Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MRF6V12250H
Rev. 2, 4/2010
RF Power Field Effect Transistors
MRF6V12250HR3
MRF6V12250HSR3
N--Channel Enhancement--Mode Lateral MOSFETs
RF Power transistors designed for applications operating at frequencies
between 960 and 1215 MHz. These devices are suitable for use in pulsed
applications.
• Typical Pulsed Performance: VDD = 50 Volts, IDQ = 100 mA, Pout =
275 Watts Peak (27.5 Watts Avg.), f = 1030 MHz, Pulse Width = 128 μsec,
Duty Cycle = 10%
Power Gain — 20.3 dB
Drain Efficiency — 65.5%
• Capable of Handling 10:1 VSWR, @ 50 Vdc, 1030 MHz, 275 Watts Peak
Power
• Typical Broadband Performance: VDD = 50 Volts, IDQ = 100 mA, Pout =
250 Watts Peak (25 Watts Avg.), f = 960--1215 MHz, Pulse Width =
128 μsec, Duty Cycle = 10%
Power Gain — 19.8 dB
Drain Efficiency — 58%
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 50 VDD Operation
• Integrated ESD Protection
• Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
960--1215 MHz, 275 W, 50 V
PULSED
LATERAL N--CHANNEL
RF POWER MOSFETs
CASE 465--06, STYLE 1
NI--780
MRF6V12250HR3
CASE 465A--06, STYLE 1
NI--780S
MRF6V12250HSR3
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +100
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature (1,2)
TJ
225
°C
Symbol
Value (2,3)
Unit
ZθJC
0.08
°C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 275 W Pulsed, 128 μsec Pulse Width, 10% Duty Cycle
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
© Freescale Semiconductor, Inc., 2009--2010. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6V12250HR3 MRF6V12250HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2 (Minimum)
Machine Model (per EIA/JESD22--A115)
B (Minimum)
Charge Device Model (per JESD22--C101)
IV (Minimum)
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
μAdc
110
—
—
Vdc
Off Characteristics
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 100 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 90 Vdc, VGS = 0 Vdc)
IDSS
—
—
100
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 662 μAdc)
VGS(th)
0.9
1.7
2.4
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
1.7
2.4
3.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 1.6 Adc)
VDS(on)
—
0.25
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.46
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
352
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
695
—
pF
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak (27.5 W Avg.), f = 1030 MHz,
Pulsed, 128 μsec Pulse Width, 10% Duty Cycle
Power Gain
Gps
19
20.3
22
dB
Drain Efficiency
ηD
63
65.5
—
%
Input Return Loss
IRL
—
--14
--9
dB
Typical Broadband Performance — 960--1215 MHz (In Freescale 960--1215 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc,
IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.), f = 960--1215 MHz, Pulsed, 128 μsec Pulse Width, 10% Duty Cycle
Power Gain
Gps
—
19.8
—
dB
Drain Efficiency
ηD
—
58
—
%
1. Part internally matched both on input and output.
MRF6V12250HR3 MRF6V12250HSR3
2
RF Device Data
Freescale Semiconductor
R4
VBIAS
R3
C12
C8
C7
VSUPPLY
+
+
C14
C15
C13
C6
Z14
Z11
RF
INPUT
Z13
Z16 Z17
Z18
Z19 Z20
Z21 Z22
C5
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
DUT
C4
R1
C9
Z10
C1
Z15
Z12
R2
C10
C2
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11, Z12
Z23
RF
OUTPUT
C11
C3
1.055″ x 0.082″ Microstrip
0.100″ x 0.082″ Microstrip
0.084″ x 0.395″ Microstrip
0.419″ x 0.040″ Microstrip
0.498″ x 0.466″ Microstrip
0.110″ x 1.060″ Microstrip
0.050″ x 1.300″ Microstrip
0.092″ x 1.300″ Microstrip
0.219″ x 1.420″ Microstrip
0.087″ x 1.420″ Microstrip
0.187″ x 0.050″ Microstrip
Z13
Z14, Z15
Z16
Z17
Z18
Z19
Z20
Z21
Z22
Z23
PCB
0.190″ x 1.250″ Microstrip
0.517″ x 0.080″ Microstrip
0.225″ x 1.250″ Microstrip
0.860″ x 0.975″ Microstrip
0.140″ x 0.950″ Microstrip
0.028″ x 0.110″ Microstrip
0.397″ x 0.040″ Microstrip
0.264″ x 0.480″ Microstrip
0.100″ x 0.082″ Microstrip
0.521″ x 0.082″ Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55
Figure 1. MRF6V12250HR3(HSR3) Test Circuit Schematic
Table 5. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C4, C5
1.5 pF Chip Capacitors
ATC100B1R5BT500XT
ATC
C2, C7, C11, C13
2.2 μF, 100 V Chip Capacitors
G2225X7R225KT3AB
ATC
C3, C6, C10, C12
33 pF Chip Capacitors
ATC100B330JT500XT
ATC
C8
22 μF, 25 V Chip Capacitor
TPSD226M025R0200
AVX
C9
9.1 pF Chip Capacitor
ATC100B9R1CT500XT
ATC
C14, C15
470 μF, 63 V Electrolytic Capacitors
MCGPA63V477M13X26--RH
Multicomp
R1, R2, R3, R4
0 Ω, 3.5 A Chip Resistors
CRCW12060000Z0EA
Vishay
MRF6V12250HR3 MRF6V12250HSR3
RF Device Data
Freescale Semiconductor
3
R4
C8
MRF6V12250H
Rev. 0
C7
C13
R3
C14
C15
C6
C5
C12
C9
C4
C3
CUT OUT AREA
C1
C10
R2
C11
R1
C2
Figure 2. MRF6V12250HR3(HSR3) Test Circuit Component Layout
MRF6V12250HR3 MRF6V12250HSR3
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
160
Coss
Ciss
100
MAXIMUM OPERATING Tcase (°C)
C, CAPACITANCE (pF)
1000
10
1
Crss
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
0.1
0
10
20
30
140
120
Pout = 250 W
100
Pout = 275 W
80
Pout = 200 W
60
40
VDD = 50 Vdc, IDQ = 100 mA
f = 1030 MHz, Pulse Width = 128 μsec
20
0
40
0
50
5
25
30
35
Figure 3. Capacitance versus Drain--Source Voltage
Figure 4. Safe Operating Area
Gps
20
50
ηD
40
18
VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
16
50
Pout, OUTPUT POWER (dBm)
60
ηD, DRAIN EFFICIENCY (%)
22
P1dB = 54.76 dBm (299 W)
57
56
55
54
53
Actual
52
51
50
VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
48
28
400
Ideal
P3dB = 55.29 dBm (338 W)
49
30
100
30
32
34
36
38
Pout, OUTPUT POWER (WATTS) PULSED
Pin, INPUT POWER (dBm) PULSED
Figure 5. Pulsed Power Gain and Drain Efficiency
versus Output Power
Figure 6. Pulsed Output Power versus
Input Power
22
22
IDQ = 400 mA
20
100 mA
200 mA
21
Gps, POWER GAIN (dB)
21
300 mA
19
18
17
50
100
400
40
IDQ = 100 mA, f = 1030 MHz
Pulse Width = 128 μsec
Duty Cycle = 10%
20
19
18
17
16
VDD = 50 Vdc, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
40
60
70
59
58
Gps, POWER GAIN (dB)
20
DUTY CYCLE (%)
24
Gps, POWER GAIN (dB)
15
10
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
15
50
VDD = 30 V
35 V
40 V
45 V
100
Pout, OUTPUT POWER (WATTS) PULSED
Pout, OUTPUT POWER (WATTS) PULSED
Figure 7. Pulsed Power Gain versus
Output Power
Figure 8. Pulsed Power Gain versus
Output Power
50 V
400
MRF6V12250HR3 MRF6V12250HSR3
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
25_C
55_C
85_C
300
200
100
Gps
22
0
1
2
3
4
5
55_C
25_C
20
60
48
85_C 55_C
36
18
VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
ηD
6
85_C 25_C
TC = --30_C
VDD = 50 Vdc, IDQ = 100 mA, f = 1030 MHz
Pulse Width = 128 μsec, Duty Cycle = 10%
0
72
--30_C
16
50
100
Pin, INPUT POWER (WATTS) PULSED
ηD, DRAIN EFFICIENCY (%)
24
TC = --30_C
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) PULSED
400
24
400
Pout, OUTPUT POWER (WATTS) PULSED
Figure 9. Pulsed Output Power versus
Input Power
Figure 10. Pulsed Power Gain and Drain Efficiency
versus Output Power
109
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 275 W Peak, Pulse Width = 128 μsec,
Duty Cycle = 10%, and ηD = 65.5%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 11. MTTF versus Junction Temperature
MRF6V12250HR3 MRF6V12250HSR3
6
RF Device Data
Freescale Semiconductor
Zo = 5 Ω
Zload
f = 1030 MHz
Zsource
f = 1030 MHz
VDD = 50 Vdc, IDQ = 100 mA, Pout = 275 W Peak
f
MHz
Zsource
Ω
Zload
Ω
1030
2.30 -- j3.51
4.0 -- j2.14
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 12. Series Equivalent Source and Load Impedance
MRF6V12250HR3 MRF6V12250HSR3
RF Device Data
Freescale Semiconductor
7
C8
C6
C12
C10
C4
C2
R1
C14
C13
MRF6V12250H
960--1215 MHz
Rev. 0
C3
CUT OUT AREA
C1
C11
C5
C9
C7
R2
Figure 13. MRF6V12250HR3(HSR3) Test Circuit Component Layout — 960--1215 MHz
Table 6. MRF6V12250HR3(HSR3) Test Circuit Component Designations and Values — 960--1215 MHz
Part
Description
Part Number
Manufacturer
C1
2.7 pF Chip Capacitor
ATC100B2R7BT500XT
ATC
C2, C3, C4, C5
33 pF Chip Capacitors
ATC100B330JT500XT
ATC
C6, C7
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C8, C9, C10
2.2 μF, 100 V Chip Capacitors
G2225X7R225KT3AB
ATC
C11
9.1 pF Chip Capacitor
ATC100B9R1CT500XT
ATC
C12
22 μF, 25 V Tantalum Capacitor
TPSD226M025R0200
AVX
C13, C14
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
R1, R2
47 Ω, 1/4 W Chip Resistors
CRCW120647R0FKEA
Vishay
PCB
0.030″, εr = 2.55
AD255A
Arlon
MRF6V12250HR3 MRF6V12250HSR3
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 960--1215 MHz
Gps, POWER GAIN (dB)
24
22
70
f = 1215 MHz
VDD = 50 Vdc
IDQ = 100 mA
Pulse Width = 128 μsec
Duty Cycle = 10%
1150 MHz
60
960 MHz
1030 MHz
50
ηD
1215 MHz 1150 MHz
20
Gps
960 MHz
18
40
30
ηD, DRAIN EFFICIENCY (%)
26
1030 MHz
16
0
50
150
100
200
250
300
20
350
Pout, OUTPUT POWER (WATTS) PULSED
Figure 14. Pulsed Power Gain and Drain Efficiency
versus Output Power
Gps, POWER GAIN (dB)
19
18
66
Gps
64
ηD
17
62
60
16
58
15
0
14
13
12
11
950
IRL
--5
--10
VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak (25 W Avg.)
Pulse Width = 128 μsec, Duty Cycle = 10%
--15
--20
975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225
IRL, INPUT RETURN
LOSS (dB)
20
ηD, DRAIN
EFFICIENCY (%)
68
21
f, FREQUENCY (MHz)
Figure 15. Broadband Performance @ Pout = 250 Watts Peak
MRF6V12250HR3 MRF6V12250HSR3
RF Device Data
Freescale Semiconductor
9
Zo = 10 Ω
Zload
f = 960 MHz
f = 1215 MHz
f = 1215 MHz
f = 960 MHz
VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak
Zsource
VDD = 50 Vdc, IDQ = 100 mA, Pout = 250 W Peak
f
MHz
Zsource
Ω
Zload
Ω
f
MHz
Zsource
Ω
Zload
Ω
960
4.00 -- j4.14
3.96 -- j1.70
1100
5.49 -- j3.04
3.32 -- j1.43
970
4.05 -- j3.99
3.90 -- j1.67
1110
5.47 -- j3.07
3.31 -- j1.42
980
4.16 -- j3.86
3.83 -- j1.66
1120
5.52 -- j3.09
3.24 -- j1.40
990
4.33 -- j3.71
3.75 -- j1.66
1130
5.68 -- j3.13
3.12 -- j1.39
1000
4.49 -- j3.57
3.70 -- j1.65
1140
5.89 -- j3.20
2.99 -- j1.36
1010
4.61 -- j3.43
3.68 -- j1.62
1150
6.06 -- j3.32
2.88 -- j1.30
1020
4.66 -- j3.33
3.69 -- j1.59
1160
6.09 -- j3.47
2.83 -- j1.23
1030
4.68 -- j3.26
3.69 -- j1.54
1170
5.98 -- j3.60
2.83 -- j1.19
1040
4.72 -- j3.20
3.67 -- j1.52
1180
5.85 -- j3.69
2.80 -- j1.15
1050
4.83 -- j3.13
3.59 -- j1.53
1190
5.78 -- j3.76
2.75 -- j1.11
1060
5.02 -- j3.06
3.48 -- j1.53
1200
5.81 -- j3.87
2.65 -- j1.07
1070
5.24 -- j2.99
3.38 -- j1.53
1210
5.89 -- j4.02
2.52 -- j1.01
1080
5.42 -- j2.96
3.32 -- j1.51
1215
5.91 -- j4.11
2.47 -- j0.97
1090
5.51 -- j2.99
3.30 -- j1.47
Zsource = Test circuit impedance as measured from gate to ground.
Zload
= Test circuit impedance as measured from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 16. Series Equivalent Source and Load Impedance — 960--1215 MHz
MRF6V12250HR3 MRF6V12250HSR3
10
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
B
G
Q
bbb
2X
1
M
T A
M
B
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M--1994.
2. CONTROLLING DIMENSION: INCH.
3. DELETED
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
3
B
K
2
(FLANGE)
D
bbb
T A
M
B
M
M
M
bbb
N
M
T A
M
B
ccc
M
M
T A
M
T A
M
B
aaa
M
M
T A
(LID)
B
M
S
(LID)
ccc
H
R
(INSULATOR)
B
M
M
(INSULATOR)
M
C
F
E
A
SEATING
PLANE
T
A
DIM
A
B
C
D
E
F
G
H
K
M
N
Q
R
S
aaa
bbb
ccc
INCHES
MIN
MAX
1.335
1.345
0.380
0.390
0.125
0.170
0.495
0.505
0.035
0.045
0.003
0.006
1.100 BSC
0.057
0.067
0.170
0.210
0.774
0.786
0.772
0.788
.118
.138
0.365
0.375
0.365
0.375
0.005 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
33.91
34.16
9.65
9.91
3.18
4.32
12.57
12.83
0.89
1.14
0.08
0.15
27.94 BSC
1.45
1.70
4.32
5.33
19.66
19.96
19.60
20.00
3.00
3.51
9.27
9.53
9.27
9.52
0.127 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE
(FLANGE)
CASE 465--06
ISSUE G
NI--780
MRF6V12250HR3
4X U
(FLANGE)
4X Z
(LID)
B
1
K
2X
2
B
(FLANGE)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M--1994.
2. CONTROLLING DIMENSION: INCH.
3. DELETED
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
D
bbb
M
T A
M
B
M
N
(LID)
ccc
M
M
T A
M
B
R
M
ccc
M
T A
S
(INSULATOR)
bbb
M
T A
M
M
B
M
aaa
M
T A
M
(LID)
B
M
(INSULATOR)
B
M
H
C
3
E
A
A
F
T
SEATING
PLANE
DIM
A
B
C
D
E
F
H
K
M
N
R
S
U
Z
aaa
bbb
ccc
INCHES
MIN
MAX
0.805
0.815
0.380
0.390
0.125
0.170
0.495
0.505
0.035
0.045
0.003
0.006
0.057
0.067
0.170
0.210
0.774
0.786
0.772
0.788
0.365
0.375
0.365
0.375
-----0.040
-----0.030
0.005 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
20.45
20.70
9.65
9.91
3.18
4.32
12.57
12.83
0.89
1.14
0.08
0.15
1.45
1.70
4.32
5.33
19.61
20.02
19.61
20.02
9.27
9.53
9.27
9.52
-----1.02
-----0.76
0.127 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
5. SOURCE
(FLANGE)
CASE 465A--06
ISSUE H
NI--780S
MRF6V12250HSR3
MRF6V12250HR3 MRF6V12250HSR3
RF Device Data
Freescale Semiconductor
11
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents, tools and software to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &
Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
May 2009
• Initial Release of Data Sheet
1
July 2009
• Updated Typical Broadband Performance bullet to include VDD, IDQ and Pulsed information. Provided
specific values for Power Gain and Drain Efficiency, p. 1
• Added Typical Performance table for 960--1215 MHz application, p. 2
• Changed “EKMG630ELL471MK25S” part number to “MCGPA63V477M13X26--RH”, Table 5, Test Circuit
Component Designations and Values, p. 3
• Added Fig. 5, Safe Operating Area, p. 5
• Added Fig. 13, Test Circuit Component Layout -- 960--1215 MHz and Table 6, Test Circuit Component
Designations and Values -- 960--1215 MHz, p. 8
• Added Fig. 14, Power Gain and Drain Efficiency versus Output Power -- 960--1215 MHz, p. 9
• Added Fig 15, Broadband Performance @ Pout = 250 Watts Peak -- 960--1215 MHz, p. 9
• Added Fig. 16, Series Equivalent Source and Load Impedance -- 960--1215 MHz, p. 10
2
Apr. 2010
• Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related
“Continuous use at maximum temperature will affect MTTF” footnote added, p. 1
• Reporting of pulsed thermal data now shown using the ZθJC symbol, p. 1
• Added RF High Power Model availability to Product Software, p. 12
MRF6V12250HR3 MRF6V12250HSR3
12
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
[email protected]ertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009--2010. All rights reserved.
MRF6V12250HR3 MRF6V12250HSR3
Document
Number:
RF
Device
Data MRF6V12250H
Rev. 2, 4/2010
Freescale
Semiconductor
13