AT7913E SpaceWire - Remote Terminal Controller (RTC) - Complete

ATMEL AT7913E
SpaceWire Remote Terminal Controller (RTC)
DATASHEET
Features
•
LEON2-FT Sparc V8 Processor
•
•
•
•
•
•
•
•
•
•
•
5 stage pipeline
4K instruction caches / 4K data caches
Meiko FPU
Interrupt Controller
Uart serial links
32-bit Timers
Memory interface
General purpose IO
Debug Support Unit (DSU)
FIFO interface
ADC/DAC interface
• 24 channels
• 8bit/16bit wide data bus
•
Two CAN interface
• CAN interface supporting nominal and redundant bus connection
• Two Bidirectional SpaceWire links
• RMAP support
• Full duplex communication
• Transmit rate from 1.25 up to 200 Mbit/s in each direction
•
SpaceWire Link Performance
• At 3.3V : 200Mbit/s full duplex communication
•
•
JTAG Interface
Operating range
• Voltages
• 1.65V to 1.95V - core
• 3V to 3.6V - I/O
• Temperature
• - 55°C to +125°C
•
•
Power consumption : 1W at 50MHz
Radiation Performance
• Tested up to a total dose of 300 Krad (Si) according to the MIL-STD883 method
1019
• No single event latchup below a LET of 80 MeV/mg/cm2
•
•
•
ESD better than 1000V
Quality Grades
QML-Q or V with SMD
7833G−AERO−01/12
•
Package:
• 349 pins MCGA, MLGA
• 352 pins CQFP
Description
The SpaceWire Remote Terminal Controller (SpW-RTC) ASIC is a single chip embedded
system that includes a general purpose LEON2-FT SPARC V8 core with a MEIKO FP unit
(IEEE-754). This architecture provides the mixed capability to effectively perform data
handling at platform level and powerful data processing at payload level. The SpW-RTC
includes both CAN and SpaceWire interfaces which allows bridging traffic from sensor
networks onto a high data rate SpaceWire network. Its EDAC protected FIFO and memory
interfaces allows interfacing towards peripheral I/O that may perform specialised data
processing tasks.
The SpaceWire-RTC device includes an embedded microprocessor, a CAN bus controller,
ADC/DAC interfaces for analogue acquisition/conversion, standard interfaces and
resources (UARTs, timers, general purpose input output).
The SpaceWire-RTC device can be operated stand-alone or with a number of external
devices such as SRAM, PROM and FIFO memories, ADC and DAC converters. The
device can be managed locally by the on-chip processor, or remotely via its SpaceWire
link interfaces. SpaceWire-RTC device can operate as a single-chip system, with software
being uploaded to its on-chip memory via the SpaceWire link interface, forming a compact
solution for remotely controlled applications. Or it can operate in a full-size system, with
software being decompressed from local PROM and executed from multiple fast and wide
SRAM memory banks. The device provides scalability in terms of use of external devices
and operating frequency.
Figure 1.
AT7913E SpaceWre RTC Block Diagram
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
2
Table of Contents
1. Pin Description.....................................................................................4
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
System .............................................................................................................. 4
CAN Interface.................................................................................................... 4
ADC/DAC Interface ........................................................................................... 5
Memory Interface .............................................................................................. 5
FIFO Interface ................................................................................................... 6
SpaceWire Interface.......................................................................................... 6
JTAG 7
Power Supply .................................................................................................... 7
2. Architecture..........................................................................................9
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
LEON2-FT processor ........................................................................................ 9
Debug Support Unit......................................................................................... 10
2.2.1
Debug Support Unit .......................................................................... 10
2.2.2
Debug communication link................................................................ 10
LEON2-FT Peripherals.................................................................................... 10
2.3.1
Interrupt Controller ............................................................................ 10
2.3.2
32-bit Timer....................................................................................... 10
2.3.3
UART Serial Links ............................................................................ 10
2.3.4
16-bit General Purpose Input Output ................................................ 11
2.3.5
Memory Interface.............................................................................. 11
On-Chip Memory............................................................................................. 11
FIFO Interface ................................................................................................. 11
ADC/DAC Interface ......................................................................................... 11
32-bit Timers ................................................................................................... 12
24-bit General Purpose Input Output .............................................................. 12
CAN Interface.................................................................................................. 12
SpaceWire Link Interface ................................................................................ 12
JTAG Interface ................................................................................................ 13
3. Typical Applications ...........................................................................14
3.1
3.2
3.3
AT7913E in ICU .............................................................................................. 14
AT7913E in OBC............................................................................................. 14
AT7913E on payload....................................................................................... 14
4. Package Information ..........................................................................15
4.1
4.2
Packages Outline ............................................................................................ 15
4.1.1
MCGA 349 outline ............................................................................ 15
4.1.2
QFP 352 outline................................................................................ 16
Pin Assignment ............................................................................................... 17
4.2.1
Power and Ground............................................................................ 17
4.2.2
System and Peripherals.................................................................... 18
4.2.3
Unconnected Pins............................................................................. 21
5. Electrical Characteristics....................................................................22
5.1
5.2
5.3
5.4
5.5
Absolute Maximum Ratings ............................................................................ 22
Operating Range............................................................................................. 22
DC characteristics ........................................................................................... 23
AC characteristics ........................................................................................... 23
Timing Diagrams ............................................................................................. 24
6. Ordering Information ..........................................................................25
6.1
AT7913E Ordering Codes ............................................................................... 25
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
3
1.
Pin Description
1.1
System
SysClk – Input
System Clock
SysResetN - Input
System Reset
LeonErrorN - IO, open-drain, output
LEON Error - This active low output is asserted when the processor has entered error state and is halted. This happens
when traps are disabled and an synchronous (un-maskable) trap occurs.
LeonWDN - IO, open-drain, output
LEON watchdog - This active low output is asserted when the watchdog times-out.
LeonDsuEn - Input
DSU enable - The active high input enables the DSU unit. If de-asserted, the DSU trace buffer will continue to operate
but the processor will not enter debug mode.
LeonDsuTx – Output
DSU UART transmit - This active high output provides the data from the DSU communication link transmitter
LeonDsuRx - Input
DSU UART receive - This active high input provides the data to the DSU communication link receiver.
LeonDsuBre - Input
DSU break - A low-to-high transition on this active high input will generate break condition and put the processor in
debug mode
LeonDsuAct – Output
DSU active - This active high output is asserted when the processor is in debug mode and controlled by the DSU.
LeonPio[15:0] - IO
LEON Parallel Input / Output - These bi-directional signals can be used as inputs or outputs to control external devices.
Gpio[23:0] - IO
General Purpose Input / Output
TimeClk - Input
External timer clock
TimeTrig[2:1] – Output
External timer trigger - Asserted for 8 system clock periods
1.2
CAN Interface
CanTx[1:0] – Output
CAN transmit
CanRx[1:0] - Input
CAN receive
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
4
CanEn[1:0] – Output
CAN transmit enable
1.3
ADC/DAC Interface
ADData[15:0] - IO
ADC/DAC data
ADAddr[7:0] - IO
ADC/DAC address
ADWr - Output
DAC write strobe
ADCs - Output
ADC chip select
ADRc - Output
ADC read/convert
ADRdy - Input
ADC ready
ADTrig - Input
ADC trigger
1.4
Memory Interface
MemA[22:0] – Output
Memory interface address - These active high outputs carry the address during accesses on the memory bus. When no
access is performed, the address of the last access is driven (also internal cycles).
MemD[31:0] - IO
Memory interface data - MemD[31:0] carries the data during transfers on the memory bus. The processor only drives
the bus during write cycles. During accesses to 8-bit areas, only MemD[31:24] are used.
MemCB[7:0] - IO
Memory interface checkbits MemCB[6:0] carries the EDAC checkbits, MemCB[7] takes the value of TB[7] in the error
control register. The processor only drive MemCB[7:0] during write cycles to areas programmed to be EDAC protected
MemCsN[3:0] – Output
SRAM chip select - These active low signals provide an individual output enable for each SRAM bank.
MemOeN[3:0] – Output
SRAM output enable -These active low outputs provide the chip-select signals for each SRAM bank.
MemWrN[3:0] – Output
SRAM byte write strobe - These active low outputs provide individual write strobes for each byte lane. MemWrN[0]
controls MemD[31:24], MemWrN[1] controls MemD[23:16], etc.
RomCsN[1:0] – Output
PROM chip select - These active low outputs provide the chip-select signal for the PROM area. RomCsN[0] is asserted
when the lower half of the PROM area is accessed (0 - 0x10000000), while RomCsN[1] is asserted for the upper half.
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
5
IoCsN – Output
I/O area chip select - This active low output is the chip-select signal for the memory mapped I/O area.
IoOeN – Output
I/O area output enable - This active low output is asserted during read cycles on the memory bus.
IoRead – Output
I/O area read - This active high output is asserted during read cycles on the memory bus.
IoWrN – Output
I/O area write - This active low output provides a write strobe during write cycles on the memory bus.
IoBrdyN - Input
I/O area ready - This active low input indicates that the access to a memory mapped I/O area can be terminated on the
next rising clock edge.
MemBExcN -Input
Memory exception - This active low input is sampled simultaneously with the data during accesses on the memory bus.
If asserted, a memory error will be generated.
1.5
FIFO Interface
FifoD[15:0] - IO
FIFO data
FifoP[1:0] - IO
FIFO parity
FifoRdN - Output
FIFO read strobe
FifoWrN – Output
FIFO write strobe
FifoFullN - Input
FIFO full
FifoEmpN - Input
FIFO empty
FifoHalfN - Input
FIFO half-full, half-empty
1.6
SpaceWire Interface
SpwClkSrc - Input
SpaceWire transmitter clock source
SpwClkMult[1:0] - Input
SpaceWire clock configuration
SpwClk10Mbit[2:0] - Input
SpaceWire clock configuration
SpwClkPllCnfg[2:0] - Input
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
6
SpaceWire clock configuration
SpwClkMuxSel - Input
SpaceWire clock configuration - configuration External clock when 1, internal PLL when 0.
SpwDIn_P[1:0] - Input, LVDS positive
SpaceWire Data input, positive
SpwDIn_N[1:0] - Input, LVDS negative
SpaceWire Data input, negative
SpwSIn_P[1:0] - Input, LVDS positive
SpaceWire Strobe input, positive
SpwSIn_N[1:0] - Input, LVDS negative
SpaceWire Strobe input, negative
SpwDOut_P[1:0] - Output, LVDS positive
SpaceWire Data output, positive
SpwDOut_N[1:0] - Output, LVDS negative
SpaceWire Data output, negative
SpwSOut_P[1:0] - Output, LVDS positive
SpaceWire Strobe output, positive
SpwSOut_N[1:0] - Output, LVDS negative
SpaceWire Strobe output, negative
LvdsRef[0:1] - Power
LVDS reference voltage for SpaceWire channels
1.7
JTAG
TAPTRST - Test Reset
Tap Reset - Resets the test state machine. Can be asynchronous with TCK. Shall be grounded for end application
TAPTCK - Test Clock
TAP clock - Used to clock serial data into boundary scan latches and control sequence of the test state machine. TCK
can be asynchronous with CLK
TAPTMS - Test Mode select
Tap Mode select - Resets the test state machine. Can be asynchronous with TCK. Shall be grounded for end
application.
TAPTDI - Test data input
TAP data input - Serial input data to the boundary scan latches. Synchronous with TCK.
TAPTDO - Test data output
Tap data output - Serial output data from the boundary scan latches. Synchronous with TCK
1.8
Power Supply
VDA – 1.8V Power Supply
VDA is the power supply input for the AT7913E Core.
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
7
PVDDPLL – 1.8V PLL Power Supply
VDA is the power supply input for the AT7913E PLL.
VDB – 3.3V Power Supply
VDB is the power supply input for the AT7913E IOs.
VSA, VSB, PVSSPLL - Ground
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
8
2.
Architecture
The AT7913E SpaceWire Remote Terminal Controller (RTC) is a bridge between the SpaceWire network and the CAN
bus. The AT7913E is based on a LEON2-FT SPARC v8 processor core together with a wide range of interfaces
including :
•
•
•
•
•
•
•
•
•
•
2.1
Debug Support Unit
LEON2-FT Peripherals
•
Interrupt Controller
•
32-bit Timer
•
UART Serial Links
•
16-bit General Purpose Input Output
•
Memory Interface
On-Chip Memory
FIFO Interface
ADC/DAC Interface.
32-bit Timers
24-bit General Purpose Input Output
CAN Interface
SpaceWire Link Interface
JTAG Interface
LEON2-FT processor
The SpaceWire-RTC ASIC includes the LEON2-FT Integer Unit (IU) and the MEIKO Floating Point Unit (FPU). The
LEON2-FT IU implements the SPARC integer instruction set as defined in the SPARC Architecture Manual Version 8.
The LEON2-FT IU has the following features:
•
•
•
•
•
5-stage instruction pipeline
Separate instruction and data cache interface
Support for 8 register windows
Multiplier 16x16
Radix-2 divider (non-restoring)
To allow for software compatibility with existing devices such as the AT697E from Atmel, the AT7913E SpaceWire-RTC
includes all standard LEON2-FT peripherals and the debug support unit.
The programming model of the SpaceWire-RTC device is thus compatible with the existing devices, only requiring
support for the additional functions and interfaces to be added to the existing software development tools and operating
systems.
The SpaceWire-RTC includes a LEON2-FT core with 4kbyte Instruction and Data caches. It also includes a MEIKO
FPU (the same one as included in the Atmel AT697device).
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
9
2.2
Debug Support Unit
The AT7913E SpaceWire RTC includes a hardware debug support to aid software debugging on target hardware. The
support is provided through two modules:
•
•
2.2.1
a debug support unit (DSU)
a debug communication link
Debug Support Unit
The DSU can put the processor in debug mode, allowing read/write access to all processor registers and cache
memories. The DSU also contains a trace buffer which stores executed instructions and/or data transfers on the AMBA
AHB bus.
The debug support unit is used to control the trace buffer and the processor debug mode. The DSU is attached to the
AHB bus as slave, occupying a 2 Mbyte address space. Through this address space, any AHB master can access the
processor registers and the contents of the trace buffer.
The DSU control registers can be accessed at any time, while the processor registers and caches can only be accessed
when the processor has entered debug mode. The trace buffer can be accessed only when tracing is
disabled/completed. In debug mode, the processor pipeline is held and the processor state can be accessed by the
DSU.
2.2.2
Debug communication link
The SpaceWire-RTC device includes a debug support unit communication link that consists of a UART connected to the
AHB bus as a master. The debug communications link implements a simple read/write protocol and uses standard
asynchronous UART communications. The simple communication protocol is supported to transmit access parameters
and data.
A link command consists of a control byte, followed by a 32-bit address, followed by optional write data.
2.3
LEON2-FT Peripherals
The AT7913E SpaceWire-RTC includes all the standard LEON2-FT peripherals.
2.3.1
Interrupt Controller
The Interrupt Controller is used to priorities and propagate interrupt requests from internal or external devices to the
integer unit. 15 interrupts are handled, divided on two priority levels.
A Secondary Interrupt Controller is included to support the 32 additional interrupts used by the additional on-chip
peripherals of the AT7913E device.
2.3.2
32-bit Timer
The timer unit implements two 32-bit timers, one 32-bit watchdog and one 10-bit shared prescaler. The functionality of
the timers has not been modified with respect to existing implementations, to allow for software compatibility.
The watchdog functionality is used for overall software timeout handling and is the basis for error management.
2.3.3
UART Serial Links
Two identical UARTs are provided for serial communications. The UARTs support data frames with 8 data bits, one
optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12-bits clock divider.
Hardware flow-control is supported through handshake signals.
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
10
2.3.4
16-bit General Purpose Input Output
The 16-bit general purpose input output port can be individually programmed as output or input. Two registers are
associated with the operation of the port; the combined input/output register, and direction register. When read, the
input/output register will return the current value of the port; when written, the value will be driven on the port signals.
The direction register defines the direction for each individual port.
2.3.5
Memory Interface
The SpaceWire-RTC memory interface is implemented using the LEON2-FT Memory Controller that supports the
following:
•
•
•
•
•
2.4
8-bit PROM with sequential EDAC,
8-bit SRAM with sequential EDAC
32-bit PROM/SRAM with parallel-EDAC
8, 16, 32 bit I/O without-EDAC (wait-state and/or ready handshake)
16 bit GPIO (byte-wise) when less than 32 bit memory used
On-Chip Memory
The SpaceWire-RTC device includes a fault tolerant on-chip SRAM with embedded Error Detection And Correction
(EDAC) and AMBA AHB slave interface.
One error is corrected and two errors are detected, which is done by using a (32, 7) BCH code. Some of the features
available are single error counter, diagnostic reads and writes and auto-scrubbing (automatic correction of single errors
during reads).
The on-chip memory comprises a 32-bit wide memory bank of 64 kbytes of data.
2.5
FIFO Interface
This FIFO memory can be accessed as an on-chip memory or as an external interface of the chip via the Memory
Interface.
The FIFO interface supports transmission and reception of blocks of data by use of circular buffers located in memory
external to the core. Separate transmit and receive buffers are assumed. Reception and transmission of data can be
ongoing simultaneously.
2.6
ADC/DAC Interface
The SpaceWire-RTC includes a combined analogue-to-digital converter (ADC) and digital-to-analogue converter (DAC)
interface.
The ADC/DAC interface provides a combined signal interface to parallel ADC and DAC devices. The two interfaces are
merged both at the pin/pad level as well as at the interface towards the AMBA bus. The interface supports
simultaneously one ADC device and one DAC device in parallel. Address and data signals unused by the ADC and the
DAC can be use for general purpose input output, providing 0, 8, 16 or 24 channels.
The ADC interface supports 8 and 16 bit data widths. It provides chip select, read/convert and ready signals. The timing
is programmable. It also provides an 8-bit address output. The ADC conversion can be initiated either via the AMBA
interface or by internal or external triggers. An interrupt is generated when a conversion is completed.
The DAC interface supports 8 and 16 bit data widths. It provides a write strobe signal. The timing is programmable. It
also provides an 8-bit address output.
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
11
2.7
32-bit Timers
The SpaceWire-RTC includes a General Purpose Timer Unit that implements one prescaler and two 32-bit
decrementing timers.
2.8
24-bit General Purpose Input Output
The SpaceWire-RTC includes a 24-bit General Purpose Input Output core. The AMBA APB bus is used for control and
status handling.
The core provides 24 channels. Each channel is individually programmed as input or output. Additionally, 8 of the
channels are also programmable as pulse command outputs. The default reset configuration for each channel is as
input. The default reset value each channel is logical zero.
The pulse command outputs have a common 20-bit counter for establishing the pulse command length. The pulse
command length defines the logical one (active) part of the pulse. It is possible to select which of the channels shall
generate a pulse command. The pulse command outputs are generated simultaneously in phase with each other, and
with the same length (or duration). It is not possible to generate pulse commands out of phase with each other.
2.9
CAN Interface
The SpaceWire-RTC includes a CAN controller. The CAN protocol is based on the ESA HurriCANe CAN Controller
VHDL core.
The controller uses the AMBA APB bus for configuration, control and status handling. The AMBA AHB bus is used for
retrieving and storing CAN messages in memory external to the CAN controller. This memory can be located on-chip or
external to the chip.
The CAN controller supports transmission and reception of sets of messages by use of circular buffers located in
memory external to the core. Separate transmit and receive buffers are assumed. Reception and transmission of sets of
messages can be ongoing simultaneously.
2.10
SpaceWire Link Interface
The SpaceWire (SPW2) Module is used for transmitting and receiving data over a SpaceWire link. It provides support
for transmitting any type of protocol or data structure using SpaceWire packets.
It provides hardware support for receiving two types of SpaceWire Transfer Protocols, and can relay packets of other
protocols to software. The SpaceWire Virtual Channel Transfer Protocol (VCTP) implements multiple virtual channels
(only one implemented in SpaceWire-RTC) on a single SpaceWire link. The Remote Memory Access Protocol (RMAP)
implements remote memory access to resources in the node via the SpaceWire link.
Data received over the link by the SpaceWire CODEC are temporarily stored in an RxFIFO. Data are then stored to
memory by the SpaceWire Module via direct memoryaccess. Multiple Virtual Receive Channels (RxVC) can be used,
each with its private memory area to which data are written. In SpaceWire-RTC one channel (RxVC(1)) is used for
storing VCTP packets, and one channel (RxVC(0)) is used for storing RMAP responses, RMAP commands not
supported by hardware and packets of other types of Transfer Protocols.
All RxVC share the same link. The SpaceWire Module implements hardware support for the RMAP. RMAP is used for
remotely accessing resources on the local AMBA bus. The RMAP implementation can receive commands and generate
responses, utilizing the aforementioned RxFIFO and the TxFIFO.
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
12
Data to be sent are read by the SpaceWire Module from memory via direct memory access. Data are then temporarily
stored in a TxFIFO when forwarded to the SpaceWire CODEC for transmission over the link. Multiple Virtual Transmit
Channels (TxVC) can be used, each with its private send list stored in memory from which data are read. In SpaceWireRTC one channel (TxVC(0)) is used for automatic RMAP responses, and another channel (TxVC(1)) is used for
transmissions set up by the user. All TxVC share the same link. RMAP responses have priority over transmissions set
up by the user. The arbitration is performed for each packet sent.
2.11
JTAG Interface
The JTAG interface (compliant with IEEE-Std-1149.1) is used for the purpose of boundary scan testing during
manufacture and test of printed circuit boards hosting the ASIC.
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
13
3.
Typical Applications
The capabilities of the SpaceWire-RTC device are not limited to support the CAN bus in the instrument controller unit
(ICU), but also allows it to be used in an on-board computer (OBC).
The AT7913E SpaceWire RTC is perfectly suited for application requiring cost optimizations as it can be used in both
payload and avionics.
3.1
AT7913E in ICU
The SpaceWire-RTC device can be integrated in the instrument controller Unit (ICU) that acts as the payload data
processor and mainly receives payload data from instruments and produces processed data to be down linked. The
main data communication is performed via the SpaceWire network. The ICU is however controlled and monitored via
the CAN network from the On-Board Computer (OBC).
3.2
AT7913E in OBC
The CAN controller in the SpaceWire-RTC device acts as a remote terminal that is being managed by the OBC.
Alternatively, the SpaceWire-RTC device can be integrated in the On-Board Computer (OBC). Since the OBC acts as
the network manager on the CAN network, the CAN controller carters capability such as node management and time
distribution. The OBC also communicates or manages the SpaceWire network via SpaceWire links.
3.3
AT7913E on payload
The main application of the SpaceWire-RTC device is however in instruments or individual experiments of the payload.
It provides an abundance of interfaces, each with a high degree of programmability and configurability. It is able to
acquire analogue and digital data, generated by connected peripherals and to generate discrete commands towards the
same peripherals.
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
14
4.
Package Information
4.1
Packages Outline
4.1.1
MCGA 349 outline
Figure 4-1. Mechanical description
Package lid is connected to ground
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
15
4.1.2
QFP 352 outline
Table 4-1.
Mechanical description
Package lid is connected to ground
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
16
4.2
Pin Assignment
4.2.1
Power and Ground
Table 4-2.
Pin Name
Power and Ground pin assignement
Packages
QFP352
MCGA349
VDA
8
V17
VDA
82
VDA
Pin
Name
Packages
QFP352
MCGA349
VSA
7
V18
V16
VSA
81
96
C18
VSA
VDA
170
C19
VDA
184
VDA
Pin
Name
Packages
QFP352
MCGA349
VDB
16
G12
V4
VDB
24
95
D1
VDB
VSA
169
D19
U1
VSA
183
272
U2
VSA
VDA
346
U18
VDA
258
Pin
Name
Packages
QFP352
MCGA349
VSB
17
D12
F10
VSB
25
H10
31
W8
VSB
32
P8
VDB
41
W9
VSB
42
U8
T1
VDB
63
U10
VSB
64
R10
257
T19
VDB
91
V11
VSB
92
U11
VSA
271
U3
VDB
118
M11
VSB
119
V12
U19
VSA
345
U17
VDB
127
W13
VSB
128
R14
VDA
V3
VSA
V2
VDB
134
T14
VSB
135
U15
VDA
W17
VSA
W16
VDB
141
N13
VSB
142
R18
VDA
W3
VSA
W4
VDB
150
P18
VSB
151
P14
VDA
B17
VSA
B18
VDB
157
M12
VSB
158
N18
VDA
A3
VSA
A4
VDB
165
A8
VSB
166
H9
VDA
A17
VSA
A16
VDB
175
M13
VSB
179
M16
VDA
B3
VSA
B2
VDB
200
K14
VSB
188
K12
VDA
B4
VSA
B16
VDB
215
J15
VSB
195
K18
VDA
C1
VSA
C3
VDB
223
J16
VSB
202
J14
VDA
C2
VSA
C17
VDB
231
G15
VSB
217
H16
VDB
239
F17
VSB
224
G16
VDB
249
F18
VSB
233
G14
PVDDPLL
279
A14
VDB
256
G7
VSB
240
B5
PVSSPLL
280
F14
VDB
267
D17
VSB
250
F13
VDB
288
F1
VSB
259
H8
VDB
303
J8
VSB
268
H3
VDB
349
H6
VSB
290
D2
VDB
187
K6
VSB
305
H7
VDB
324
M2
VSB
325
J6
VDB
194
V5
VSB
351
K8
VSB
N5
VSB
T3
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
17
4.2.2
System and Peripherals
Table 4-3.
Pin Name
SysClk
SysResetN
TapTck
TapTdi
TapTdo
TapTms
TapTrstN
TestMode
TestSE
TimeClk
TimeTrig_1
TimeTrig_2
LeonDsuAct
LeonDsuBre
LeonDsuEn
LeonDsuRx
LeonDsuTx
LeonErrorN
LeonWDN
System and SpaceWire
Packages
QFP352
MCGA349
83
84
310
313
312
309
311
19
40
44
45
46
117
116
113
115
114
85
87
R1
R4
E10
G10
B10
C10
E9
J5
K4
K3
R7
V8
N8
U7
T8
M7
N7
Pin Name
Packages
QFP352
MCGA349
SpwClk10Mbit_0
SpwClk10Mbit_1
SpwClk10Mbit_2
SpwClkMult_0
SpwClkMult_1
SpwClkMuxSel
SpwClkPllCnfg_0
SpwClkPllCnfg_1
SpwClkPllCnfg_2
SpwClkSrc
306
307
308
281
282
287
284
285
286
283
A10
E11
D10
D13
H12
H11
C14
A13
E14
B13
LvdsRef0
LvdsRef1
298
210
D11
L16
Pin Name
Packages
SpwDIn_N_0
SpwDIn_N_1
SpwDIn_P_0
SpwDIn_P_1
SpwDOut_N_0
SpwDOut_N_1
SpwDOut_P_0
SpwDOut_P_1
SpwSIn_N_0
SpwSIn_N_1
SpwSIn_P_0
SpwSIn_P_1
SpwSOut_N_0
SpwSOut_N_1
SpwSOut_P_0
SpwSOut_P_1
QFP352
MCGA349
300
212
299
211
293
205
291
203
302
214
301
213
296
208
294
206
C11
L17
B11
L18
E13
N15
B12
M18
C12
M17
A11
L19
F12
M14
A12
M19
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
18
Table 4-4.
Pin Name
Memory Interface
Packages
QFP352
MCGA349
MemA_0
120
P9
MemA_1
121
MemA_2
MemA_3
Pin Name
Packages
QFP352
MCGA349
MemD_0
182
T17
R8
MemD_1
185
124
N9
MemD_2
125
V9
MemD_3
MemA_4
126
U9
MemA_5
129
MemA_6
130
MemA_7
131
MemA_8
132
Pin Name
Packages
QFP352
MCGA349
MemD_23
236
H19
R19
MemD_24
237
186
R16
MemD_25
189
P16
MemD_26
MemD_4
191
P19
P10
MemD_5
192
M10
MemD_6
193
W10
MemD_7
196
R9
MemD_8
Pin Name
Packages
QFP352
MCGA349
RomCsN_0
155
N11
J12
RomCsN_1
156
P12
238
H18
MemCsN_0
172
T15
241
G17
MemCsN_1
173
N12
MemD_27
242
J13
MemCsN_2
180
T16
T18
MemD_28
243
H14
MemCsN_3
181
N14
N16
MemD_29
247
F15
MemOeN_0
164
P13
P17
MemD_30
248
G18
MemOeN_1
167
V14
197
N19
MemD_31
251
J11
MemOeN_2
168
U16
MemA_9
133
T10
MemD_9
198
P15
MemOeN_3
171
W15
MemA_10
136
R11
MemD_10
199
L12
MemCB_0
252
F19
MemWrN_0
159
V13
MemA_11
137
V10
MemD_11
218
K19
MemCB_1
253
D18
MemWrN_1
160
U14
MemA_12
138
N10
MemD_12
219
L15
MemCB_2
254
F16
MemWrN_2
161
T13
MemA_13
139
W11
MemD_13
220
K16
MemCB_3
255
E17
MemWrN_3
162
L11
MemA_14
140
U12
MemD_14
221
K17
MemCB_4
260
E19
MemBExcN
276
D14
MemA_15
145
T11
MemD_15
222
K15
MemCB_5
261
E16
IoBrdyN
269
D16
MemA_16
146
P11
MemD_16
225
K13
MemCB_6
262
H13
IoCsN
275
C16
MemA_17
147
L10
MemD_17
226
J19
MemCB_7
263
G13
IoOeN
274
B14
MemA_18
148
R12
MemD_18
227
H17
IoRead
273
D15
MemA_19
149
W12
MemD_19
228
J18
IoWrN
270
A15
MemA_20
152
R13
MemD_20
230
J17
MemA_21
153
T12
MemD_21
234
K11
MemA_22
154
U13
MemD_22
235
H15
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
19
Table 4-5.
Pin Name
Other Peripherals
Packages
QFP352
MCGA349
ADAddr_0
47
K5
ADAddr_1
48
ADAddr_2
49
ADAddr_3
50
ADAddr_4
Pin Name
Packages
QFP352
MCGA349
FifoD_0
18
G4
L5
FifoD_1
20
K2
FifoD_10
33
K7
FifoD_11
51
L1
ADAddr_5
52
ADAddr_6
53
ADAddr_7
Pin
Name
Packages
QFP352
MCGA349
Gpio_0
314
A9
G2
Gpio_1
317
H5
Gpio_2
318
36
J7
Gpio_3
319
FifoD_12
37
J2
Gpio_4
M3
FifoD_13
38
J3
L2
FifoD_14
39
J1
54
L3
FifoD_15
43
Pin Name
Packages
QFP352
MCGA349
LeonPio_0
93
P7
B9
LeonPio_1
94
T4
C9
LeonPio_2
97
W5
D9
LeonPio_3
98
T5
320
F9
LeonPio_4
99
V6
Gpio_5
322
J10
LeonPio_5
100
U4
Gpio_6
323
E8
LeonPio_6
101
T6
K1
Gpio_7
326
B8
LeonPio_7
104
W6
ADCs
79
P2
FifoD_2
21
F3
Gpio_8
327
E7
LeonPio_8
105
P6
ADData_0
59
K9
FifoD_3
22
G1
Gpio_9
328
D8
LeonPio_9
106
T7
ADData_1
60
M5
FifoD_4
23
F5
Gpio_10
329
C7
LeonPio_10
107
M8
ADData_10
71
N2
FifoD_5
26
H4
Gpio_11
330
G9
LeonPio_11
108
V7
ADData_11
72
P3
FifoD_6
27
G3
Gpio_12
331
F8
LeonPio_12
109
U6
ADData_12
73
N4
FifoD_7
28
H2
Gpio_13
332
A7
LeonPio_13
110
W7
ADData_13
74
L9
FifoD_8
29
G5
Gpio_14
333
E6
LeonPio_14
111
R6
ADData_14
76
T2
FifoD_9
30
H1
Gpio_15
334
B7
LeonPio_15
112
M9
ADData_15
77
P4
FifoEmpN
6
D3
Gpio_16
335
C6
ADData_2
61
M1
FifoFullN
5
G6
Gpio_17
336
D7
CanEn_0
3
E2
ADData_3
62
L8
FifoHalfN
9
E1
Gpio_18
337
J9
CanEn_1
4
D4
ADData_4
65
M4
FifoP_0
12
F6
Gpio_19
338
A6
CanRx_0
347
D5
ADData_5
66
N3
FifoP_1
13
F4
Gpio_20
339
F7
CanRx_1
348
G8
ADData_6
67
L7
FifoRdN
11
F2
Gpio_21
340
D6
CanTx_0
343
C4
ADData_7
68
M6
FifoWrN
10
E4
Gpio_22
341
C5
CanTx_1
344
A5
ADData_8
69
N1
Gpio_23
342
B6
ADData_9
70
P5
ADRc
80
N6
ADRdy
57
L4
ADTrig
58
L6
ADWr
78
R3
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
20
4.2.3
Unconnected Pins
Table 4-6.
Pin Name
Unconnected Pins
Packages
Pin Name
QFP352
MCGA349
NC
1
B15
NC
2
NC
Pin
Name
Packages
QFP352
MCGA349
NC
102
K10
C8
NC
103
14
C13
NC
NC
15
C15
NC
34
NC
Packages
Pin Name
QFP352
MCGA349
NC
209
W14
L13
NC
143
L14
NC
144
E3
NC
35
E5
NC
55
NC
Packages
QFP352
NC
292
216
NC
295
NC
229
NC
297
M15
NC
232
NC
304
163
P1
NC
244
NC
315
NC
174
N17
NC
245
NC
316
E12
NC
176
R2
NC
246
NC
321
56
E15
NC
177
R5
NC
264
NC
350
NC
75
E18
NC
178
R15
NC
265
NC
352
NC
86
F11
NC
190
R17
NC
266
NC
122
NC
88
G11
NC
201
T9
NC
277
NC
123
NC
89
G19
NC
204
U5
NC
278
NC
90
J4
NC
207
V15
NC
289
MCGA349
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
21
5.
Electrical Characteristics
5.1
Absolute Maximum Ratings
*Notice:
Table: Absolute rating ltside
Supply Voltage I/Os (VDB buffers)……............................ -0.3V to +4V
Supply Voltage Core (VDA array)..............………….........-0.3V to +2V
Storage Temperature.................................................. -65°C to +150°C
Input/ Output Voltages with respect to Ground...... ............. -0.3V to 4V
Power Dissipation ..........................................................................2W
ESD for I/O ..............................................................................> 2000V
Stresses at or above those listed under
"Absolute Maximum Ratings” may cause
permanent damage to the device. This is
a stress rating only and functional
operation of the device at these or any
other conditions beyond those indicated
in the operational sections of this
specification are not implied. Exposure to
absolute maximum rating conditions for
extended periods may affect device
reliability
ESD for Pll …..........................................................................> 1000V
5.2
Operating Range
Table 5-1.
Operating Range
Operating Temperature
-55°C to +125°C
VDB – IO Power Supply
3.3V ± 0.3V
VDA - Core Power Supply
1.8V ± 0.15V
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
22
5.3
DC characteristics
Table 5-2.
DC characteristics
Symbol
Parameter
VCA
Operating Voltage
Test Condition
VCB
VIH
Input HIGH Voltage
VIL
Input LOW Voltage
IIL
Low Level Input current
Vin = GND
IILPD
Low Level Input Pull-down Current
IILPU
Low Level Input Pull-up Current
IIH
Min
Typ
Max
Units
1.65
1.8
1.95
V
3
3.3
3.6
V
2
V
0.8
V
-1
1
µA
Vin = GND
-5
5
µA
Vin = GND
-110
High Level Input Current
Vin = VCB (max)
-1
1
µA
IIHPU
High Level Input Pull-up Current
Vin = VCB (max)
-5
5
µA
IIHPD
High Level Input Pull-down Current
Vin = VCB (max)
600
µA
IOZL
Output Leakage low current
VOUT = GND
IOZH
Output Leakage high current
VOUT = VCB (max)
VOH
Output HIGH Voltage
IOL = 2, 4, 8, 12, 16mA / VCC =
VCB(min)
VOL
Output LOW Voltage
IOH = 2, 4, 8, 12, 16mA / VCC =
VCB(min)
0.4
V
VOUT = VCB
23
mA
µA
-1
µA
1
µA
VCC-0.4
V
IOS
Output Short circuit current
Vod
Differential Output Delay
247
454
mV
Vos
Common mode output voltage
1125
1375
mV
ICCSBa
Supply current for array when not
clocked
VCA(max)
3.5
mA
Operating supply current for array
VCA(max)
52
mA
ICCOPa
5.4
AC characteristics
The following table gives the worst case timings measured by Atmel on the 3.0V to 3.6V operating range
Table 5-3.
3.3V operating range timings
Parameter
Symbol
Propagation delay, SysClk rising to MemCsN falling
Propagation delay, SysClk rising to CanTx rising
Propagation delay, SysClk rising to Gpio rising
Propagation delay, SysClk rising to FifoD rising
Propagation delay, SpwClkSrc rising to SpwDout_P falling
Propagation delay, SpwClkSrc rising to SpwDout_N_0 rising
Tp0
Tp1
Tp2
Tp3
Tp4
Tp5
Min.
Max.
18
29
25
16
14
14
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
Unit
ns
ns
ns
ns
ns
ns
23
5.5
Timing Diagrams
Figure 5-1. Static Ram read cycle (0 waitsate)
Figure 5-2. FifoD, GPIO and Can_Tx clock delay
Figure 5-3. Clock to SpaceWire Data Out delay
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
24
6.
Ordering Information
6.1
AT7913E Ordering Codes
Atmel Ordering Code
Package Type
Temperature Range
AT7913E-2H-E
MCGA349
25°C
5962-10A0301QXB
MCGA349
-55°C to +125°C
5962-10A0301VXB
MCGA349
-55°C to +125°C
5962R10A0301VXB
MCGA349
-55°C to +125°C
AT7913E-2U-E
LGA349
25°C
5962-10A0301QYC
LGA349
-55°C to +125°C
5962-10A0301VYC
LGA349
-55°C to +125°C
5962R10A0301VYC
LGA349
-55°C to +125°C
AT7913E-YC-E
CQFP352
25°C
AT7913E-YC-MQ*
CQFP352
-55°C to +125°C
AT7913E-YC-SV*
CQFP352
-55°C to +125°C
(1) Preliminary ordering code waiting for SMD reference
Quality Level
Engineering sample
QMLQ
QMLV
QMLV-RHA
Engineering sample
QMLQ
QMLV
QMLV-RHA
Engineering sample
QMLQ
QMLV
ATMEL AT7913E [DATASHEET]
7833G−AERO−04/12
25
Atmel Corporation
Atmel Asia Limited
Atmel Munich GmbH
Atmel Japan G.K.
2325 Orchard Parkway
Unit 01-5 & 16, 19F
Business Campus
16F Shin-Osaki Kangyo Building
San Jose, CA 95131
BEA Tower, Millennium City 5
Parkring 4
1-6-4 Osaki
USA
418 Kwun Tong Road
D-85748 Garching b. Munich
Shinagawa-ku, Tokyo 141-0032
Tel: (+1)(408) 441-0311
Kwun Tong, Kowloon
GERMANY
JAPAN
Fax: (+1)(408) 487-2600
HONG KONG
Tel: (+49) 89-31970-0
Tel: (+81)(3) 6417-0300
www.atmel.com
Tel: (+852) 2245-6100
Fax: (+49) 89-3194621
Fax: (+81)(3) 6417-0370
Fax: (+852) 2722-1369
© 2012 Atmel Corporation. All rights reserved. / Rev.: 7833G−AERO−01/12
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.