Data Sheet

Freescale Semiconductor
Technical Data
Document Number: A2I25D012N
Rev. 1, 3/2015
RF LDMOS Wideband Integrated
Power Amplifiers
The A2I25D012N wideband integrated power amplifier is optimized to
function with a single multi--band circuit usable from 2300 to 2690 MHz. This
multi--stage structure is rated from 26 to 32 V operation and covers all typical
cellular base station modulation formats.
 Typical Single--Carrier W--CDMA Characterization Performance:
VDD = 28 Vdc, IDQ1(A+B) = 45 mA, IDQ2(A+B) = 110 mA, Pout = 2.2 W Avg.,
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.(1)
Frequency
Gps
(dB)
PAE
(%)
ACPR
(dBc)
2300 MHz
31.8
18.5
–47.8
2350 MHz
31.8
18.4
–48.7
2400 MHz
31.9
18.3
–49.3
2496 MHz
32.2
18.3
–49.8
2590 MHz
32.5
18.6
–48.3
2690 MHz
33.2
19.8
–46.8
Features
A2I25D012NR1
A2I25D012GNR1
2300–2690 MHz, 2.2 W AVG., 28 V
AIRFAST RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
TO--270WB--15
PLASTIC
A2I25D012NR1
TO--270WBG--15
PLASTIC
A2I25D012GNR1
 On--Chip Matching (50 Ohm Input, DC Blocked)
 Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (2)
 Designed for Digital Predistortion Error Correction Systems
 Optimized for Doherty Applications
VDS1A
RFinA
VGS1A
VGS2A
VGS1B
VGS2B
RFout1/VDS2A
Quiescent Current
Temperature Compensation (2)
Quiescent Current
Temperature Compensation (2)
RFinB
RFout2/VDS2B
VDS1A
VGS2A
VGS1A
RFinA
N.C.
GND
GND
N.C.
RFinB
VGS1B
VGS2B
VDS1B
1
2
3
4
5
6
7
8
9
10
11
12
15
RFout1/VDS2A
14
13
GND
RFout2/VDS2B
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
VDS1B
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. All data measured in fixture with device soldered to heatsink.
2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987.
 Freescale Semiconductor, Inc., 2014–2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
A2I25D012NR1 A2I25D012GNR1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +65
Vdc
Gate--Source Voltage
VGS
–0.5, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
TC
–40 to +150
C
Case Operating Temperature Range
Operating Junction Temperature Range
(1,2)
Input Power
TJ
–40 to +225
C
Pin
20
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 74C, 2 W CW, 2500 MHz
Stage 1, 28 Vdc, IDQ1(A+B) = 45 mA
Stage 2, 28 Vdc, IDQ2(A+B) = 110 mA
RJC
C/W
9.3
3.3
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1A
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
II
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.0 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 3 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ1(A+B) = 45 mA)
VGS(Q)
—
2.0
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ1(A+B) = 45 mA, Measured in Functional Test)
VGG(Q)
5.3
6.7
8.0
Vdc
Characteristic
Stage 1 -- Off Characteristics
Stage 1 -- On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select
Documentation/Application Notes -- AN1955.
(continued)
A2I25D012NR1 A2I25D012GNR1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 32 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.0 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 10 Adc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ2(A+B) = 110 mA)
VGS(Q)
—
1.9
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ2(A+B) = 110 mA, Measured in Functional Test)
VGG(Q)
4.0
5.0
6.0
Vdc
Drain--Source On--Voltage (1)
(VGS = 10 Vdc, ID = 100 mAdc)
VDS(on)
0.1
0.32
1.5
Vdc
Stage 2 -- Off Characteristics
(1)
Stage 2 -- On Characteristics
Functional Tests (2,3) (In Freescale Production Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1(A+B) = 45 mA, IDQ2(A+B) = 110 mA,
Pout = 2.2 W Avg., f = 2690 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.
Power Gain
Gps
31.0
32.4
35.0
dB
Power Added Efficiency
PAE
18.0
19.7
—
%
Pout @ 1 dB Compression Point, CW
P1dB
13.5
15.5
—
W
Load Mismatch
(4) (In
Freescale Characterization Test Fixture, 50 ohm system) IDQ1(A+B) = 45 mA, IDQ2(A+B) = 110 mA, f = 2690 MHz
VSWR 10:1 at 32 Vdc, 24 W CW Output Power
(3 dB Input Overdrive from 13 W CW Rated Power)
No Device Degradation
Typical Performance (4) (In Freescale Characterization Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1(A+B) = 45 mA, IDQ2(A+B) = 110 mA,
2300–2690 MHz Bandwidth
Pout @ 3 dB Compression Point, CW (5)
P3dB
—
24
—
W

—
–11.1
—

VBWres
—
160
—
MHz
—
—
2.77
1.83
—
—
AM/PM
(Maximum value measured at the P3dB compression point across
the 2300–2690 MHz frequency range.)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Quiescent Current Accuracy over Temperature (6)
with 4.7 k Gate Feed Resistors (–30 to 85C)
with 4.7 k Gate Feed Resistors (–30 to 85C)
IQT
Stage 1
Stage 2
%
Gain Flatness in 390 MHz Bandwidth @ Pout = 2.2 W Avg.
GF
—
1.4
—
dB
Gain Variation over Temperature
(–30C to +85C)
G
—
0.033
—
dB/C
P1dB
—
0.006
—
dB/C
Output Power Variation over Temperature
(–30C to +85C)
Table 6. Ordering Information
Device
A2I25D012NR1
A2I25D012GNR1
Tape and Reel Information
R1 Suffix = 500 Units, 44 mm Tape Width, 13--Reel
Package
TO--270WB--15
TO--270WBG--15
1. Each side of device measured separately.
2. Part internally input matched.
3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GN) parts.
4. All data measured in fixture with device soldered to heatsink.
5. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
6. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987.
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
3
D60632
VDD1A
C13 C15
VGG2A
VGG1A
C3
R1
C17 C19
C11
A2I25D012N
Rev. 3
VDD2A
R6
C9
R2
C1
Z1
R5
Q1
Z2
C6
C10
C12
R4
VGG1B
C7
C8
C2
R3
C5
C4
VGG2B
C14
VDD1B
C16
VDD2B
C18
C20
Note: All data measured in fixture with device soldered to heatsink. Production fixture does not include device soldered to
heatsink.
Figure 3. A2I25D012NR1 Characterization Test Circuit Component Layout — 2300–2690 MHz
Table 7. A2I25D012NR1 Test Circuit Component Designations and Values — 2300–2690 MHz
Part
Description
Part Number
Manufacturer
C1, C2
1.1 pF Chip Capacitors
ATC600F1R1AW250XT
ATC
C3, C4
6.8 pF Chip Capacitors
ATC600F6R8BW250XT
ATC
C5, C6
1.8 pF Chip Capacitors
ATC600F1R8AWT250XT
ATC
C7, C8
10 pF Chip Capacitors
ATC600F100JT250XT
ATC
C9, C10, C11, C12, C17,
C18
4.7 F Chip Capacitors
GRM31CR71H475KA12L
Murata
C13, C14, C19, C20
10 F Chip Capacitors
GRM31CR61H106KA12L
Murata
C15, C16
1.0 F Chip Capacitors
GRM31MR71H105KA88L
Murata
Q1
RF LDMOS Power Amplifier
A2I25D012NR1
Freescale
R1, R4
4.7 K, 1/4 W Chip Resistors
CRCW12064K70FKEA
Vishay
R2*, R3*
2.4 K, 1/4 W Chip Resistors
CRCW12062K40FKEA
Vishay
R5, R6
50 , 4 W Chip Resistors
CW12010T0050GBK
ATC
Z1, Z2
2300–2900 MHz Band, 90, 3 dB Hybrid Couplers
X3C26P1-03S
Anaren
PCB
Rogers RO4350B, 0.020, r = 3.66
D60632
MTL
*In production fixture only.
A2I25D012NR1 A2I25D012GNR1
4
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
32.8
PAE
32.6
21
20
19
18
Gps
PARC
32.4
--45
--0.5
--46
--0.6
32.2
--47
32
--48
31.8
31.6
2300
--49
ACPR
2350
2400
2450
2500
2550
2600
2650
--50
2700
--0.7
--0.8
--0.9
PARC (dB)
33
PAE, POWER ADDED
EFFICIENCY (%)
33.2
Gps, POWER GAIN (dB)
22
VDD = 28 Vdc, Pout = 2.2 W (Avg.), IDQ1(A+B) = 45 mA
IDQ2(A+B) = 110 mA, Single--Carrier W--CDMA, 3.84 MHz
Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
ACPR (dBc)
33.6
33.4
--1
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 4. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 2.2 Watts Avg.
--15
VDD = 28 Vdc, Pout = 9 W (PEP), IDQ1(A+B) = 45 mA
IDQ2(A+B) = 110 mA, Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 2590 MHz
--25
IM3--U
IM3--L
--35
IM5--L
--45
IM5--U
--55
--65
IM7--U
1
IM7--L
10
100
200
TWO--TONE SPACING (MHz)
32.6
0
32.4
32.2
32
31.8
31.6
40
ACPR
--1
16
PARC
--3 dB = 4.8 W
--4
--5
24
Gps
--2 dB = 3.5 W
--3
32
PAE
--1 dB = 2.28 W
--2
8
3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
1
2
3
4
5
--30
48
VDD = 28 Vdc, IDQ1(A+B) = 45 mA, IDQ2(A+B) = 110 mA
f = 2590 MHz, Single--Carrier W--CDMA
0
6
--35
--40
--45
ACPR (dBc)
1
PAE, POWER ADDED EFFICIENCY (%)
32.8
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 5. Intermodulation Distortion Products
versus Two--Tone Spacing
--50
--55
--60
7
Pout, OUTPUT POWER (WATTS)
Figure 6. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS
50
33
32
40
2496 MHz
2690 MHz
2590 MHz
31
30
2690 MHz
2590 MHz
2496 MHz
2496 MHz
2590 MHz
2690 MHz
30 ACPR
PAE
29
0.1
Gps
20
10
0
0
1
10
--10
--20
--30
--40
ACPR (dBc)
34
Gps, POWER GAIN (dB)
60
VDD = 28 Vdc, IDQ1(A+B) = 45 mA, IDQ2(A+B) = 110 mA
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
PAE, POWER ADDED EFFICIENCY (%)
35
--50
--60
20
Pout, OUTPUT POWER (WATTS) AVG.
Figure 7. Single--Carrier W--CDMA Power Gain, Power Added
Efficiency and ACPR versus Output Power — 2496–2690 MHz
50
32
40
2300 MHz
31
30
2350 MHz
2400 MHz
2350 MHz
2300 MHz
30
20
2400 MHz
ACPR
29
2400 MHz
2300 MHz 2350 MHz
PAE
28
0.1
1
Gps
10
0
0
10
20
--10
--20
--30
--40
ACPR (dBc)
33
Gps, POWER GAIN (dB)
60
VDD = 28 Vdc, IDQ1(A+B) = 45 mA, IDQ2(A+B) = 110 mA
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
PAE, POWER ADDED EFFICIENCY (%)
34
--50
--60
Pout, OUTPUT POWER (WATTS) AVG.
Figure 8. Single--Carrier W--CDMA Power Gain, Power Added
Efficiency and ACPR versus Output Power — 2300–2400 MHz
35
34
Gain
GAIN (dB)
33
32
VDD = 28 Vdc
Pin = 0 dBm
IDQ1(A+B) = 45 mA
IDQ2(A+B) = 110 mA
31
30
29
2150
2300
2450
2600
2750
2900
3050
f, FREQUENCY (MHz)
Figure 9. Broadband Frequency Response
A2I25D012NR1 A2I25D012GNR1
6
RF Device Data
Freescale Semiconductor, Inc.
Table 8. Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQ1(A) = 22.5 mA, IDQ2(A) = 55 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
Zload
()
(1)
(W)
PAE
(%)
AM/PM
()
40.3
11
54.9
–3
40.2
10
53.9
–3
32.1
40.1
10
54.1
–4
8.92 – j1.11
32.5
40.1
10
53.3
–3
55.9 – j21.5
8.86 – j1.91
33.1
40.2
11
55.0
–2
42.9 – j35.7
10.1 – j2.57
33.2
40.3
11
55.1
–3
f
(MHz)
Zsource
()
Zin
()
2300
20.5 + j19.7
19.8 – j20.5
2350
24.5 + j16.0
23.6 – j16.1
2400
30.8 + j8.79
2496
Gain (dB)
(dBm)
9.60 – j0.52
31.3
8.79 – j0.88
31.7
29.5 – j11.3
7.87 – j1.08
45.1 + j5.61
43.9 – j9.82
2590
52.3 + j22.1
2690
46.0 + j43.0
Max Output Power
P3dB
Zload
()
(2)
Gain (dB)
(dBm)
(W)
PAE
(%)
AM/PM
()
10.4 – j1.17
29.0
41.2
13
55.9
–6
24.6 – j17.1
9.88 – j1.42
29.3
41.1
13
55.1
–6
30.6 – j13.3
9.77 – j1.59
29.6
41.1
13
55.1
–7
45.1 + j5.61
43.4 – j12.7
10.1 – j1.50
30.2
41.1
13
55.2
–6
2590
52.3 + j22.1
52.8 – j23.3
10.4 – j2.22
30.7
41.2
13
55.6
–5
2690
46.0 + j43.0
41.0 – j35.0
11.5 – j2.97
30.9
41.2
13
56.0
–5
f
(MHz)
Zsource
()
Zin
()
2300
20.5 + j19.7
20.6 – j21.0
2350
24.5 + j16.0
2400
30.8 + j8.79
2496
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Note: Measurement made on a per side basis.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
7
Table 9. Load Pull Performance — Maximum Power Added Efficiency Tuning
VDD = 28 Vdc, IDQ1(A) = 22.5 mA, IDQ2(A) = 55 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Power Added Efficiency
P1dB
Zload
()
(1)
Gain (dB)
(dBm)
(W)
PAE
(%)
AM/PM
()
5.29 + j2.95
33.3
38.7
7
62.6
–8
5.06 + j2.20
33.7
38.8
8
61.9
–8
32.4 – j8.18
4.95 + j2.11
34.2
38.6
7
60.8
–8
45.1 + j5.61
50.5 – j8.00
5.25 + j1.60
34.5
38.9
8
60.6
–7
2590
52.3 + j22.1
61.3 – j27.8
5.42 + j1.07
34.9
39.0
8
61.9
–7
2690
46.0 + j43.0
42.1 – j41.4
5.33 – j0.09
35.2
38.8
8
62.2
–8
f
(MHz)
Zsource
()
Zin
()
2300
20.5 + j19.7
20.8 – j18.5
2350
24.5 + j16.0
24.8 – j13.5
2400
30.8 + j8.79
2496
Max Power Added Efficiency
P3dB
Zload
()
(2)
Gain (dB)
(dBm)
(W)
PAE
(%)
AM/PM
()
5.18 + j2.83
31.3
39.4
9
63.6
–13
25.5 – j14.7
5.15 + j2.29
31.7
39.6
9
63.3
–12
32.7 – j10.3
5.16 + j2.22
32.2
39.5
9
63.0
–12
45.1 + j5.61
50.1 – j10.8
4.96 + j1.89
32.8
39.4
9
62.9
–12
2590
52.3 + j22.1
57.9 – j27.9
5.33 + j1.26
33.0
39.7
9
63.5
–9
2690
46.0 + j43.0
40.9 – j39.8
5.33 + j0.11
33.2
39.5
9
63.7
–10
f
(MHz)
Zsource
()
Zin
()
2300
20.5 + j19.7
21.2 – j19.2
2350
24.5 + j16.0
2400
30.8 + j8.79
2496
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Note: Measurement made on a per side basis.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2I25D012NR1 A2I25D012GNR1
8
RF Device Data
Freescale Semiconductor, Inc.
P1dB -- TYPICAL LOAD PULL CONTOURS — 2590 MHz
6
IMAGINARY ()
4
37
38 38.5 39
2
39.5
E
IMAGINARY ()
36
4
6
36.5
37.5
40
0
--2
P
--4
--6
6
8
10
REAL ()
12
6
4
4
34.5
34
33.5
33
32.5
IMAGINARY ()
35.5 35
E
32
0
--2
P
56
4
54
P
6
4
8
52
50
48
10
REAL ()
46
6
8
10
REAL ()
12
16
14
Figure 12. P1dB Load Pull Gain Contours (dB)
NOTE:
12
14
16
--2
2
E
0
--8
--2
--6
--4
P
--2
--4
--4
--6
58
Figure 11. P1dB Load Pull Efficiency Contours (%)
6
2
60
--2
--6
16
14
Figure 10. P1dB Load Pull Output Power Contours (dBm)
IMAGINARY ()
E
0
--4
39
38.5
4
2
--6
4
6
8
10
REAL ()
12
14
16
Figure 13. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Power Added Efficiency
Gain
Power Added Efficiency
Linearity
Output Power
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
9
P3dB -- TYPICAL LOAD PULL CONTOURS — 2590 MHz
6
6
4
4
2
2
E
IMAGINARY ()
IMAGINARY ()
56
0
--2
41
38.5 39
6
4
8
10
12
REAL ()
16
14
--8
18
4
4
33.5
33
32.5
32
E
31.5
31
IMAGINARY ()
IMAGINARY ()
52
P
48
30
30.5
0
--2
P
0
--6
--6
10
12
REAL ()
14
16
18
Figure 16. P3dB Load Pull Gain Contours (dB)
NOTE:
10
12
REAL ()
16
14
18
E
--4
--12
--2
--4
8
8
--2
2
--4
6
6
4
Figure 15. P3dB Load Pull Efficiency Contours (%)
6
4
54
50
--2
6
--8
58
--6
Figure 14. P3dB Load Pull Output Power Contours (dBm)
2
60
62
--4
39.5
--6
--8
40.5
40
--4
P
E
0
--8
4
P
--6
--10 --8
6
8
10
12
REAL ()
14
16
18
Figure 17. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Power Added Efficiency
Gain
Power Added Efficiency
Linearity
Output Power
A2I25D012NR1 A2I25D012GNR1
10
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
11
A2I25D012NR1 A2I25D012GNR1
12
RF Device Data
Freescale Semiconductor, Inc.
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
13
A2I25D012NR1 A2I25D012GNR1
14
RF Device Data
Freescale Semiconductor, Inc.
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
15
A2I25D012NR1 A2I25D012GNR1
16
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
 AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to
Software & Tools on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Sept. 2014
1
Mar. 2015
Description
 Initial release of data sheet
 Figs. 4, 6--8: changed drain efficiency to power added efficiency for plots and axes labels, pp. 5, 6
 Tables 7 and 8: changed drain efficiency to power added efficiency and added measurement made on a per
side basis note, pp. 7, 8
A2I25D012NR1 A2I25D012GNR1
RF Device Data
Freescale Semiconductor, Inc.
17
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2014–2015 Freescale Semiconductor, Inc.
A2I25D012NR1 A2I25D012GNR1
Document Number: A2I25D012N
Rev. 1, 3/2015
18
RF Device Data
Freescale Semiconductor, Inc.
Similar pages