Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MD7IC2755N
Rev. 3, 9/2010
RF LDMOS Wideband Integrated
Power Amplifiers
The MD7IC2755N wideband integrated circuit is designed with on--chip
matching that makes it usable from 2500 -- 2700 MHz. This multi -- stage
structure is rated for 26 to 32 Volt operation and covers all typical cellular
base station modulations.
• Typical Doherty WiMAX Performance: VDD = 28 Volts, IDQ1A = IDQ1B =
80 mA, IDQ2B = 275 mA, VG2A = 1.7 Vdc, Pout = 10 Watts Avg.,
f = 2700 MHz, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF.
Power Gain — 25 dB
Power Added Efficiency — 25%
Device Output Signal PAR — 8.5 dB @ 0.01% Probability on CCDF
ACPR @ 8.5 MHz Offset — --37 dBc in 1 MHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 90 Watts CW
Output Power (3 dB Input Overdrive from Rated Pout)
• Stable into a 10:1 VSWR. All Spurs Below --60 dBc @ 100 mW to 10 Watts
CW Pout
• Typical Pout @ 1 dB Compression Point ≃ 30 Watts CW
Features
• Production Tested in a Symmetrical Doherty Configuration
• 100% PAR Tested for Guaranteed Output Power Capability
• Characterized with Series Equivalent Large--Signal Impedance Parameters
and Common Source S--Parameters
• On--Chip Matching (50 Ohm Input, DC Blocked)
• Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
• Integrated ESD Protection
• 225°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
VDS1A
PEAKING (2)
RFinA
RFout1/VDS2A
VGS1A
Quiescent Current
Temperature Compensation (1)
VGS2A
VGS1B
Quiescent Current
Temperature Compensation (1)
VGS2B
CARRIER (2)
RFinB
RFout2/VDS2B
VDS1B
Figure 1. Functional Block Diagram
MD7IC2755NR1
MD7IC2755GNR1
2500--2700 MHz, 10 W AVG., 28 V
WiMAX
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1618--02
TO--270 WB--14
PLASTIC
MD7IC2755NR1
CASE 1621--02
TO--270 WB--14 GULL
PLASTIC
MD7IC2755GNR1
VDS1A
VGS2A
VGS1A
RFinA
NC
NC
NC
NC
RFinB
VGS1B
VGS2B
VDS1B
1
2
3
4
5
6
7
8
9
10
11
12
14
13
RFout1/VDS2A
RFout2/VDS2B
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977
or AN1987.
2. Peaking and Carrier orientation is determined by the test fixture design.
© Freescale Semiconductor, Inc., 2009--2010. All rights reserved.
RF Device Data
Freescale Semiconductor
MD7IC2755NR1 MD7IC2755GNR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--0.5, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
--65 to +150
°C
TC
150
°C
Case Operating Temperature
Operating Junction Temperature
(1,2)
Input Power
TJ
225
°C
Pin
30
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Final Doherty Application
RθJC
Thermal Resistance, Junction to Case
Case Temperature 72°C, Pout = 10 W CW, 2600 MHz
Stage 1A, 1B, 28 Vdc, IDQ1A = IDQ1B = 80 mA
Stage 2A, 2B, 28 Vdc, IDQ2B = 275 mA, VG2A = 1.7 Vdc
Case Temperature 90°C, Pout = 55 W CW, 2600 MHz
Stage 1A, 1B, 28 Vdc, IDQ1A = IDQ1B = 80 mA
Stage 2A, 2B, 28 Vdc, IDQ2B = 275 mA, VG2A = 1.7 Vdc
°C/W
2.6
1.8
2.3
1.1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1C (Minimum)
Machine Model (per EIA/JESD22--A115)
A (Minimum)
Charge Device Model (per JESD22--C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
°C
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
MD7IC2755NR1 MD7IC2755GNR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 46 μAdc)
VGS(th)
1.2
1.9
2.7
Vdc
Gate Quiescent Voltage (1)
(VDS = 28 Vdc, IDQ1A = IDQ1B = 80 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage (2)
(VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mAdc, Measured in Functional Test)
VGG(Q)
12
15
18
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 185 μAdc)
VGS(th)
1.2
1.9
2.7
Vdc
Gate Quiescent Voltage (1)
(VDS = 28 Vdc, IDQ2B = 275 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage (2)
(VDD = 28 Vdc, IDQ2B = 275 mAdc, Measured in Functional Test)
VGG(Q)
12
15
18
Vdc
Drain--Source On--Voltage (1)
(VGS = 10 Vdc, ID = 1 A)
VDS(on)
0.2
0.47
1.2
Vdc
Coss
—
111
—
pF
Characteristic
Stage 1 — Off Characteristics (1)
Stage 1 — On Characteristics
Stage 2 — Off Characteristics (1)
Stage 2 — On Characteristics
Stage 2 -- Dynamic Characteristics (2,3)
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, Vin = 0 Vdc)
Functional Tests (4,5) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA,
VG2A = 1.7 Vdc, Pout = 10 W Avg., f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset.
Power Gain
Gps
23
25
31
dB
Power Added Efficiency
PAE
23
25
—
%
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
PAR
8
8.5
—
dB
ACPR
—
--37
--35
dBc
Adjacent Channel Power Ratio
1.
2.
3.
4.
5.
Side A and Side B are tied together for this measurement.
Each side of device measured separately.
Part internally matched both on input and output.
Measurement made with device in a Symmetrical Doherty configuration.
Measurement made with device in straight lead configuration before any lead forming operation is applied.
(continued)
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
3
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA,
VG2A = 1.7 Vdc, 2500--2700 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
IMD Symmetry @ 12 W PEP, Pout where IMD Third Order
Intermodulation  30 dBc
(Delta IMD Third Order Intermodulation between Upper and Lower
Sidebands > 2 dB)
IMDsym
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
—
30
—
W
MHz
—
70
—
VBWres
—
85
—
MHz
Gain Flatness in 200 MHz Bandwidth @ Pout = 10 W Avg.
GF
—
1.6
—
dB
Average Deviation from Linear Phase in 200 MHz Bandwidth
@ Pout = 30 W CW
Φ
—
2
—
°
Average Group Delay @ Pout = 30 W CW, f = 2600 MHz
Delay
—
2.7
—
ns
Part--to--Part Insertion Phase Variation @ Pout = 30 W CW,
f = 2600 MHz, Six Sigma Window
∆Φ
—
3.6
—
°
Gain Variation over Temperature
(--30°C to +85°C)
∆G
—
0.039
—
dB/°C
∆P1dB
—
0.03
—
dBm/°C
Output Power Variation over Temperature
(--30°C to +85°C)
MD7IC2755NR1 MD7IC2755GNR1
4
RF Device Data
Freescale Semiconductor
VD1A
VD2A
VDD
L2
C17
VG2A
VG1A
R1
R2
R3
R4
R5
R6
C7
C15
C3
C1
C13
DUT
1
3
Z1
Z7
Quiescent Current
Temperature Compensation
2
R13
SIDE A
C5
4
C9
14
5
C11
Z3
C21
Z5
Z9
C19
7
RF
INPUT
8
Z2
13
9
10
Zin
Z14 Zout
Z11
6
COUPLER 1
C23
Z4
Z12
Z10
RF
OUTPUT
C20
Quiescent Current
Temperature Compensation
11
Z6
Z13
C10
C12
C22
12
C24
Z8
C2
C6
R7
R8
R9
R10
R11
R12
VG1B
VG2B
SIDE B
C14
C4
C16
C8
C18
L1
VD1B
Z1, Z2
Z3, Z4
Z5, Z6
Z7, Z8
Z9, Z10
Z11, Z12
VD2B
0.0419″ x 0.480″ Microstrip
0.247″ x 0.1504″ Microstrip
0.247″ x 0.1704″ Microstrip
0.030″ x 0.4400″ Microstrip
0.0907″ x 0.075″ Microstrip
0.0419″ x 0.4200″ Microstrip
Z13
Z14
Zin
Zout
PCB
0.0419″ x 0.7690’″ Microstrip
0.0717″ x 0.6750″ Microstrip
0.0419″ x 1.7230″ Microstrip
0.0419″ x 1.1400″ Microstrip
Rogers RO4350B, 0.020″, εr = 3.5
Figure 3. MD7IC2755NR1(GNR1) Test Circuit Schematic
Table 6. MD7IC2755NR1(GNR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5, C6, C13,
C14, C19, C20
6.8 pF Chip Capacitors
ATC600S6R8BT250XT
ATC
C7, C8, C17, C18
10 μF Chip Capacitors
GRM55DR61H106KA88
Murata
C15, C16
1500 pF Chip Capacitors
GRM1885C2A152JA01
Murata
C9, C10, C11, C12, C21, C22,
C23, C24
0.5 pF Chip Capacitors
ATC600S0R5BT250XT
ATC
Coupler 1
2500--2700 Hybrid 3 dB Coupler
GSC356
Soshin
L1, L2
Jumper Wires
R4, R5, R7, R8
75 Ω, 1/8 W Chip Resistors
RK73B2ATTD750G
KOA Speer
R1, R10
300 Ω, 1/8 W Chip Resistors
RK73B2ATTD301G
KOA Speer
R2, R11
2 k Ω, 1/8 W Chip Resistors
RK73B2ATTD202G
KOA Speer
R3, R6, R9, R12
12 kΩ, 1/8 W Chip Resistors
RK73B2ATTD123G
KOA Speer
R13
51 Ω, 1/8 W Chip Resistor
RK73B2ATTD510G
KOA Speer
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
5
VD1A
R1 R2
VG2A
MD7IC2755N Rev. 2
L2
R3
C9 C11
C7
VG1A
R6
R4 R5
C3
C2
R7 R8
C4
R9
P
C21
C23
C
C24
C22
C19
C20
C18
C6
C8
VG2B
C15
C17
C1
R13
C13
C5
COUPLER 1
VG1B
VD2A
C10 C12
C14
C16
R10 R11 R12
L1
VD1B
VD2B
Figure 4. MD7IC2755NR1(GNR1) Test Circuit Component Layout
Single--ended
λ
4
λ
Quadrature combined
4
λ
4
λ
λ
2
2
Doherty
Push--pull
Figure 5. Possible Circuit Topologies
MD7IC2755NR1 MD7IC2755GNR1
6
RF Device Data
Freescale Semiconductor
28.6
28.2
28
27.8
28
26
24
Gps
22
IRL
--36
--14
--38
27.6
27.4
--40
ACPR
27.2
--42
PARC
27
26.8
2500
2525
2550
2575
2600
--44
2625
2650
ACPR (dBc)
Gps, POWER GAIN (dB)
PAE
VDD = 28 Vdc
Pout = 10 W (Avg.)
IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA
VG2A = 1.7 Vdc, OFDM 802.16d, 64 QAM 3/4
4 Bursts, 10 MHz Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability on CCDF
28.4
PAE, POWER ADDED
EFFICIENCY (%)
30
--46
2700
2675
--16
--18
--20
--22
--24
--0.4
--0.6
--0.8
--1
--1.2
PARC (dB)
28.8
IRL, INPUT RETURN LOSS (dB)
TYPICAL CHARACTERISTICS
--1.4
f, FREQUENCY (MHz)
Figure 6. WiMAX Broadband Performance @ Pout = 10 Watts Avg.
32
30
IDQ2B = 413 mA
30
100 mA
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
32
IDQ1A = IDQ1B = 120 mA
80 mA
28
60 mA
26
40 mA
VDD = 28 Vdc
IDQ2B = 275 mA
VG2A = 1.7 Vdc
f = 2600 MHz
24
22
0.1
275 mA
143 mA
26
95 mA
VDD = 28 Vdc
IDQ1A = IDQ1B = 80 mA
VG2A = 1.7 Vdc
f = 2600 MHz
24
10
1
28
344 mA
100
22
0.1
1
10
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 7. Power Gain versus Output Power —
Stage 1, Class AB
Figure 8. Power Gain versus Output Power —
Stage 2, Class AB
100
32
1.9 V
Gps, POWER GAIN (dB)
30
28
1.8 V
VG2A = 1.7 Vdc
1.5 V
1.6 V
26
VDD = 28 Vdc
IDQ1A = IDQ1B = 80 mA
IDQ2B = 275 mA
f = 2600 MHz
24
22
0.1
1
10
100
Pout, OUTPUT POWER (WATTS) CW
Figure 9. Power Gain versus Output Power —
Stage 2, Class C
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
7
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
--10
VDD = 28 Vdc, Pout = 12 W (PEP), IDQ1A = IDQ1B = 80 mA
IDQ2B = 275 mA, VG2A = 1.7 Vdc, Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 2600 MHz
--20
IM3--U
--30
IM3--L
--40
IM5--L
IM5--U
--50
IM7--L
--60
IM7--U
10
1
100
TWO--TONE SPACING (MHz)
Figure 10. Intermodulation Distortion
Products versus Two--Tone Spacing
28
27.5
27
26.5
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
28.5
26
0
PARC
40
PAE
--1 dB = 5.65 W
ACPR
--1
34
--2 dB = 11.92 W
--2
28
--3 dB = 18.67 W
22
--3
f = 2600 MHz, OFDM 802.16d
64 QAM 3/4, 4 Bursts, 10 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF
--4
--5
2
9
16
--33
--36
--39
--42
--45
--48
10
23
16
--30
46
VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA
IDQ2B = 275 mA, VG2A = 1.7 Vdc
Gps
ACPR (dBc)
1
PAE, POWER ADDED EFFICIENCY (%)
29
30
Pout, OUTPUT POWER (WATTS)
Figure 11. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
45
40
35
30
25
VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA
IDQ2B = 275 mA, VG2A = 1.7 Vdc, f = 2600 MHz
OFDM 802.16d, 64 QAM 3/4, 4 Bursts
--30_C
TC = --30_C
85_C
Gps
20
25_C
15 PAE
10
ACPR
5
0
1
25_C
--10
--15
--20
25_C --25
--30
--35
85_C
--30_C --40
--45
10 MHz Channel Bandwidth
Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF
10
ACPR (dBc)
PAE, POWER ADDED EFFICIENCY (%),
Gps, POWER GAIN (dB)
50
--50
--55
60
--60
Pout, OUTPUT POWER (WATTS) AVG. WiMAX
Figure 12. WiMAX, ACPR, Power Gain and
Power Added Efficiency versus Output Power
MD7IC2755NR1 MD7IC2755GNR1
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
30
--10
Gain
20
--13
--16
IRL
--19
15
VDD = 28 Vdc
Pout = 19 dBm
IDQ1A = IDQ1B = 80 mA
IDQ2B = 275 mA
VG2A = 1.7 Vdc
10
5
2050
2150
2250
2350
2450
2550
2650
2750
IRL (dB)
GAIN (dB)
25
--22
--25
2850 2950
f, FREQUENCY (MHz)
Figure 13. Broadband Frequency Response
1010
MTTF (HOURS)
109
Stage 2A
Stage 1A
108
107
Stage 2B
Stage 1B
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 10 W Avg., and PAE = 25%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 14. MTTF versus Junction Temperature
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
9
WIMAX TEST SIGNAL
100
--10
--30
--40
0.1
(dB)
PROBABILITY (%)
Input Signal
1
0.01
OFDM 802.16d, 64 QAM 3/4, 4 Bursts
10 MHz Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability
on CCDF
0.001
0.0001
10 MHz
Channel BW
--20
10
0
2
4
6
--50
--60
--70
8
PEAK--TO--AVERAGE (dB)
Figure 15. OFDM 802.16d Test Signal
10
--80
--90
--20
ACPR in 1 MHz
Integrated BW
--15
--10
ACPR in 1 MHz
Integrated BW
--5
0
5
10
15
20
f, FREQUENCY (MHz)
Figure 16. WiMAX Spectrum Mask Specifications
MD7IC2755NR1 MD7IC2755GNR1
10
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
Zo = 10 Ω
f = 2700 MHz
Zin -- 1B
f = 2700 MHz
f = 2500 MHz
Zload -- 2B
f = 2500 MHz
SIDE 1B — Measured Data
SIDE 2B — Simulated Data
VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA,
VG2A = 1.7 Vdc, Pout = 10 W Avg.
VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA,
VG2A = 1.7 Vdc, Pout = 10 W Avg.
f
MHz
Zin
Zin
Ω
f
MHz
Zload
Ω
2500
51.13 -- j3.65
2500
4.48 -- j1.14
2525
53.63 + j10.52
2525
4.44 -- j0.93
2550
65.26 + j9.11
2550
4.40 -- j0.70
2575
55.46 + j8.51
2575
4.38 -- j0.46
2600
56.42 + j7.21
2600
4.36 -- j0.25
2625
64.56 + j9.19
2625
4.34 -- j0.14
2650
62.22 + j8.40
2650
4.32 + j0.17
2675
63.11 + j15.82
2675
4.31 + j0.33
2700
63.82 + j23.55
2700
4.30 + j0.57
=
Zload =
Device input impedance as measured
from gate to ground.
Zin
Test circuit impedance as measured
from drain to ground.
Zload =
Device
Under Test
Z
Output
Matching
Network
=
Device input impedance as measured
rom gate to ground.
Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
load
Figure 17. Series Equivalent Input and Load Impedance
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
11
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — CLASS AB
49
Ideal
P3dB = 45.61 dBm (36 W)
47
P1dB = 44.75 dBm (30 W)
45
Actual
44
43
42
VDD = 28 Vdc, IDQ1B = 80 mA
IDQ2B = 275 mA, Pulsed CW, 10 μsec(on)
10% Duty Cycle, f = 2500 MHz
41
40
39
8
9
10
11
12
13
Ideal
47
48
46
P3dB = 45.38 dBm (34 W)
48
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
50
49
14
15
16
17
46
P1dB = 44.31 dBm (27 W)
45
Actual
44
43
42
41
VDD = 28 Vdc, IDQ1B = 80 mA
IDQ2B = 275 mA, Pulsed CW, 10 μsec(on)
10% Duty Cycle, f = 2700 MHz
40
39
18
38
8
9
10
11
12
13
14
15
16
17
18
19
20
Pin, INPUT POWER (dBm)
Pin, INPUT POWER (dBm)
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
Test Impedances per Compression Level
Test Impedances per Compression Level
P1dB
Zsource
Ω
Zload
Ω
55.22 + j20.17
4.19 -- j3.44
Figure 18. Pulsed CW Output Power
versus Input Power @ 28 V @ 2500 MHz
P1dB
Zsource
Ω
Zload
Ω
48.60 + j5.11
2.47 -- j3.66
Figure 19. Pulsed CW Output Power
versus Input Power @ 28 V @ 2700 MHz
NOTE: Measurement made on the Class AB, carrier side of the device.
MD7IC2755NR1 MD7IC2755GNR1
12
RF Device Data
Freescale Semiconductor
Table 7. Class AB Common Source S--Parameters (VDD = 28 V, IDQ1B = 80 mA, IDQ2B = 275 mA, TA = 25°C, 50 Ohm System)
Measurement made on the Class AB, carrier side of the device.
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
1500
0.569
74.4
0.002
--64.1
0.00228
135.2
0.997
--176.0
1550
0.575
51.5
0.004
--51.1
0.00100
--30.0
0.997
--179.0
1600
0.593
34.0
0.009
--87.0
0.000590
--107.6
0.995
177.4
1650
0.618
21.8
0.032
--84.4
0.00101
--103.4
0.988
172.7
1700
0.623
14.3
0.092
--94.6
0.00168
--49.5
0.974
166.7
1750
0.601
7.6
0.209
--111.8
0.00326
--146.0
0.979
164.9
1800
0.540
1.5
0.452
--140.8
0.00369
--102.1
0.975
162.2
1850
0.426
--6.8
0.885
--175.9
0.00183
--37.4
0.962
159.2
1900
0.275
--12.9
1.539
151.6
0.00427
--46.1
0.954
156.7
1950
0.058
--69.7
2.773
120.2
0.00351
143.7
0.960
153.0
2000
0.154
121.2
4.188
93.2
0.00632
--82.3
0.946
150.8
2050
0.150
79.4
7.347
72.7
0.00857
--34.1
0.935
146.9
2100
0.064
64.0
9.595
43.3
0.0155
--51.9
0.960
144.0
2150
0.607
--131.3
24.560
26.9
0.0482
--102.7
1.296
110.3
2200
0.406
81.7
28.776
--77.6
0.0257
154.9
0.196
--103.8
2250
0.166
--68.2
22.037
--116.7
0.00750
131.6
0.497
--162.5
2300
0.184
--76.9
19.823
--156.5
0.00936
156.1
0.659
--164.7
2350
0.232
--154.0
16.761
--179.7
0.00172
--139.6
0.743
--173.5
2400
0.182
--94.9
16.827
153.2
0.00578
149.5
0.778
--173.7
2450
0.114
--38.6
15.801
128.7
0.00490
163.9
0.814
--173.9
2500
0.277
--52.4
19.305
89.9
0.00825
142.6
0.853
--169.7
2550
0.261
--3.1
11.891
58.7
0.00185
153.7
0.942
--173.7
2600
0.208
10.3
8.941
47.6
0.00411
166.2
0.961
--177.1
2650
0.568
28.8
8.433
40.6
0.00264
--155.7
0.977
--179.4
2700
0.797
25.0
7.430
15.9
0.00536
128.0
0.976
178.8
2750
0.358
26.5
5.138
--5.8
0.00527
168.2
0.973
177.1
2800
0.384
33.8
4.654
--18.4
0.00311
--178.0
0.976
175.3
2850
0.420
40.4
4.257
--28.4
0.000761
173.9
0.977
173.9
2900
0.337
25.5
3.973
--41.8
0.00233
--134.7
0.977
172.6
2950
0.166
27.4
3.240
--53.3
0.00414
--133.7
0.969
171.4
3000
0.194
23.2
2.641
--52.2
0.00578
--153.5
0.980
170.4
3050
0.186
--9.6
2.337
--61.6
0.00456
158.2
0.979
169.1
3100
0.241
--59.0
2.189
--74.9
0.00204
--78.5
0.982
168.5
3150
0.344
--81.9
2.394
--90.8
0.00281
--98.4
0.974
162.9
3200
0.392
--95.8
2.636
--105.7
0.00468
--122.1
0.966
154.9
3250
0.363
--95.2
3.397
--117.6
0.00661
--106.5
0.949
139.2
3300
0.312
--84.4
5.196
--146.4
0.0170
--126.5
0.819
93.6
3350
0.430
--65.7
5.347
144.0
0.0291
119.3
0.707
--65.7
(continued)
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
13
Table 7. Class AB Common Source S--Parameters (VDD = 28 V, IDQ1B = 80 mA, IDQ2B = 275 mA, TA = 25°C, 50 Ohm System)
Measurement made on the Class AB, carrier side of the device. (continued)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
3400
0.434
--56.5
2.527
100.7
0.00568
100.1
0.930
--139.3
3450
0.499
--50.1
1.448
92.0
0.00828
25.3
0.865
--161.1
3500
0.546
--52.3
1.394
68.4
0.000298
--87.1
0.944
--163.3
3550
0.518
--56.8
1.073
52.6
0.00543
7.1
0.965
--171.1
3600
0.492
--68.4
0.834
39.8
0.00150
--30.4
0.958
--177.1
MD7IC2755NR1 MD7IC2755GNR1
14
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
15
MD7IC2755NR1 MD7IC2755GNR1
16
RF Device Data
Freescale Semiconductor
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
17
MD7IC2755NR1 MD7IC2755GNR1
18
RF Device Data
Freescale Semiconductor
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
19
MD7IC2755NR1 MD7IC2755GNR1
20
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages
• AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Jan. 2009
• Initial Release of Data Sheet
1
July 2009
• Test Conditions clarified for Fig. 18, Pulsed CW Output Power versus Input Power @ 28 V @ 2500 MHz,
and Fig. 19, Pulsed CW Output Power versus Input Power @ 28 V @ 2700 MHz, p. 12
• Added Electromigration MTTF Calculator availability to Product Software, p. 21
2
Sept. 2010
• For Pout = 10 W CW, changed Stage 1A, Stage 1B thermal resistance values from 4.0 (Stage 1A), 5.0
(Stage 1B) to 2.6°C/W and Stage 2A, Stage 2B thermal resistance values from 0.9 (Stage 2A), 2.1
(Stage 2B) to 1.8 in Thermal Characteristics table. For Pout = 55 W CW, changed Stage 1A, Stage 1B
thermal resistance values from 4.6 (Stage 1A), 4.2 (Stage 1B) to 2.3°C/W and Stage 2A, Stage 2B
thermal resistance values from 1.2 (Stage 2A), 2.0 (Stage 2B) to 1.1 in Thermal Characteristics table.
Thermal value now reflects the use of the combined dissipated power from the carrier amplifier and
peaking amplifier, p. 2.
• Fig. 4, Test Circuit Component Layout, added labels to distinguish Carrier and Peaking side of amplifier,
p. 6
3
Sept. 2010
• Fig. 3, Test Circuit Schematic, corrected labeling of C9 and C11 0.5 pF Chip Capacitors, p. 5
MD7IC2755NR1 MD7IC2755GNR1
RF Device Data
Freescale Semiconductor
21
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
support.japa[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009--2010. All rights reserved.
MD7IC2755NR1 MD7IC2755GNR1
Document Number: MD7IC2755N
Rev. 3, 9/2010
22
RF Device Data
Freescale Semiconductor