ATM90E26 - Complete

Atmel M90E26
Single-Phase High-Performance Wide-Span
Energy Metering IC
DATASHEET
FEATURES
Metering Features
• Metering features fully in compliance with the requirements of IEC62052-11,
IEC62053-21 and IEC62053-23; applicable in class 1 or class 2 single-phase watthour meter or class 2 single-phase var-hour meter.
• Accuracy of 0.1% for active energy and 0.2% for reactive energy over a dynamic
range of 5000:1.
• Temperature coefficient is 15 ppm/ ℃ (typical) for on-chip reference voltage
• Single-point calibration over a dynamic range of 5000:1 for active energy; no calibration needed for reactive energy.
• Energy Meter Constant doubling at low current to save verification time.
• Electrical parameters measurement: less than ±0.5% fiducial error for Vrms, Irms,
mean active/ reactive/ apparent power, frequency, power factor and phase angle.
• Forward/ reverse active/ reactive energy with independent energy registers. Active/
reactive energy can be output by pulse or read through energy registers to adapt to
different applications.
• Programmable startup and no-load power threshold.
• Dedicated ADC and different gains for L line and N line current sampling circuits.
Current sampled over shunt resistor or current transformer (CT); voltage sampled
over resistor divider network or potential transformer (PT).
• Programmable L line and N line metering modes: anti-tampering mode (larger
power), L line mode (fixed L line), L+N mode (applicable for single-phase three-wire
system) and flexible mode (configure through register).
• Programmable L line and N line power difference threshold in anti-tampering mode.
Other Features
• 3.3V single power supply. Operating voltage range: 2.8~3.6V. Metering accuracy
guaranteed within 3.0V~3.6V. 5V compatible for digital input.
• Built-in hysteresis for power-on reset.
• Selectable UART interface and SPI interface (four-wire SPI interface or simplified
three-wire SPI interface with fixed 24 cycles for all registers operation).
• Parameter diagnosis function and programmable interrupt output of the IRQ interrupt signal and the WarnOut signal.
• Programmable voltage sag detection and zero-crossing output.
• Channel input range
- Voltage channel (when gain is '1'): 120μVrms~600mVrms.
- L line current channel (when gain is '24'): 5μVrms~25mVrms.
- N line current channel (when gain is '1'): 120μVrms~600mVrms.
• Programmable L line current gain: 1, 4, 8, 16, 24; Programmable N line gain: 1, 2, 4.
• Support L line and N line offset compensation.
• CF1 and CF2 output active and reactive energy pulses respectively which can be
used for calibration or energy accumulation.
• Crystal oscillator frequency: 8.192 MHz.
Atmel-46002B-SE-M90E26-Datasheet_110714
• Green SSOP28 package.
• Operating temperature: -40 ℃ ~ +85 ℃ .
APPLICATION
The M90E26 is used for active and reactive energy metering for single-phase two-wire (1P2W), single-phase three-wire
(1P3W) or anti-tampering energy meters. With the measurement function, the M90E26 can also be used in power instruments which need to measure voltage, current, etc.
DESCRIPTION
The M90E26 is a high-performance wide-span energy metering chip. The ADC and DSP technology ensure the chip's longterm stability over variations in grid and ambient environmental conditions.
BLOCK DIAGRAM
MMD1
MMD0
DSP Module
I1P
I1N
PGA
X1/X4/X8/
X16/X24
VP
ADC
HPF1
HPF0
L Line Forward/Reverse Active/
Reactive Power
L Line Apparent Power
L Line Irms
ADC
HPF1
HPF0
Vrms
HPF0
N Line Forward/Reverse Active/
Reactive Power
N Line Apparent Power
N Line Irms
VN
I2P
ADC
NGain
HPF1
I2N
Vref
Reference Voltage
Crystal Oscillator
RESET
SPI / UART
Power On Reset
OSCI
OSCO
CS SCLK
SDO/ SDI/
UTX URX
Active
Reactive
Energy Pulse Energy Pulse
Output
Output
CF1
CF2
WarnOut/IRQ/ZX
WarnOut IRQ
Power Factor/
Angle/Frequency
ZX
Figure-1 M90E26 Block Diagram
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
2
Ta bl e o f C o n t en ts
Features...............................................................................................................................................
Application ..........................................................................................................................................
Description ..........................................................................................................................................
Block Diagram.....................................................................................................................................
1
2
2
2
1 Pin Assignment .............................................................................................................................. 7
2 Pin Description ............................................................................................................................... 8
3 Functional Description ................................................................................................................ 10
3.1 Dynamic Metering Range ........................................................................................................ 10
3.2 Startup and No-Load Power .................................................................................................... 10
3.3 Energy Registers ..................................................................................................................... 11
3.4 N Line Metering and Anti-Tampering ....................................................................................... 12
3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration ........................................... 12
3.4.2 Anti-Tampering Mode .................................................................................................................. 12
3.5 Measurement and Zero-Crossing ............................................................................................ 13
3.5.1 Measurement ............................................................................................................................... 13
3.5.2 Zero-Crossing .............................................................................................................................. 13
3.6 Calibration ................................................................................................................................ 14
3.7 Reset ........................................................................................................................................ 14
4 Interface ........................................................................................................................................ 15
4.1 SPI Interface ............................................................................................................................ 15
4.1.1 Four-Wire Mode ........................................................................................................................... 15
4.1.2 Three-Wire Mode ......................................................................................................................... 16
4.1.3 Timeout and Protection ............................................................................................................... 17
4.2 UART Interface ........................................................................................................................ 18
4.2.1
4.2.2
4.2.3
4.2.4
Byte Level Timing ........................................................................................................................
Write Transaction ........................................................................................................................
Read transaction .........................................................................................................................
Checksum ....................................................................................................................................
18
18
19
19
4.3 WarnOut Pin for Fatal Error Warning ....................................................................................... 20
4.4 Low Cost Implementation in Isolation with MCU ...................................................................... 20
5 Register ......................................................................................................................................... 21
5.1 Register List ............................................................................................................................. 21
5.2 Status and Special Register ..................................................................................................... 22
5.3 Metering/ Measurement Calibration and Configuration ........................................................... 26
5.3.1 Metering Calibration and Configuration Register ......................................................................... 26
5.3.2 Measurement Calibration Register .............................................................................................. 34
5.4 Energy Register ....................................................................................................................... 39
5.5 Measurement Register ............................................................................................................. 44
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
3
6 Electrical Specification ................................................................................................................ 51
6.1 Electrical Specification ............................................................................................................. 51
6.2 SPI Interface Timing ................................................................................................................ 53
6.3 Power On Reset Timing ........................................................................................................... 54
6.4 Zero-Crossing Timing .............................................................................................................. 55
6.5 Voltage Sag Timing .................................................................................................................. 55
6.6 Pulse Output ............................................................................................................................ 56
6.7 Absolute Maximum Rating ....................................................................................................... 56
Ordering Information........................................................................................................................ 57
Packaging Drawings......................................................................................................................... 58
Revision History .............................................................................................................................. 59
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
4
List of Tables
Table-1
Table-2
Table-3
Table-4
Table-5
Table-6
Table-7
Table-8
Table-9
Table-10
Table-11
Table-12
Table-13
Table-14
Pin Description ..................................................................................................................................................... 8
Active Energy Metering Error ............................................................................................................................. 10
Reactive Energy Metering Error ......................................................................................................................... 10
Threshold Configuration for Startup and No-Load Power .................................................................................. 10
Energy Registers ............................................................................................................................................... 11
Metering Mode ................................................................................................................................................... 12
The Measurement Format ................................................................................................................................. 13
Read / Write Result in Four-Wire Mode ............................................................................................................. 17
Read / Write Result in Three-Wire Mode ........................................................................................................... 17
Register List ....................................................................................................................................................... 21
SPI Timing Specification .................................................................................................................................... 53
Power On Reset Specification ........................................................................................................................... 54
Zero-Crossing Specification ............................................................................................................................... 55
Voltage Sag Specification .................................................................................................................................. 56
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
5
List of Figures
Figure-1
Figure-2
Figure-3
Figure-4
Figure-5
Figure-6
Figure-7
Figure-8
Figure-9
Figure-10
Figure-11
Figure-12
Figure-13
Figure-14
Figure-15
M90E26 Block Diagram ....................................................................................................................................... 2
Pin Assignment (Top View) .................................................................................................................................. 7
Read Sequence in Four-Wire Mode .................................................................................................................. 15
Write Sequence in Four-Wire Mode ................................................................................................................... 15
Read Sequence in Three-Wire Mode ................................................................................................................ 16
Write Sequence in Three-Wire Mode ................................................................................................................. 16
UART Byte Level Timing .................................................................................................................................... 18
Write Transaction ............................................................................................................................................... 18
Read Transaction ............................................................................................................................................... 19
4-Wire SPI Timing Diagram .............................................................................................................................. 53
3-Wire SPI Timing Diagram .............................................................................................................................. 53
Power On Reset Timing Diagram ..................................................................................................................... 54
Zero-Crossing Timing Diagram ......................................................................................................................... 55
Voltage Sag Timing Diagram ............................................................................................................................ 55
Output Pulse Width ........................................................................................................................................... 56
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
6
1
PIN ASSIGNMENT
MMD1
1
28
MMD0
DGND
2
27
SDI/URX
DVDD
3
26
SDO/UTX
Reset
4
25
SCLK
AVDD
5
24
CS
AGND
6
23
OSCO
I2P
7
22
OSCI
I2N
8
21
ZX
Resv_low
9
20
IRQ
I1P
10
19
CF2
I1N
11
18
CF1
USEL
12
17
WarnOut
Vref
13
16
VP
AGND
14
15
VN
Figure-2 Pin Assignment (Top View)
7
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
2
PIN DESCRIPTION
Table-1 Pin Description
Name
Pin No.
I/O
note 1
Type
Reset
4
I
LVTTL
DVDD
3
I
Power
DGND
2
I
Power
AVDD
5
I
Power
Vref
13
O
Analog
AGND
6, 14
I
Power
I1P
I1N
10
11
I
Analog
I2P
I2N
7
8
VP
VN
16
15
USEL
12
I
I
I
Description
Reset: Reset Pin (active low)
This pin should connect to ground through a 0.1μF filter capacitor. In application it can also directly connect to one output pin from microcontroller
(MCU).
DVDD: Digital Power Supply
This pin provides power supply to the digital part. It should be decoupled
with a 10μF electrolytic capacitor and a 0.1μF capacitor.
DGND: Digital Ground
AVDD: Analog Power Supply
This pin provides power supply to the analog part. It should be decoupled
with a 0.1μF capacitor.
Vref: Output Pin for Reference Voltage
This pin should be decoupled with a 1μF capacitor and a 1nF capacitor.
AGND: Analog Ground
I1P: Positive Input for L Line Current
I1N: Negative Input for L Line Current
These pins are differential inputs for L line current. Input range is
5μVrms~25mVrms when gain is '24'.
Analog
I2P: Positive Input for N Line Current
I2N: Negative Input for N Line Current
These pins are differential inputs for N line current. Input range is
120μVrms~600mVrms when gain is '1'.
Analog
VP: Positive Input for Voltage
VN: Negative Input for Voltage
These pins are differential inputs
120μVrms~600mVrms.
LVTTL
for
voltage.
Input
range
is
USEL: UART/SPI Interface Selection
High: UART interface
Low: SPI interface
Note: This pin should not change after reset.
CS
SCLK
24
25
I
I
LVTTL
LVTTL
CS: Chip Select (Active Low) of SPI
In 4-wire SPI mode, this pin must be driven from high to low for each read/
write operation, and maintain low for the entire operation. In 3-wire SPI
mode, this pin must be low all the time. Refer to section 4.1.
In UART interface, this pin should be connected to VDD.
SCLK: Serial Clock of SPI
This pin is used as the clock for the SPI interface. Data on SDI is shifted into
the chip on the rising edge of SCLK while data on SDO is shifted out of the
chip on the falling edge of SCLK.
In UART interface, this pin should be connected to ground.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
8
Table-1 Pin Description (Continued)
Name
Pin No.
I/O
note 1
Type
Description
SDO: Serial Data Output of SPI
This pin is used as the data output for the SPI interface. Data on this pin is
shifted out of the chip on the falling edge of SCLK.
SDO/UTX
26
OZ
LVTTL
UTX: UART Data Transmit
This pin is used to transmit data for the UART interface. This pin needs to be
pulled up to VDD by a 10kΩ resistor.”
Note: UART and SPI interface is selected by the USEL pin.
SDI: Serial Data Input of SPI
This pin is used as the data input for the SPI interface. Address and data on
this pin is shifted into the chip on the rising edge of SCLK.
SDI/URX
9
27
I
LVTTL
MMD1
MMD0
1
28
I
LVTTL
OSCI
22
I
LVTTL
OSCO
23
O
LVTTL
CF1
CF2
18
19
O
LVTTL
ZX
21
O
LVTTL
IRQ
20
O
LVTTL
WarnOut
17
O
LVTTL
Resv_Low
9
I
LVTTL
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
URX: UART Data Receive
This pin is used to receive data for the UART interface.
Note: UART and SPI interface is selected by the USEL pin.
MMD1/0: Metering Mode Configuration
00: anti-tampering mode (larger power);
01: L line mode (fixed L line);
10: L+N mode (applicable for single-phase three-wire system);
11: flexible mode (line specified by the LNSel bit (MMode, 2BH))
OSCI: External Crystal Input
An 8.192 MHz crystal is connected between OSCI and OSCO. In application, this pin should be connected to ground through a 12pF capacitor.
OSCO: External Crystal Output
An 8.192 MHz crystal is connected between OSCI and OSCO. In application, this pin should be connected to ground through a 12pF capacitor.
CF1: Active Energy Pulse Output
CF2: Reactive Energy Pulse Output
These pins output active/reactive energy pulses.
ZX: Voltage Zero-Crossing Output
This pin is asserted when voltage crosses zero. Zero-crossing mode can be
configured to positive zero-crossing, negative zero-crossing or all zerocrossing by the Zxcon[1:0] bits (MMode, 2BH).
IRQ: Interrupt Output
This pin is asserted when one or more events in the SysStatus register
(01H) occur. It is deasserted when there is no bit set in the SysStatus register (01H).
WarnOut: Fatal Error Warning
This pin is asserted when there is metering parameter calibration error or
voltage sag. Refer to section 4.3.
Reserved
For normal operation, these pins should be connected to ground.
3
FUNCTIONAL DESCRIPTION
3.1
DYNAMIC METERING RANGE
Accuracy is 0.1% for active energy metering and 0.2% for reactive energy metering over a dynamic range of 5000:1 (typical). Refer to Table-2 and Table-3.
Table-2 Active Energy Metering Error
Current
Power Factor
20mA ≤ I < 50mA
Error(%)
±0.2
1.0
50mA ≤ I ≤ 100A
±0.1
50mA ≤ I < 100mA
±0.2
0.5 (Inductive)
100mA ≤ I ≤ 100A
0.8 (Capacitive)
±0.1
Note: Shunt resistor is 250 μΩ or CT ratio is 1000:1 and load resistor is 6Ω.
Table-3 Reactive Energy Metering Error
Current
sinφ (Inductive or Capacitive)
20mA ≤ I < 50mA
Error(%)
±0.4
1.0
50mA ≤ I ≤ 100A
±0.2
50mA ≤ I < 100mA
±0.4
0.5
100mA ≤ I ≤ 100A
±0.2
Note: Shunt resistor is 250 μΩ or CT ratio is 1000:1 and load resistor is 6Ω.
3.2
STARTUP AND NO-LOAD POWER
Startup and no-load power thresholds are programmable, both for active and reactive power. The related registers are
listed in Table-4.
Table-4 Threshold Configuration for Startup and No-Load Power
Threshold
Register
Threshold for Active Startup Power
Threshold for Active No-load Power
Threshold for Reactive Startup Power
Threshold for Reactive No-load Power
PStartTh, 27H
PNolTh, 28H
QStartTh, 29H
QNolTh, 2AH
The M90E26 will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less
than the corresponding power of 20mA when power factor or sinφ is 1.0.
The M90E26 has no-load status bits, the Pnoload/Qnoload bit (EnStatus, 46H). The M90E26 will not output any active
pulse (CF1) in active no-load state. The M90E26 will not output any reactive pulse (CF2) in reactive no-load state.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
10
3.3
ENERGY REGISTERS
The M90E26 provides energy pulse output CFx (CF1/CF2) which is proportionate to active/reactive energy. Energy is usually accumulated by adding the CFx pulses in system applications. Alternatively, the M90E26 provides energy registers.
There are forward (inductive), reverse (capacitive) and absolute energy registers for both active and reactive energy. Refer
to Table-5.
Table-5 Energy Registers
Energy
Register
Forward Active Energy
Reverse Active Energy
Absolute Active Energy
Forward (Inductive) Reactive Energy
Reverse (Capacitive) Reactive Energy
Absolute Reactive Energy
APenergy, 40H
ANenergy, 41H
ATenergy, 42H
RPenergy, 43H
RNenergy, 44H
RTenergy, 45H
Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy
pulse.
11
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
3.4
N LINE METERING AND ANTI-TAMPERING
3.4.1
METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION
The M90E26 has two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0
pins are used to configure the metering mode. Refer to Table-6.
Table-6 Metering Mode
MMD1
MMD0
0
0
0
1
1
0
1
1
Metering Mode
CFx (CF1 or CF2) Output
CFx represents the larger energy line. Refer to section 3.4.2.
L Line Mode (fixed L line)
CFx represents L line energy all the time.
L+N Mode (applicable for single-phase three-wire sys- CFx represents the arithmetic sum of L line and N line
tem)
energy
Flexible Mode (line specified by the LNSel bit (MMode,
CFx represents energy of the specified line.
2BH))
Anti-tampering Mode (larger power)
The M90E26 has two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and
N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled
over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.
3.4.2
ANTI-TAMPERING MODE
Threshold
In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%,
3.125% and 1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the
default value is 3.125%. The threshold is applicable for active energy. The metering line of the reactive energy follows that
of the active energy.
Compare Method
In anti-tampering mode, the compare method is as follows:
If current metering line is L line and
N Line Active Power - L Line Active Power
* 100% > Threshold
L Line Active Power
N line is switched as the metering line, otherwise L line keeps as the metering line.
If current metering line is N line and
L Line Active Power - N Line Active Power
* 100% > Threshold
N Line Active Power
L line is switched as the metering line, otherwise N line keeps as the metering line.
This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.
Special Treatment at Low Power
When power is low, general factors such as the quantization error or calibration difference between L line and N line might
cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is
adopted:
The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the
startup power but higher than the startup power.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
12
3.5
MEASUREMENT AND ZERO-CROSSING
3.5.1
MEASUREMENT
The M90E26 has the following measurements:
• voltage rms
• current rms (L line/N line)
• mean active power (L line/N line)
• mean reactive power (L line/N line)
• voltage frequency
• power factor (L line/N line)
• phase angle between voltage and current (L line/N line)
• mean apparent power (L line/N line)
The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and
the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:
Fiducial_E rror =
U mea - U real
* 100%
U FV
Where Umea is the measured voltage, Ureal is the actual voltage and UFV is the fiducial value.
Table-7 The Measurement Format
M90E26 Defined
Format
Range
XXX.XX
0~655.35V
XX.XXX
0~65.535A
maximum power as Un*4Ib
XX.XXX
-32.768~+32.767
kW/kvar
Complement, MSB as the sign bit
Un*4Ib
XX.XXX
0~+32.767 kVA
Complement, MSB always '0'
fn
XX.XX
45.00~65.00 Hz
1.000
X.XXX
-1.000~+1.000
Measurement
Fiducial Value (FV)
Voltage rms
Un
Imax
as 4Ib
Current rms
note 1, note 2
Active/ Reactive Power
note 1
note 1
Apparent Power
Frequency
Power Factor
note 3
Comment
Signed, MSB as the sign bit
note 4
180°
XXX.X
-180°~+180°
Signed, MSB as the sign bit
Phase Angle
Note 1: All registers are of 16 bits. For cases when the current and active/reactive/apparent power goes beyond the above range, it is
suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value
during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the M90E26, the actual active/reactive/
apparent power is also twice of that of the M90E26.
Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at IFV of 5A and fiducial
accuracy of 0.5%.
Note 3: Power factor is obtained by active power dividing apparent power
Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small
current.
3.5.2
ZERO-CROSSING
The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zerocrossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.
The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical
smart meter applications.
13
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
3.6
CALIBRATION
Calibration includes metering and measurement calibration.
Metering Calibration
The M90E26 design methodology guarantees the accuracy over the entire dynamic range, after metering calibration at one
specific current, i.e. the basic current of Ib.
The calibration procedure includes the following steps:
1. Calibrate gain at unity power factor;
2. Calibrate phase angle compensation at 0.5 inductive power factor.
Generally, line current sampling is susceptible to the circuits around the sensor when shunt resistor is employed as the
current sensor in L line. For example, the transformer in the energy meter’s power supply may conduct interference to the
shunt resistor. Such interference will cause perceptible metering error, especially at low current conditions. The total interfere is at a statistically constant level. In this case, the M90E26 provides the power offset compensation feature to improve
metering performance.
L line and N line need to be calibrated sequentially. Reactive energy does not need to be calibrated after active energy calibration completed.
Measurement Calibration
Measurement calibration includes gain calibration for voltage rms and current rms.
Considering the possible nonlinearity around zero caused by external components, the M90E26 also provides offset
compensation for voltage rms, current rms, mean active power and mean reactive power.
The M90E26 design methodology guarantees automatic calibration for frequency, phase angle and power factor measurement.
3.7
RESET
The M90E26 has an on-chip power supply monitor circuit with built-in hysteresis. The M90E26 only works within the voltage range.
The M90E26 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their
default value after reset.
Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.
Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over
200μs.
Software Reset: Software Reset is initiated when ‘789AH’ is written to the software reset register (SoftReset, 00H).
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
14
4
INTERFACE
The M90E26 supports both Serial Peripheral Interface (SPI) and UART interface. The selection is made by the USEL pin.
When the USEL pin is low, SPI interface is selected. When the USEL pin is high, UART interface is selected. Note that the
USEL pin should not change after reset.
4.1
SPI INTERFACE
SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire
mode, four pins are used: CS, SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on
SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of
SCLK. The LastData register (06H) stores the 16-bit data that is just read or written.
4.1.1
FOUR-WIRE MODE
In four-wire mode, the CS pin must be driven low for the entire read or write operation. The first bit on SDI defines the
access type and the lower 7-bit is decoded as address.
Read Sequence
As shown in Figure-3, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this
register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.
CS
1
2
3
4
5
6
7
8
A1
A0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
SCLK
Register Address
SDI
A6
A5
A4
A3
A2
16-bit data
High Impedance
SDO
Don't care
D15 D14 D13 D12 D11 D10 D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Figure-3 Read Sequence in Four-Wire Mode
Write Sequence
As shown in Figure-4, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then
shifted into the chip on SDI. A complete write operation contains 24 cycles.
CS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
SCLK
Register Address
SDI
A6
A5
A4
SDO
A3
A2
A1
16-bit data
A0 D15 D14 D13 D12 D11 D10 D9
D8
D7
D6
High Impedance
Figure-4 Write Sequence in Four-Wire Mode
15
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
D5
D4
D3
D2
D1
D0
4.1.2
THREE-WIRE MODE
In three-wire mode, CS is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or
write operation is triggered if SCLK is consistently low for at least 400μs. The subsequent read or write operation is similar
to that in four-wire mode. Refer to Figure-5 and Figure-6.
CS
Drive Low
1
SCLK
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
1
2
3
4
Low ≥ 400μs
Low ≥ 400μs
Register address
SDI
Don’t care
A6
A5
A4
A3
A2
A1
Don't care
A0
16-bit data
Hign Impedance
SDO
A6
D
15
D
14
D
13
D
12
D
11
D
10
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
23
24
A5
A4
3
4
High Impedance
Figure-5 Read Sequence in Three-Wire Mode
CS
Drive low
1
SCLK
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SDO
17
18
19
20
21
22
Don't care
1
2
Low ≥ 400μs
Register Address
SDI
16
Low ≥ 400μs
A6
A5
A4
A3
A2
A1
16-bit data
A0
D
15
D
14
D
13
D
12
D
11
D
10
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Don't care
A6
A5
A4
High Impedance
Figure-6 Write Sequence in Three-Wire Mode
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
16
4.1.3
TIMEOUT AND PROTECTION
Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write
operation is aborted.
If there are more than 24 SCLK cycles when CS is driven low in four-wire mode or between two starts in three-wire mode,
writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the
valid ones. However, the reading result might not be the intended one.
A read access to an invalid address returns all zero. A write access to an invalid address is discarded.
Table-8 and Table-9 list the read or write result in different conditions.
Table-8 Read / Write Result in Four-Wire Mode
Condition
Operation
Timeout
Read
Write
Result
note 1
SCLK Cycles
Read/Write
Status
LastData
Register Update
Normal Read
Yes
-
note 2
-
note 2
<24
Partial Read
No
No
=24
Normal Write
Yes
No
!=24
No Write
No
Yes
-
No Write
No
>=24
Note 1: The number of SCLK cycles when CS is driven low or the number of SCLK cycles before timeout if any.
Note 2: '-' stands for Don't Care.
Table-9 Read / Write Result in Three-Wire Mode
Condition
Operation
Read
Result
note 1
Timeout
SCLK Cycles
No
>=24
note 2
Read/Write Status
LastData
Register Update
Normal Read
Yes
Timeout after 24 cycles
>24
Normal Read
Yes
Timeout before 24 cycles
note 3
Partial Read
No
Timeout at 24 cycles
=24
Normal Read
Yes
No
=24
Normal Write
Yes
No
!=24
No Write
No
Yes
-
No Write
No
Write
-
Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any.
Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK
cycles in the next operation is counted into this operation. In this case, data is corrupted.
Note 3: '-' stands for Don't Care.
17
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
4.2
UART INTERFACE
The UART interface is of 8-bit data only, with no parity checking features.
A read/write transaction is composed of 6 bytes’ transfer, starting always from the host transmitting the first byte ‘FEH’. The
second byte is referenced as RW_ADDRESS, which has a R/W bit (bit7) and 7 address bits (bit6-0).
Upon receiving commands from the host, the M90E26 will send data and/or checksum bytes back to the host within 5ms if
the checksum is confirmed to be correct. Interval between successive UART bytes from the M90E26 is 5 bits maximum.
The M90E26 will time out the current transaction if the host byte interval (idling time between two successive bytes) is
greater than 20ms. Once transaction timeout or checksum failure, the M90E26 will abort the current transaction and wait
for the starting byte ‘FEH’ of the new transaction and ignore other data that received. The host needs to have a timeout
scheme to detect transaction failure. In addition, host needs to wait at least 20ms to start a new transaction to allow the
M90E26 to recover from a failure condition.
UART baud rate is determined by the host, and it can be auto-detected by the M90E26. The baud rates supported are 2400
and 9600. The first byte (FEH) is used in detecting the baud-rate. The baud-rate of a transaction shall be kept unchanged.
For a new transaction, host may change the baud rate. However, it is suggested that boad rate remain the same in application.
The 8-bit data in TX/RX pin is shifted in a LSB (bit0) first manner.
4.2.1
BYTE LEVEL TIMING
The timing for each byte is as shown in Figure-7.
Data frame
Idle
Start
bit
UTX/ URX
TX IO Drive
Bit0
Bit1
Bit2
Bit3
High
Impedence
Bit4
Bit5
Bit6
Bit7
Stop bit
TX IO Drive
Note: The UTX pin will be in high impedance state when not transmitting
Figure-7 UART Byte Level Timing
4.2.2
WRITE TRANSACTION
A complete write transaction is composed of six bytes, five from the host and one from the M90E26 as shown in Figure-8.
HOST
(URX)
M90E26
(UTX)
0xFE
W
(0)
ADDRESS
DATA_MSB
DATA_LSB
CHKSUM
Addr+data
Byte interval
max 20 ms
CHKSUM
Addr+data
Response time
max 5 ms
Figure-8 Write Transaction
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
18
4.2.3
READ TRANSACTION
A complete read transaction is composed of six bytes, three from the host and three from the M90E26 as shown in Figure9.
HOST
(URX)
0xFE
R
(1)
M90E26
(UTX)
CHKSUM
Address
ADDRESS
Byte interval
max 20 ms
DATA_MSB
Response
time max 5 ms
DATA_LSB
CHKSUM
data
Byte interval
max 5 bits
Figure-9 Read Transaction
4.2.4
CHECKSUM
Checksum is done by adding the bytes as unsigned numbers, dropping the overflow bits, and taking the result as the
checksum.
Checksum is calculated with address, data or address+data, depending on the transaction type:
Write Transaction:
Host Checksum = RW_Address+DATA_MSB+DATA_LSB
M90E26 Checksum = RW_Address+DATA_MSB+DATA_LSB
Read Transaction:
Host Checksum = RW_Address
M90E26 Checksum = DATA_MSB + DATA_LSB
19
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
4.3
WARNOUT PIN FOR FATAL ERROR WARNING
Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.
Calibration Error
The M90E26 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering
configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and
the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of
pulses during power-on or any abnormal situation upon incorrect parameters.
Voltage Sag
Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any
zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.
When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register
(02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in
system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large
capacitor in traditional rectifier circuit, and can detect voltage sag earlier.
4.4
LOW COST IMPLEMENTATION IN ISOLATION WITH MCU
The following functions can be achieved at low cost when the M90E26 is isolated from the MCU:
SPI/UART: MCU can perform read and write operations through low speed optocoupler (e.g. PS2501) when the M90E26 is
isolated from the MCU. For the SPI interface, it can be either of 3-wire or 4-wire.
Energy Pulses CFx: Energy can be accumulated by reading values in corresponding energy registers. CFx can also connect to the optocoupler and the energy pulse light can be turned on by CFx.
Fatal Error WarnOut: Fatal error can be acquired by reading the CalErr[1:0] bits (SysStatus, 01H).
IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).
Reset: The M90E26 is reset when ‘789AH’ is written to the software reset register (SoftReset, 00H).
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
20
5
REGISTER
5.1
REGISTER LIST
Table-10 Register List
Register
Address
Register Name
Read/Write
Type
Functional Description
Page
Status and Special Register
00H
SoftReset
W
Software Reset
P 22
01H
SysStatus
R/C
System Status
P 23
02H
FuncEn
R/W
Function Enable
P 24
03H
SagTh
R/W
Voltage Sag Threshold
P 24
04H
SmallPMod
R/W
Small-Power Mode
P 25
06H
LastData
R
Last Read/Write SPI/UART Value
P 25
08H
LSB
R/W
RMS/Power 16-bit LSB
P 26
Metering Calibration and Configuration Register
20H
CalStart
R/W
Calibration Start Command
P 26
21H
PLconstH
R/W
High Word of PL_Constant
P 27
22H
PLconstL
R/W
Low Word of PL_Constant
P 27
23H
Lgain
R/W
L Line Calibration Gain
P 28
24H
Lphi
R/W
L Line Calibration Angle
P 28
25H
Ngain
R/W
N Line Calibration Gain
P 28
26H
Nphi
R/W
N Line Calibration Angle
P 29
27H
PStartTh
R/W
Active Startup Power Threshold
P 29
28H
PNolTh
R/W
Active No-Load Power Threshold
P 29
29H
QStartTh
R/W
Reactive Startup Power Threshold
P 30
2AH
QNolTh
R/W
Reactive No-Load Power Threshold
P 30
2BH
MMode
R/W
Metering Mode Configuration
P 31
2CH
CS1
R/W
Checksum 1
P 33
Measurement Calibration Register
30H
AdjStart
R/W
Measurement Calibration Start Command
P 34
31H
Ugain
R/W
Voltage rms Gain
P 34
32H
IgainL
R/W
L Line Current rms Gain
P 35
33H
IgainN
R/W
N Line Current rms Gain
P 35
34H
Uoffset
R/W
Voltage Offset
P 35
35H
IoffsetL
R/W
L Line Current Offset
P 36
36H
IoffsetN
R/W
N Line Current Offset
P 36
37H
PoffsetL
R/W
L Line Active Power Offset
P 36
38H
QoffsetL
R/W
L Line Reactive Power Offset
P 37
39H
PoffsetN
R/W
N Line Active Power Offset
P 37
3AH
QoffsetN
R/W
N Line Reactive Power Offset
P 37
3BH
CS2
R/W
Checksum 2
P 38
40H
APenergy
R/C
Forward Active Energy
P 39
41H
ANenergy
R/C
Reverse Active Energy
P 40
42H
ATenergy
R/C
Absolute Active Energy
P 40
43H
RPenergy
R/C
Forward (Inductive) Reactive Energy
P 41
Energy Register
21
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Table-10 Register List (Continued)
Register
Address
Register Name
Read/Write
Type
Functional Description
Page
44H
RNenergy
R/C
Reverse (Capacitive) Reactive Energy
P 41
45H
RTenergy
R/C
Absolute Reactive Energy
P 42
46H
EnStatus
R
Metering Status
P 43
48H
Irms
R
L Line Current rms
P 44
Measurement Register
49H
Urms
R
Voltage rms
P 44
4AH
Pmean
R
L Line Mean Active Power
P 45
4BH
Qmean
R
L Line Mean Reactive Power
P 45
4CH
Freq
R
Voltage Frequency
P 46
4DH
PowerF
R
L Line Power Factor
P 46
4EH
Pangle
R
Phase Angle between Voltage and L Line Current
P 47
4FH
Smean
R
L Line Mean Apparent Power
P 47
68H
Irms2
R
N Line Current rms
P 48
6AH
Pmean2
R
N Line Mean Active Power
P 48
6BH
Qmean2
R
N Line Mean Reactive Power
P 49
6DH
PowerF2
R
N Line Power Factor
P 49
6EH
Pangle2
R
Phase Angle between Voltage and N Line Current
P 50
6FH
Smean2
R
N Line Mean Apparent Power
P 50
5.2
STATUS AND SPECIAL REGISTER
SoftReset
Software Reset
Address: 00H
Type: Write
Default Value: 0000H
15
14
13
12
11
10
9
8
SoftReset15
SoftReset14
SoftReset13
SoftReset12
SoftReset11
SoftReset10
SoftReset9
SoftReset8
7
6
5
4
3
2
1
0
SoftReset7
SoftReset6
SoftReset5
SoftReset4
SoftReset3
SoftReset2
SoftReset1
SoftReset0
Bit
15 - 0
Name
Description
SoftReset[15:0] Software reset register. The M90E26 resets if only 789AH is written to this register.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
22
SysStatus
System Status
Address: 01H
Type: Read/Clear
Default Value: 0000H
15
14
13
12
11
10
9
8
CalErr1
CalErr0
AdjErr1
AdjErr0
-
-
-
-
7
6
5
4
3
2
1
0
LNchange
RevQchg
RevPchg
-
-
-
SagWarn
-
Bit
Name
Description
15 - 14
CalErr[1:0]
These bits indicate CS1 checksum status.
00: CS1 checksum correct (default)
11: CS1 checksum error. At the same time, the WarnOut pin is asserted.
13 - 12
AdjErr[1:0]
These bits indicate CS2 checksum status.
00: CS2 checksum correct (default)
11: CS2 checksum error.
11 - 8
-
7
LNchange
This bit indicates whether there is any change of the metering line (L line and N line).
0: metering line no change (default)
1: metering line changed
RevQchq
This bit indicates whether there is any change with the direction of reactive energy.
0: direction of reactive energy no change (default)
1: direction of reactive energy changed
This status is enabled by the RevQEn bit(FuncEn, 02H).
5
RevPchg
This bit indicates whether there is any change with the direction of active energy.
0: direction of active energy no change (default)
1: direction of active energy changed
This status is enabled by the RevPEn bit (FuncEn, 02H).
4-2
-
6
1
SagWarn
0
-
Reserved.
Reserved.
This bit indicates the voltage sag status.
0: no voltage sag (default)
1: voltage sag
Voltage sag is enabled by the SagEn bit (FuncEn, 02H).
Voltage sag status can also be reported by the WarnOut pin. It is enabled by the SagWo bit(FuncEn,
02H).
Reserved.
Note: Any of the above events will prompt the IRQ pin to be asserted, which can be supplied to external MCU as an interrupt.
23
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
FuncEn
Function Enable
Address: 02H
Type: Read/Write
Default Value: 000CH
15
14
13
12
11
10
9
8
-
-
-
-
-
-
-
-
7
6
5
4
3
2
1
0
-
-
SagEn
SagWo
RevQEn
RevPEn
-
-
Bit
15 - 6
Name
-
Description
5
SagEn
This bit determines whether to enable the voltage sag interrupt.
0: disable (default)
1: enable
4
SagWo
This bit determines whether to enable voltage sag to be reported by the WarnOut pin.
0: disable (default)
1: enable
3
RevQEn
This bit determines whether to enable the direction change interrupt of reactive energy.
0: disable
1: enable (default)
2
RevPEn
This bit determines whether to enable the direction change interrupt of active energy.
0: disable
1: enable (default)
1-0
-
Reserved.
Reserved.
SagTh
Voltage Sag Threshold
Address: 03H
Type: Read/Write
Default Value: 1D6AH
15
14
13
12
11
10
9
8
SagTh15
SagTh14
SagTh13
SagTh12
SagTh11
SagTh10
SagTh9
SagTh8
7
6
5
4
3
2
1
0
SagTh7
SagTh6
SagTh5
SagTh4
SagTh3
SagTh2
SagTh1
SagTh0
Bit
15 - 0
Name
Description
Voltage sag threshold configuration. Data format is XXX.XX. Unit is V.
SagTh[15:0] The power-on value of SagTh is 1D6AH, which is calculated by 22000*sqrt(2)*0.78/(4*Ugain/32768)
For details, please refer to related application note 46102.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
24
SmallPMod
Small-Power Mode
Address: 04H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
SmallPMod1
5
SmallPMod1
4
SmallPMod1
3
SmallPMod1
2
SmallPMod1
1
SmallPMod1
0
SmallPMod9
SmallPMod8
7
6
5
4
3
2
1
0
SmallPMod7
SmallPMod6
SmallPMod5
SmallPMod4
SmallPMod3
SmallPMod2
SmallPMod1
SmallPMod0
Bit
Name
Description
Small-power mode command.
A987H: small-power mode. The relationship between the register value of L line and N line active/reactive
power in small-power mode and normal mode is:
SmallPMod[15:0]
power in normal mode = power in small-power mode *Igain*Ugain /(100000 * 2^42)
Others: Normal mode.
Small-power mode is mainly used in the power offset calibration.
15 - 0
LastData
Last Read/Write SPI/UART Value
Address: 06H
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
LastData15
LastData14
LastData13
LastData12
LastData11
LastData10
LastData9
LastData8
7
6
5
4
3
2
1
0
LastData7
LastData6
LastData5
LastData4
LastData3
LastData2
LastData1
LastData0
Bit
15 - 0
25
Name
Description
LastData[15:0]
This register stores the data that is just read or written through the SPI/UART interface. Refer to Table-8
and Table-9.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
5.3
METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION
5.3.1
METERING CALIBRATION AND CONFIGURATION REGISTER
LSB
RMS/Power 16-bit LSB
Address: 08H
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
LSB15
LSB14
LSB13
LSB12
LSB11
LSB10
LSB0
LSB8
7
6
5
4
3
2
1
0
LSB7
LSB6
LSB5
LSB4
LSB3
LSB2
LSB1
LSB0
Bit
Name
15 - 0
Description
LSB[15:0]
16-bit LSB of the RMS or Power registers.
Note that reading of the LSB[7:0] bits is always 0.
CalStart
Calibration Start Command
Address: 20H
Type: Read/Write
Default Value: 6886H
15
14
13
12
11
10
9
8
CalStart15
CalStart14
CalStart13
CalStart12
CalStart11
CalStart10
CalStart9
CalStart8
7
6
5
4
3
2
1
0
CalStart7
CalStart6
CalStart5
CalStart4
CalStart3
CalStart2
CalStart1
CalStart0
Bit
15 - 0
Name
Description
Metering calibration start command:
6886H: Power-on value. Metering function is disabled.
5678H: Metering calibration startup command. After 5678H is written to this register, registers 21H-2BH
resume to their power-on values. The M90E26 starts to meter and output energy pulses regardless
of the correctness of diagnosis. The CalErr[1:0] bits (SysStatus, 01H) are not set and the WarnOut/
CalStart[15:0]
IRQ pins do not report any warning/interrupt.
8765H: Check the correctness of the 21H-2BH registers. If correct, normal metering. If not correct, metering function is disabled, the CalErr[1:0] bits (SysStatus, 01H) are set and the WarnOut/IRQ pins
report warning/interrupt.
Others: Metering function is disabled. The CalErr[1:0] bits (SysStatus, 01H) are set and the WarnOut/IRQ
pins report warning/interrupt.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
26
PLconstH
High Word of PL_Constant
Address: 21H
Type: Read/Write
Default Value: 0015H
15
14
13
12
11
10
9
8
PLconstH15
PLconstH14
PLconstH13
PLconstH12
PLconstH11
PLconstH10
PLconstH9
PLconstH8
7
6
5
4
3
2
1
0
PLconstH7
PLconstH6
PLconstH5
PLconstH4
PLconstH3
PLconstH2
PLconstH1
PLconstH0
Bit
15 - 0
Name
Description
PLconstH[15:0]
The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively.
PL_Constant is a constant which is proportional to the sampling ratios of voltage and current, and
inversely proportional to the Meter Constant. PL_Constant is a threshold for energy calculated inside the
M90E26, i.e., energy larger than PL_Constant will be accumulated in the corresponding energy registers
and then output on CFx.
It is suggested to set PL_constant as a multiple of 4 so as to double or redouble Meter Constant in low
current state to save verification time.
Note: PLconstH takes effect after PLconstL are configured.
For details, please refer to related application note 46102.
PLconstL
Low Word of PL_Constant
Address: 22H
Type: Read/Write
Default Value: D174H
27
15
14
13
12
11
10
9
8
PLconstL15
PLconstL14
PLconstL13
PLconstL12
PLconstL11
PLconstL10
PLconstL9
PLconstL8
7
6
5
4
3
2
1
0
PLconstL7
PLconstL6
PLconstL5
PLconstL4
PLconstL3
PLconstL2
PLconstL1
PLconstL0
Bit
Name
Description
15 - 0
PLconstL[15:0]
The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively.
It is suggested to set PL_constant as a multiple of 4. For details, please refer to related application note
46102.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Lgain
L Line Calibration Gain
Address: 23H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
Lgain15
Lgain14
Lgain13
Lgain12
Lgain11
Lgain10
Lgain9
Lgain8
7
6
5
4
3
2
1
0
Lgain7
Lgain6
Lgain5
Lgain4
Lgain3
Lgain2
Lgain1
Lgain0
Bit
15 - 0
Name
Lgain[15:0]
Description
L line calibration gain. For details, please refer to related application note 46102.
Lphi
L Line Calibration Angle
Address: 24H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
Lphi15
-
-
-
-
-
Lphi9
Lphi8
7
6
5
4
3
2
1
0
Lphi7
Lphi6
Lphi5
Lphi4
Lphi3
Lphi2
Lphi1
Lphi0
Bit
15 - 0
Name
Lphi[15:0]
Description
L line calibration phase angle. For details, please refer to related application note 46102.
Ngain
N Line Calibration Gain
Address: 25H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
Ngain15
Ngain14
Ngain13
Ngain12
Ngain11
Ngain10
Ngain9
Ngain8
7
6
5
4
3
2
1
0
Ngain7
Ngain6
Ngain5
Ngain4
Ngain3
Ngain2
Ngain1
Ngain0
Bit
15 - 0
Name
Ngain[15:0]
Description
N line calibration gain. For details, please refer to related application note 46102.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
28
Nphi
N Line Calibration Angle
Address: 26H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
Nphi15
-
-
-
-
-
Nphi9
Nphi8
7
6
5
4
3
2
1
0
Nphi7
Nphi6
Nphi5
Nphi4
Nphi3
Nphi2
Nphi1
Nphi0
Bit
15 - 0
Name
Nphi[15:0]
Description
N line calibration phase angle. For details, please refer to related application note 46102.
PStartTh
Active Startup Power Threshold
Address: 27H
Type: Read/Write
Default Value: 08BDH
15
14
13
12
11
10
9
8
PStartTh15
PStartTh14
PStartTh13
PStartTh12
PStartTh11
PStartTh10
PStartTh9
PStartTh8
7
6
5
4
3
2
1
0
PStartTh7
PStartTh6
PStartTh5
PStartTh4
PStartTh3
PStartTh2
PStartTh1
PStartTh0
Bit
15 - 0
Name
Description
PStartTh[15:0] Active startup power threshold. For details, please refer to related application note 46102.
PNolTh
Active No-Load Power Threshold
Address: 28H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
PNolTh15
PNolTh14
PNolTh13
PNolTh12
PNolTh11
PNolTh10
PNolTh9
PNolTh8
7
6
5
4
3
2
1
0
PNolTh7
PNolTh6
PNolTh5
PNolTh4
PNolTh3
PNolTh2
PNolTh1
PNolTh0
Bit
15 - 0
29
Name
Description
PNolTh[15:0] Active no-load power threshold. For details, please refer to related application note 46102.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
QStartTh
Reactive Startup Power Threshold
Address: 29H
Type: Read/Write
Default Value: 0AECH
15
14
13
12
11
10
9
8
QStartTh15
QStartTh14
QStartTh13
QStartTh12
QStartTh11
QStartTh10
QStartTh9
QStartTh8
7
6
5
4
3
2
1
0
QStartTh7
QStartTh6
QStartTh5
QStartTh4
QStartTh3
QStartTh2
QStartTh1
QStartTh0
Bit
15 - 0
Name
Description
QStartTh[15:0] Reactive startup power threshold. For details, please refer to related application note 46102.
QNolTh
Reactive No-Load Power Threshold
Address: 2AH
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
QNolTh15
QNolTh14
QNolTh13
QNolTh12
QNolTh11
QNolTh10
QNolTh9
QNolTh8
7
6
5
4
3
2
1
0
QNolTh7
QNolTh6
QNolTh5
QNolTh4
QNolTh3
QNolTh2
QNolTh1
QNolTh0
Bit
15 - 0
Name
Description
QNolTh[15:0] Reactive no-load power threshold. For details, please refer to related application note 46102.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
30
MMode
Metering Mode Configuration
Address: 2BH
Type: Read/Write
Default Value: 9422H
15
14
13
12
11
10
9
8
Lgain2
Lgain1
Lgain0
Ngain1
Ngain0
LNSel
DisHPF1
DisHPF0
7
6
5
4
3
2
1
0
Amod
Rmod
ZXCon1
ZXCon0
Pthresh3
Pthresh2
Pthresh1
Pthresh0
Bit
Name
Description
L line current gain, default value is ‘100’.
15 - 13
12 - 11
10
Lgain2
1
0
0
0
0
Lgain[2:0]
Ngain[1:0]
LNSel
Lgain1
X
0
0
1
1
Lgain0
X
0
1
0
1
Current Channel Gain
1
4
8
16
24
N line current gain
00: 2
01: 4
10: 1 (default)
11: 1
This bit specifies metering as L line or N line when metering mode is set to flexible mode by MMD1 and
MMD0 pins.
0: N line
1: L line (default)
These bits configure the High Filter Pass (HPF) after ADC. There are two first-order HPF in serial: HPF1
and HPF0. The configuration are applicable to all channels:
31
DisHPF1
DisHPF 0
0
0
1
1
0
1
0
1
HPF Configuration
enable HPF1 and HPF0
(default)
enable HPF1, disable HPF0;
disable HPF1, enable HPF0;
disable HPF1 and HPF0
9-8
DisHPF[1:0]
7
Amod
CF1 output for active power:
0: forward or reverse energy pulse output (default)
1: absolute energy pulse output
6
Rmod
CF2 output for reactive power:
0: forward (inductive) or reverse (capacitive) energy pulse output (default)
1: absolute energy pulse output
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
5-4
Zxcon[1:0]
These bits configure zero-crossing mode. The ZX pin outputs 5ms-width high level when voltage crosses
zero.
00: positive zero-crossing
01: negative zero-crossing
10: all zero-crossing: both positive and negative zero-crossing (default)
11: no zero-crossing output
These bits configure the L line and N line power difference threshold in anti-tampering mode.
3-0
Pthresh[3:0]
Pthresh
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Pthresh
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Pthresh
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Pthresh0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Threshold
12.5%
6.25%
3.125% (default)
1.5625%
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%
12%
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
32
CS1
Checksum 1
Address: 2CH
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
CS1_15
CS1_14
CS1_13
CS1_12
CS1_11
CS1_10
CS1_9
CS1_8
7
6
5
4
3
2
1
0
CS1_7
CS1_6
CS1_5
CS1_4
CS1_3
CS1_2
CS1_1
CS1_0
Bit
Name
Description
The CS1 register should be written after the 21H-2BH registers are written. Suppose the high byte and
the low byte of the 21H-2BH registers are shown in below table.
15 - 0
Register Address
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
CS1[15:0]
High
Byte
H21
H22
H23
H24
H25
H26
H27
H28
H29
H2A
H2B
Low
Byte
L21
L22
L23
L24
L25
L26
L27
L28
L29
L2A
L2B
The calculation of the CS1 register is as follows:
The low byte of 2CH register is: L2C=MOD(H21+H22+...+H2B+L21+L22+...+L2B, 2^8)
The high byte of 2CH register is: H2C=H21 XOR H22 XOR ... XOR H2B XOR L21 XOR L22 XOR ... XOR
L2B
The M90E26 calculates CS1 regularly. If the value of the CS1 register and the calculation by the M90E26
is different when CalStart=8765H, the CalErr[1:0] bits (SysStatus, 01H) are set and the WarnOut and IRQ
pins are asserted.
Note: The readout value of the CS1 register is the calculation by the M90E26, which is different from
what is written.
33
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
5.3.2
MEASUREMENT CALIBRATION REGISTER
AdjStart
Measurement Calibration Start Command
Address: 30H
Type: Read/Write
Default Value: 6886H
15
14
13
12
11
10
9
8
AdjStart15
AdjStart14
AdjStart13
AdjStart12
AdjStart11
AdjStart10
AdjStart9
AdjStart8
7
6
5
4
3
2
1
0
AdjStart7
AdjStart6
AdjStart5
AdjStart4
AdjStart3
AdjStart2
AdjStart1
AdjStart0
Bit
Name
15 - 0
Description
Measurement Calibration Start Command
6886H: Power-on value. No measurement.
5678H: Measurement calibration startup command. After 5678H is written to this register, registers 31H3AH resume to their power-on values. The M90E26 starts to measure regardless of the correctness of diagnosis. The AdjErr[1:0] bits (SysStatus, 01H) are not set and the IRQ pin does not
AdjStart[15:0]
report any interrupt.
8765H: Check the correctness of the 31H-3AH registers. If correct, normal measurement. If not correct,
measurement function is disabled, the AdjErr[1:0] bits (SysStatus, 01H) are set and the IRQ pin
reports interrupt.
Others: No measurement. The AdjErr[1:0] bits (SysStatus, 01H) are set and the IRQ pin reports interrupt.
Ugain
Voltage rms Gain
Address: 31H
Type: Read/Write
Default Value: 6720H
15
14
13
12
11
10
9
8
Ugain15
Ugain14
Ugain13
Ugain12
Ugain11
Ugain10
Ugain9
Ugain8
7
6
5
4
3
2
1
0
Ugain7
Ugain6
Ugain5
Ugain4
Ugain3
Ugain2
Ugain1
Ugain0
Bit
15 - 0
Name
Ugain[15:0]
Description
Voltage rms Gain. For details, please refer to related application note 46102.
Note: the Ugain15 bit should only be '0'
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
34
IgainL
L Line Current rms Gain
Address: 32H
Type: Read/Write
Default Value: 7A13H
15
14
13
12
11
10
9
8
IgainL15
IgainL14
IgainL13
IgainL12
IgainL11
IgainL10
IgainL9
IgainL8
7
6
5
4
3
2
1
0
IgainL7
IgainL6
IgainL5
IgainL4
IgainL3
IgainL2
IgainL1
IgainL0
Bit
15 - 0
Name
IgainL[15:0]
Description
L Line Current rms Gain, For details, please refer to related application note 46102.
IgainN
N Line Current rms Gain
Address: 33H
Type: Read/Write
Default Value: 7530H
15
14
13
12
11
10
9
8
IgainN15
IgainN14
IgainN13
IgainN12
IgainN11
IgainN10
IgainN9
IgainN8
7
6
5
4
3
2
1
0
IgainN7
IgainN6
IgainN5
IgainN4
IgainN3
IgainN2
IgainN1
IgainN0
Bit
15 - 0
Name
Description
IgainN[15:0] N Line Current rms Gain. For details, please refer to related application note 46102.
Uoffset
Voltage Offset
Address: 34H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
Uoffset15
Uoffset14
Uoffset13
Uoffset12
Uoffset11
Uoffset10
Uoffset9
Uoffset8
7
6
5
4
3
2
1
0
Uoffset7
Uoffset6
Uoffset5
Uoffset4
Uoffset3
Uoffset2
Uoffset1
Uoffset0
Bit
15 - 0
35
Name
Description
Uoffset[15:0] Voltage offset. For calculation method, please refer to related application note 46102.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
IoffsetL
L Line Current Offset
Address: 35H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
IoffsetL15
IoffsetL14
IoffsetL13
IoffsetL12
IoffsetL11
IoffsetL10
IoffsetL9
IoffsetL8
7
6
5
4
3
2
1
0
IoffsetL7
IoffsetL6
IoffsetL5
IoffsetL4
IoffsetL3
IoffsetL2
IoffsetL1
IoffsetL0
Bit
15 - 0
Name
Description
IoffsetL[15:0] L line current offset. For calculation method, please refer to related application note 46102.
IoffsetN
N Line Current Offset
Address: 36H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
IoffsetN15
IoffsetN14
IoffsetN13
IoffsetN12
IoffsetN11
IoffsetN10
IoffsetN9
IoffsetN8
7
6
5
4
3
2
1
0
IoffsetN7
IoffsetN6
IoffsetN5
IoffsetN4
IoffsetN3
IoffsetN2
IoffsetN1
IoffsetN0
Bit
15 - 0
Name
Description
IoffsetN[15:0] N line current offset. For calculation method, please refer to related application note 46102.
PoffsetL
L Line Active Power Offset
Address: 37H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
PoffsetL15
PoffsetL14
PoffsetL13
PoffsetL12
PoffsetL11
PoffsetL10
PoffsetL9
PoffsetL8
7
6
5
4
3
2
1
0
PoffsetL7
PoffsetL6
PoffsetL5
PoffsetL4
PoffsetL3
PoffsetL2
PoffsetL1
PoffsetL0
Bit
Name
Description
15 - 0
PoffsetL[15:0]
L line active power offset.
Complement, MSB is the sign bit. For calculation method, please refer to related application note 46102.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
36
QoffsetL
L Line Reactive Power Offset
Address: 38H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
QoffsetL15
QoffsetL14
QoffsetL13
QoffsetL12
QoffsetL11
QoffsetL10
QoffsetL9
QoffsetL8
7
6
5
4
3
2
1
0
QoffsetL7
QoffsetL6
QoffsetL5
QoffsetL4
QoffsetL3
QoffsetL2
QoffsetL1
QoffsetL0
Bit
Name
15 - 0
Description
L line reactive power offset.
QoffsetL[15:0]
Complement, MSB is the sign bit. For calculation method, please refer to related application note 46102.
PoffsetN
N Line Active Power Offset
Address: 39H
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
PoffsetN15
PoffsetN14
PoffsetN13
PoffsetN12
PoffsetN11
PoffsetN10
PoffsetN9
PoffsetN8
7
6
5
4
3
2
1
0
PoffsetN7
PoffsetN6
PoffsetN5
PoffsetN4
PoffsetN3
PoffsetN2
PoffsetN1
PoffsetN0
Bit
Name
Description
15 - 0
PoffsetN[15:0]
N line active power offset.
Complement, MSB is the sign bit. For calculation method, please refer to related application note 46102.
QoffsetN
N Line Reactive Power Offset
Address: 3AH
Type: Read/Write
Default Value: 0000H
37
15
14
13
12
11
10
9
8
QoffsetN15
QoffsetN14
QoffsetN13
QoffsetN12
QoffsetN11
QoffsetN10
QoffsetN9
QoffsetN8
7
6
5
4
3
2
1
0
QoffsetN7
QoffsetN6
QoffsetN5
QoffsetN4
QoffsetN3
QoffsetN2
QoffsetN1
QoffsetN0
Bit
Name
Description
15 - 0
QoffsetN[15:0]
N line reactive power offset.
Complement, MSB is the sign bit. For calculation method, please refer to related application note 46102.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
CS2
Checksum 2
Address: 3BH
Type: Read/Write
Default Value: 0000H
15
14
13
12
11
10
9
8
CS2_15
CS2_14
CS2_13
CS2_12
CS2_11
CS2_10
CS2_9
CS2_8
7
6
5
4
3
2
1
0
CS2_7
CS2_6
CS2_5
CS2_4
CS2_3
CS2_2
CS2_1
CS2_0
Bit
Name
Description
The CS2 register should be written after the 31H-3AH registers are written. Suppose the high byte and
the low byte of the 31H-3AH registers are shown in below table.
15 - 0
CS2[15:0]
Register Address
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
High
Byte
H31
H32
H33
H34
H35
H36
H37
H38
H39
H3A
Low
Byte
L31
L32
L33
L34
L35
L36
L37
L38
L39
L3A
The calculation of the CS2 register is as follows:
The low byte of 3BH register is: L3B=MOD(H31+H32+...+H3A+L31+L32+...+L3A, 2^8)
The high byte of 3BH register is: H3B=H31 XOR H32 XOR ... XOR H3A XOR L31 XOR L32 XOR ... XOR
L3A
The M90E26 calculates CS2 regularly. If the value of the CS2 register and the calculation by the M90E26
is different when AdjStart=8765H, the AdjErr[1:0] bits (SysStatus, 01H) are set.
Note: The readout value of the CS2 register is the calculation by the M90E26, which is different from
what is written.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
38
5.4
ENERGY REGISTER
Theory of Energy Registers
The internal energy resolution is 0.01 pulse. Within 0.01 pulse, forward and reverse energy are counteracted. When energy exceeds
0.01 pulse, the respective forward/reserve energy is increased. The forward and reverse energy are not counteracted in absolute energy
registers. Take the example of active energy, suppose:
T0: Forward energy is 12.34 pulses and reverse energy is 1.23 pulses;
From T0 to T1: 0.005 forward pulse appeared
From T1 to T2: 0.004 reverse pulse appeared
From T2 to T3: 0.003 reverse pulse appeared
T0
T1
T2
T3
Forward Active Pulse
12.34
12.345
12.341
12.34
Reserve Active Pulse
1.23
1.23
1.23
1.232
Absolute Active Pulse
13.57
13.575
13.579
13.582
When forward/reverse energy or absolute energy reaches 0.1 pulse, the respective register is updated. When forward/reverse energy or
absolute energy reaches 1 pulse, CFx pins output pulse and the REVP/REVQ bits (EnStatus, 46H) are updated.
Absolute energy might be more than the sum of forward and reverse energies. If “consistency” is required between absolute energy and
forward/reverse energy in system application, absolute energy can be obtained by calculating the readout of the forward and reverse
energy registers.
APenergy
Forward Active Energy
Address: 40H
Type: Read/Clear
Default Value: 0000H
15
14
13
12
11
10
9
8
APenergy15
APenergy14
APenergy13
APenergy12
APenergy11
APenergy10
APenergy9
APenergy8
7
6
5
4
3
2
1
0
APenergy7
APenergy6
APenergy5
APenergy4
APenergy3
APenergy2
APenergy1
APenergy0
Bit
15 - 0
39
Name
Description
Forward active energy; cleared after read.
Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses.
APenergy[15:0]
When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to
0000H.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
ANenergy
Reverse Active Energy
Address: 41H
Type: Read/Clear
Default Value: 0000H
15
14
13
12
11
10
9
8
ANenergy15
ANenergy14
ANenergy13
ANenergy12
ANenergy11
ANenergy10
ANenergy9
ANenergy8
7
6
5
4
3
2
1
0
ANenergy7
ANenergy6
ANenergy5
ANenergy4
ANenergy3
ANenergy2
ANenergy1
ANenergy0
Bit
Name
Description
Reverse active energy, cleared after read.
Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses.
ANenergy[15:0]
When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to
0000H.
15 - 0
ATenergy
Absolute Active Energy
Address: 42H
Type: Read/Clear
Default Value: 0000H
15
14
13
12
11
10
9
8
ATenergy15
ATenergy14
ATenergy13
ATenergy12
ATenergy11
ATenergy10
ATenergy9
ATenergy8
7
6
5
4
3
2
1
0
ATenergy7
ATenergy6
ATenergy5
ATenergy4
ATenergy3
ATenergy2
ATenergy1
ATenergy0
Bit
15 - 0
Name
Description
Absolute active energy, cleared after read.
Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses.
ATenergy[15:0]
When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to
0000H.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
40
RPenergy
Forward (Inductive) Reactive Energy
Address: 43H
Type: Read/Clear
Default Value: 0000H
15
14
13
12
11
10
9
8
RPenergy15
RPenergy14
RPenergy13
RPenergy12
RPenergy11
RPenergy10
RPenergy9
RPenergy8
7
6
5
4
3
2
1
0
RPenergy7
RPenergy6
RPenergy5
RPenergy4
RPenergy3
RPenergy2
RPenergy1
RPenergy0
Bit
Name
Description
Forward (inductive) reactive energy, cleared after read.
Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses.
RPenergy[15:0]
When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to
0000H.
15 - 0
RNenergy
Reverse (Capacitive) Reactive Energy
Address: 44H
Type: Read/Clear
Default Value: 0000H
15
14
13
12
11
10
9
8
RNenergy15
RNenergy14
RNenergy13
RNenergy12
RNenergy11
RNenergy10
RNenergy9
RNenergy8
7
6
5
4
3
2
1
0
RNenergy7
RNenergy6
RNenergy5
RNenergy4
RNenergy3
RNenergy2
RNenergy1
RNenergy0
Bit
15 - 0
41
Name
Description
Reverse (capacitive) reactive energy, cleared after read.
Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses.
RNenergy[15:0]
When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to
0000H.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
RTenergy
Absolute Reactive Energy
Address: 45H
Type: Read/Clear
Default Value: 0000H
15
14
13
12
11
10
9
8
RTenergy15
RTenergy14
RTenergy13
RTenergy12
RTenergy11
RTenergy10
RTenergy9
RTenergy8
7
6
5
4
3
2
1
0
RTenergy7
RTenergy6
RTenergy5
RTenergy4
RTenergy3
RTenergy2
RTenergy1
RTenergy0
Bit
15 - 0
Name
Description
Absolute reactive energy, cleared after read.
Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses.
RTenergy[15:0]
When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to
0000H.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
42
EnStatus
Metering Status
Address: 46H
Type: Read
Default Value After Power On: C800H
15
14
13
12
11
10
9
8
Qnoload
Pnoload
RevQ
RevP
Lline
-
-
-
7
6
5
4
3
2
1
0
-
-
-
-
-
-
LNMode1
LNMode0
Bit
Name
Description
15
Qnoload
This bit indicates whether the M90E26 is in reactive no-load status.
0: not reactive no-load state
1: reactive no-load state
14
Pnoload
This bit indicates whether the M90E26 is in active no-load status.
0: not active no-load state
1: active no-load state
RevQ
This bit indicates the direction of the last CF2 (reactive output).
0: reactive forward
1: reactive reverse
Note: This bit is always '0' when the CF2 output is configured to be absolute energy.
12
RevP
This bit indicates the direction of the last CF1 (active output).
0: active forward
1: active reverse
Note: This bit is always '0' when the CF1 output is configured to be absolute energy.
11
Lline
This bit indicates the current metering line in anti-tampering mode.
0: N line
1: L line
10 - 2
-
13
Reserved.
These bits indicate the configuration of MMD1 and MMD0 pins. Their relationship is as follows:
1-0
43
MMD1
0
0
MMD0
0
1
LNmod1
0
0
LNmod0
0
1
1
0
1
0
1
1
1
1
LNMode[1:0]
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
L/N Metering Mode
anti-tampering mode (larger power)
L line mode (fixed L line)
L+N mode (applicable for single-phase threewire system)
Flexible mode (Line specified by the LNSel bit
(MMode, 2BH))
5.5
MEASUREMENT REGISTER
Irms
L Line Current rms
Address: 48H
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Irms15
Irms14
Irms13
Irms12
Irms11
Irms10
Irms9
Irms8
7
6
5
4
3
2
1
0
Irms7
Irms6
Irms5
Irms4
Irms3
Irms2
Irms1
Irms0
Bit
15 - 0
Name
Description
Irms[15:0]
L line current rms.
Data format is XX.XXX, which corresponds to 0 ~ 65.535A.
For cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For
example, the register value can be calibrated to 1/2 of the actual value during calibration, then multiplied
by 2 in application.
Urms
Voltage rms
Address: 49H
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Urms15
Urms14
Urms13
Urms12
Urms11
Urms10
Urms9
Urms8
7
6
5
4
3
2
1
0
Urms7
Urms6
Urms5
Urms4
Urms3
Urms2
Urms1
Urms0
Bit
15 - 0
Name
Urms[15:0]
Description
Voltage rms.
Data format is XXX.XX, which corresponds to 0 ~ 655.35V.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
44
Pmean
L Line Mean Active Power
Address: 4AH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Pmean15
Pmean14
Pmean13
Pmean12
Pmean11
Pmean10
Pmean9
Pmean8
7
6
5
4
3
2
1
0
Pmean7
Pmean6
Pmean5
Pmean4
Pmean3
Pmean2
Pmean1
Pmean0
Bit
Name
15 - 0
Description
L line mean active power.
Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kW.
Pmean[15:0]
If current is specially handle by MCU, the power of the M90E26 and the actual power have the same multiple relationship as the current.
Qmean
L Line Mean Reactive Power
Address: 4BH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Qmean15
Qmean14
Qmean13
Qmean12
Qmean11
Qmean10
Qmean9
Qmean8
7
6
5
4
3
2
1
0
Qmean7
Qmean6
Qmean5
Qmean4
Qmean3
Qmean2
Qmean1
Qmean0
Bit
15 - 0
45
Name
Description
L line mean reactive power.
Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kvar.
Qmean[15:0]
If current is specially handled by MCU, the power of the M90E26 and the actual power have the same
multiple relationship as the current.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Freq
Voltage Frequency
Address: 4CH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Freq15
Freq14
Freq13
Freq12
Freq11
Freq10
Freq9
Freq8
7
6
5
4
3
2
1
0
Freq7
Freq6
Freq5
Freq4
Freq3
Freq2
Freq1
Freq0
Bit
15 - 0
Name
Description
Freq[15:0]
Voltage frequency.
Data format is XX.XX. Frequency measurement range is 45.00~65.00Hz. For example, 1388H corresponds to 50.00Hz.
PowerF
L Line Power Factor
Address: 4DH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
PowerF15
PowerF14
PowerF13
PowerF12
PowerF11
PowerF10
PowerF9
PowerF8
7
6
5
4
3
2
1
0
PowerF7
PowerF6
PowerF5
PowerF4
PowerF3
PowerF2
PowerF1
PowerF0
Bit
15 - 0
Name
Description
L line power factor.
PowerF[15:0] Signed, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E
8H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
46
Pangle
Phase Angle between Voltage and L Line Current
Address: 4EH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Pangle15
Pangle14
Pangle13
Pangle12
Pangle11
Pangle10
Pangle9
Pangle8
7
6
5
4
3
2
1
0
Pangle7
Pangle6
Pangle5
Pangle4
Pangle3
Pangle2
Pangle1
Pangle0
Bit
Name
15 - 0
Description
L line voltage current angle.
Pangle[15:0]
Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.
Smean
L Line Mean Apparent Power
Address: 4FH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Smean15
Smean14
Smean13
Smean12
Smean11
Smean10
Smean9
Smean8
7
6
5
4
3
2
1
0
Smean7
Smean6
Smean5
Smean4
Smean3
Smean2
Smean1
Smean0
Bit
15 - 0
47
Name
Description
L line mean apparent power.
Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA.
Smean[15:0]
If current is specially handled by MCU, the power of the M90E26 and the actual power have the same
multiple relationship as the current.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Irms2
N Line Current rms
Address: 68H
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Irms2_15
Irms2_14
Irms2_13
Irms2_12
Irms2_11
Irms2_10
Irms2_9
Irms2_8
7
6
5
4
3
2
1
0
Irms2_7
Irms2_6
Irms2_5
Irms2_4
Irms2_3
Irms2_2
Irms2_1
Irms2_0
Bit
15 - 0
Name
Description
Irms2[15:0]
N line current rms.
Data format is XX.XXX, which corresponds to 65.535A.
For cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For
example, the register value can be calibrated to 1/2 of the actual value during calibration, then multiplied
by 2 in application.
Pmean2
N Line Mean Active Power
Address: 6AH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Pmean2_15
Pmean2_14
Pmean2_13
Pmean2_12
Pmean2_11
Pmean2_10
Pmean2_9
Pmean2_8
7
6
5
4
3
2
1
0
Pmean2_7
Pmean2_6
Pmean2_5
Pmean2_4
Pmean2_3
Pmean2_2
Pmean2_1
Pmean2_0
Bit
15 - 0
Name
Description
N line mean active power.
Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kW.
Pmean2[15:0]
If current is specially handled by MCU, the power of the M90E26 and the actual power have the same
multiple relationship as the current.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
48
Qmean2
N Line Mean Reactive Power
Address: 6BH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Qmean2_15
Qmean2_14
Qmean2_13
Qmean2_12
Qmean2_11
Qmean2_10
Qmean2_9
Qmean2_8
7
6
5
4
3
2
1
0
Qmean2_7
Qmean2_6
Qmean2_5
Qmean2_4
Qmean2_3
Qmean2_2
Qmean2_1
Qmean2_0
Bit
Name
15 - 0
Description
N line mean reactive power.
Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kvar.
Qmean2[15:0]
If current is specially handled by MCU, the power of M90E26 and the actual power have the same multiple relationship as the current.
PowerF2
N Line Power Factor
Address: 6DH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
PowerF2_15
PowerF2_14
PowerF2_13
PowerF2_12
PowerF2_11
PowerF2_10
PowerF2_9
PowerF2_8
7
6
5
4
3
2
1
0
PowerF2_7
PowerF2_6
PowerF2_5
PowerF2_4
PowerF2_3
PowerF2_2
PowerF2_1
PowerF2_0
Bit
15 - 0
49
Name
Description
N line power factor.
PowerF2[15:0] Signed, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E
8H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Pangle2
Phase Angle between Voltage and N Line Current
Address: 6EH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Pangle2_15
Pangle2_14
Pangle2_13
Pangle2_12
Pangle2_11
Pangle2_10
Pangle2_9
Pangle2_8
7
6
5
4
3
2
1
0
Pangle2_7
Pangle2_6
Pangle2_5
Pangle2_4
Pangle2_3
Pangle2_2
Pangle2_1
Pangle2_0
Bit
Name
15 - 0
Description
N line voltage current angle
Pangle2[15:0]
Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.
Smean2
N Line Mean Apparent Power
Address: 6FH
Type: Read
Default Value: 0000H
15
14
13
12
11
10
9
8
Smean2_15
Smean2_14
Smean2_13
Smean2_12
Smean2_11
Smean2_10
Smean2_9
Smean2_8
7
6
5
4
3
2
1
0
Smean2_7
Smean2_6
Smean2_5
Smean2_4
Smean2_3
Smean2_2
Smean2_1
Smean2_0
Bit
15 - 0
Name
Description
N line mean apparent power
Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA.
Smean2[15:0]
If current is specially handled by MCU, the power of M90E26 and the actual power have the same multiple relationship as the current.
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
50
6
ELECTRICAL SPECIFICATION
6.1
ELECTRICAL SPECIFICATION
Parameters and Description
Min.
Typical
Max.
Unit
Test Conditions and Comments
%
VDD=3.3V±0.3V, 100Hz, I=5A, V=220V,
L line shunt resistor 150μΩ, N line CT
1000:1, sampling resistor 4.8Ω
Accuracy
DC Power Supply Rejection Ratio (PSRR)
±0.1
AC Power Supply Rejection Ratio (PSRR)
±0.1
%
VDD=3.3V superimposes 400mVrms,
100Hz Sinusoidal signal, I=5A, V=220V,
L line shunt resistor 150μΩ, N line CT
1000:1, sampling resistor 4.8Ω
Active Energy Error (Dynamic Range
5000:1)
±0.1
%
L line current gain is ‘24’; N line current
gain is ‘1’
Measurement Error
±0.5
%
Channel Characteristics
Sampling Frequency
8
Harmonic Metering (active and reactive)
Bandwidth
kHz
1.1
Line Frequency
kHz
1% total energy metering error limit;
V-harmonic <= 10% of fundamental;
I-harmonic<=40% of fundamental
47.5-62.5
Hz
Active energy metering
47.5-52.5
Hz
Reactive energy metering
Analog Input
L Line Current Channel Differential Input
5μ
25m
7.5μ
37.5m
15μ
75m
PGA gain is ‘24’
Vrms
PGA gain is ‘16’
PGA gain is ‘8’
30μ
150m
PGA gain is ‘4’
120μ
600m
PGA gain is ‘1’
N Line Current Channel Differential Input
120μ
600m
Vrms
DPGA gain is ‘1’
Voltage Channel Differential Input
120μ
600m
Vrms
DPGA gain is ‘1’
L Line Current Channel Input Impedance
1
kΩ
single-ended impedance
N Line Current Channel Input Impedance
400
kΩ
single-ended impedance
Voltage Channel Input Impedance
400
L Line Current Channel DC Offset
10
kΩ
single-ended impedance
mV
PGA gain is ‘24’
N Line Current Channel DC Offset
10
mV
Voltage Channel DC Offset
10
mV
Reference
On-Chip Reference
1.26
Reference Voltage Temperature Coefficient
±15
V
±40
ppm/°C
Clock
Crystal or External Clock
8.192
MHz
The Accuracy of crystal or external clock
is ±100 ppm
SPI/UART Interface
SPI Interface Bit Rate
51
200
160k
bps
UART Interface Baud Rate
2400 or
9600
bps
UART Interface Tolerance
±2
%
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Baud rate of 2400 and 9600 is automatically detected.
Pulse Width
CFx Pulse Width
80
ms
If T ≥ 160 ms, width=80ms; if T<160 ms,
width = 0.5T. Refer to Section 6.6
ESD
Charged Device Model (CDM)
500
V
JESD22-C101
Human Body Model (HBM)
2000
V
JESD22-A114
Latch Up
Latch Up
±100
mA
JESD78A
4.95
V
JESD78A
Operating Conditions
AVDD, Analog Power Supply
2.8
3.3
3.6
V
Metering precision guaranteed within
3.0V~3.6V.
DVDD, Digital Power Supply
2.8
3.3
3.6
V
Metering precision guaranteed within
3.0V~3.6V.
IAVDD, Analog Current
3.4
mA
VDD=3.3V, T=25°C, Vref decoupling
capacitor is 1μF.
IDVDD, Digital Current
2.4
mA
VDD=3.3V, T=25°C, Vref decoupling
capacitor is 1μF.
DC Characteristics
Digital Input High Level (pin 1, 4, 24, 25,
27 and 28)
2.0
5.5
V
VDD=3.3V±10%,
Digital Input High Level (pin 9, 12 and 22)
2.0
VDD+0.3
V
VDD=3.3V±10%
Digital Input Low Level
0.8
V
VDD=3.3V±10%
Digital Input Leakage Current
±1
μA
VDD=3.6V, VI=VDD or GND
Digital Output Low Level
0.4
V
VDD=3.3V, IOL=10mA
V
VDD=3.3V, IOH=-10mA
V
VDD=3.3V, IOL=1mA
V
VDD=3.3V, IOH=-1mA
Digital Output High Level
2.4
Digital Output Low Level (OSCO)
Digital Output High Level (OSCO)
0.4
2.4
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
52
6.2
SPI INTERFACE TIMING
The SPI interface timing is as shown in Figure-10, Figure-11 and Table-11.
tCSH
CS
t
t
CSS
t
CLH
t
CLL
t
CSD
CLD
SCLK
tDIS
SDI
t
DIH
Valid Input
tDW
t
SDO
t
PD
DF
High Impedance
High Impedance
Valid Output
Figure-10 4-Wire SPI Timing Diagram
t
t
CLH
CLL
SCLK
t
SDI
DIS
t
DIH
Valid Input
tDW
t
SDO
PD
High Impedance
High Impedance
Valid Output
Figure-11 3-Wire SPI Timing Diagram
Table-11 SPI Timing Specification
Symbol
Description
Min.
Minimum CS High Level Time
note 2
ns
CS Setup Time
3T+10
ns
CS Hold Time
30T+10
ns
Clock Disable Time
1T
ns
tCLH
Clock High Level Time
30T+10
ns
tCLL
Clock Low Level Time
16T+10
ns
tDIS
Data Setup Time
3T+10
ns
tCSH
note 1
note 1
tCSS
tCSD
note 1
note 1
tCLD
53
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
30T
+10
Typical
Max.
Unit
Table-11 SPI Timing Specification (Continued)
tDIH
Data Hold Time
22T+10
ns
tDW
Minimum Data Width
30T+10
ns
tPD
Output Delay
14T
note 1
tDF
Output Disable Time
15T+20
ns
16T+20
ns
Note:
1. Not applicable for three-wire SPI.
2. T means SCLK cycle. T=122ns. (Typical value for four-wire SPI)
6.3
POWER ON RESET TIMING
VH
VL
DVDD
T2
T1
RESET
Figure-12 Power On Reset Timing Diagram
Table-12 Power On Reset Specification
Symbol
Description
Min.
Typical
Max.
Unit
VH
Power On Trigger Voltage
2.375
2.5
2.625
V
VL
Power Off Trigger Voltage
2.185
2.3
2.415
V
VH-VL
Hysteretic Voltage Difference
0.2
V
T1
Delay Time After Power On
5
ms
T2
Delay Time After Power Off
10
μs
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
54
6.4
ZERO-CROSSING TIMING
V
TZX
ZX
(Positive zero-crossing)
TD
ZX
(Negative zero-crossing)
ZX
(All zero-crossing)
Figure-13 Zero-Crossing Timing Diagram
Table-13 Zero-Crossing Specification
Symbol
6.5
Description
TZX
High Level Width
TD
Delay Time
Min.
Typical
5
V
Voltage Sag
Threshold
TD
WarnOut
IRQ
Figure-14 Voltage Sag Timing Diagram
55
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Unit
ms
0.5
VOLTAGE SAG TIMING
Voltage Sag
Threshold
Max.
ms
Table-14 Voltage Sag Specification
Symbol
TD
6.6
Description
Min.
Typical
Max.
Unit
0.5
ms
Delay Time
PULSE OUTPUT
Tp=80ms
Tp=0.5T
Tp=5ms
CFx
T≥160ms
if T<10ms,
force T=10ms
10ms≤T<160ms
Figure-15 Output Pulse Width
6.7
ABSOLUTE MAXIMUM RATING
Parameter
Maximum Limit
Relative Voltage Between AVDD and AGND
-0.3V~3.7V
Relative Voltage Between DVDD and DGND
-0.3V~3.7V
Analog Input Voltage (I1P, I1N, I2P, I2N, VP, VN)
-1V~VDD
Digital Input Voltage
-0.3V~VDD+2.6V
Operating Temperature Range
-40~85 °C
Maximum Junction Temperature
150 °C
Package Type
Thermal Resistance θJA
Unit
Condition
Green SSOP28
49
°C/W
No Airflow
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
56
ORDERING INFORMATION
Atmel Ordering Code
57
Package
Carrier
Temperature Range
ATM90E26-YU-R
SSOP28
Tape&Reel
Industry (-40°C to +85°C)
ATM90E26-YU-B
SSOP28
Tube
Industry (-40°C to +85°C)
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Packaging Drawings
(1'9,(:
7239,(:
&
'
'(7$,/µ$¶
%
5
+
5
ƒaƒ
( (
&/
JDXJHSODQH
VHDWLQJSODQH
/
5()
& $
%
;7,36
H
$
'
$
6(('(7$,/µ$¶
$
&
&
;E
& $
%
$
&20021',0(16,216
8QLWRI0HDVXUH PP
6($7,1*
3/$1(
6,'(9,(:
127(
5HIHUWR-('(&GUDZLQJ029DULDWLRQ$+
µ'¶DQGµ(´GLPHQVLRQVGRQRWLQFOXGHPROGIODVKRU
SURWUXVLRQVEXWGRLQFOXGHPROGPLVPDWFKDQGDUH
PHDVXUHGDWGDWXPSODQH¶+¶0ROGIODVKRUSURWUXVLRQ
VKDOOQRWH[FHHGPPSHUVLGH
'LPHQVLRQµE¶GRHVQRWLQFOXGHGDPEDUSURWUXVWLRQ
LQWUXVLRQ$OORZDEOHGDPEDUSURWUXVLRQVKDOOEHPP
WRWDOLQH[FHVVRIEGLPHVQLRQDWPD[LPXPPDWHULDO
FRQGLWLRQ'DPEDULQWUXVLRQVKDOOQRWUHGXFHGLPHQVLRQE
E\PRUHWKDQPPDWOHDVWPDWHULDOFRQGLWLRQ
6<0%2/
0,1
7<3
0$;
$
$
$
E
F
'
127(
(
(
H
%6&
/
5
5
7,7/(
3DFNDJH'UDZLQJ&RQWDFW
SDFNDJHGUDZLQJV#DWPHOFRP
<OHDGPP%RG\:LGWKPPSLWFKPP
OHDGOHQJWK3ODVWLF6KULQN6PDOO2XWOLQH3DFNDJH6623
*3&
'5$:,1*12
5(9
7%)
<
%
M90E26 [DATASHEET]
Atmel-46002B-SE-M90E26-Datasheet_110714
58
REVISION HISTORY
59
Doc. Rev.
Date
46002A
4/18/2014
Initial document release.
46002B
11/7/2014
Removed Preliminary.
M90E26 [Datasheet]
Atmel-46002B-SE-M90E26-Datasheet_110714
Comments
X X X X
Atmel Corporation
1600 Technology Drive, San Jose, CA 95110 USA
T: (+1)(408) 441.0311
F: (+1)(408) 436.4200
|
www.atmel.com
© 2014 Atmel Corporation. All rights reserved. / Rev.: Atmel-46002B-SE-M90E26-Datasheet_110714.
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be trademarks of others.
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.
Similar pages