Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MRF6V2010N
Rev. 5, 4/2010
RF Power Field Effect Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
MRF6V2010NR1
MRF6V2010NBR1
Designed primarily for CW large--signal output and driver applications with
frequencies up to 450 MHz. Devices are unmatched and are suitable for use in
industrial, medical and scientific applications.
• Typical CW Performance at 220 MHz: VDD = 50 Volts, IDQ = 30 mA,
Pout = 10 Watts
Power Gain — 23.9 dB
Drain Efficiency — 62%
• Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 10 Watts CW
Output Power
Features
• Characterized with Series Equivalent Large--Signal Impedance Parameters
• Qualified Up to a Maximum of 50 VDD Operation
• Integrated ESD Protection
• 225°C Capable Plastic Package
• RoHS Compliant
• TO--270--2 in Tape and Reel. R1 Suffix = 500 Units per 24 mm,
13 inch Reel.
• TO--272--2 in Tape and Reel. R1 Suffix = 500 Units per 44 mm,
13 inch Reel.
10--450 MHz, 10 W, 50 V
LATERAL N--CHANNEL
BROADBAND
RF POWER MOSFETs
CASE 1265--09, STYLE 1
TO--270--2
PLASTIC
MRF6V2010NR1
CASE 1337--04, STYLE 1
TO--272--2
PLASTIC
MRF6V2010NBR1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +110
Vdc
Gate--Source Voltage
VGS
--0.5, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Unit
RθJC
3.0
°C/W
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 81°C, 10 W CW
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
© Freescale Semiconductor, Inc., 2007--2008, 2010. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2 (Minimum)
Machine Model (per EIA/JESD22--A115)
A (Minimum)
Charge Device Model (per JESD22--C101)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
μAdc
V(BR)DSS
110
—
—
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
2.5
mA
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 28 μAdc)
VGS(th)
1
1.68
3
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 30 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.68
3.5
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 70 mAdc)
VDS(on)
—
0.26
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.13
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
7.3
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
16.3
—
pF
Characteristic
Off Characteristics
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(ID = 5 mA, VGS = 0 Vdc)
On Characteristics
Dynamic Characteristics
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W, f = 220 MHz, CW
Power Gain
Gps
22.5
23.9
25.5
dB
Drain Efficiency
ηD
58
62
—
%
Input Return Loss
IRL
—
--14
--9
dB
ATTENTION: The MRF6V2010N and MRF6V2010NB are high power devices and special considerations
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263
(for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to
ensure proper mounting of these devices.
MRF6V2010NR1 MRF6V2010NBR1
2
RF Device Data
Freescale Semiconductor
B2
L2
B1
VBIAS
+
+
C2
C3
+
C11
C4
C5
C6
C7
C12
C13 C14
C15
VSUPPLY
C16
C8
L3
R1
RF
INPUT
Z1
Z2
L1
Z3
Z5
Z6
Z8
Z9
Z10
C1
Z11
C18
Z4
C9
Z1
Z2
Z3
Z4
Z5
Z6
Z7
RF
OUTPUT
C10
C17
DUT
0.235″ x 0.082″ Microstrip
1.190″ x 0.082″ Microstrip
0.619″ x 0.082″ Microstrip
0.190″ x 0.270″ Microstrip
0.293″ x 0.270″ Microstrip
0.120″ x 0.270″ Microstrip
Z7
Z8
Z9
Z10
Z11
PCB
0.062″ x 0.270″ Microstrip
0.198″ x 0.082″ Microstrip
5.600″ x 0.082″ Microstrip
0.442″ x 0.082″ Microstrip
0.341″ x 0.082″ Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55
Figure 1. MRF6V2010NR1(NBR1) Test Circuit Schematic
Table 6. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads
2743021447
Fair--Rite
C1, C8, C11, C18
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C2
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C3
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C4, C13
39 K pF Chip Capacitors
ATC200B393KT50XT
ATC
C5, C14
22 K pF Chip Capacitors
ATC200B223KT50XT
ATC
C6, C15
0.1 μF Chip Capacitors
CDR33BX104AKYS
Kemet
C7, C12
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C9
0.6--4.5 pF Variable Capacitor, Gigatrim
27271SL
Johanson
C10
12 pF Chip Capacitor
ATC100B120JT500XT
ATC
C16
470 μF, 63 V Electrolytic Capacitor
ESMG630ELL471MK205
United Chemi--Con
C17
27 pF Chip Capacitor
ATC100B270JT500XT
ATC
L1
17.5 nH Inductor
B06T
CoilCraft
L2, L3
82 nH Inductors
1812SMS--82NJ
CoilCraft
R1
120 Ω, 1/4 W Chip Resistor
CRCW1206120RFKEA
Vishay
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
3
C14
C5
C13
C6
C4
C7
R1
C3
B2
L2
B1
C2
C15
C12
C11
C8
L3
CUT OUT AREA
L1
C1
C16
C17
C18
C10
C9
MRF6V2010N/NB
Rev. 3
Figure 2. MRF6V2010NR1(NBR1) Test Circuit Component Layout
MRF6V2010NR1 MRF6V2010NBR1
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
100
100
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
Ciss
10
Coss
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
1
10
1
Crss
0
10
20
40
30
10
1
50
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Figure 3. Capacitance versus Drain--Source Voltage
Figure 4. DC Safe Operating Area
0.35
25
0.3
24
0.2
2.75 V
0.15
2.63 V
2.5 V
0.1
0.05
IMD, THIRD ORDER INTERMODULATION
DISTORTION (dBc)
0
Gps, POWER GAIN (dB)
VGS = 3 V
0.25
0
20
40
60
80
100
100
200
10
20
IDQ = 45 mA
38 mA
23
30 mA
22
23 mA
21
20 15 mA
VDD = 50 Vdc
f1 = 220 MHz
19
2.25 V
18
120
0.1
1
DRAIN VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 5. DC Drain Current versus Drain Voltage
Figure 6. CW Power Gain versus Output Power
--20
15 mA
--25
23 mA
--30
47
Pout, OUTPUT POWER (dBm)
ID, DRAIN CURRENT (AMPS)
TC = 25°C
0.1
0.1
30 mA
--35
38 mA
--40
45 mA
--45
--50
IDQ = 60 mA
--55
1
VDD = 50 Vdc
f1 = 220 MHz, f2 = 220.1 MHz
Two--Tone Measurements
100 kHz Tone Spacing
10
20
Ideal
45
P3dB = 40.87 dBm (12.2 W)
43
P1dB = 40.43 dBm (11.04 W)
41
Actual
39
37
13
VDD = 50 Vdc, IDQ = 30 mA
f = 220 MHz
15
17
19
21
23
Pout, OUTPUT POWER (WATTS) PEP
Pin, INPUT POWER (dBm)
Figure 7. Third Order Intermodulation Distortion
versus Output Power
Figure 8. CW Output Power versus Input Power
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
45
26
TC = --30_C
Pout, OUTPUT POWER (dBm)
22
20
18
45 V
16
40 V
35 V
30 V
14
25 V
12
10
50 V
IDQ = 30 mA
f = 220 MHz
VDD = 20 V
0
2
40
85_C
25_C
35
30
VDD = 50 Vdc
IDQ = 30 mA
f = 220 MHz
25
20
4
6
8
10
12
0
14
10
5
20
15
25
Pout, OUTPUT POWER (WATTS) CW
Pin, INPUT POWER (dBm)
Figure 9. Power Gain versus Output Power
Figure 10. Power Output versus Power Input
26
25
Gps, POWER GAIN (dB)
25_C
--30_C
63
Gps
24
85_C
TC = --30_C
23
72
54
45
22
36
21
ηD
25_C
85_C
20
27
18
VDD = 50 Vdc
IDQ = 30 mA
f = 220 MHz
19
18
0.1
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
24
9
0
1
10
20
Pout, OUTPUT POWER (WATTS) CW
Figure 11. Power Gain and Drain Efficiency versus CW Output Power
Gps @ 220 MHz
25
70
ηD @ 130 MHz
60
50
24
ηD @ 64 MHz
23
40
ηD @ 220 MHz
22
30
ηD @ 450 MHz
20
21
20
VDD = 50 Vdc
IDQ = 30 mA
Gps @ 450 MHz
0
2
4
6
8
107
106
10
19
0
MTTF (HOURS)
Gps, POWER GAIN (dB)
26
108
80
Gps @ 64 MHz
Gps @ 130 MHz
ηD, DRAIN EFFICIENCY (%)
27
10
Pout, OUTPUT POWER (WATTS) CW
Figure 12. Power Gain and Drain Efficiency
versus CW Output Power
12
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 10 W CW, and ηD = 62%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 13. MTTF versus Junction Temperature
MRF6V2010NR1 MRF6V2010NBR1
6
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
Zsource
f = 220 MHz
f = 220 MHz
Zload
VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W CW
f
MHz
Zsource
Ω
Zload
Ω
220
20 + j25
75 + j44
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 14. Series Equivalent Source and Load Impedance
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
7
C10 C9
C8
C14
C6
C7
C16
B2
C15
L5
B1
C5
C13
C4
L1
R1
L2
C2
C3
CUT OUT AREA
C1
C17
C18
L3
C19
L4
C11
C12
130 MHz
Rev. 1
Figure 15. MRF6V2010NR1(NBR1) Test Circuit Component Layout — 130 MHz
Table 7. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values — 130 MHz
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads, Surface Mount
2743021447
Fair--Rite
C1, C5, C18, C19
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C2, C12
0.6--4.5 pF Variable Capacitors, Gigatrim
27271SL
Johanson
C3
27 pF Chip Capacitor
ATC100B270JT500XT
ATC
C4, C13
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C6, C14
0.1 μF, 50 V Chip Capacitors
CDR33BX104AKYM
Kemet
C7, C15
22K pF Chip Capacitors
ATC200B223KT50XT
ATC
C8, C16
39K pF Chip Capacitors
ATC200B393KT50XT
ATC
C9
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C10
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C11
16 pF Chip Capacitor
ATC100B160JT500XT
ATC
C17
330 μF, 63 V Electrolytic Capacitor
MCRH63V337M13X21--RH
Multicomp
L1
17.5 nH Inductor
B06T
CoilCraft
L2, L5
82 nH Inductors
1812SMS--82NJ
CoilCraft
L3
35.5 nH Inductor
B09T
CoilCraft
L4
43 nH Inductor
B10T
CoilCraft
R1
100 Ω, 1/4 W Chip Resistor
CRCW1206100RFKEA
Vishay
PCB
PCB Material 0.030”
CuClad 250GX--0300--55--22,
0.030″, εr = 2.55
Arlon
MRF6V2010NR1 MRF6V2010NBR1
8
RF Device Data
Freescale Semiconductor
C10 C9
C8
C16
C6
C7
L4
C4
L1
C2
C11
C5
R1
C19
L2
C12
L3
CUT OUT AREA
C20
C1
B2
C17
B1
C3
C18
C15
C13
C14
450 MHz
Rev. 1
Figure 16. MRF6V2010NR1(NBR1) Test Circuit Component Layout — 450 MHz
Table 8. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values — 450 MHz
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads, Surface Mount
2743021447
Fair--Rite
C1, C5, C12, C15
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C2, C3
10 pF Chip Capacitors
ATC100B100JT500XT
ATC
C4, C11
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C6, C16
0.1 uF 50V Chip Capacitors
CDR33BX104AKYM
Kemet
C7, C17
22K pF Chip Capacitors
ATC200B223KT50XT
ATC
C8, C18
39K pF Chip Capacitors
ATC200B393KT50XT
ATC
C9
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C10
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C13, C14
6.2 pF Chip Capacitors
ATC100B6R2BT500XT
ATC
C19
470 μF, 63 V Electrolytic Capacitor
MCGPR63V477M13X26--RH
Multicomp
C20
47 μF, 50 V Electrolytic Capacitor
476KXM050M
Illinois Cap
L1
17.5 nH Inductor
B06T
CoilCraft
L2, L4
82 nH Inductors
1812SMS--82NJ
CoilCraft
L3
5.0 nH Inductor
A02T
CoilCraft
R1
120 Ω, 1/4 W Chip Resistor
CRCW1206120RFKEA
Vishay
PCB
PCB Material 0.030”
CuClad 250GX--0300--55--22,
0.030″, εr = 2.55
Arlon
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
9
C11 C10
C9
C18
C7
C8
C20
L6
B1
C6
C5
C4
C16
C1
R1
L3
C2 C3
C21
C17
L2
CUT OUT AREA
L1
B2
C19
L4
C15
L5
C14
C12 C13
64 MHz
Rev. 1
Figure 17. MRF6V2010NR1(NBR1) Test Circuit Component Layout — 64 MHz
Table 9. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values — 64 MHz
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads, Surface Mount
2743021447
Fair--Rite
C1, C5, C15, C17
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C2
91 pF Chip Capacitor
ATC100B910JT500XT
ATC
C3, C14
22 pF Chip Capacitors
ATC100B220JT500XT
ATC
C4, C16
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C6
220 nF, 50 V Chip Capacitor
C1812C224J5RAC
Kemet
C7, C18
0.1 μF, 50 V Chip Capacitors
CDR33BX104AKYM
Kemet
C8, C19
100K pF Chip Capacitors
ATC200B104KT50XT
ATC
C9, C20
22K pF Chip Capacitors
ATC200B223KT50XT
ATC
C10
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C11
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C12
68 pF Chip Capacitor
ATC100B680JT500XT
ATC
C13
27 pF Chip Capacitor
ATC100B270JT500XT
ATC
C21
330 μF, 63 V Electrolytic Capacitor
MCRH63V337M13X21--RH
Multicomp
L1
17.5 nH Inductor
B06T
CoilCraft
L2
43 nH Inductor
B10T
CoilCraft
L3, L4, L5, L6
82 nH Inductors
1812SMS--82NJ
CoilCraft
R1
180 Ω, 1/4 W Chip Resistor
CRCW1206180RFKEA
Vishay
PCB
PCB Material 0.030″
CuClad 250GX--0300--55--22,
0.030″, εr = 2.55
Arlon
MRF6V2010NR1 MRF6V2010NBR1
10
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
f = 450 MHz Zsource
f = 450 MHz Zload
f = 220 MHz Zsource
f = 130 MHz Zsource
f = 220 MHz Zload
f = 64 MHz Zsource
f = 130 MHz Zload
f = 64 MHz Zload
VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W CW
f
MHz
Zsource
Ω
Zload
Ω
64
37.5 + j15.1
94.5 + j16.7
130
26.7 + j21.3
83.8 + j35.0
220
20.0 + j25.4
75.0 + j44.0
450
7.70 + j21.0
43.0 + j49.0
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 18. Series Equivalent Source and Load Impedance
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
11
50 OHM TYPICAL CHARACTERISTICS
Table 10. Common Source S--Parameters (VDD = 50 V, IDQ = 30 mA, TA = 25°C, 50 Ohm System)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
10
0.997
--5.0
11.520
175.6
0.000790
84.6
0.960
--0.8
20
0.994
--9.5
11.419
171.6
0.00157
84.3
0.962
--3.5
30
0.992
--14.5
11.356
167.9
0.00232
78.1
0.963
--5.5
40
0.987
--19.3
11.278
164.1
0.00307
74.6
0.964
--7.7
50
0.981
--24.0
11.187
160.1
0.00380
71.0
0.964
--9.9
60
0.974
--28.6
11.042
156.1
0.00449
67.4
0.963
--12.1
70
0.965
--33.0
10.848
152.1
0.00513
63.8
0.961
--14.2
80
0.955
--37.4
10.636
148.2
0.00574
60.4
0.958
--16.3
90
0.944
--41.6
10.405
144.5
0.00631
57.0
0.955
--18.4
100
0.933
--45.7
10.147
140.8
0.00683
53.8
0.951
--20.4
120
0.912
--53.3
9.603
134.2
0.00776
47.9
0.944
--24.2
140
0.892
--60.4
9.061
127.9
0.00851
42.4
0.936
--27.9
160
0.873
--66.7
8.516
122.2
0.00914
37.6
0.929
--31.3
180
0.856
--72.7
7.993
116.9
0.00967
32.9
0.923
--34.6
200
0.841
--78.1
7.497
112.1
0.0101
28.7
0.918
--37.9
220
0.828
--83.0
7.040
107.5
0.0104
24.9
0.914
--41.1
240
0.819
--87.5
6.612
103.3
0.0107
21.3
0.912
--44.2
260
0.810
--91.7
6.214
99.3
0.0109
18.0
0.909
--47.2
280
0.804
--95.5
5.845
95.7
0.0110
15.0
0.908
--50.2
300
0.799
--99.0
5.507
92.2
0.0112
11.9
0.907
--53.0
320
0.796
--102.2
5.192
88.8
0.0112
9.1
0.906
--55.9
340
0.794
--105.1
4.901
85.7
0.0113
6.5
0.906
--58.6
360
0.793
--107.8
4.630
82.8
0.0112
4.1
0.906
--61.4
380
0.793
--110.4
4.382
79.9
0.0112
2.0
0.906
--64.1
400
0.794
--112.7
4.152
77.2
0.0112
--0.3
0.906
--66.7
420
0.796
--114.9
3.937
74.6
0.0112
--2.5
0.907
--69.3
440
0.798
--116.9
3.733
72.2
0.0111
--4.4
0.907
--71.8
460
0.800
--118.8
3.547
69.8
0.0110
--6.5
0.908
--74.2
480
0.803
--120.5
3.372
67.6
0.0109
--8.5
0.908
--76.7
500
0.807
--122.2
3.213
65.4
0.0108
--10.0
0.909
--79.0
520
0.810
--123.8
3.061
63.3
0.0107
--11.9
0.910
--81.3
540
0.814
--125.4
2.919
61.2
0.0105
--13.5
0.911
--83.6
560
0.817
--126.8
2.784
59.3
0.0104
--14.9
0.912
--85.8
580
0.821
--128.1
2.661
57.5
0.0103
--16.6
0.914
--87.9
600
0.825
--129.3
2.545
55.7
0.0101
--18.1
0.915
--90.0
620
0.829
--130.5
2.436
53.9
0.00996
--19.6
0.917
--92.1
640
0.833
--131.6
2.334
52.2
0.00981
--21.0
0.918
--94.1
660
0.837
--132.7
2.237
50.5
0.00963
--22.4
0.920
--96.0
680
0.840
--133.8
2.144
48.9
0.00946
--23.7
0.921
--97.9
700
0.843
--134.8
2.058
47.3
0.00928
--25.0
0.923
--99.7
720
0.847
--135.8
1.977
45.8
0.00910
--26.1
0.924
--101.4
740
0.850
--136.8
1.900
44.4
0.00894
--27.3
0.926
--103.0
760
0.854
--137.8
1.828
43.0
0.00876
--28.6
0.928
--104.7
780
0.857
--138.7
1.760
41.6
0.00859
--29.7
0.930
--106.2
(continued)
MRF6V2010NR1 MRF6V2010NBR1
12
RF Device Data
Freescale Semiconductor
50 OHM TYPICAL CHARACTERISTICS
Table 10. Common Source S--Parameters (VDD = 50 V, IDQ = 30 mA, TA = 25°C, 50 Ohm System) (continued)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
800
0.858
--139.7
1.697
40.2
0.00839
--31.1
0.932
--107.6
820
0.861
--140.7
1.636
38.9
0.00818
--32.1
0.934
--109.0
840
0.864
--141.6
1.578
37.6
0.00798
--33.1
0.935
--110.4
860
0.867
--142.6
1.523
36.4
0.00781
--33.8
0.936
--111.7
880
0.870
--143.5
1.471
35.1
0.00763
--34.8
0.938
--112.9
900
0.873
--144.5
1.421
33.9
0.00745
--35.9
0.939
--114.1
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
13
PACKAGE DIMENSIONS
MRF6V2010NR1 MRF6V2010NBR1
14
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
15
MRF6V2010NR1 MRF6V2010NBR1
16
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
17
MRF6V2010NR1 MRF6V2010NBR1
18
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
19
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software &
Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Feb. 2007
• Initial Release of Data Sheet
1
May 2007
• Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C1,
C8, C11, C18, C4, C13, C5, and C14, p. 3
• Corrected Series Impedance Zsource and Zload values, Fig. 13, Series Equivalent Source and Load
Impedance, p. 7
2
Aug. 2007
•
Replaced Case Outline 1265--08 with 1265--09, Issue K, p. 1, 12--14. Corrected cross hatch pattern in
bottom view and changed its dimensions (D2 and E3) to minimum value on source contact (D2 changed
from Min--Max .290--.320 to .290 Min; E3 changed from Min--Max .150--.180 to .150 Min). Added JEDEC
Standard Package Number.
•
Replaced Case Outline 1337--03 with 1337--04, p. 1, 15--17. Issue D: Removed Drain--ID label from View
Y--Y on Sheet 2. Renamed E2 to E3. Added cross--hatch region dimensions D2 and E2.
• Corrected Test Circuit Component part number in Table 6, Component Designations and Values for R1, p. 3
• Added Figure 12, Power Gain and Drain Efficiency versus CW Output Power, p. 6
• Corrected plot points to show 50 Ohms in Figure 14, Series Equivalent Source and Load Impedance, p. 7
• Added Figures 15--17, Test Circuit Component Layout and Tables 7--9, Test Circuit Component
Designations and Values to show 130, 450 and 64 MHz, respectively, p. 8--10
• Added Figure 18, Series Equivalent Source and Load Impedance to show 64, 130, 220 and 450 MHz plot
points, p. 11
3
Feb. 2008
• Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 1
• Corrected Ciss test condition to indicate AC stimulus on the VGS connection versus the VDS connection,
Dynamic Characteristics table, p. 2
• Replaced Case Outline 1337--04, Issue D, with 1337--04, Issue E, p. 15--17. Corrected document number
98ASA99191D on Sheet 3.
4
Mar. 2008
• Corrected Zsource (37.5 + j15.1) and Zload (94.5 + j16.7) 64 MHz values and replotted both, p. 11
• Added S--Parameter table, p. 12, 13
5
Apr. 2010
• Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related
“Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C
in Capable Plastic Package bullet, p. 1
• Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software,
p. 20
MRF6V2010NR1 MRF6V2010NBR1
20
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1--800--521--6274 or +1--480--768--2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1--8--1, Shimo--Meguro, Meguro--ku,
Tokyo 153--0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1--800--441--2447 or +1--303--675--2140
Fax: +1--303--675--2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007--2008, 2010. All rights reserved.
MRF6V2010NR1 MRF6V2010NBR1
Document
Number:
RF
Device
Data MRF6V2010N
Rev. 5, 4/2010
Freescale
Semiconductor
21