SAM C20 - Preliminary Summary

SMART ARM-Based Microcontrollers
SAM C20E / SAM C20G / SAM C20J
DATASHEET PRELIMINARY SUMMARY
Introduction
®
™
The Atmel | SMART SAM C20 is a series of microcontrollers optimized for
industrial automation, appliances and other 5V applications using the 32-bit
®
®
ARM Cortex -M0+ processor, ranging from 32- to 64-pins with up to 256KB
Flash and 32KB of SRAM and operate at a maximum frequency of 48MHz
®
and reach 2.46 CoreMark /MHz. The SAM C20 devices are designed for
simple and intuitive migration with identical peripheral modules, hex
compatible code, identical linear address map and pin compatible migration
paths between all devices in the product series. All devices include
intelligent and flexible peripherals, Atmel Event System for inter-peripheral
signaling, and support for capacitive touch button, slider and wheel user
interfaces.
SAM C20 devices are pin compatible to the SAM D family of general
purpose microcontrollers.
Features
•
•
•
Processor
– ARM Cortex-M0+ CPU running at up to 48MHz
• Single-cycle hardware multiplier
• Micro Trace Buffer
• Memory Protection Unit (MPU)
Memories
– 32/64/128/256KB in-system self-programmable Flash
– 1/2/4/8KB independent self-programmable Flash for EEPROM
emulation
– 4/8/16/32KB SRAM Main Memory
System
– Power-on reset (POR) and brown-out detection (BOD)
– Internal and external clock options with 48MHz to 96MHz
Fractional Digital Phase Locked Loop (FDPLL96M)
– External Interrupt Controller (EIC)
– 16 external interrupts
– One non-maskable interrupt
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
•
•
– Two-pin Serial Wire Debug (SWD) programming, test and debugging interface
Low Power
– Idle, standby, and off sleep modes
– SleepWalking peripherals
Peripherals
– Hardware Divide and Square Root Accelerator (DIVAS)
– 6-channel Direct Memory Access Controller (DMAC)
– 6-channel Event System
–
–
–
–
–
–
–
–
–
–
–
•
•
•
Up to five 16-bit Timer/Counters (TC), configurable as either:
• One 16-bit TC with compare/capture channels
• One 8-bit TC with compare/capture channels
• One 32-bit TC with compare/capture channels, by using two TCs
One 24-bit Timer/Counter for Control (TCC), with extended functions:
• Up to four compare channels with optional complementary output
• Generation of synchronized pulse width modulation (PWM) pattern across port pins
• Deterministic fault protection, fast decay and configurable dead-time between
complementary output
• Dithering that increase resolution with up to 5 bit and reduce quantization error
Frequency Meter
32-bit Real Time Counter (RTC) with clock/calendar function
Watchdog Timer (WDT)
CRC-32 generator
Up to four Serial Communication Interfaces (SERCOM), each configurable to operate as
either:
• USART with full-duplex and single-wire half-duplex configuration
• I2C up to 3.4MHz
• SPI
• LIN master/slave
• RS-485
One Configurable Custom Logic (CCL)
One 12-bit, 1Msps Analog-to-Digital Converter (ADC) with up to 12 channels
• Differential and single-ended input
• Automatic offset and gain error compensation
• Oversampling and decimation in hardware to support 13-, 14-, 15- or 16-bit resolution
Two Analog Comparators (AC) with window compare function
Peripheral Touch Controller (PTC)
• 256-Channel capacitive touch and proximity sensing
I/O
– Up to 52 programmable I/O pins
Drop in compatible with SAM D20 and SAM D21
Packages
– 64-pin TQFP, QFN
– 48-pin TQFP, QFN
– 32-pin TQFP, QFN
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
2
•
Operating Voltage
– 2.7V – 5.5V
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
3
1.
Description
The Atmel SAM C20 devices provide the following features: In-system programmable Flash, six-channel
direct memory access (DMA) controller, six-channel Event System, programmable interrupt controller, up
to 52 programmable I/O pins, 32-bit real-time clock and calendar, up to five 16-bit Timer/Counters (TC)
and three Timer/Counters for Control (TCC), where each TC can be configured to perform frequency and
waveform generation, accurate program execution timing or input capture with time and frequency
measurement of digital signals. The TCs can operate in 8- or 16-bit mode, selected TCs can be cascaded
to form a 32-bit TC, and three timer/counters have extended functions optimized for motor, lighting and
other control applications. Two TCC can operate in 24-bit mode, and the third TCC can operate in 16- bit
mode. The series provide up to four Serial Communication Modules (SERCOM) that each can be
configured to act as an USART, UART, SPI, I2C up to 3.4MHz, SMBus, PMBus, RS-485 and LIN master/
slave; two 12-bit, 1Msps ADCs with up to 12-channels each (20 unique channels total), two analog
comparators with window mode, Peripheral Touch Controller supporting up to 256 buttons, sliders, wheels
and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on reset and twopin Serial Wire Debug (SWD) program and debug interface.
All devices have accurate and low-power external and internal oscillators. All oscillators can be used as a
source for the system clock. Different clock domains can be independently configured to run at different
frequencies, enabling power saving by running each peripheral at its optimal clock frequency, and thus
maintaining a high CPU frequency while reducing power consumption.
The SAM C20 devices have three software-selectable sleep modes, idle, standby and off. In idle mode
the CPU is stopped while all other functions can be kept running. In standby all clocks and functions are
stopped expect those selected to continue running. In this mode all RAMs and logic contents are
retained. The device supports SleepWalking. This feature allows the peripheral to wake up from sleep
based on predefined conditions, and thus allows some internal operation like DMA transfer and/or the
CPU to wake up only when needed, e.g. when a threshold is crossed or a result is ready. The Event
System supports synchronous and asynchronous events, allowing peripherals to receive, react to and
send events even in standby mode.
The Flash program memory can be reprogrammed in-system through the SWD interface. The same
interface can be used for non-intrusive on-chip debug of application code. A boot loader running in the
device can use any communication interface to download and upgrade the application program in the
Flash memory.
The Atmel SAM C20 devices are supported with a full suite of program and system development tools,
including C compilers, macro assemblers, program debugger/simulators, programmers and evaluation
kits.
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
4
2.
Configuration Summary
SAM C20J
SAM C20G
SAM C20E
Pins
64
48
32
General Purpose I/O-pins (GPIOs)
52
38
26
256/128/64/32KB
256/128/64/32KB
256/128/64/32KB
8/4/2/1KB
8/4/2/1KB
8/4/2/1KB
32/16/8/4KB
32/16/8/4KB
32/16/8/4KB
Timer Counter (TC) instances
5
5
5
Waveform output channels per TC
instance
2
2
2
Timer Counter for Control (TCC)
instances
1
1
1
Waveform output channels per TCC
8
8
6
DMA channels
6
6
6
Configurable Custom Logic (CCL) (LUTs)
4
4
4
Serial Communication Interface
(SERCOM) instances
4
4
4
Analog-to-Digital Converter (ADC)
channels
12
12
10
Analog Comparators (AC)
2
2
2
Real-Time Counter (RTC)
Yes
Yes
Yes
1
1
1
Flash
Flash RWW section
System SRAM
RTC alarms
RTC compare values
One 32-bit value or One 32-bit value or One 32-bit value or
two 16-bit values
two 16-bit values
two 16-bit values
External Interrupt lines
16
16
16
Peripheral Touch Controller (PTC)
32
22
16
256 (16x16)
121 (11x11)
64 (8x8)
Number of self-capacitance channels (Ylines)
Peripheral Touch Controller (PTC)
Number of mutual-capacitance channels
(X x Y lines)
Maximum CPU frequency
Packages
48MHz
QFN
QFN
QFN
TQFP
TQFP
TQFP
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
5
SAM C20J
Oscillators
SAM C20G
SAM C20E
32.768kHz crystal oscillator (XOSC32K)
0.4-32MHz crystal oscillator (XOSC)
32.768kHz internal oscillator (OSC32K)
32KHz ultra-low-power internal oscillator (OSCULP32K)
48MHz high-accuracy internal oscillator (OSC48M)
96MHz Fractional Digital Phased Locked Loop (FDPLL96M)
Event System channels
6
6
6
SW Debug Interface
Yes
Yes
Yes
Watchdog Timer (WDT)
Yes
Yes
Yes
Related Links
I/O Multiplexing and Considerations on page 19
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
6
3.
Ordering Information
SAMC 20 E 15 A - M U T
Product Family
Package Carrier
SAMC = 5V Microcontroller
No character = Tray (Default)
T = Tape and Reel
Product Series
20 = Cortex M0 + CPU, DMA
Package Grade
Pin Count
U = -40 - 85 C Matte Sn Plating
N = -40 - 105 C Matte Sn Plating
O
O
E = 32 Pins
G = 48 Pins
J = 64 Pins
Package Type
Flash Memory Density
A = TQFP
M = QFN
18 = 256KB
17 = 128KB
16 = 64KB
15 = 32KB
Device Variant
A = Default Variant
3.1.
SAM C20E
Table 3-1. SAM C20E15A Ordering Codes
Ordering Code
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20E15A-AUT
32K
4K
TQFP32
Tape & Reel
85°C
ATSAM C20E15A-ANT
32K
4K
TQFP32
Tape & Reel
105°C
ATSAM C20E15A-MUT
32K
4K
QFN32
Tape & Reel
85°C
ATSAM C20E15A-MNT
32K
4K
QFN32
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20E16A-AUT
64K
8K
TQFP32
Tape & Reel
85°C
ATSAM C20E16A-ANT
64K
8K
TQFP32
Tape & Reel
105°C
ATSAM C20E16A-MUT
64K
8K
QFN32
Tape & Reel
85°C
ATSAM C20E16A-MNT
64K
8K
QFN32
Tape & Reel
105°C
Table 3-2. SAM C20E16A Ordering Codes
Ordering Code
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
7
Table 3-3. SAM C20E17A Ordering Codes
Ordering Code
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20E17A-AUT
128K
16K
TQFP32
Tape & Reel
85°C
ATSAM C20E17A-ANT
128K
16K
TQFP32
Tape & Reel
105°C
ATSAM C20E17A-MUT
128K
16K
QFN32
Tape & Reel
85°C
ATSAM C20E17A-MNT
128K
16K
QFN32
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20E18A-AUT
256K
32K
TQFP32
Tape & Reel
85°C
ATSAM C20E18A-ANT
256K
32K
TQFP32
Tape & Reel
105°C
ATSAM C20E18A-MUT
256K
32K
QFN32
Tape & Reel
85°C
ATSAM C20E18A-MNT
256K
32K
QFN32
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20G15A-AUT
32K
4K
TQFP48
Tape & Reel
85°C
ATSAM C20G15A-ANT
32K
4K
TQFP48
Tape & Reel
105°C
ATSAM C20G15A-MUT
32K
4K
QFN48
Tape & Reel
85°C
ATSAM C20G15A-MNT
32K
4K
QFN48
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20G16A-AUT
64K
8K
TQFP48
Tape & Reel
85°C
ATSAM C20G16A-ANT
64K
8K
TQFP48
Tape & Reel
105°C
ATSAM C20G16A-MUT
64K
8K
QFN48
Tape & Reel
85°C
ATSAM C20G16A-MNT
64K
8K
QFN48
Tape & Reel
105°C
Table 3-4. SAM C20E18A Ordering Codes
Ordering Code
3.2.
SAM C20G
Table 3-5. SAM C20G15A Ordering Codes
Ordering Code
Table 3-6. SAM C20G16A Ordering Codes
Ordering Code
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
8
Table 3-7. SAM C20G17A Ordering Codes
Ordering Code
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20G17A-AUT
128K
16K
TQFP48
Tape & Reel
85°C
ATSAM C20G17A-ANT
128K
16K
TQFP48
Tape & Reel
105°C
ATSAM C20G17A-MUT
128K
16K
QFN48
Tape & Reel
85°C
ATSAM C20G17A-MNT
128K
16K
QFN48
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20G18A-AUT
256K
32K
TQFP48
Tape & Reel
85°C
ATSAM C20G18A-ANT
256K
32K
TQFP48
Tape & Reel
105°C
ATSAM C20G18A-MUT
256K
32K
QFN48
Tape & Reel
85°C
ATSAM C20G18A-MNT
256K
32K
QFN48
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20J15A-AUT
32K
4K
TQFP64
Tape & Reel
85°C
ATSAM C20J15A-ANT
32K
4K
TQFP64
Tape & Reel
105°C
ATSAM C20J15A-MUT
32K
4K
QFN64
Tape & Reel
85°C
ATSAM C20J15A-MNT
32K
4K
QFN64
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20J16A-AUT
64K
8K
TQFP64
Tape & Reel
85°C
ATSAM C20J16A-ANT
64K
8K
TQFP64
Tape & Reel
105°C
ATSAM C20J16A-MUT
64K
8K
QFN64
Tape & Reel
85°C
ATSAM C20J16A-MNT
64K
8K
QFN64
Tape & Reel
105°C
Table 3-8. SAM C20G18A Ordering Codes
Ordering Code
3.3.
SAM C20J
Table 3-9. SAM C20J15A Ordering Codes
Ordering Code
Table 3-10. SAM C20J16A Ordering Codes
Ordering Code
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
9
Table 3-11. SAM C20J17A Ordering Codes
Ordering Code
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20J17A-AUT
128K
16K
TQFP64
Tape & Reel
85°C
ATSAM C20J17A-ANT
128K
16K
TQFP64
Tape & Reel
105°C
ATSAM C20J17A-MUT
128K
16K
QFN64
Tape & Reel
85°C
ATSAM C20J17A-MNT
128K
16K
QFN64
Tape & Reel
105°C
FLASH
(bytes)
SRAM
(bytes)
Package
Carrier Type
Temp
ATSAM C20J18A-AUT
256K
32K
TQFP64
Tape & Reel
85°C
ATSAM C20J18A-ANT
256K
32K
TQFP64
Tape & Reel
105°C
ATSAM C20J18A-MUT
256K
32K
QFN64
Tape & Reel
85°C
ATSAM C20J18A-MNT
256K
32K
QFN64
Tape & Reel
105°C
Table 3-12. SAM C20J18A Ordering Codes
Ordering Code
3.4.
Device Identification
The DSU - Device Service Unit peripheral provides the Device Selection bits in the Device Identification
register (DID.DEVSEL) in order to identify the device by software. The SAM C20 variants have a reset
value of DID=0x1101drxx, with the LSB identifying the die number ('d'), the die revision ('r') and the device
selection ('xx').
Table 3-13. SAM C20 Device Identification Values
DEVSEL (DID[7:0])
Device
0x00
SAM C20J18A
0x01
SAM C20J17A
0x02
SAM C20J16A
0x03
SAM C20J15A
0x04
Reserved
0x05
SAM C20G18A
0x06
SAM C20G17A
0x07
SAM C20G16A
0x08
SAM C20G15A
0x09
Reserved
0x0A
SAM C20E18A
0x0B
SAM C20E17A
0x0C
SAM C20E16A
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
10
DEVSEL (DID[7:0])
Device
0x0D
SAM C20E15A
0x0E-0xFF
Reserved
Note: The device variant (last letter of the ordering number) is independent of the die revision
(DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks
evolution of the die.
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
11
Block Diagram
SWCLK
CORTEX-M0+
PROCESSOR
Fmax 48 MHz
SERIAL
WIRE
SWDIO
MICRO
TRACE BUFFER
IOBUS
DEVICE
SERVICE
UNIT
M
DivideAccellerator
S
AHB-APB
BRIDGE B
256/128/64/32KB
8KB RWW
NVM
32/16/8/4KB
RAM
NVM
CONTROLLER
Cache
SRAM
CONTROLLER
M
M
S
S
S
M
HIGH SPEED
BUS MATRIX
S
PERIPHERAL
ACCESS CONTROLLER
DMA
S
AHB-APB
BRIDGE A
AHB-APB
BRIDGE C
MAIN CLOCKS
CONTROLLER
PORT
DMA
4x6SERCOM
x SERCOM
OSCILLATORS CONTROLLER
PAD0
PAD1
PAD2
PAD3
OSC48M
DMA
XOSC
GCLK_IO[7..0]
GENERIC CLOCK
CONTROLLER
WATCHDOG
TIMER
EXTINT[15..0]
NMI
5 x TIMER / COUNTER
8 x Timer Counter
FDPLL96M
EXTERNAL INTERRUPT
CONTROLLER
DMA
TIMER / COUNTER
FOR CONTROL
OSC32K CONTROLLER
XOSC32K
OSCULP32K
WO0
WO1
WOn
AIN[19..0]
DMA
12-CHANNEL
12-bit ADC 1MSPS
POWER
MANAGER
XIN32
XOUT32
WO0
WO1
PORT
XIN
XOUT
EVENT SYSTEM
4.
2 ANALOG
COMPARATORS
VREFA
VREFB
AIN[7..0]
OSC32K
SUPPLY CONTROLLER
BOD55
VREF
PERIPHERAL
TOUCH
CONTROLLER
X[15..0]
Y[15..0]
VREG
RESETN
RESET
CONTROLLER
REAL TIME
COUNTER
FREQUENCY
METER
Note: Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
12
1.
2.
Some products have different number of SERCOM instances, Timer/Counter instances, PTC
signals and ADC signals.
The three TCC instances have different configurations, including the number of Waveform Output
(WO) lines.
Related Links
TCC Configurations on page 22
Multiplexed Signals on page 19
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
13
Pinout
5.1.
SAM C20E
32
31
30
29
28
27
26
25
PA31
PA30
VDDIN
VDDCORE
GND
PA28
RESETN
PA27
5.
24
23
22
21
20
19
18
17
1
2
3
4
5
6
7
8
PA25
PA24
PA23
PA22
PA19
PA18
PA17
PA16
VDDANA
GND
PA08
PA09
PA10
PA11
PA14
PA15
9
10
11
12
13
14
15
16
PA00
PA01
PA02
PA03
PA04
PA05
PA06
PA07
DIGITAL PIN
ANALOG PIN
OSCILLATOR
GROUND
INPUT SUPPLY
REGULATED OUTPUT SUPPLY
RESET PIN
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
14
48
47
46
45
44
43
42
41
40
39
38
37
PB03
PB02
PA31
PA30
VDDIN
VDDCORE
GND
PA28
RESETN
PA27
PB23
PB22
SAM C20G
36
35
34
33
32
31
30
29
28
27
26
25
1
2
3
4
5
6
7
8
9
10
11
12
VDDIO
GND
PA25
PA24
PA23
PA22
PA21
PA20
PA19
PA18
PA17
PA16
13
14
15
16
17
18
19
20
21
22
23
24
PA00
PA01
PA02
PA03
GNDANA
VDDANA
PB08
PB09
PA04
PA05
PA06
PA07
PA08
PA09
PA10
PA11
VDDIO
GND
PB10
PB11
PA12
PA13
PA14
PA15
5.2.
DIGITAL PIN
ANALOG PIN
OSCILLATOR
GROUND
INPUT SUPPLY
REGULATED OUTPUT SUPPLY
RESET PIN
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
15
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB03
PB02
PB01
PB00
PB31
PB30
PA31
PA30
VDDIN
VDDCORE
GND
PA28
RESETN
PA27
PB23
PB22
SAM C20J
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
VDDIO
GND
PA25
PA24
PA23
PA22
PA21
PA20
PB17
PB16
PA19
PA18
PA17
PA16
VDDIO
GND
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
PA00
PA01
PA02
PA03
PB04
PB05
GNDANA
VDDANA
PB06
PB07
PB08
PB09
PA04
PA05
PA06
PA07
PA08
PA09
PA10
PA11
VDDIO
GND
PB10
PB11
PB12
PB13
PB14
PB15
PA12
PA13
PA14
PA15
5.3.
DIGITAL PIN
ANALOG PIN
OSCILLATOR
GROUND
INPUT SUPPLY
REGULATED OUTPUT SUPPLY
RESET PIN
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
16
6.
Signal Descriptions List
The following table gives details on signal names classified by peripheral.
Table 6-1. Signal Descriptions List
Signal Name
Function
Type
AIN[7:0]
AC Analog Inputs
Analog
CMP[2:0]
AC Comparator Outputs
Digital
AIN[19:0]
ADC Analog Inputs
Analog
VREFA
ADC Voltage External Reference A
Analog
EXTINT[15:0]
External Interrupts inputs
Digital
NMI
External Non-Maskable Interrupt input
Digital
Generic Clock (source clock inputs or generic clock generator
output)
Digital
IN[11:0]
Logic Inputs
Digital
OUT[3:0]
Logic Outputs
Digital
Reset input
Digital
SERCOM Inputs/Outputs Pads
Digital
XIN
Crystal or external clock Input
Analog/Digital
XOUT
Crystal Output
Analog
XIN32
32KHz Crystal or external clock Input
Analog/Digital
XOUT32
32KHz Crystal Output
Analog
Waveform Outputs
Digital
Waveform Outputs
Digital
X[15:0]
PTC Input
Analog
Y[15:0]
PTC Input
Analog
Parallel I/O Controller I/O Port A
Digital
Active Level
Analog Comparators - AC
Analog Digital Converter - ADCx
External Interrupt Controller - EIC
Generic Clock Generator - GCLK
GCLK_IO[7:0]
Custom Control Logic - CCL
Power Manager - PM
RESETN
Low
Serial Communication Interface - SERCOMx
PAD[3:0]
Oscillators Control - OSCCTRL
32KHz Oscillators Control - OSC32KCTRL
Timer Counter - TCx
WO[1:0]
Timer Counter - TCCx
WO[1:0]
Peripheral Touch Controller - PTC
General Purpose I/O - PORT
PA25 - PA00
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
17
Signal Name
Function
Type
PA28 - PA27
Parallel I/O Controller I/O Port A
Digital
PA31 - PA30
Parallel I/O Controller I/O Port A
Digital
PB17 - PB00
Parallel I/O Controller I/O Port B
Digital
PB23 - PB22
Parallel I/O Controller I/O Port B
Digital
PB31 - PB30
Parallel I/O Controller I/O Port B
Digital
Active Level
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
18
7.
I/O Multiplexing and Considerations
7.1.
Multiplexed Signals
Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be
assigned to one of the peripheral functions A, B, C, D, E, F, G; H or I. To enable a peripheral function on a
pin, the Peripheral Multiplexer Enable bit in the Pin Configuration register corresponding to that pin
(PINCFGn.PMUXEN, n = 0-31) in the PORT must be written to one. The selection of peripheral function A
to H is done by writing to the Peripheral Multiplexing Odd and Even bits in the Peripheral Multiplexing
register (PMUXn.PMUXE/O) in the PORT.
Table 7-1. PORT Function Multiplexing
Pin
I/O Pin
Supply
B(1)(2)
A
REF
AC
D
E
F
G
H
I
TC/TCC
TCC
COM
AC/GCLK
CCL
1
1
1
PA00
VDDANA
EXTINT[0]
SERCOM1/
PAD[0]
CMP[2]
2
2
2
PA01
VDDANA
EXTINT[1]
SERCOM1/
PAD[1]
CMP[3]
3
3
3
PA02
VDDANA
EXTINT[2]
4
4
4
PA03
VDDANA
EXTINT[3]
5
PB04
VDDANA
EXTINT[4]
6
PB05
VDDANA
EXTINT[5]
AIN[6]
Y[11]
9
PB06
VDDANA
EXTINT[6]
AIN[7]
Y[12]
CCL2/
IN[6]
10
PB07
VDDANA
EXTINT[7]
Y[13]
CCL2/
IN[7]
7
11
PB08
VDDANA
EXTINT[8]
AIN[2]
Y[14]
TC0/WO[0]
CCL2/
IN[8]
8
12
PB09
VDDANA
EXTINT[9]
AIN[3]
Y[15]
TC0WO[1]
CCL2/
OUT[2]
9
13
PA04
VDDANA
EXTINT[4]
AIN[0]
AIN[4]
AIN[1]
AIN[5]
PTC
SERCOM-ALT
SAM C20J
ADC/VREFA
ADC0
C
SAM C20G
5
EIC
SERCOM(1)(2)
SAM C20E
Y[0]
Y[1]
Y[10]
AIN[4]
AIN[0]
Y[2]
SERCOM0/
PAD[0]
TCC0/WO[0]
CCL0/
IN[0]
TCC0/WO[1]
CCL0/
IN[1]
VREFB
6
10
14
PA05
VDDANA
EXTINT[5]
AIN[5]
AIN[1]
Y[3]
SERCOM0/
PAD[1]
7
11
15
PA06
VDDANA
EXTINT[6]
AIN[6]
AIN[2]
Y[4]
SERCOM0/
PAD[2]
CCL0/
IN[2]
8
12
16
PA07
VDDANA
EXTINT[7]
AIN[7]
AIN[3]
Y[5]
SERCOM0/
PAD[3]
CCL0/
OUT[0]
11
13
17
PA08
VDDIO
NMI
AIN[8]
X[0]/Y[16]
SERCOM0/
PAD[0]
SERCOM2/
PAD[0]
TCC0/WO[0]
CCL1/
IN[3]
12
14
18
PA09
VDDIO
EXTINT[9]
AIN[9]
X[1]/Y[17]
SERCOM0/
PAD[1]
SERCOM2/
PAD[1]
TCC0/WO[1]
CCL1/
IN[4]
13
15
19
PA10
VDDIO
EXTINT[10]
AIN[10]
X[2]/Y[18]
SERCOM0/
PAD[2]
SERCOM2/
PAD[2]
TCC0/
WO[2]
GCLK_IO[4]
CCL1/
IN[5]
14
16
20
PA11
VDDIO
EXTINT[11]
AIN[11]
X[3]/Y[19]
SERCOM0/
PAD[3]
SERCOM2/
PAD[3]
TCC0/
WO[3]
GCLK_IO[5]
CCL1/
OUT[1]
19
23
PB10
VDDIO
EXTINT[10]
TC1/WO[0]
TCC0/
WO[4]
GCLK_IO[4]
CCL1/
IN[5]
20
24
PB11
VDDIO
EXTINT[11]
TC1/WO[1]
TCC0/
WO[5]
GCLK_IO[5]
CCL1/
OUT[1]
25
PB12
VDDIO
EXTINT[12]
X[12]/Y[28]
TC0/WO[0]
TCC0/
WO[6]
GCLK_IO[6]
26
PB13
VDDIO
EXTINT[13]
X[13]/Y[29]
TC0/WO[1]
TCC0/
WO[7]
GCLK_IO[7]
27
PB14
VDDIO
EXTINT[14]
X[14]/Y[30]
TC1/WO[0]
GCLK_IO[0]
CCL3/
IN[9]
28
PB15
VDDIO
EXTINT[15]
X[15]/Y[31]
TC1/WO[1]
GCLK_IO[1]
CCL3/
IN[10]
21
29
PA12
VDDIO
EXTINT[12]
SERCOM2/
PAD[0]
TCC0/
WO[6]
AC/CMP[0]
22
30
PA13
VDDIO
EXTINT[13]
SERCOM2/
PAD[1]
TCC0/
WO[7]
AC/CMP[1]
15
23
31
PA14
VDDIO
EXTINT[14]
SERCOM2/
PAD[2]
TC4/WO[0]
TCC0/
WO[4]
GCLK_IO[0]
16
24
32
PA15
VDDIO
EXTINT[15]
SERCOM2/
PAD[3]
TC4/WO[1]
TCC0/
WO[5]
GCLK_IO[1]
17
25
35
PA16
VDDIO
EXTINT[0]
TCC0/
WO[6]
GCLK_IO[2]
X[4]/Y[20]
SERCOM1/
PAD[0]
SERCOM3/
PAD[0]
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
CCL0/
IN[0]
19
Pin
I/O Pin
Supply
B(1)(2)
C
D
E
F
G
H
I
PTC
SERCOM(1)(2)
SERCOM-ALT
TC/TCC
TCC
COM
AC/GCLK
CCL
EXTINT[1]
X[5]/Y[21]
SERCOM1/
PAD[1]
SERCOM3/
PAD[1]
TCC0/
WO[7]
GCLK_IO[3]
CCL0/
IN[1]
VDDIO
EXTINT[2]
X[6]/Y[22]
SERCOM1/
PAD[2]
SERCOM3/
PAD[2]
TC4/WO[0]
TCC0/
WO[2]
AC/CMP[0]
CCL0/
IN[2]
PA19
VDDIO
EXTINT[3]
X[7]/Y[23]
SERCOM1/
PAD[3]
SERCOM3/
PAD[3]
TC4/WO[1]
TCC0/
WO[3]
AC/CMP[1]
CCL0/
OUT[0]
39
PB16
VDDIO
EXTINT[0]
TC2/WO[0]
TCC0/
WO[4]
GCLK_IO[2]
CCL3/
IN[11]
40
PB17
VDDIO
EXTINT[1]
TC2/WO[1]
TCC0/
WO[5]
GCLK_IO[3]
CCL3/
OUT[3]
29
41
PA20
VDDIO
EXTINT[4]
X[8]/Y[24]
SERCOM3/
PAD[2]
TC3/WO[0]
TCC0/
WO[6]
GCLK_IO[4]
30
42
PA21
VDDIO
EXTINT[5]
X[9]/Y[25]
SERCOM3/
PAD[3]
TC3/WO[1]
TCC0/
WO[7]
GCLK_IO[5]
21
31
43
PA22
VDDIO
EXTINT[6]
X[10]/Y[26]
SERCOM3/
PAD[0]
TC0/WO[0]
TCC0/
WO[4]
GCLK_IO[6]
CCL2/
IN[6]
22
32
44
PA23
VDDIO
EXTINT[7]
X[11]/Y[27]
SERCOM3/
PAD[1]
TC0/WO[1]
TCC0/
WO[5]
GCLK_IO[7]
CCL2/
IN[7]
23
33
45
PA24
VDDIO
EXTINT[12]
SERCOM3/
PAD[2]
TC1/WO[0]
AC/CMP[2]
CCL2/
IN[8]
24
34
46
PA25
VDDIO
EXTINT[13]
SERCOM3/
PAD[3]
TC1/WO[1]
AC/CMP[3]
CCL2/
OUT[2]
37
49
PB22
VDDIN
EXTINT[6]
TC3/WO[0]
GCLK_IO[0]
CCL0/
IN[0]
38
50
PB23
VDDIN
EXTINT[7]
TC3/WO[1]
GCLK_IO[1]
CCL0/
OUT[0]
25
39
51
PA27
VDDIN
EXTINT[15]
27
41
53
PA28
VDDIN
EXTINT[8]
31
45
57
PA30
VDDIN
EXTINT[10]
SERCOM1/
PAD[2]
CORTEX_M0P/
SWCLK
32
46
58
PA31
VDDIN
EXTINT[11]
SERCOM1/
PAD[3]
CORTEX_M0P/
SWDIO
59
PB30
VDDIN
EXTINT[14]
TCC0/WO[0]
AC/CMP[2]
60
PB31
VDDIN
EXTINT[15]
TCC0/WO[1]
AC/CMP[3]
61
PB00
VDDANA
EXTINT[0]
Y[6]
TC3/WO[0]
CCL0/
IN[1]
62
PB01
VDDANA
EXTINT[1]
Y[7]
TC3/WO[1]
CCL0/
IN[2]
47
63
PB02
VDDANA
EXTINT[2]
Y[8]
TC2/WO[0]
CCL0/
OUT[0]
48
64
PB03
VDDANA
EXTINT[3]
Y[9]
TC2/WO[1]
SAM C20E
SAM C20G
SAM C20J
18
26
36
PA17
VDDIO
19
27
37
PA18
20
28
38
1.
2.
A
EIC
REF
ADC0
AC
BRK
GCLK_IO[0]
GCLK_IO[0]
GCLK_IO[0]
CCL1/
IN[3]
CCL1/
OUT[1]
All analog pin functions are on peripheral function B. Peripheral function B must be selected to
disable the digital control of the pin.
Only some pins can be used in SERCOM I2C mode. Refer to SERCOM I2C Pins.
Related Links
SERCOM I2C Pins on page 21
7.2.
Other Functions
7.2.1.
Oscillator Pinout
The oscillators are not mapped to the normal PORT functions and their multiplexing are controlled by
registers in the Oscillators Controller (OSCCTRL) and in the 32K Oscillators Controller (OSC32KCTRL).
Table 7-2. Oscillator Pinout
Oscillator
Supply
Signal
I/O pin
XOSC
VDDIO
XIN
PA14
XOUT
PA15
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
20
7.2.2.
Oscillator
Supply
Signal
I/O pin
XOSC32K
VDDANA
XIN32
PA00
XOUT32
PA01
Serial Wire Debug Interface Pinout
Only the SWCLK pin is mapped to the normal PORT functions. A debugger cold-plugging or hot-plugging
detection will automatically switch the SWDIO port to the SWDIO function.
Table 7-3. Serial Wire Debug Interface Pinout
7.2.3.
Signal
Supply
I/O pin
SWCLK
VDDIN
PA30
SWDIO
VDDIN
PA31
SERCOM I2C Pins
Table 7-4. SERCOM Pins Supporting I2C
7.2.4.
Device
Pins Supporting I2C Hs mode
SAM C20E
PA08, PA09, PA10, PA11, PA16, PA17, PA22, PA23
SAM C20G
PA08, PA09, PA10, PA11, PA12, PA13, PA16, PA17, PA22, PA23, PB10, PB11
SAM C20J
PA08, PA09, PA10, PA11, PA12, PA13, PA16, PA17, PA22, PA23, PB10, PB11,
PB12, PB13, PB16, PB17, PB30, PB31
GPIO Clusters
Table 7-5. GPIO Clusters
Package Cluster GPIO
Supplies Pin connected to the cluster
64 pins
1
PB31 PB30 PA31 PA30 PA28 PA27
VDDIN (56)
GND (54)
2
PB23 PB22
VDDIO (48)
GND (54+47)
3
PA25 PA24 PA23 PA22 PA21 PA20 PB17
PB16 PA19 PA18 PA17 PA16
VDDIO (48+34)
GND (47+33)
4
PA15 PA14 PA13 PA12 PB15 PB14 PB13 VDDIO (34+21)
PB12 PB11 PB10
GND (33+22)
5
PA11 PA10 PA08 PA09
GND (22)
6
PA07 PA06 PA05 PA04 PB09 PB08 PB07 VDDANA (8)
PB06 PB05 PB04 PA03 PA02 PA01 PA00
PB03 PB02 PB01 PB00
VDDIO (21)
GNDANA (7)
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
21
Package Cluster GPIO
Supplies Pin connected to the cluster
48 pins
32 pins
7.2.5.
1
PA31 PA30 PA28 PA27
VDDIN (44)
GND (42)
2
PB23 PB22
VDDIO (36)
GND (42+35)
3
PA25 PA24 PA23 PA22 PA21 PA20 PA19
PA18 PA17 PA16 PA15 PA14 PA13 PA12
PB11 PB10
VDDIO (36+17)
GND (35+18)
4
PA11 PA10 PA08 PA09
VDDIO (17)
GND (18)
5
PA07 PA06 PA05 PA04 PB09 PB08 PA03
PA02 PA01 PA00 PB03 PB02
VDDANA (6)
GNDANA (5)
1
PA31 PA30 PA28 PA27
VDDIN (30)
GND (28)
2
PA25 PA24 PA23 PA22 PA19 PA18 PA17
PA16 PA15 PA14 PA11 PA10 PA08 PA09
VDDIO (9)
GND (28+10)
3
PA07 PA06 PA05 PA04 PA03 PA02 PA01
PA00
VDDANA (9)
GND (28+10)
TCC Configurations
The SAM C20 has one instance of the Timer/Counter for Control applications (TCC) peripheral, . The
following table lists the features for each TCC instance.
Table 7-6. TCC Configuration Summary
TCC#
Channels
(CC_NUM)
Waveform
Output
(WO_NUM)
Counter
size
Fault
Dithering
Output
matrix
Dead Time
Insertion
(DTI)
SWAP
Pattern
generation
0
4
8
24-bit
Yes
Yes
Yes
Yes
Yes
Yes
Note: The number of CC registers (CC_NUM) for each TCC corresponds to the number of compare/
capture channels, so that a TCC can have more Waveform Outputs (WO_NUM) than CC registers.
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
22
8.
Product Mapping
Figure 8-1. SAM C20 Product Mapping
Global Memory Space
0x00000000
Code
0x00000000
Internal Flash
Code
0x20000000
Undefined
0x40000000
SRAM
Internal SRAM
Reserved
0x60000000
0x40000000
0x60000400
Reserved
0x40001C00
0x40002000
0x40002400
0x40002800
0x40002C00
0x40003000
0x40003400
0x40FFFFFF
AHB-APB
Bridge A
0x42001C00
AHB-APB
Bridge B
0x42002400
0x42002000
0x42002800
0x42000000
AHB-APB Bridge A
0x40001800
0x42001800
0x41000000
0xFFFFFFFF
0x40001400
0x42001000
0x42001400
AHB-APB
IOBUS
0x40001000
0x42000C00
0x20008000
0x48000200
0x40000C00
0x42000800
0x20000000
Peripherals
0x40000800
0x42000400
0x1FFFFFFF
0x22008000
0x40000400
0x42000000
Reserved
SRAM
0x40000000
AHB-APB Bridge C
0x00400000
AHB-APB
Bridge C
0x43000000
PAC
PM
OSCCTRL
OSC32KCTRL
SUPC
GCLK
WDT
RTC
EIC
FREQM
Reserved
0x42003000
Reserved
0x42003400
0x48000000
0x42003800
AHB
DIVAS
MCLK
RSTC
0x42002C00
0x42003C00
0x480001FF
0x42004000
AHB-APB Bridge B
0x41000000
0x41002000
0x41004000
0x41004400
0x41004800
0x41005000
0x42004400
PORT
0x42004800
DSU
0x42004C00
NVMCTRL
0x42005000
DMAC
0x42005400
MTB
0x42005800
Reserved
0x42005C00
0x41FFFFFF
EVSYS
SERCOM0
SERCOM1
SERCOM2
SERCOM3
Reserved
Reserved
Reserved
Reserved
TCC0
Reserved
Reserved
TC0
TC1
TC2
TC3
TC4
ADC0
Reserved
Reserved
AC
Reserved
PTC
CCL
0x42006000
0x42FFFFFF
Reserved
Reserved
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
23
9.
Processor and Architecture
9.1.
Cortex M0+ Processor
®
™
The Atmel SAM C20 implements the ARM Cortex -M0+ processor, based on the ARMv6 Architecture
®
and Thumb -2 ISA. The Cortex M0+ is 100% instruction set compatible with its predecessor, the CortexM0 core, and upward compatible to Cortex-M3 and M4 cores. The implemented ARM Cortex-M0+ is
revision r0p1. For more information refer to http://www.arm.com.
9.1.1.
Cortex M0+ Configuration
Table 9-1. Cortex M0+ Configuration
Features
Cortex-M0+ options
SAM C20 configuration
Interrupts
External interrupts 0-32
32
Data endianness
Little-endian or big-endian
Little-endian
SysTick timer
Present or absent
Present
Number of watchpoint comparators
0, 1, 2
2
Number of breakpoint comparators
0, 1, 2, 3, 4
4
Halting debug support
Present or absent
Present
Multiplier
Fast or small
Fast (single cycle)
Single-cycle I/O port
Present or absent
Present
Wake-up interrupt controller
Supported or not supported
Not supported
Vector Table Offset Register
Present or absent
Present
Unprivileged/Privileged support
Present or absent
Present
Memory Protection Unit
Not present or 8-region
8-region
Reset all registers
Present or absent
Absent
Instruction fetch width
16-bit only or mostly 32-bit
32-bit
The ARM Cortex-M0+ core has two bus interfaces:
•
•
9.1.2.
Single 32-bit AMBA-3 AHB-Lite system interface that provides connections to peripherals and all
system memory, which includes flash and RAM.
Single 32-bit I/O port bus interfacing to the PORT and DIVAS with 1-cycle loads and stores.
Cortex-M0+ Peripherals
•
•
System Control Space (SCS)
– The processor provides debug through registers in the SCS. Refer to the Cortex-M0+
Technical Reference Manual for details (http://www.arm.com).
Nested Vectored Interrupt Controller (NVIC)
– External interrupt signals connect to the NVIC, and the NVIC prioritizes the interrupts.
Software can set the priority of each interrupt. The NVIC and the Cortex-M0+ processor core
are closely coupled, providing low latency interrupt processing and efficient processing of late
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
24
•
•
•
•
9.1.3.
arriving interrupts. Refer to Nested Vector Interrupt Controller and the Cortex-M0+ Technical
Reference Manual for details (http://www.arm.com).
System Timer (SysTick)
– The System Timer is a 24-bit timer clocked by CLK_CPU that extends the functionality of both
the processor and the NVIC. Refer to the Cortex-M0+ Technical Reference Manual for details
(http://www.arm.com).
System Control Block (SCB)
– The System Control Block provides system implementation information, and system control.
This includes configuration, control, and reporting of the system exceptions. Refer to the
Cortex-M0+ Devices Generic User Guide for details (http://www.arm.com).
Micro Trace Buffer (MTB)
– The CoreSight MTB-M0+ (MTB) provides a simple execution trace capability to the CortexM0+ processor. Refer to section Micro Trace Buffer and the CoreSight MTB-M0+ Technical
Reference Manual for details (http://www.arm.com).
Memory Protection Unit (MPU)
– The Memory Protection Unit divides the memory map into a number of regions, and defines
the location, size, access permissions and memory attributes of each region. Refer to the
Cortex-M0+ Devices Generic User Guide for details (http://www.arm.com)
Cortex-M0+ Address Map
Table 9-2. Cortex-M0+ Address Map
Address
Peripheral
0xE000E000
System Control Space (SCS)
0xE000E010
System Timer (SysTick)
0xE000E100
Nested Vectored Interrupt Controller (NVIC)
0xE000ED00
System Control Block (SCB)
0x41008000
Micro Trace Buffer (MTB)
Related Links
Product Mapping on page 23
9.1.4.
I/O Interface
9.1.4.1.
Overview
Because accesses to the AMBA® AHB-Lite™ and the single cycle I/O interface can be made concurrently,
the Cortex-M0+ processor can fetch the next instructions while accessing the I/Os. This enables single
cycle I/O accesses to be sustained for as long as needed.
9.1.4.2.
Description
Direct access to PORT registers and DIVAS registers.
9.2.
Nested Vector Interrupt Controller
9.2.1.
Overview
The Nested Vectored Interrupt Controller (NVIC) in the SAM C20 supports 32 interrupt lines with four
different priority levels. For more details, refer to the Cortex-M0+ Technical Reference Manual (http://
www.arm.com).
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
25
9.2.2.
Interrupt Line Mapping
Each of the interrupt lines is connected to one peripheral instance, as shown in the table below. Each
peripheral can have one or more interrupt flags, located in the peripheral’s Interrupt Flag Status and Clear
(INTFLAG) register.
The interrupt flag is set when the interrupt condition occurs. Each interrupt in the peripheral can be
individually enabled by writing a one to the corresponding bit in the peripheral’s Interrupt Enable Set
(INTENSET) register, and disabled by writing a one to the corresponding bit in the peripheral’s Interrupt
Enable Clear (INTENCLR) register.
An interrupt request is generated from the peripheral when the interrupt flag is set and the corresponding
interrupt is enabled.
The interrupt requests for one peripheral are ORed together on system level, generating one interrupt
request for each peripheral. An interrupt request will set the corresponding interrupt pending bit in the
NVIC interrupt pending registers (SETPEND/CLRPEND bits in ISPR/ICPR).
For the NVIC to activate the interrupt, it must be enabled in the NVIC interrupt enable register (SETENA/
CLRENA bits in ISER/ICER). The NVIC interrupt priority registers IPR0-IPR7 provide a priority field for
each interrupt.
Table 9-3. Interrupt Line Mapping
Peripheral Source
NVIC Line
EIC NMI – External Interrupt Controller
NMI
PM – Power Manager
MCLK - Main Clock
0
OSCCTRL - Oscillators Controller
OSC32KCTRL - 32kHz Oscillators Controller
SUPC - Supply Controller
PAC - Protection Access Controller
WDT – Watchdog Timer
1
RTC – Real Time Clock
2
EIC – External Interrupt Controller
3
FREQM – Frequency Meter
4
Reserved
5
NVMCTRL – Non-Volatile Memory Controller
6
DMAC - Direct Memory Access Controller
7
EVSYS – Event System
8
SERCOM0 – Serial Communication Controller 0
9
SERCOM1 – Serial Communication Controller 1
10
SERCOM2 – Serial Communication Controller 2
11
SERCOM3 – Serial Communication Controller 3
12
Reserved
13
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
26
Peripheral Source
Reserved
14
Reserved
15
Reserved
16
TCC0 – Timer Counter for Control 0
17
Reserved
18
Reserved
19
TC0 – Timer Counter 0
20
TC1 – Timer Counter 2
21
TC2 – Timer Counter 2
22
Reserved
23
Reserved
24
ADC0 – Analog-to-Digital Converter 0
25
Reserved
26
AC – Analog Comparator
27
Reserved
28
Reserved
29
PTC – Peripheral Touch Controller
30
Reserved
31
9.3.
Micro Trace Buffer
9.3.1.
Features
•
•
•
•
9.3.2.
NVIC Line
Program flow tracing for the Cortex-M0+ processor
MTB SRAM can be used for both trace and general purpose storage by the processor
The position and size of the trace buffer in SRAM is configurable by software
CoreSight compliant
Overview
When enabled, the MTB records changes in program flow, reported by the Cortex-M0+ processor over
the execution trace interface shared between the Cortex-M0+ processor and the CoreSight MTB-M0+.
This information is stored as trace packets in the SRAM by the MTB. An off-chip debugger can extract the
trace information using the Debug Access Port to read the trace information from the SRAM. The
debugger can then reconstruct the program flow from this information.
The MTB simultaneously stores trace information into the SRAM, and gives the processor access to the
SRAM. The MTB ensures that trace write accesses have priority over processor accesses.
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
27
The execution trace packet consists of a pair of 32-bit words that the MTB generates when it detects the
processor PC value changes non-sequentially. A non-sequential PC change can occur during branch
instructions or during exception entry. See the CoreSight MTB-M0+ Technical Reference Manual for more
details on the MTB execution trace packet format.
Tracing is enabled when the MASTER.EN bit in the Master Trace Control Register is 1. There are various
ways to set the bit to 1 to start tracing, or to 0 to stop tracing. See the CoreSight Cortex-M0+ Technical
Reference Manual for more details on the Trace start and stop and for a detailed description of the MTB’s
MASTER register. The MTB can be programmed to stop tracing automatically when the memory fills to a
specified watermark level or to start or stop tracing by writing directly to the MASTER.EN bit. If the
watermark mechanism is not being used and the trace buffer overflows, then the buffer wraps around
overwriting previous trace packets.
The base address of the MTB registers is 0x41006000; this address is also written in the CoreSight ROM
Table. The offset of each register from the base address is fixed and as defined by the CoreSight MTBM0+ Technical Reference Manual. The MTB has 4 programmable registers to control the behavior of the
trace features:
•
•
•
•
POSITION: Contains the trace write pointer and the wrap bit,
MASTER: Contains the main trace enable bit and other trace control fields,
FLOW: Contains the WATERMARK address and the AUTOSTOP and AUTOHALT control bits,
BASE: Indicates where the SRAM is located in the processor memory map. This register is
provided to enable auto discovery of the MTB SRAM location, by a debug agent.
See the CoreSight MTB-M0+ Technical Reference Manual for a detailed description of these registers.
9.4.
High-Speed Bus System
9.4.1.
Features
High-Speed Bus Matrix has the following features:
•
•
•
•
Symmetric crossbar bus switch implementation
Allows concurrent accesses from different masters to different slaves
32-bit data bus
Operation at a 1-to-1 clock frequency with the bus masters
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
28
Configuration
Figure 9-1. Master-Slave Relation High-Speed Bus Matrix
High-Speed Bus SLAVES
Multi-Slave
MASTERS
CM0+
0
DSU
DSU
1
DSUData
DMAC
2
DMAC Fetch
DMAC Data
DSU
CM0+
DIVAS
7
DMAC WB
AHB-APB Bridge C
5
Reserved
AHB-APB Bridge B
4
Reserved
AHB-APB Bridge A
3
MTB
Internal Flash
FlexRAM
0
MASTER ID
Priviledged
FlexRAM-access
MASTERS
9.4.2.
9
8
7
5-6
3-4
6
2
2
1
1
0
SLAVE ID
FlexRAM PORT ID
MTB
DMAC WB
DMAC Fetch
Table 9-4. Bus Matrix Masters
Bus Matrix Masters
Master ID
CM0+ - Cortex M0+ Processor
0
DSU - Device Service Unit
1
DMAC - Direct Memory Access Controller / Data Access
2
Table 9-5. Bus Matrix Slaves
Bus Matrix Slaves
Slave ID
Internal Flash Memory
0
SRAM Port 4 - CM0+ Access
1
SRAM Port 6 - DSU Access
2
AHB-APB Bridge A
3
AHB-APB Bridge B
4
AHB-APB Bridge C
5
SRAM Port 5 - DMAC Data Access
6
DIVAS - Divide Accelerator
7
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
29
Table 9-6. SRAM Port Connections
SRAM Port Connection
9.4.3.
Port ID
Connection Type
CM0+ - Cortex M0+ Processor
0
Bus Matrix
DSU - Device Service Unit
1
Bus Matrix
DMAC - Direct Memory Access Controller - Data Access
2
Bus Matrix
DMAC - Direct Memory Access Controller - Fetch Access 0
3
Direct
DMAC - Direct Memory Access Controller - Fetch Access 1
4
Direct
DMAC - Direct Memory Access Controller - Write-Back Access 0
5
Direct
DMAC - Direct Memory Access Controller - Write-Back Access 1
6
Direct
Reserved
7
Direct
Reserved
8
Direct
MTB - Micro Trace Buffer
9
Direct
SRAM Quality of Service
To ensure that masters with latency requirements get sufficient priority when accessing RAM, the different
masters can be configured to have a given priority for different type of access.
The Quality of Service (QoS) level is independently selected for each master accessing the RAM. For any
access to the RAM the RAM also receives the QoS level. The QoS levels and their corresponding bit
values for the QoS level configuration is shown in below.
Table 9-7. Quality of Service Level Configuration
Value
Name
0x0
DISABLE
0x1
LOW
0x2
MEDIUM
0x3
HIGH
Description
Background (no sensitive operation)
Sensitive Bandwidth
Sensitive Latency
Critical Latency
If a master is configured with QoS level DISABLE (0x0) or LOW (0x1) there will be minimum latency of
one cycle for the RAM access.
The priority order for concurrent accesses are decided by two factors. First, the QoS level for the master
and second, a static priority given by Table 9-6 SRAM Port Connections. The lowest port ID has the
highest static priority.
The MTB has fixed QoS level HIGH (0x3) and the DSU has fixed QoS level LOW (0x1).
The CPU QoS level can be written/read at address 0x41007110, bits [1:0]. Its reset value is 0x0.
Refer to different master QOSCTRL registers for configuring QoS for the other masters (DMAC).
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
30
10.
Packaging Information
10.1.
Thermal Considerations
10.1.1.
Thermal Resistance Data
The following Table summarizes the thermal resistance data depending on the package.
Table 10-1. Thermal Resistance Data
10.1.2.
Package Type
θJA
θJC
32-pin TQFP
68°C/W
25.8°C/W
48-pin TQFP
78.8°C/W
12.3°C/W
64-pin TQFP
66.7°C/W
11.9°C/W
32-pin QFN
37.2°C/W
3.1°C/W
48-pin QFN
31.6°C/W
10.3°C/W
64-pin QFN
32.2°C/W
10.1°C/W
Junction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:
1.
2.
TJ = TA + (PD x θJA)
TJ = TA + (PD x (θHEATSINK + θJC))
where:
•
•
•
•
•
θJA = Package thermal resistance, Junction-to-ambient (°C/W), see Thermal Resistance Data
θJC = Package thermal resistance, Junction-to-case thermal resistance (°C/W), see Thermal
Resistance Data
θHEATSINK = Thermal resistance (°C/W) specification of the external cooling device
PD = Device power consumption (W)
TA = Ambient temperature (°C)
From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling
device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be
used to compute the resulting average chip-junction temperature TJ in °C.
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
31
10.2.
Package Drawings
10.2.1.
64 pin TQFP
Table 10-2. Device and Package Maximum Weight
300
mg
Table 10-3. Package Characteristics
Moisture Sensitivity Level
MSL3
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
32
Table 10-4. Package Reference
10.2.2.
JEDEC Drawing Reference
MS-026
JESD97 Classification
E3
64 pin QFN
Note: The exposed die attach pad is not connected electrically inside the device.
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
33
Table 10-5. Device and Package Maximum Weight
200
mg
Table 10-6. Package Charateristics
Moisture Sensitivity Level
MSL3
Table 10-7. Package Reference
JEDEC Drawing Reference
MO-220
JESD97 Classification
E3
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
34
10.2.3.
48 pin TQFP
Table 10-8. Device and Package Maximum Weight
140
mg
Table 10-9. Package Characteristics
Moisture Sensitivity Level
MSL3
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
35
Table 10-10. Package Reference
10.2.4.
JEDEC Drawing Reference
MS-026
JESD97 Classification
E3
48 pin QFN
Note: The exposed die attach pad is not connected electrically inside the device.
Table 10-11. Device and Package Maximum Weight
140
mg
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
36
Table 10-12. Package Characteristics
Moisture Sensitivity Level
MSL3
Table 10-13. Package Reference
10.2.5.
JEDEC Drawing Reference
MO-220
JESD97 Classification
E3
32 pin TQFP
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
37
Table 10-14. Device and Package Maximum Weight
100
mg
Table 10-15. Package Charateristics
Moisture Sensitivity Level
MSL3
Table 10-16. Package Reference
JEDEC Drawing Reference
MS-026
JESD97 Classification
E3
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
38
10.2.6.
32 pin QFN
Note: The exposed die attach pad is connected inside the device to GND and GNDANA.
Table 10-17. Device and Package Maximum Weight
90
mg
Table 10-18. Package Characteristics
Moisture Sensitivity Level
MSL3
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
39
Table 10-19. Package Reference
10.3.
JEDEC Drawing Reference
MO-220
JESD97 Classification
E3
Soldering Profile
The following table gives the recommended soldering profile from J-STD-20.
Table 10-20. Profile Feature
Green Package
Average Ramp-up Rate (217°C to peak)
3°C/s max.
Preheat Temperature 175°C ±25°C
150-200°C
Time Maintained Above 217°C
60-150s
Time within 5°C of Actual Peak Temperature
30s
Peak Temperature Range
260°C
Ramp-down Rate
6°C/s max.
Time 25°C to Peak Temperature
8 minutes max.
A maximum of three reflow passes is allowed per component.
Atmel SAM C20E / SAM C20G / SAM C20J [DATASHEET]
Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
40
Atmel Corporation
©
1600 Technology Drive, San Jose, CA 95110 USA
T: (+1)(408) 441.0311
F: (+1)(408) 436.4200
|
www.atmel.com
2016 Atmel Corporation. / Rev.: Atmel-42364H-SAM-C20_Datasheet_Preliminary Summary-05/2016
®
®
Atmel , Atmel logo and combinations thereof, Enabling Unlimited Possibilities , and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
®
®
other countries. ARM , ARM Connected logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.