Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MRF6S18060N
Rev. 4, 12/2008
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
MRF6S18060NR1
MRF6S18060NBR1
Designed for GSM and GSM EDGE base station applications with
frequencies from 1800 to 2000 MHz. Suitable for TDMA, CDMA, and
multicarrier amplifier applications.
GSM Application
• Typical GSM Performance: VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 Watts
CW, f = 1990 MHz
Power Gain — 15 dB
Drain Efficiency - 50%
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 26 Volts, IDQ = 450 mA,
Pout = 25 Watts Avg., Full Frequency Band (1805- 1880 MHz or
1930- 1990 MHz)
Power Gain — 15.5 dB
Spectral Regrowth @ 400 kHz Offset = - 62 dBc
Spectral Regrowth @ 600 kHz Offset = - 76 dBc
EVM — 2% rms
• Capable of Handling 5:1 VSWR, @ 26 Vdc, 1990 MHz, 60 Watts CW
Output Power
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• 225°C Capable Plastic Package
• N Suffix Indicates Lead - Free Terminations. RoHS Compliant.
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
1800- 2000 MHz, 60 W, 26 V
GSM/GSM EDGE
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 1486 - 03, STYLE 1
TO - 270 WB - 4
PLASTIC
MRF6S18060NR1
CASE 1484 - 04, STYLE 1
TO - 272 WB - 4
PLASTIC
MRF6S18060NBR1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +68
Vdc
Gate - Source Voltage
VGS
- 0.5, +12
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 60 W CW
Case Temperature 77°C, 25 W CW
RθJC
0.81
0.95
Unit
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2006, 2008. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6S18060NR1 MRF6S18060NBR1
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1B (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 68 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 26 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 200 μAdc)
VGS(th)
1
2
3
Vdc
Gate Quiescent Voltage
(VDD = 26 Vdc, ID = 600 mAdc, Measured in Functional Test)
VGS(Q)
2
2.8
4
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.24
—
Vdc
Crss
—
1.5
—
pF
Off Characteristics
On Characteristics
Dynamic Characteristics
Reverse Transfer Capacitance (1)
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 W CW, f = 1990 MHz
Power Gain
Gps
14
15
17
dB
Drain Efficiency
ηD
48
50
—
%
Input Return Loss
IRL
—
- 12
-9
dB
P1dB
60
65
—
W
Pout @ 1 dB Compression Point
Typical GSM EDGE Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 450 mA,
Pout = 25 W Avg., 1805 - 1880 MHz or 1930 - 1990 MHz, EDGE Modulation
Power Gain
Drain Efficiency
Gps
—
15.5
—
dB
ηD
—
32
—
%
Error Vector Magnitude
EVM
—
2
—
% rms
Spectral Regrowth at 400 kHz Offset
SR1
—
- 62
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 76
—
dBc
Typical CW Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 W,
1805 - 1880 MHz or 1930 - 1990 MHz
Power Gain
Gps
—
15
—
dB
Drain Efficiency
ηD
—
50
—
%
Input Return Loss
IRL
—
- 12
—
dB
P1dB
—
65
—
W
Pout @ 1 dB Compression Point, CW
1. Part is internally matched both on input and output.
MRF6S18060NR1 MRF6S18060NBR1
2
RF Device Data
Freescale Semiconductor
VBIAS
VSUPPLY
R1
R2
C1
C2
Z6
C9
+
C10
C11
Z13
C7
R3
RF
INPUT
Z8
Z1
Z2
Z3
Z4
Z5
Z9
Z10
Z11
Z7
Z12
RF
OUTPUT
C4
C8
C3
Z1
Z2*
Z3*
Z4*
Z5
Z6
Z7, Z8
C5
DUT
C6
0.250″ x 0.083″ Microstrip
0.950″ x 0.083″ Microstrip
0.250″ x 0.083″ Microstrip
0.315″ x 0.083″ Microstrip
0.365″ x 1.000″ Microstrip
0.680″ x 0.080″ Microstrip
0.115″ x 1.000″ Microstrip
Z9
Z10*
Z11*
Z12
Z13
PCB
0.485″ x 1.000″ Microstrip
0.500″ x 0.083″ Microstrip
0.895″ x 0.083″ Microstrip
0.250″ x 0.083″ Microstrip
0.200″ x 0.080″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
* Variable for tuning
Figure 1. MRF6S18060NR1(NBR1) Test Circuit Schematic — 1900 MHz
Table 6. MRF6S18060NR1(NBR1) Test Circuit Component Designations and Values — 1900 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C5
1.5 pF Chip Capacitor
ATC100B1R5BT500XT
ATC
C6
1.8 pF Chip Capacitor
ATC100B1R8BT500XT
ATC
C7, C8
1 pF Chip Capacitors
ATC100B1R0BT500XT
ATC
C9, C10
10 μF Chip Capacitors
C5750X5R1H106MT
TDK
C11
220 μF, 63 V Electrolytic Capacitor, Radial
2222 - 136 - 68221
Vishay
R1, R2
10 kW, 1/4 W Chip Resistors
CRCW12061002FKEA
Vishay
R3
10 W, 1/4 W Chip Resistor
CRCW120610R0FKEA
Vishay
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
3
C11
VGS
R1
VDS
R2
C2
C1
C9
C10
R3
C5
C6
CUT OUT AREA
C3
C7
C8
C4
MRF6S18060N/NB
Rev. 0
Figure 2. MRF6S18060NR1(NBR1) Test Circuit Component Layout — 1900 MHz
MRF6S18060NR1 MRF6S18060NBR1
4
RF Device Data
Freescale Semiconductor
Gps, POWER GAIN (dB)
17
ηD
57
0
55
−5
53
16
Gps
51
15
IRL
49
14
ηD, DRAIN EFFICIENCY (%)
18
−10
−15
−20
IRL, INPUT RETURN LOSS (dB)
TYPICAL CHARACTERISTICS — 1900 MHz
VDD = 26 Vdc
IDQ = 600 mA
13
1900
1920
1940
1960
1980
47
2020
2000
−25
f, FREQUENCY (MHz)
Gps, POWER GAIN (dB)
17
ηD
16
42
0
40
−5
38
Gps
36
15
IRL
14
34
ηD, DRAIN EFFICIENCY (%)
18
−10
−15
−20
IRL, INPUT RETURN LOSS (dB)
Figure 3. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 60 Watts
VDD = 26 Vdc
IDQ = 600 mA
13
1900
1920
1940
1960
1980
32
2020
2000
−25
f, FREQUENCY (MHz)
Figure 4. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 30 Watts
17
17
IDQ = 600 mA
f = 1960 MHz
IDQ = 900 mA
750 mA
16
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
16
600 mA
15
450 mA
14
300 mA
15
VDD = 32 V
14
26 V
13
13
VDD = 26 Vdc
f = 1960 MHz
24 V
12
12
1
10
100
0
20
40
60
80
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 5. Power Gain versus Output Power
Figure 6. Power Gain versus Output Power
100
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS — 1900 MHz
70
Gps
60
25_C
15
50
85_C
14
40
85_C
ηD
13
30
12
20
VDD = 26 Vdc
IDQ = 600 mA
f = 1960 MHz
11
10
1
10
0
100
10
25 W Avg.
2
1.5
10 W Avg.
1
1900
1920
1940
1960
1980
2000
TC = −30_C, 25_C
50
85_C
40
ηD
30
6
85_C
25_C
4
20
−30_C
2
10
EVM
0
100
0
10
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
Figure 8. EVM versus Frequency
1
−55
2020
Pout = 35 W Avg.
SR @ 400 kHz
−60
25 W Avg.
−65
10 W Avg.
VDD = 26 Vdc
IDQ = 450 mA
f = 1960 MHz
EDGE Modulation
−70
35 W Avg.
SR @ 600 kHz
−75
25 W Avg.
10 W Avg.
−80
1920
1940
1960
1980
2000
Pout, OUTPUT POWER (WATTS) AVG.
f, FREQUENCY (MHz)
Figure 9. EVM and Drain Efficiency versus
Output Power
Figure 10. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
−45
−55
VDD = 26 Vdc
IDQ = 450 mA
f = 1960 MHz
EDGE Modulation
−50
SPECTRAL REGROWTH @ 600 kHz (dBc)
SPECTRAL REGROWTH @ 400 kHz (dBc)
2.5
Figure 7. Power Gain and Drain Efficiency
versus CW Output Power
60
8
VDD = 26 Vdc
IDQ = 450 mA
3
f, FREQUENCY (MHz)
VDD = 26 Vdc
IDQ = 450 mA
f = 1960 MHz
EDGE Modulation
10
Pout = 35 W Avg.
3.5
Pout, OUTPUT POWER (WATTS) CW
12
EVM, ERROR VECTOR MAGNITUDE (% rms)
4
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
16
25_C
ηD, DRAIN EFFICIENCY (%)
TC = −30_C
−30_C
EVM, ERROR VECTOR MAGNITUDE (% rms)
17
−55
TC = −30_C
−60
−65
25_C
85_C
−70
−75
VDD = 26 Vdc
IDQ = 450 mA
f = 1960 MHz
EDGE Modulation
−60
TC = 85_C
−65
25_C
−70
−30_C
−75
−80
−85
0
10
20
30
40
50
60
0
10
20
30
40
50
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 11. Spectral Regrowth at 400 kHz
versus Output Power
Figure 12. Spectral Regrowth at 600 kHz
versus Output Power
60
MRF6S18060NR1 MRF6S18060NBR1
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
108
MTTF (HOURS)
107
106
105
104
90
110
130
150
170
190
210
230
250
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 60 W CW, and ηD = 50%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 13. MTTF Factor versus Junction Temperature
GSM TEST SIGNAL
−10
−20
Reference Power
VBW = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
−30
−40
(dB)
−50
−60
−70
−80
−90
400 kHz
400 kHz
600 kHz
600 kHz
−100
−110
Center 1.96 GHz
200 kHz
Span 2 MHz
Figure 14. EDGE Spectrum
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
7
Zo = 10 Ω
f = 1930 MHz
Zsource
f = 1990 MHz
f = 1990 MHz
f = 1930 MHz
Zload
VDD = 26 Vdc, IDQ = 600 mA, Pout = 60 W CW
f
MHz
Zsource
Ω
Zload
Ω
1930
8.00 - j6.48
2.83 - j5.13
1960
7.57 - j6.82
2.63 - j4.84
1990
7.06 - j7.06
2.44 - j4.54
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance — 1900 MHz
MRF6S18060NR1 MRF6S18060NBR1
8
RF Device Data
Freescale Semiconductor
VBIAS
VSUPPLY
R1
R2
C1
C2
Z6
C10
C11
+
C12
Z14
R3
RF
INPUT
Z8
Z9
Z10
Z11
Z12
Z13
RF
OUTPUT
C6
Z1
Z2
Z3
Z4
Z5
Z7
C4
C8
C3
C5
Z1
Z2*
Z3*
Z4*
Z5
Z6
Z7, Z8
C9
DUT
C7
0.250″ x 0.083″ Microstrip
0.320″ x 0.083″ Microstrip
0.660″ x 0.083″ Microstrip
0.535″ x 0.083″ Microstrip
0.365″ x 1.000″ Microstrip
0.860″ x 0.080″ Microstrip
0.115″ x 1.000″ Microstrip
Z9
Z10*
Z11*
Z12*
Z13
Z14
PCB
0.485″ x 1.000″ Microstrip
0.420″ x 0.083″ Microstrip
0.230″ x 0.083″ Microstrip
0.745″ x 0.083″ Microstrip
0.250″ x 0.083″ Microstrip
0.640″ x 0.080″ Microstrip
Taconic TLX8 - 0300, 0.030″, εr = 2.55
* Variable for tuning
Figure 16. MRF6S18060NR1(NBR1) Test Circuit Schematic — 1800 MHz
Table 7. MRF6S18060NR1(NBR1) Test Circuit Component Designations and Values — 1800 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C5
0.8 pF Chip Capacitor
ATC100B0R8BT500XT
ATC
C6, C9
0.5 pF Chip Capacitors
ATC100B0R5BT500XT
ATC
C7
2.2 pF Chip Capacitor
ATC100B2R2BT500XT
ATC
C8
1.5 pF Chip Capacitor
ATC100B1R5BT500XT
ATC
C10, C11
10 μF Chip Capacitors
C5750X5R1H106MT
TDK
C12
220 μF, 63 V Electrolytic Capacitor, Radial
2222 - 136 - 68221
Vishay
R1, R2
10 kW, 1/4 W Chip Resistors
CRCW12061002FKEA
Vishay
R3
10 W, 1/4 W Chip Resistor
CRCW120610R0FKEA
Vishay
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
9
VGS
C12
R1
VDS
R2
C2
C1
C10
C11
R3
C3
C5
C7
CUT OUT AREA
C6
C8
C9
C4
MRF6S18060N/NB
Rev. 0
Figure 17. MRF6S18060NR1(NBR1) Test Circuit Component Layout — 1800 MHz
MRF6S18060NR1 MRF6S18060NBR1
10
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1800 MHz
17
57
0
55
−4
15
53
14
51
IRL
13
49
−8
−12
−16
IRL, INPUT RETURN LOSS (dB)
Gps, POWER GAIN (dB)
Gps
ηD, DRAIN EFFICIENCY (%)
ηD
16
VDD = 26 Vdc
IDQ = 600 mA
12
1780
1800
1820
1840
1860
1880
1900
47
1920
−20
f, FREQUENCY (MHz)
17
0
41
−4
15
39
ηD
37
14
IRL
13
35
ηD, DRAIN EFFICIENCY (%)
Gps
16
Gps, POWER GAIN (dB)
43
−8
−12
−16
IRL, INPUT RETURN LOSS (dB)
Figure 18. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 60 Watts
VDD = 26 Vdc
IDQ = 600 mA
12
1760
1780
1800
1820
1840
1860
1880
1900
33
1920
−20
f, FREQUENCY (MHz)
Figure 19. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 30 Watts
4
Pout = 35 W Avg.
3.5
3
VDD = 26 Vdc
IDQ = 450 mA
2.5
2
25 W Avg.
1.5
15 W Avg.
1
0.5
1780
1800
1820
1840
1860
1880
1900
1920
10
50
VDD = 26 Vdc
IDQ = 450 mA
f = 1860 MHz
EDGE Modulation
8
40
ηD
6
30
4
TC = 25_C
2
EVM
0
1
10
f, FREQUENCY (MHz)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 20. EVM versus Frequency
Figure 21. EVM and Drain Efficiency versus
Output Power
20
10
ηD, DRAIN EFFICIENCY (%)
EVM, ERROR VECTOR MAGNITUDE (% rms)
EVM, ERROR VECTOR MAGNITUDE (% rms)
4.5
0
100
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
11
SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc)
TYPICAL CHARACTERISTICS — 1800 MHz
−50
Pout = 35 W Avg.
−55
−60
25 W Avg.
SR @ 400 kHz
−65
15 W Avg.
VDD = 26 Vdc
IDQ = 450 mA
EDGE Modulation
−70
35 W Avg.
−75
−80
1780
25 W Avg.
SR @ 600 kHz
10 W Avg.
1800
1820
1840
1860
1880
1900
1920
f, FREQUENCY (MHz)
Figure 22. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
−60
SPECTRAL REGROWTH @ 600 kHz (dBc)
SPECTRAL REGROWTH @ 400 kHz (dBc)
−45
−50
TC = 25_C
−55
−60
−65
VDD = 26 Vdc
IDQ = 450 mA
f = 1960 MHz
EDGE Modulation
−70
−75
−65
TC = 25_C
−70
−75
VDD = 26 Vdc
IDQ = 450 mA
f = 1960 MHz
EDGE Modulation
−80
−85
0
10
20
30
40
50
60
0
10
20
30
40
50
Pout, OUTPUT POWER (WATTS) AVG.
Pout, OUTPUT POWER (WATTS) AVG.
Figure 23. Spectral Regrowth at 400 kHz
versus Output Power
Figure 24. Spectral Regrowth at 600 kHz
versus Output Power
60
MRF6S18060NR1 MRF6S18060NBR1
12
RF Device Data
Freescale Semiconductor
Zo = 10 Ω
f = 1880 MHz
f = 1805 MHz
Zload
f = 1805 MHz
f = 1880 MHz
Zsource
VDD = 26 Vdc, IDQ = 600 mA, Pout = 65 W CW
f
MHz
Zsource
Ω
Zload
Ω
1805
4.16 - j7.56
3.29 - j4.91
1840
3.89 - j7.40
3.10 - j4.69
1880
3.56 - j7.21
2.88 - j4.45
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 25. Series Equivalent Source and Load Impedance — 1800 MHz
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
13
PACKAGE DIMENSIONS
MRF6S18060NR1 MRF6S18060NBR1
14
RF Device Data
Freescale Semiconductor
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
15
MRF6S18060NR1 MRF6S18060NBR1
16
RF Device Data
Freescale Semiconductor
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
17
MRF6S18060NR1 MRF6S18060NBR1
18
RF Device Data
Freescale Semiconductor
MRF6S18060NR1 MRF6S18060NBR1
RF Device Data
Freescale Semiconductor
19
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
4
Dec. 2008
Description
• Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification
number, PCN13232, p. 1, 2
• Removed Total Device Dissipation from Max Ratings table as data was redundant (information already
provided in Thermal Characteristics table), p. 1
• Changed Storage Temperature Range in Max Ratings table from - 65 to +175 to - 65 to +150 for
standardization across products, p. 1
• Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 1
• Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related
“Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C
in Capable Plastic Package bullet, p. 1
• Corrected VDS to VDD in the RF test condition voltage callout for VGS(Q), and added “Measured in
Functional Test”, On Characteristics table, p. 2
• Removed Forward Transconductance from On Characteristics table as it no longer provided usable
information, p. 2
• Updated Part Numbers in Tables 6, 7, Component Designations and Values, to latest RoHS compliant
part numbers, p. 3, 9
• Removed lower voltage tests from Fig. 6, Power Gain versus Output Power, due to fixed tuned fixture
limitations, p. 5
• Replaced Fig. 13, MTTF versus Junction Temperature with updated graph. Removed Amps2 and listed
operating characteristics and location of MTTF calculator for device, p. 7
• Replaced Case Outline 1486 - 03, Issue C, with 1486 - 03, Issue D, p. 14 - 16. Added pin numbers 1 through
4 on Sheet 1.
• Replaced Case Outline 1484 - 04, Issue D, with 1484 - 04, Issue E, p. 17 - 19. Added pin numbers 1 through
4 on Sheet 1, replacing Gate and Drain notations with Pin 1 and Pin 2 designations.
• Added Product Documentation and Revision History, p. 20
MRF6S18060NR1 MRF6S18060NBR1
20
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140
Fax: +1 - 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006, 2008. All rights reserved.
MRF6S18060NR1 MRF6S18060NBR1
Document
RF
DeviceNumber:
Data MRF6S18060N
Rev. 4, 12/2008
Freescale
Semiconductor
21