dm00098818

UM1685
User manual
EVAL6480H and EVAL6482H: high power microstepping motor
drivers
Introduction
The EVAL6480H and EVAL6482H are two demonstration boards based on L648x devices
implementing a complete stepper motor driver for high power applications. They are
designed to operate with a supply voltage ranging from 10.5 V to 85 V and mount eight
STD25NF10 MOSFETs with a maximum current of 25 A r.m.s..
In combination with the STEVAL-PCC009V2 demonstration board and the SPINFamily
evaluation tool, the boards provide a complete and easy to use evaluation environment
allowing the user to investigate all the features of the L648x devices. Both the boards
support the daisy chain configuration making them suitable for the evaluation of the devices
in multi motor applications.
April 2015
DocID025458 Rev 2
1/31
www.st.com
31
Contents
UM1685
Contents
1
Boards description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1
EVAL6480H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2
EVAL6482H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
Evaluation environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3
Device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1
Voltage mode driving (EVAL6480H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2
Advanced current control (EVAL6482H) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3
Gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4
Overcurrent and stall detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5
Speed profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4
Sensing resistors of the EVAL6482H . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5
How to change the supply configuration of the board . . . . . . . . . . . . 28
6
Daisy chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2/31
DocID025458 Rev 2
UM1685
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
EVAL6480H - electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
EVAL6480H - jumper and connector description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
EVAL6480H - master SPI connector pinout (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
EVAL6480H - slave SPI connector pinout (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
EVAL6480H - bill of material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
EVAL6482H - electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
EVAL6482H - jumper and connector description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
EVAL6482H - master SPI connector pinout (J3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
EVAL6482H - slave SPI connector pinout (J4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
EVAL6482H - bill of material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VCC supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
VREG supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
VDD supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DocID025458 Rev 2
3/31
31
List of figures
UM1685
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
4/31
EVAL6480H - jumper and connector location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
EVAL6480H - schematic part 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
EVAL6480H - schematic part 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
EVAL6480H - layout (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
EVAL6480H - layout (inner layer 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
EVAL6480H - layout (inner layer 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
EVAL6480H - layout (bottom layer ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
EVAL6482H - jumper and connector location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
EVAL6482H - schematic part 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
EVAL6482H - schematic part 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
EVAL6482H - layout (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
EVAL6482H - layout (inner layer 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
EVAL6482H - layout (inner layer 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
EVAL6482H - layout (bottom layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DocID025458 Rev 2
UM1685
Boards description
1
Boards description
1.1
EVAL6480H
Table 1. EVAL6480H - electrical specifications
Parameter
Value
Supply voltage (VS)
10.5 to 85 V
Maximum output current (each phase)
25 Ar.m.s. at 25 °C(1)
External MOSFET Rds(ON)
33 m typical at 25 °C(1)
Gate driver supply voltage (VCC)
7.5 V to 15 V
Logic supply voltage
3.3 V
Logic interface supply voltage
3.3 V or 5 V
Low level logic inputs
0V
High level logic input
VDD(2)
Operating temperature
-25 °C to +125 °C
1. Refer to STD25F10 datasheet for details.
2. All logic inputs are 5 V tolerant.
Figure 1. EVAL6480H - jumper and connector location
Slave SPI
connector
FLAG LED BUSY LED
Master SPI
connector
External switch
connector
(SW input)
Application
area
Motor supply voltage
compensation regulation
(ADCIN input)
Power supply connector
(10.5 V - 85 V)
Supply management
connector
(VS, VSREG, VCCREG and GND)
Supply management
jumpers
Phase A
connector
Phase B
connector
AM14874v1
DocID025458 Rev 2
5/31
31
Boards description
UM1685
Table 2. EVAL6480H - jumper and connector description
Name
Type
Function
J5
Power supply
Main supply voltage
J7
Power output
Power bridge A outputs
J8
Power output
Power bridge B outputs
J6
Power supply
Integrated voltage regulator inputs
J3
SPI
Master SPI connector
J4
SPI
Slave SPI connector
JP1
Jumper
VS to VSREG jumper
JP2
Jumper
VSREG to VCC jumper
JP3
Jumper
VCC to VCCREG jumper
JP4
Jumper
VCCREG to VREG jumper
JP5
Jumper
VREG to VDD jumper
JP6
Jumper
VDD to 3.3 V from SPI connector jump
JP7
Jumper
Daisy chain termination jumper
JP8
Jumper
STBY to VS pull-up jumper
TP8 (BUSY/SYNC)
Jumper
BUSY/SYNC output test point
Table 3. EVAL6480H - master SPI connector pinout (J3)
6/31
Pin number
Type
Description
1
Open drain output
L6480 BUSY output
2
Open drain output
L6480 FLAG output
3
Ground
Ground
4
Supply
EXT_VDD (can be used as external logic power supply)
5
Digital output
SPI master IN slave OUT signal (connected to the L6480
SDO output through daisy chain termination jumper JP7)
6
Digital input
SPI serial clock signal (connected to L6480 CK input)
7
Digital input
SPI master OUT slave IN signal (connected to L6480 SDI
input)
8
Digital input
SPI slave select signal (connected to L6480 CS input)
9
Digital input
L6480 step-clock input
10
Digital input
L6480 standby/reset input
DocID025458 Rev 2
UM1685
Boards description
Table 4. EVAL6480H - slave SPI connector pinout (J4)
Pin number
Type
Description
1
Open drain output
L6480 BUSY output
2
Open drain output
L6480 FLAG output
3
Ground
Ground
4
Supply
EXT_VDD (can be used as external logic power supply)
5
Digital output
SPI master IN slave OUT signal (connected to pin 5 of J3)
6
Digital input
SPI serial clock signal (connected to L6480 CK input)
7
Digital input
SPI master OUT slave IN signal (connected to L6480 SDO output)
8
Digital input
SPI slave select signal (connected to L6480 CS input)
9
Digital input
L6480 step-clock input
10
Digital input
L6480 standby/reset input
DocID025458 Rev 2
7/31
31
VS
8/31
1
R1
100
OSCIN
OSCOUT
STCK
FLAG
BUSY
DocID025458 Rev 2
2
2
1
3
5
7
9
1
3
5
7
9
2
4
6
8
10
J4
2
4
6
8
10
SPI_OUT
J3
SPI_IN
FLAG
3V3
DL1
LED - AMBER
R4
470
R2
39k
VDD
VDD
VDD
VDD
7
FLAG
BUSY
8
29
16
L6480 PGND DGND AGND
SDI
SDO
30
BUSY_SYNC
31 FLAG
CS
CK
STBY_RES
SW
STCK
35
GND
39
PGND
23
22
G_HS_B 2 21
OUT_B 2 20
G_LS_B 2
G_HS_B 1 18
OUT_B 1 19
G_LS_B 1
G_HS_A 2 37
OUT_A 2 38
G_LS_A 2
24
25
26
28
PGND
3
G_HS_A 1 2
OUT_A 1 1
G_LS_A 1
N.C. VBOOT
4
C9
47n/100V
BAV9
nCS
CK
SDI
SDO
CP
9
3
2
17
BUSY
FLAG
6
VS
D1
34
33
32
VCC_RE G
VCC
VS_RE G
U1
1
C1
470n/ 25V
STCK
11
10
12
C8
100n/100V
C2
220n/100V
VS
Application reference
36
DL2
LED- RED
R5
470
R3
39k
2
3V3
VS_REG
C7
470n/25V
JP6
13
VREG
27 VDD
5
ADC_IN
14
OSC_IN
15 OSC_OUT
VDD
1
VDD
2
VCC
C6
100n/25V
1
CK
nCS
STBY_RESET
3V3
C12
100p /6V3
CK
nCS
STBY_RESET
FLAG
C13
10n/ 6V3
STBY_RESET
ADC_IN
C5
22u/6V3
VCC_REG
1
1
STCK
BUSY
SDI
STCK
BUSY
C10
10n/6V3
STBY
ADC_IN
VDD VREG
C4
100n/4V
1
JP5
2
2
SDO
1
2
J2
N.M.
1
GND
1
2
1
STCK
J1
N.M.
1
1
FLAG
BUSY
1 ADC_IN
1 STBY_RESET
C3
100n/6V3
2
VREG
VREG
1
VCC_REG
JP4
VCC
2
JP3
1
STBY
1
VC C
1
ADCIN
2
VS_REG
JP2
1
VS
1
JP1
G_HS_B2
OUTB2
G_LS_B2
G_HS_B1
OUTB1
G_LS_B1
G_HS_A2
OUTA2
G_LS_A2
G_HS_A1
OUTA1
G_LS_A1
Boards description
UM1685
Figure 2. EVAL6480H - schematic part 1/2
JP7
1
AM14875v1
STBY
4
3
DocID025458 Rev 2
3
R8
50 k/0.125W
3
D2
BZX585-B3V3
2
2
D3
BZX585-B3V6
4
ADC_IN
Q6
STD25NF10
OUTA
2
3
R7
100k/0.125W
Q5
STD25NF10
4
Q2
STD25NF10
1
1
G_LS_A2
OUTA2
G_HS_A2
VS
G_LS_B1
OUTB1
C15
220n /100V
G_HS_B1
1
1
4
VS
1
1
J7
Q1
STD25NF10
3
G_LS_A1
VS
1
VS
1
2
OUTA1
C14
220n/100V
G_HS_A1
Application referenc e
C11A
220u/100V
Q7
Q8
STD25NF10
2
Q4
STD25NF10
OUTB
STD25NF10
1
J8
Q3
STD25NF10
VS
1
2
1
+
4
JP8
R9
N.M .
VDD
VS_REG VCC_REG
C11
220u/100V
4
3
R6
100k/0.125W
1
2
3
4
VS
+
OPTION
4
N.M.
J6
J5
2
1
4
VS_REG
VS
VS_REG
VCC_REG
GND
GND
VS
VS
1
1
G_LS_B2
OUTB2
G_HS_B2
UM1685
Boards description
Figure 3. EVAL6480H - schematic part 2/2
3
3
3
1
AM14880v1
9/31
31
Boards description
UM1685
Table 5. EVAL6480H - bill of material
Item Quantity
Reference
Value
Package
1
9
VS, VREG, VDD, VCC,
STCK, STBY, FLAG,
BUSY, ADCIN
TPTH-RING-1MM (red)
TPTH-RING-1MM
2
2
C1,C7
470 nF/25 V
CAPC-0603
3
1
C2
220 nF/100 V
CAPC-0805
4
1
C3
100 nF/6.3 V
CAPC-0603
5
1
C4
100 nF/4 V
CAPC-0603
6
1
C5
22 µF/6.3 V
CAPC-1206
7
1
C6
100 nF/25 V
CAPC-0603
8
1
C8
100 nF/100 V
CAPC-0603
9
1
C9
47 nF/100 V
CAPC-0805
10
2
C10, C13
10 nF/6.3 V
CAPC-0603
11
1
C11
220 µF/100 V
CAPES-R18H17
12
1
C11A
220 µF/100 V
CAPE-R16H21-P75
13
1
C12
100 pF/6.3 V
CAPC-0603
14
1
DL1
LED amber
LEDC-0805
15
1
DL2
LED red
LEDC-0805
16
1
D1
BAV99
SOT-23
17
1
D2
BZX585-B3V3
SOD523
18
1
D3
BZX585-B3V6
SOD523
19
1
GND
TPTH-RING-1MM (black)
TPTH-RING-1MM
20
5
JP1, JP3, JP5, JP7, JP8
Jumper CLOSED
JP2SO
21
3
JP2, JP4, JP6
Jumper OPEN
JP2SO
22
2
J1, J2
N. M.
STRIP254P-M-2
23
1
J3
Pol. IDC male header vertical
10 poles (black)
CON-FLAT-5X2-180M
24
1
J4
Pol. IDC male header vertical
10 poles (gray)
CON-FLAT-5X2-180M
25
3
J5, J7, J8
Screw connector 2 poles
MORSV-508-2P
26
1
J6
N. M.
STRIP254P-M-4
27
8
Q1, Q2, Q3, Q4, Q5, Q6,
Q7, Q8
STD25NF10
DPAK
28
1
R1
100 
RESC-0603
29
2
R2, R3
39 k
RESC-0603
30
2
R4, R5
470 
RESC-0603
31
2
R6, R7
100 k/ 0.125 W
RESC-0603
10/31
DocID025458 Rev 2
UM1685
Boards description
Table 5. EVAL6480H - bill of material (continued)
Item Quantity
Reference
Value
Package
32
1
R8
33 k/ 0.125 W
TRIMM-100X50X110-64W
33
1
R9
N. M.
RESC-0603
34
1
U1
L6480
HTSSOP050P-660X110-38-EP
DocID025458 Rev 2
11/31
31
Boards description
UM1685
Figure 4. EVAL6480H - layout (top layer)
Figure 5. EVAL6480H - layout (inner layer 2)
12/31
DocID025458 Rev 2
UM1685
Boards description
Figure 6. EVAL6480H - layout (inner layer 3)
Figure 7. EVAL6480H - layout (bottom layer )
DocID025458 Rev 2
13/31
31
Boards description
1.2
UM1685
EVAL6482H
Table 6. EVAL6482H - electrical specifications
Parameter
Value
Supply voltage (VS)
10.5 to 85 V
Maximum output current (each phase)
6 Ar.m.s. at 25 °C(1)
External MOSFET Rds(ON)
33 m typical at 25 °C(2)
Gate driver supply voltage (VCC)
7.5 V to 15 V
Logic supply voltage
3.3 V
Logic interface supply voltage
3.3 V or 5 V
Low level logic input
0V
High level logic input
VDD(3)
Operating temperature
-25 °C to +125 °C
1. Limited by the mounted sensing resistors.
2. Refer to STD25NF10 datasheet for details.
3. All logic inputs are 5 V tolerant.
Figure 8. EVAL6482H - jumper and connector location
Slave SPI
connector
FLAG LED
BUSY LED
Master SPI
connector
External switch
connector
(SW input)
Application
area
ADCIN input
Power supply connector
(10.5 V - 85 V)
Supply management
connector
(VS, VSREG, VCCREG and GND)
Supply management
jumpers
Phase A
connector
Phase B
connector
AM15181v1
14/31
DocID025458 Rev 2
UM1685
Boards description
Table 7. EVAL6482H - jumper and connector description
Name
Type
Function
J5
Power supply
Main supply voltage
J7
Power output
Power bridge A outputs
J8
Power output
Power bridge B outputs
J6
Power supply
Integrated voltage regulator inputs
J3
SPI
Master SPI connector
J4
SPI
Slave SPI connector
JP1
Jumper
VS to VSREG jumper
JP2
Jumper
VSREG to VCC jumper
JP3
Jumper
VCC to VCCREG jumper
JP4
Jumper
VCCREG to VREG jumper
JP5
Jumper
VREG to VDD jumper
JP6
Jumper
VDD to 3.3 V from SPI connector jumper
JP7
Jumper
Daisy chain termination jumper
JP8
Jumper
STBY to VS pull-up jumper
Table 8. EVAL6482H - master SPI connector pinout (J3)
Pin number
Type
Description
1
Open drain output
L6482 BUSY output
2
Open drain output
L6482 FLAG output
3
Ground
Ground
4
Supply
EXT_VDD (can be used as external logic power supply)
5
Digital output
SPI master IN slave OUT signal (connected to the L6482 SDO
output through daisy chain termination jumper JP7)
6
Digital input
SPI serial clock signal (connected to L6482 CK input)
7
Digital input
SPI master OUT slave IN signal (connected to L6482 SDI input)
8
Digital input
SPI slave select signal (connected to L6482 CS input)
9
Digital input
L6482 step-clock input
10
Digital input
L6482 standby/reset input
DocID025458 Rev 2
15/31
31
Boards description
UM1685
Table 9. EVAL6482H - slave SPI connector pinout (J4)
Pin number
Type
Description
1
Open drain output
L6482 BUSY output
2
Open drain output
L6482 FLAG output
3
Ground
Ground
4
Supply
EXT_VDD (can be used as external logic power supply)
5
Digital output
SPI master IN slave OUT signal (connected to pin 5 of J3)
6
Digital input
SPI serial clock signal (connected to L6482 CK input)
7
Digital input
SPI master OUT slave IN signal (connected to L6482 SDO output)
8
Digital input
SPI slave select signal (connected to L6482 CS input)
9
Digital input
L6482 step-clock input
10
Digital input
L6482 standby/reset input
16/31
DocID025458 Rev 2
C3
1
DocID025458 Rev 2
2
1
3
5
7
9
1
3
5
7
9
J4
SPI_OUT
J3
SPI_IN
2
4
6
8
10
2
4
6
8
10
2
1
CK
nCS
STBY_RESET
FLAG
CK
nCS
STBY_RESET
3V3
3V3
1
JP5
BUSY
DL1
LED - AMBER
R4
470
R2
39k
VDD
VDD
VDD
VDD
VDD
BUSY
FLAG
FLAG
30
31
24
25
26
28
14
15
5
13
27
11
10
12
C8
100n/100V
L6482
6
VS
1
D1
8
29
16
9
3
2
7
39
GND
VBOOT
C9
47n/100V
BAV99
C1
470n/25V
CP
PGND DGND AGND
BUSY_SYNC
FLAG
CS
CK
SDI
SDO
STBY_RES
SW
STCK
OSC_IN
OSC_OUT
ADC_IN
VREG
VDD
VCC_REG
VCC
VS_REG
U1
C2
220n/100V
VS
Application reference
STCK
BUSY
FLAG
VS_REG
C7
470n/25V
VDD
2
3V3
nCS
CK
SDI
SDO
DL2
LED - RED
R5
470
R3
39k
1
JP6
34
33
32
VDD
2
VCC
C6
100n/25V
VREG VREG
2
VREG
VCC_REG
C5
22u/6V3
C12
100p/6V3
C4
100n/4V
FLAG
C13
10n/6V3
STBY_RESET
ADC_IN
VREG
1
JP4
VCC_REG
2
STCK
BUSY
SDI
STCK
BUSY
C10
10n/6V3
STBY
ADC_IN
100n/6V3
VDD
VCC VCC
2
JP3
1
2
SDO
1
2
J2
N.M.
R1
100
OSCIN
OSCOUT
STCK
FLAG
BUSY
1
VCC
1
JP7
1
2
1
GND
1
STCK
1
FLAG
1
J1
N.M.
GND
STCK
FLAG
BUSY
BUSY
1 STBY_RESET
STBY
1 ADC_IN
ADC_IN
2
JP2
VS_REG
1
STBY
1
VS
VS
1
JP1
1
ADCIN
VS
SENSEB
G_HS_B2
OUT_B2
G_LS_B2
G_HS_B1
OUT_B1
G_LS_B1
SENSEA
G_HS_A2
OUT_A2
G_LS_A2
G_HS_A1
OUT_A1
G_LS_A1
23
22
21
20
17
18
19
35
36
37
38
3
2
1
SENSEB
G_HS_B2
OUTB2
G_LS_B2
G_HS_B1
OUTB1
G_LS_B1
SENSEA
G_HS_A2
OUTA2
G_LS_A2
G_HS_A1
OUTA1
G_LS_A1
UM1685
Boards description
Figure 9. EVAL6482H - schematic part 1/2
1
AM15182v1
17/31
31
18/31
STBY
DocID025458 Rev 2
R17
3
50k/0.125W
3
D2
BZX585-B3V3
2
4
1
3
2
D3
BZX585-B3V6
R7
100k/0.125W
4
JP8
R9
N.M.
3
R18
0R1/2W
ADC_IN
R19
0R1/2W
1
1
G_LS_A2
OUTA2
G_HS_A2
SENSEB
G_LS_B1
OUTB1
C15
220n/100V
G_HS_B1
VS
1
1
4
Q6
STD25NF10
OUTA
2
Q2
STD25NF10
3
R6
100k/0.125W
VS
1
J7
1
2
Q5
STD25NF10
1
Q1
STD25NF10
J8
R20
R21
0R1/2W 0R1/2W
Q8
STD25NF10
2
Q4
STD25NF10
OUTB
Q7
STD25NF10
1
Q3
STD25NF10
VS
1
2
SENSEA
VS
1
VS
4
G_LS_A1
OUTA1
C14
220n/100V
G_HS_A1
Application reference
C11A
220u/100V
4
VDD
VCC_REG
+
3
VS_REG
VS_REG
C11
220u/100V
4
N.M.
1
2
3
4
VS
+
OPTION
4
J6
J5
2
1
4
VS
VS_REG
VCC_REG
GND
GND
VS
VS
1
1
G_LS_B2
OUTB2
G_HS_B2
Boards description
UM1685
Figure 10. EVAL6482H - schematic part 2/2
3
3
3
1
AM15183v1
UM1685
Boards description
Table 10. EVAL6482H - bill of material
Item Quantity
Reference
Value
Package
1
9
VS, VREG, VDD, VCC,
STCK, STBY, FLAG, BUSY,
ADCIN
TPTH-RING (red)
TPTH-RING-1MM
2
1
GND
TP-RING (black)
TPTH-RING-1MM
3
2
C1,C7
470 nF/25 V
CAPC-0603
4
3
C2, C14, C15
220 nF/100 V
CAPC-0805
5
1
C3
100 nF/6.3 V
CAPC-0603
6
1
C4
100 nF/4 V
CAPC-0603
7
1
C5
22 µF/6.3 V
CAPC-1206
8
1
C6
100 nF/25 V
CAPC-0603
9
1
C8
100 nF/100 V
CAPC-0603
10
1
C9
47 nF/100 V
CAPC-0805
11
2
C10, C13
10 nF/6.3 V
CAPC-0603
12
1
C11
220 µF/100 V
CAPES-R18H17
13
1
C11A
220 µF/100 V
CAPE-R16H21-P75
14
1
C12
100 pF/6.3 V
CAPC-0603
15
1
DL1
LED amber
LEDC-0805
16
1
DL2
LED red
LEDC-0805
17
1
D1
BAV99
SOT-23
18
1
D2
BZX585-B3V3
SOD523
19
1
D3
BZX585-B3V6
SOD523
20
5
JP1, JP3, JP5, JP7, JP8
Jumper CLOSED
JP2SO
21
3
JP2, JP4, JP6
Jumper OPEN
JP2SO
22
2
J1, J2
N. M.
STRIP254P-M-2
23
1
J3
Pol. IDC male header vertical
10 poles (black)
CON-FLAT-5X2-180M
24
1
J4
Pol. IDC male header vertical
10 poles (gray)
CON-FLAT-5X2-180M
25
3
J5, J7, J8
Screw connector 2 poles
MORSV-508-2P
26
1
J6
N. M.
STRIP254P-M-4
27
8
Q1, Q2, Q3, Q4, Q5, Q6,
Q7, Q8
STD25NF10
DPAK
28
1
R1
100 
RESC-0603
29
2
R2, R3
39 k
RESC-0603
30
2
R4, R5
470 
RESC-0603
31
2
R6, R7
100 k/ 0.125 W
RESC-0603
DocID025458 Rev 2
19/31
31
Boards description
UM1685
Table 10. EVAL6482H - bill of material (continued)
Item Quantity
Reference
Value
Package
32
1
R9
N. M.
RESC-0603
33
1
R17
50 k/ 0.125 W
TRIMM-100X50X110-64W
34
4
R18, R19, R20, R21
0.1 /2W
RESC-2010
35
1
U1
L6482
HTSSOP050P-660X110-38-EP
20/31
DocID025458 Rev 2
UM1685
Boards description
Figure 11. EVAL6482H - layout (top layer)
AM15185v1
Figure 12. EVAL6482H - layout (inner layer 2)
AM15187v1
DocID025458 Rev 2
21/31
31
Boards description
UM1685
Figure 13. EVAL6482H - layout (inner layer 3)
AM15188v1
Figure 14. EVAL6482H - layout (bottom layer)
AM15189v1
22/31
DocID025458 Rev 2
UM1685
2
Evaluation environment setup
Evaluation environment setup
The evaluation environment is composed by:

One or more EVAL6480H or EVAL6482H device

One STEVAL-PCC009V2 demonstration board

A USB cable

A stepper motor with a small mechanical load (unloaded stepper motors suffer of
strong resonance issues)

A power supply with an output voltage within the operative range of the evaluation
board

A PC with a Microsoft© Windows® 7 or Windows XP operating system and with a free
USB port

The SPINFamily evaluation tool (the last version can be downloaded from the
STMicroelectronics® website).
In order to start using the evaluation environment the following steps are required:
1.
Install the SPINFamily evaluation tool.
2.
Start the SPINFamily evaluation tool (by default it is in Start menu > All programs >
STMicroelectronics > SPINFamily Evaluation Tool).
3.
Select the proper device when requested by the application.
4.
Plug the STEVAL-PCC009V2 demonstration board to a free USB port.
5.
Wait a few seconds for board initialization.
6.
Connect the SPI_IN connector (black) of the demonstration board to the 10-pin
connector of the STEVAL-PCC009V2 board using the provided cable.
For connecting more devices to the same board, please consult Section 6: Daisy
chaining on page 29.
7.
Power up the demonstration boards. The FLAG LED should turn on.
8.
Click on the button with the USB symbol to connect the STEVAL-PCC009V2 board to
the PC and initialize the evaluation environment.
The application automatically identifies the number of demonstration boards
connected.
9.
The evaluation environment is ready.
Before start working with the demonstration board, the device must be configured according
to the indications described in Section 3: Device configuration.
Warning:
Important - the device configuration is mandatory. The
default configuration is not operative.
DocID025458 Rev 2
23/31
31
Device configuration
3
UM1685
Device configuration
This section offers an overview of the basic configuration steps which are required for make
the demonstration board operative. More details about the configuration of the gate driving
circuitry and the control algorithms are available in the AN4354 “L648x devices: gate drivers
setup”.
Warning:
Important - the device configuration is mandatory. The
default configuration is not operative.
Important - before changing the device configuration verify
that the device is in high impedance status (power stage is
disabled).
3.1
Voltage mode driving (EVAL6480H)
The configuration parameters of the voltage mode driving can be obtained through the
BEMF compensation tool embedded in the SPINFamily software.
A wrong setup of these parameters could cause several issues, in particular:

The phase current decreases with the speed and the motor will stall.

The wrong voltage is applied to the motor and the system is very noisy.

The phase current reaches the overcurrent limit.
The BEMF compensation form uses the application parameters as inputs in order to
evaluate the proper device setup.
The required inputs are:

Supply voltage.

Target phase current (r.m.s. value) at different motion conditions (acceleration,
deceleration, constant speed and holding).

Target operating speed (maximum speed).

Motor characteristics.
The motor characteristics are: electrical constant (Ke), phase inductance and resistance.
The inductance and the resistance of the phase are given in the motor datasheet. The Ke is
rarely given in the specification and must be measured.
In the help section of the SPINFamily software a step by step procedure is explained. The
same procedure can also be found in the application note “AN4144: Voltage mode control
operation and parameter optimization” on www.st.com.
Click on the “evaluate” button to get the suggested setup for the voltage mode driving. Then
click on “write” button to copy the data into the registers of the L6480 device.
24/31
DocID025458 Rev 2
UM1685
3.2
Device configuration
Advanced current control (EVAL6482H)
The following configuration gives good results with most of motors:

Minimum ON time = 4 µs.

Minimum OFF time = 21 µs.

Max fast decay = 10 µs.

Max fast decay at step change = 16 µs.

Target switching time = 48 µs.

Predictive current control enabled.
The impact of the timing parameters are explained in the application note “AN4158: Peak
current control with automatic decay adjustment and predictive current control: basics and
setup” on www.st.com.
The target phase current is set through the TVAL registers. The TVAL determinates the
reference voltage (i.e. the voltage drop on the sense resistors) corresponding to the peak of
the current sine wave (microstepping operation):
Equation 1
Ipeak = TVAL_X / Rsense = TVAL_X / 0.05
The sensing resistors can be changed as described in Section 5: How to change the supply
configuration of the board.
3.3
Gate drivers
The configuration of the gate driving circuitry depends on the external MOSFETs
characteristics. The demonstration boards mount the STD25NF10 Power MOSFETs.
Warning:
Important - a wrong gate driving setup may cause spurious
overcurrent failures even if no load is connected to the power
stage.
According to the STD25NF10 datasheet the total gate charge required to turn on the
MOSFET is about 55 nC.
The charge supplied by the device at each commutation is equal to the gate current (Igate)
multiplied by the controlled current time (tcc). With a gate current of 64 mA and a controller
current time of 1000 ns, 64 nC are provided to the gate. The gate current can be changed in
order to speed up or slow down the commutation speed (i.e. the slew rate of the power
stage outputs); in this case the controlled current time should be changed accordingly.
The boards are designed to operate with a VCC voltage of 15 V, so the corresponding value
for the integrated regulator should be set. The UVLO threshold should be 11 V.
At each commutation some voltage oscillations are generated. This noise could trigger the
overcurrent protection. This event is avoided by adding a blanking time after each
commutation.
A blanking time of 500 ns prevents the occurrence of spurious overcurrent detection in most
operative conditions.
DocID025458 Rev 2
25/31
31
Device configuration
UM1685
In conclusion the suggested configuration for the demonstration boards is following:
3.4

VCC value = 15 V.

UVLO threshold = 11 V (10 V on boot).

Gate current = 64 mA.

Controlled current time = 1 s.

Dead time = 250 ns.

Blanking time = 500 ns.

Turn OFF boost time = disabled.
Overcurrent and stall detection thresholds
The overcurrent protection and the stall detection (EVAL6480H only) are implemented by
measuring the drain-source voltage of the MOSFETs, hence their value is a voltage and not
a current.
The protection thresholds are set according to the voltage drop caused by the target
triggering current on the MOSFET RdsON at the expected operating temperature (in fact this
parameter increases with temperature).
During the preliminary stages of evaluation, the max. value of 1000 mV can be set for both
protections. The default value of 281.25 mV has a good probability to trigger the overcurrent
alarm.
Warning:
3.5
Important - it is strongly discouraged to disable the
overcurrent shutdown. It may result in critical failures.
Speed profile
The max. speed parameter is the maximum speed the motor will run. By default, it is about
1000 step/s. That means, if you send a command to run at 2000 step/s, the motor speed is
limited at 1000 step/s.
This is an important safety feature in the final application, but not necessarily useful to
evaluate the device performances. Setting the parameter to high values (e.g. 6000 step/s)
allows evaluating the maximum speed which can be achieved by the application under test
through the speed tracking command (Run), but it probably limits the possibility to use
positioning commands (Move, GoTo, etc.).
The Full-step speed parameter indicates the speed at which the system switches from
microstepping to full step operation.
In voltage mode driving devices (EVAL6480H), it is always recommended to operate in
microstepping and not to switch to the full step. Hence, this parameter should be greater
than the maximum speed.
26/31
DocID025458 Rev 2
UM1685
4
Sensing resistors of the EVAL6482H
Sensing resistors of the EVAL6482H
The output current range of the board is determined by the sensing resistors as indicated in
Equation 2 and Equation 3:
Equation 2
Ipeak,min = 7.8 mV / Rsense
Equation 3
Ipeak,max = 1 V / Rsense
Where 7.8 mV and 1 V are the minimum and the maximum value of the TVAL registers.
However the actual output current is usually limited by the power rating of the sensing
resistors:
Equation 4
I out limit =
Note:
P d max
-----------------R sense
(r.m.s. value)
The power rating of the sensing resistor determining the maximum output current is 50% of
the nominal one.
If the operative range resulting from the sensing resistors which are mounted on the board
is not suitable for the application, it is possible to change these components in order to fit the
requirements.
The sensing resistors should make the current control to operate with a peak reference
voltage between 0.2 and 0.1 volts. This way the power dissipation on the sensing resistor is
not excessive and the offset of the sensing circuitry does not affect the performance of the
current control algorithm.
Equation 5
Rsense = 0.2 V / Ipeak
DocID025458 Rev 2
27/31
31
How to change the supply configuration of the board
5
UM1685
How to change the supply configuration of the board
The configuration of the supply voltages can be changed through the jumpers from J1 to J6
as listed in Table 11, Table 12 and Table 13.
Table 11. VCC supply configurations
Configuration
JP1
Internally generated from
Closed
VS
JP2
VSREG range
Notes
Open
VCC + 3 V ÷ 85 V
Default.
VCC value is determined by the internal regulator
configuration.
Internally generated from
a voltage source different
from VS
Open
Open
VCC + 3 V ÷ VS
VCC value is determined by the internal regulator
configuration.
External protection diode could be required
(see following text below table).
Externally supplied
(equal to VSREG)
Open
Closed
7.5 V ÷ 15 V
External protection diode could be required
(see following text below table).
Note:
When the VCC voltage of 7.5 V is used, the charge pump diodes should be replaced with
low-drop ones (suggested part BAR43SFILM). Otherwise the resulting boot voltage could
be lower than the respective UVLO threshold and the device is not operative.
When the VSREG pin is not shorted to the VS (JP1 is open) particular care must be taken in
order to avoid that the VBOOT voltage falls below the VSREG one (e.g. VS is floating and
VSREG is supplied). In this case the internal ESD diode is turned on and the device could
be damaged.
Adding a low drop diode between the VSREG and VS protects the internal ESD diode from
this event (the diodes of the charge pump must also be low drop type).
Table 12. VREG supply configurations
Configuration
JP3
JP4
VCCREG range
Notes
Internally generated from
Closed
VCC
Open
VCC
Default.
Internally generated from
a voltage source different
from VCC
Open
Open
6.3 V ÷ VCC
External protection diode could be required
(see following text below table).
Externally supplied
(equal to VCCREG)
Open
Closed
3.3 V
External protection diode could be required
(see following text below table).
When the VCCREG pin is not shorted to the VCC (JP3 is open) particular care must be
taken in order to avoid that the VCC voltage falls below the VCCREG one. In this case the
internal ESD diode is turned on and the device could be damaged.
Adding a low drop diode between the VCCREG and VCC protects the internal ESD diode
from this event.
28/31
DocID025458 Rev 2
UM1685
Daisy chaining
Table 13. VDD supply configurations
Configuration
JP5
JP6
VDD range
Notes
Supplied by VREG
Closed
Open
3.3 V
Default, 3.3 V logic.
Supplied by SPI
connectors
Open
Closed
3.3 V or 5 V
3.3 V when connected to the STEVAL-PCC009V2
Supplied by VDD test
point
Open
Open
3.3 V or 5 V
Must be 3.3 V if connected to the STEVAL-PCC009V2
6
Daisy chaining
More demonstration boards can be connected in daisy chain mode.
To drive two or more boards in daisy chain configuration:
Note:
1.
Connect the STEVAL-PCC009V2 board 10-pin connector to the SPI_IN connector of
the first demonstration board through the 10-pole flat cable.
2.
Open the termination jumper (see Section 1.1: EVAL6480H on page 5 and Section 1.2:
EVAL6482H on page 14).
3.
Connect the SPI_OUT connector of the first demonstration board to the SPI_IN of the
next one through the 10-pole flat cable.
4.
Repeat point 2 and 3 for all the others board of the chain but the last one.
5.
Check the termination jumpers of the demonstration boards: all the jumpers but the last
one should be opened.
Increasing the number of devices connected in chain could degrade SPI communication
performances. If communication issues occur, try to reduce the SPI clock speed.
DocID025458 Rev 2
29/31
31
Revision history
7
UM1685
Revision history
Table 14. Document revision history
Date
Revision
28-Nov-2013
1
Initial release.
2
Updated Section : Introduction on page 1 (replaced
“cSPIN™” and “cSPIN™ family” by “L648x”).
Updated Figure 4: EVAL6480H - layout (top layer) on
page 12 to Figure 7: EVAL6480H - layout (bottom layer )
on page 13 (converted to greyscale).
Removed Figure 11. EVAL6482H - layout (silkscreen)
from page 20.
Updated title of the AN4354 (replaced “cSPIN™ family”
by “L648x devices:”) in Section 3: Device configuration
on page 24.
Minor modifications throughout document.
08-Apr-2015
30/31
Changes
DocID025458 Rev 2
UM1685
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID025458 Rev 2
31/31
31