information
7.3
Typical Application Waveforms
General Input Output waveforms:
IIN
Waveforms switching a resistive load:
IIN
IIN(ON)
0
IIN(OFF )
IIN(ON )
0
t
VS
I IN(OFF)
VOUT
+VS
VDS
90%
70%
t
VOUT
t
dV/t OFF
40%
30%
dV/tON
10%
0
0
t
IL
tON
t
t OFF
IL
0
0
t
ON
OFF
ON
OFF
Waveforms switching a capacitive load:
IIN
IIN
IIN(OFF )
V OUT
IL(SC)
0
t
Figure 6
Datasheet
OFF
t
IL
0
ON
t
~ VS
0
t
OFF
IIN(OFF)
VOUT
~ VS
IL
IIN(ON)
0
t
0
OFF
Waveforms switching an inducitive load :
IIN(ON)
0
ON
VON(CL)
OFF
t
ON
t
OFF
ON
OFF
ON
Typical application waveforms
16
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Application Information
7.4
Protection behavior
Overtemperature concept:
Overtemperature behavior
IIN
TjRestart
ON
0
TjTrip
Toggling
t
Tj
THYS
Normal
t
0
TJ
cooling
down
Device
Status
IIN(OFF)
VOUT
heating
up
OFF
IIN(ON )
TjTrip
THYS
Overtemperature
t
ON
OFF
Waveforms turn on into a short circuit :
IIN
IIN
IIN(OFF)
ON
OFF
Waveforms short circuit during on state :
I IN(ON)
0
OFF
IIN(ON )
0
t
VOUT
IIN(OFF)
t
VOUT
0
0
t
t
IL
IL
IL(SCp)
IL(SCr)
IL(SCr)
tm
0
OFF
Overloaded
0
t
toff(SC)
OFF
Shut down by overtemperature and
restart by cooling (toggling )
Figure 7
Datasheet
t
OFF
Normal
operation
OUT shorted to GND
Shut down by overtemperature and
restart by cooling (toggling )
Protective behaviour waveforms of the BTS41k0S-ME-N
17
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Package outlines and footprint
8
Package outlines and footprint
1.6±0.1
6.5 ±0.2
3 ±0.1
A
0.1 MAX.
B
1
0.25 M A
2
3
2.3
0.7 ±0.1
4.6
3.5 ±0.2
0.5 MIN.
7 ±0.3
4
0.28 ±0.04
0.25
M
B
0...10˚
SOT223-PO V04
Figure 8
PG-SOT223-4 (Plastic Dual Small Outline Package, RoHS-Compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020
Datasheet
18
Rev 1.1, 2012-05-08
BTS41k0S-ME-N
Revision History
9
Revision History
Revision
Date
Changes
V 1.1
12-05-08
Page 9: Line 5.0.27 changed from max 600mV to typ. 770mV
Page 13: Graph EAS vs IOUT deleted
Datasheet
19
Rev 1.1, 2012-05-08
Edition 2012-05-08
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011-11-23 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Similar pages