Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF1024HS
Rev. 0, 4/2016
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
This 50 W asymmetrical Doherty RF power LDMOS transistor is optimized for
instantaneous signal bandwidth capabilities covering the frequency range of
2496 to 2690 MHz. This part is ideally suited for commercial and defense
communications and electronic warfare applications, such as an IED jammer.
2600 MHz
• Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc,
IDQA = 700 mA, VGSB = 0.4 Vdc, Pout = 50 W Avg., Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF.
Frequency
Gps
(dB)
ηD
(%)
Output PAR
(dB)
2496 MHz
14.1
44.6
8.1
–31.5
2590 MHz
14.4
44.9
8.1
–33.8
2690 MHz
14.2
44.2
7.9
–37.6
MMRF1024HS
2496–2690 MHz, 50 W AVG., 28 V
AIRFAST RF POWER LDMOS
TRANSISTOR
ACPR
(dBc)
Features
• Advanced high performance in--package Doherty
• Greater negative gate--source voltage range for improved Class C operation
• Designed for digital predistortion error correction systems
NI--1230S--4L2L
Carrier
6 VBWA(1)
RFinA/VGSA 1
5 RFoutA/VDSA
RFinB/VGSB 2
4 RFoutB/VDSB
Peaking
3 VBWB(1)
(Top View)
Figure 1. Pin Connections
1. Device cannot operate with the VDD current
supplied through pin 3 and pin 6.
© Freescale Semiconductor, Inc., 2016. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF1024HS
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDSS
–0.5, +65
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
°C
Case Operating Temperature Range
TC
–40 to +150
°C
TJ
–40 to +225
°C
CW
294
1.7
W
W/°C
Operating Junction Temperature Range
(1)
CW Operation @ TC = 25°C
Derate above 25°C
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 78°C, 50 W Avg., W--CDMA, 28 Vdc, IDQA = 700 mA, VGSB = 0.4 Vdc,
2590 MHz
Symbol
Value (2)
Unit
RθJC
0.42
°C/W
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 1200 V
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 140 μAdc)
VGS(th)
0.8
1.2
1.6
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, IDA = 700 mAdc, Measured in Functional Test)
VGS(Q)
1.4
1.8
2.2
Vdc
Drain--Source On--Voltage
(VGS = 6 Vdc, ID = 1.4 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 200 μAdc)
VGS(th)
0.8
1.2
1.6
Vdc
Drain--Source On--Voltage
(VGS = 6 Vdc, ID = 2.0 Adc)
VDS(on)
0.1
0.15
0.3
Vdc
Characteristic
Off Characteristics
(3)
On Characteristics -- Side A (Carrier) (3)
On Characteristics -- Side B (Peaking) (3)
1. Continuous use at maximum temperature will affect MTTF.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
3. Each side of device measure separately.
(continued)
MMRF1024HS
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1,2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 700 mA, VGSB = 0.4 Vdc, Pout = 50 W Avg.,
f = 2496 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in
3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
13.0
14.1
16.0
dB
Drain Efficiency
ηD
41.0
44.6
—
%
PAR
7.4
8.1
—
dB
ACPR
—
–31.5
–29.0
dBc
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Load Mismatch (In Freescale Test Fixture, 50 ohm system) IDQA = 700 mA, f = 2590 MHz
VSWR 10:1 at 32 Vdc, 335 W(3) CW Output Power
(2 dB Input Overdrive from 230 W CW Rated Power)
No Device Degradation
Typical Performance (2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 700 mA, VGSB = 0.4 Vdc,
2496–2690 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
230
—
W
Pout @ 3 dB Compression Point (4)
P3dB
—
320
—
W
Φ
—
–22
—
°
VBWres
—
110
—
MHz
Gain Flatness in 194 MHz Bandwidth @ Pout = 50 W Avg.
GF
—
0.3
—
dB
Gain Variation over Temperature
(–30°C to +85°C)
∆G
—
0.002
—
dB/°C
∆P1dB
—
0.006
—
dB/°C
AM/PM
(Maximum value measured at the P3dB compression point across the
2496–2690 MHz frequency range)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Output Power Variation over Temperature
(–30°C to +85°C) (3)
Table 5. Ordering Information
Device
MMRF1024HSR5
1.
2.
3.
4.
Tape and Reel Information
R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel
Package
NI--1230S--4L2L
Part internally matched both on input and output.
Measurements made with device in an asymmetrical Doherty configuration.
Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.
P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
MMRF1024HS
RF Device Data
Freescale Semiconductor, Inc.
3
C21
VDDA
VGGA
+
-C13
C3
C4
C5
Z1
R1
C8
C6
C7
C9
C10
R3
CUT OUT AREA
C1
C12
C11
R2
C2
C
C14
C15
C16
P
C17
C18
C19
C20
-VDDB
+
VGGB
C22
Figure 2. MMRF1024HS Test Circuit Component Layout
Table 6. MMRF1024HS Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C9, C11, C12, C19, C20
10 μF Chip Capacitors
C5750X7S2A106M230KB
TDK
C2, C5, C8, C10, C13, C18
6.8 pF Chip Capacitors
ATC600F6R8BT250XT
ATC
C3, C4
0.5 pF Chip Capacitors
ATC600F0R5BT250XT
ATC
C6, C7
0.3 pF Chip Capacitors
ATC600F0R3BT250XT
ATC
C14
0.8 pF Chip Capacitor
ATC600F0R8BT250XT
ATC
C15
2.0 pF Chip Capacitor
ATC600F2R0BT250XT
ATC
C16
10 pF Chip Capacitor
ATC600F100JT250XT
ATC
C17
0.9 pF Chip Capacitor
ATC600F0R9BT250XT
ATC
C21, C22
220 μF Electrolytic Capacitors
227CKS050M
Illinois Capacitor
R1
50 Ω, 4 W Chip Resistor
CW12010T0050GBK
ATC
R2, R3
2.0 Ω, 1/4 W Chip Resistors
CRCW12062R00JNEA
Vishay
Z1
2300–2700 MHz Band, 5 dB Directional Coupler
X3C25P1-05S
Anaren
PCB
Rogers RO4305B, 0.020″, εr = 3.66
—
MTL
MMRF1024HS
4
RF Device Data
Freescale Semiconductor, Inc.
14.6
Gps, POWER GAIN (dB)
46
ηD
45
14.4
44
14.2
VDD = 28 Vdc, Pout = 50 W (Avg.)
IDQA = 700 mA, VGSB = 0.4 mA
Single--Carrier W--CDMA
Gps
14
43
13.8
PARC
13.6
3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
13.4
13.2
13
2480
2510
2540
2570
2600
2660
2690
–1.5
–31
–1.7
–33
–35
ACPR
2630
–29
–37
–39
2720
–1.9
–2.1
–2.3
PARC (dB)
47
14.8
ACPR (dBc)
15
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
–2.5
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 50 Watts Avg.
–10
VDD = 28 Vdc, Pout = 100 W (PEP), IDQA = 700 mA
VGSB = 0.4 Vdc, Two--Tone Measurements
–20 (f1 + f2)/2 = Center Frequency of 2590 MHz
–30
IM3--L
IM3--U
–40
IM5--L
–50
IM5--U
IM7--U
–60
–70
IM7--L
1
10
100
300
TWO--TONE SPACING (MHz)
Figure 4. Intermodulation Distortion Products
versus Two--Tone Spacing
MMRF1024HS
RF Device Data
Freescale Semiconductor, Inc.
5
15
0
14
13
12
11
ACPR
–1 dB = 33.6 W
Single--Carrier W--CDMA 3.84 MHz Channel
Bandwidth, Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
10
30
50
50
–20
30
–3 dB = 71 W
–3
–4
–15
40
–2 dB = 54.1 W
–2
60
ηD
Gps
–1
–5
10
VDD = 28 Vdc, IDQA = 700 mA
VGSB = 0.4 Vdc, f = 2590 MHz
–30
–35
10
–40
0
–45
60
0
50
–10
PARC
90
70
20
–25
ACPR (dBc)
1
ηD, DRAIN EFFICIENCY (%)
16
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
TYPICAL CHARACTERISTICS
110
Pout, OUTPUT POWER (WATTS)
15
Gps, POWER GAIN (dB)
ηD
VDD = 28 Vdc, IDQA = 700 mA
VGSB = 0.4 Vdc, Single--Carrier W--CDMA
Gps
2590 MHz
14
2690 MHz
2496 MHz
2690 MHz
2590 MHz
2496 MHz
13
12
ACPR
2496 MHz
30
2690 MHz
2590 MHz
11
3.84 MHz Channel Bandwidth, Input Signal
PAR = 9.9 dB @ 0.01% Probability on CCDF
10
1
10
40
100
20
10
0
300
–20
–30
–40
ACPR (dBc)
16
ηD, DRAIN EFFICIENCY (%)
Figure 5. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
–50
–60
Pout, OUTPUT POWER (WATTS) AVG.
Figure 6. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
18
15
Gain
GAIN (dB)
12
9
6
3
0
2300
VDD = 28 Vdc
Pin = 0 dBm
IDQA = 700 mA
VGSB = 0.4 Vdc
2400
2500
2600
2700
2800
2900
3000
f, FREQUENCY (MHz)
Figure 7. Broadband Frequency Response
MMRF1024HS
6
RF Device Data
Freescale Semiconductor, Inc.
VDD = 28 Vdc, IDQA = 689 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
Zload (1)
(Ω)
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
2496
4.07 - j10.7
4.00 + j9.61
2.03 - j4.57
17.4
51.8
151
54.1
-13
2590
7.57 - j11.9
6.72 + j10.7
2.00 - j4.75
17.6
51.7
147
53.2
-12
2690
15.7 - j9.50
12.9 + j8.73
2.00 - j5.11
17.6
51.6
143
52.4
-13
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
1.92 - j4.78
15.2
52.5
179
54.9
-17
7.03 + j11.7
1.91 - j4.97
15.3
52.4
174
53.6
-17
14.9 + j9.37
1.92 - j5.34
15.3
52.3
170
52.4
-17
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
2496
4.07 - j10.7
3.92 + j10.2
2590
7.57 - j11.9
2690
15.7 - j9.50
Zload
(Ω)
(2)
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 8. Carrier Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, IDQA = 689 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
2496
4.07 - j10.7
4.07 + j10.0
Zload
(Ω)
(1)
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
4.82 - j3.58
19.7
49.9
97
64.0
-19
2590
7.57 - j11.9
6.62 + j11.4
3.74 - j2.51
20.0
49.6
92
62.6
-21
2690
15.7 - j9.50
13.3 + j9.45
3.36 - j2.87
19.9
49.5
90
61.2
-20
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
Zload (2)
(Ω)
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
2496
4.07 - j10.7
3.77 + j10.6
4.53 - j2.90
17.8
50.4
111
64.0
-28
2590
7.57 - j11.9
6.80 + j12.2
3.67 - j2.58
18.0
50.3
108
62.7
-29
2690
15.7 - j9.50
15.2 + j9.96
3.36 - j2.87
17.9
50.2
105
61.2
-28
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 9. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
MMRF1024HS
RF Device Data
Freescale Semiconductor, Inc.
7
VDD = 28 Vdc, VGSB = 0.4 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Output Power
P1dB
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
Zload (1)
(Ω)
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
2496
3.33 - j9.36
3.00 + j9.43
2.00 - j5.09
12.1
53.2
209
54.4
-22
2590
4.98 - j10.4
5.22 + j10.6
2.11 - j5.43
12.2
53.1
203
53.8
-22
2690
10.9 - j8.12
11.3 + j9.48
2.35 - j6.10
12.1
52.9
196
52.8
-20
Max Output Power
P3dB
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
1.99 - j5.35
9.9
53.9
243
54.3
-28
5.76 + j11.2
2.11 - j5.74
10.0
53.7
236
53.0
-28
13.0 + j9.24
2.40 - j6.29
10.0
53.5
226
52.5
-26
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
2496
3.33 - j9.36
3.14 + j9.86
2590
4.98 - j10.4
2690
10.9 - j8.12
Zload
(Ω)
(2)
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 10. Peaking Side Load Pull Performance — Maximum Power Tuning
VDD = 28 Vdc, VGSB = 0.4 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
4.22 - j3.35
13.3
51.6
144
64.3
-30
4.64 + j10.7
3.57 - j3.41
13.4
51.6
145
63.8
-30
10.5 + j10.4
3.29 - j3.86
13.1
51.6
143
62.4
-27
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
2496
3.33 - j9.36
2.65 + j9.45
2590
4.98 - j10.4
2690
10.9 - j8.12
Zload
(Ω)
(1)
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
(Ω)
Zin
(Ω)
Zload (2)
(Ω)
Gain (dB)
(dBm)
(W)
ηD
(%)
AM/PM
(°)
2496
3.33 - j9.36
2.81 + j9.82
3.97 - j3.62
11.2
52.3
171
64.6
-38
2590
4.98 - j10.4
5.16 + j11.3
3.50 - j3.54
11.3
52.2
167
63.7
-38
2690
10.9 - j8.12
12.3 + j10.3
3.17 - j3.92
11.1
52.1
163
61.8
-35
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Figure 11. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
MMRF1024HS
8
RF Device Data
Freescale Semiconductor, Inc.
P1dB -- TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz
–1
–1
48
47.5
48.5
49
E
50
–3
51
–4
50.5
51.5
P
–5
–6
–2
49.5
IMAGINARY (Ω)
IMAGINARY (Ω)
–2
1
1.5
62
60
–4
2.5
3
3.5
REAL (Ω)
4
4.5
–6
5
58
P
–5
2
48
52
50
46
1
1.5
2
54
2.5
–1
3
3.5
REAL (Ω)
4
4.5
5
–1
–28
20.5
–2
–22
E
20
–3
19.5
–4
18.5
P
–5
17
16.5
1
1.5
19
–20
–3
2
–18
–4
3
3.5
REAL (Ω)
–14
P
–12
18
2.5
E
–16
–5
17.5
–26
–24
–2
IMAGINARY (Ω)
IMAGINARY (Ω)
56
Figure 13. P1dB Load Pull Efficiency Contours (%)
Figure 12. P1dB Load Pull Output Power Contours (dBm)
–6
E
–3
4
4.5
5
Figure 14. P1dB Load Pull Gain Contours (dB)
NOTE:
–6
1
1.5
2
2.5
3
3.5
REAL (Ω)
4
4.5
5
Figure 15. P1dB Load Pull AM/PM Contours (°)
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
MMRF1024HS
RF Device Data
Freescale Semiconductor, Inc.
9
P3dB -- TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 2590 MHz
–1
–1
49
48.5
49.5
50
E
–3
51.5
46
–2
51
IMAGINARY (Ω)
IMAGINARY (Ω)
–2
50.5
–4
50
48
62
52
–3
54
–4
52
–5
–6
60
–5
P
1
1.5
2
2.5
E
3
3.5
REAL (Ω)
4
4.5
–6
5
P
1
1.5
58
2
2.5
56
3
3.5
REAL (Ω)
4
54
4.5
5
Figure 17. P3dB Load Pull Efficiency Contours (%)
Figure 16. P3dB Load Pull Output Power Contours (dBm)
–1
–1
18.5
–2
18
E
–3
–4
15.5
15
–5
–6
17
16.5
IMAGINARY (Ω)
IMAGINARY (Ω)
–2
17.5
–4
2
2.5
3
3.5
REAL (Ω)
4
4.5
5
Figure 18. P3dB Load Pull Gain Contours (dB)
NOTE:
–6
E
–22
–5
14.5
1.5
–3
–30
–28
–26
–24
16
P
1
–32
–20
P
–18
–16
1
1.5
2
2.5
3
3.5
REAL (Ω)
4
4.5
5
Figure 19. P3dB Load Pull AM/PM Contours (°)
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
MMRF1024HS
10
RF Device Data
Freescale Semiconductor, Inc.
P1dB -- TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz
–2
49
49.5
50.5
50
IMAGINARY (Ω)
–3
51
–3
51.5
E
52
–4
IMAGINARY (Ω)
–2
52.5
–5
53
E
–4
62
–5
P
60
P
–6
58
–6
48
–7
1.5
1
2
2.5
3
3.5
REAL (Ω)
4
4.5
–7
5
1
1.5
2
50
2.5
–2
3
3.5
REAL (Ω)
4
4.5
5
–2
–36
–3
–34
–32
–3
E
13
–4
12.5
–5
–6
1
10.5
12
11.5
10
11
1.5
–28
–4
–26
–5
P
–24
P
–6
2
2.5
3
3.5
REAL (Ω)
–30
E
IMAGINARY (Ω)
IMAGINARY (Ω)
52
Figure 21. P1dB Load Pull Efficiency Contours (%)
Figure 20. P1dB Load Pull Output Power Contours (dBm)
–7
56
54
4
4.5
5
Figure 22. P1dB Load Pull Gain Contours (dB)
NOTE:
–7
–22
1
1.5
2
2.5
3
3.5
REAL (Ω)
4
4.5
5
Figure 23. P1dB Load Pull AM/PM Contours (°)
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
MMRF1024HS
RF Device Data
Freescale Semiconductor, Inc.
11
P3dB -- TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 2590 MHz
51
50.5
50
–3
IMAGINARY (Ω)
–2
49.5
51.5
52
52.5
–4
53
–5
53.5
P
–6
–7
–3
E
IMAGINARY (Ω)
–2
1.5
1
2
–4
2.5
3
3.5
REAL (Ω)
4
4.5
–7
5
–2
–3
–3
IMAGINARY (Ω)
E
11
–4
10.5
10
9.5
–6
8
–7
1
8.5
P
60
P
48 50
1
1.5
2
52
2.5
54
58
56
3
3.5
REAL (Ω)
–42
2
3
3.5
REAL (Ω)
4
4.5
5
Figure 26. P3dB Load Pull Gain Contours (dB)
NOTE:
5
–38
–36
–4
–34
–32
–5
–30
P
–6
2.5
4.5
–40
E
–28
9
1.5
4
Figure 25. P3dB Load Pull Efficiency Contours (%)
–2
–5
62
–5
–6
Figure 24. P3dB Load Pull Output Power Contours (dBm)
IMAGINARY (Ω)
E
–7
–26
1
1.5
2
2.5
3
3.5
REAL (Ω)
4
4.5
5
Figure 27. P3dB Load Pull AM/PM Contours (°)
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
MMRF1024HS
12
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MMRF1024HS
RF Device Data
Freescale Semiconductor, Inc.
13
MMRF1024HS
14
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION
Refer to the following resources to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
To Download Resources Specific to a Given Part Number:
1. Go to http://www.nxp.com/RF
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Apr. 2016
Description
• Initial Release of Data Sheet
MMRF1024HS
RF Device Data
Freescale Semiconductor, Inc.
15
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2016 Freescale Semiconductor, Inc.
MMRF1024HS
Document Number: MMRF1024HS
Rev. 0, 4/2016
16
RF Device Data
Freescale Semiconductor, Inc.