SI9113DB

Si9113DB
Vishay Siliconix
Si9113 Demonstration Board
ISDN-NT Input Voltage Range 28 V to 99 V
Non-Polar Input
3.3-V/120-mA, 40-V/12-mA Outputs With Up To 80% Efficiency
Up to 68% Efficiency at 80-mW Load
40 V Isolated By 3 kV From Input And 3.3-V Output – Si9113D1
3.3 V, 40 V Isolated By 1.5 kV From Input/Each Other – Si9113D2
Current Mode Control, 0.6-V Fast Over-Current Protection
Max 50% Duty Cycle Operation
1.3-MHz Error Amp
Soft-Start
<10-A Supply Current for +VIN <18 V
Programmed Start/Stop
Internal Start-Up Circuit
Power_Good Output
As discussed in application note, AN728, the Si9113 power
supply controller is an ideal choice for ISDN terminal
equipment, where high efficiency at a low power level is one of
most important criteria. Therefore, Vishay Siliconix has
developed versions of a dual output flyback application
demonstration boards, the Si9113D1 and the Si9113D2, which
use different regulation schemes. These readily available
demo boards are configured to deliver approximately 800 mW
at 3.3-V, and40-V. These outputs and can be easily modified
for other output voltages at approximately same power level.
The flyback converters are designed to operate from a wide
input voltage range of 28 V to 99 V and are polarity protected
by a diode bridge. The Si9113D1 and Si9113D2, both operate
at 20-kHz switching frequency to achieve the best possible
efficiency. The transformer is selected to be slightly larger in
this application so that the same area product would be good
enough for an even lower window utilization factor (w.u.f.)
transformer in order to meet the stringent requirements of
clearance and creepage distances.
The Si9113D2 uses the auxiliary output (VCC bootstrap
winding) for sensing. Both VOUT1 (3.3 V) and VOUT2 (40 V)
follow the auxiliary output, residing on one core and sharing the
same flux. Both the outputs are isolated from the input as well
as from each other by 1.5 kV and moderately regulated to
5%.
The Si9113D1 senses and tightly regulates the main output
VOUT1 (3.3 V), which has the common ground as input and the
secondary output VOUT2 (40 V) is regulated to within 10% at
Included in this document are the Bill-Of-Materials,
Schematics, PCB Layout of the Demo Boards and actual
waveforms/graphs.
10% to100% load range, including the set point accuracy.
Correspondingly. the transformer must be specified with tight
tolerance to achieve the given set point accuracy. The 40-V
output is isolated from both the input and 3.3-V output by
minimum 3 kVrms isolation.
Each demonstration board uses all surface mount
components except the high voltage electrolyte capacitor and
are fully assembled and tested for quick evaluation. Test points
are provided for the power_good signal and the closed loop
response measurement.
The demonstration board layout is available in Gerber file format. Please contact your Vishay Siliconix sales representative or
distributor for a copy.
Si9113D1— VOUT1 (3.3 V) Tightly regulated, non-isolated
VOUT2 (40 V) Loosely regulated, 3 kV isolated
Si9113D2— VOUT1 (3.3 V) Moderately regulated, 1.5 kV isolated
VOUT2 (40 V) Moderately regulated, 1.5 kV isolated
Document Number: 71117
29-Feb-00
www.siliconix.com FaxBack 408-970-5600
1
Si9113DB
Vishay Siliconix
POWER UP CHECK LIST AND OPERATION
The Si9113D1 and Si9113D2 are designed to operate in
discontinuous mode at nominal line and load conditions. Both
demo boards use the same operational procedure, as follows:
4
Connect the voltmeter precisely across VOUT1 – Com1 and
VOUT2 – Com2 for the output voltage measurement.
Connect the oscilloscope ground to C1 negative while the
probe to Q1 drain to observe the switching waveforms.
1
Visually inspect the PCB to be sure that all the components
are intact and no foreign substance is lying on the board.
5
2
Solder the leads at C1 negative and MOSFET Q1 drain to
monitor the drain waveform on the oscilloscope.
Slowly increase the input voltage while monitoring the input
current meter. Note the input current is less than 10 A at
18 VIN and continue to increase the voltage further till the
circuit turns on at approximately 24 V.
3
Reduce the source voltage to zero and connect it through
the dc ammeter at VIN + and VIN –. Connect the dc
voltmeter precisely across VIN + and VIN –. For the
application where input is of fixed polarity, the diode bridge
BR1 can be eliminated by shorting pin 1 to 4 and pin 2 to
3 to achieve even higher efficiency.
6
Set the input voltage to 48 V nominal and monitor the drain
waveform, switching frequency, input and output ripple and
noise.
7
The efficiency, line, load and cross regulation can be
measured by varing the line between 28 to 99 V, and the
load between 10% and 100%.
ACTUAL WAVEFORMS AND PERFORMANCE
Drain Voltage and Current
The circuit is designed to operate in discontinuous mode at
nominal line and full load. The transformer is cleverly designed
to reduce the leakage inductance. Refer to Figure 1 for the
drain voltage and current waveforms. The current starting from
zero indicates the discontinuous mode operation and absence
of any leakage spike at drain shows the tight coupling between
the windings.
44.00
43.00
42.00
V OUT2 (V)
41.00
40.00
3.3 V @ 120 mA
39.00
38.00
3.3 V @ 12 mA
37.00
36.00
0
VIN = 28 V
Outputs – Full lLoad
Ch1 – Primary Current (0.1A/div)
Ch3 – Drain Voltage (20 V/div)
FIGURE 1. Drain Voltage and Current Waveform – Si9113D2
www.Vishay Siliconix.com FaxBack 408-970-5600
2
3.00
6.00
9.00
12.00
15.00
IOUT2 (mA)
FIGURE 2. VOUT2 (40 V) Load/cross Regulation – Si9113D1
Document Number: 71117
29-Feb-00
Si9113DB
Vishay Siliconix
Output Regulation
output voltages are essentially constant with respect to any
variation of input voltage in case of both demo boards.
The output regulation of slave outputs depend upon the
loading condition of main output.
In Si9113D1, the VOUT1 (3.3 V) is tightly regulated to within 1%,
while VOUT2 (40 V) follows the main output. Figure 2 depicts
the typical load regulation of 40 V output, when the main output
is at 10% and at full load condition.
In Si9113D2, the VOUT1 and VOUT2 are both moderately
regulated. Figures 3 and 4 show the 3.3-V and 40-V regulation
with the outputs loaded at 10% to100% of the rated load. The
Output Ripple and Noise
The tantalum chip capacitors are used for lower ESR and
higher ripple current capability. Low cost aluminium capacitors
can also be used where form fator and/or output ripple are of
secondary importance. Also, a small additional LC filter can be
added at 3.3-V output for further attenuation of ac component
by even five to ten times. The Si9113D1 – Figure 5 and
Si9113D2 – Figure 6 show the ripple at a full load and 48-V
input.
3.460
42.00
3.420
41.50
3.380
41.00
40 V @ 12 mA
40.50
3.300
Vout2 (V)
V OUT1 (V)
3.340
40 V @ 1.2 mA
3.260
40.00
3.220
39.00
3.180
38.50
3.140
3.3 V @ 120 mA
39.50
3.3 V @ 12 mA
38.00
0
25
50
75
100
125
150
IOUT1 (mA)
0
3.00
6.00
9.00
12.00
15.00
IOUT2 (mA)
FIGURE 3. VOUT1 (3.3 V) Load/cross Regulation – Si9113D2
FIGURE 4. VOUT2 (40 V) Load/Cross Regulation – Si9113D2
VIN = 48 V
Outputs = At Full Load
Ch1 = 3.3 V (20 mV/div))
Ch3 = 40 V (100 mV/div)
VIN = 48 V
Outputs = At Full Load
Ch1 = 3.3 V (20 mV/div))
Ch3 = 40 V (100 mV/div)
FIGURE 5. Output Ripple and Noise – Si9113D1
FIGURE 6. Output Ripple and Noise – Si9113D2
Document Number: 71117
29-Feb-00
www.siliconix.com FaxBack 408-970-5600
3
Si9113DB
Vishay Siliconix
90.00
90.00
80.00
80.00
70.00
VIN = 28 V
60.00
Efficiency %
Efficiency %
70.00
VIN = 48 V
VIN = 48 V
50.00
VIN = 99 V
40.00
50.00
VIN = 99 V
40.00
30.00
30.00
20.00
20.00
10.00
10.00
0.00
VIN = 28 V
60.00
0.00
0
200
400
600
800
1000
0
200
400
600
800
1000
WO (mW)
WO (mW)
FIGURE 7. Converter Output Load vs Efficiency – Si9113D1
FIGURE 8. Converter Output Load vs Efficiency – Si9113D2
The closed loop response is observed at 48 VIN and full load
at both outputs on the venable by applying the error across R8
and measuring the gain, phase change encountered by the
60
180
50
150
40
120
30
0
–10
–30
–20
–60
–30
–90
–40
–120
–50
–150
100
1,000
10,000
–180
50,000
FIGURE 9. Measured Close Loop Response – Si9113D1
www.Vishay Siliconix.com FaxBack 408-970-5600
Gain (dB)
Gain
90
60
Gain
Phase
Gain (dB)
40
30
0
Phase
20
30
0
0
–20
–30
–40
–60
–60
–90
–80
10
100
1000
Phase
10
120
60
60
Frequency (Hz)
4
80
90
Phase
20
–60
10
signal at both ends of R8. Refer to Figures 9 and 10 for the
actual response.
–120
10000
Frequency (Hz)
FIGURE 10. Measured Closed Loop Response–Si9113D2
Document Number: 71117
29-Feb-00
Si9113DB
Vishay Siliconix
Dynamic Load Response
The step load is applied at 1A/S slew rate at one output, while keeping the other output at rated load. Refer to Figures 11 through 14.
VIN = 48 V
VOUT1 = Step –12 to 120 mA
Ch1 = VOUT1 (3.3 V)
Ch4 = Load (50 mA/div)
Slew Rate = 1A/sec
FIGURE 11. VOUT1 (3.3 V) Transient Load Response – Si9113D1
VIN = 48 V
VOUT2 = Step Load 1.2 to 12 mA
VOUT1 = At Full Load
Ch1 = VOUT2 (40 V)
Ch4 = Load (10 mA/div)
Slew Rate = 1A/sec
FIGURE 12. VOUT2 (40 V) Transient Load Response – Si9113D1
VIN = 48 V
VOUT1 = Step Load 12 mA – 120 mA
VOUT2 = At Full Load
Ch1 = VOUT1 (3.3 V)
Ch4 = 100 mA/div
Slew Rate = 1A/sec
VIN = 48 V
VOUT2 = Step Load 1.2 mA – 12 mA
VOUT1 = At Full Load
Ch1 = VOUT2 (40 V)
Ch4 = 10 mA/div
Slew Rate = 1A/sec
FIGURE 13. VOUT1 (3.3 V) Transient Load Response—Si9113D2
FIGURE 14. VOUT2 (40 V) Transient Load Response—Si9113D2
Document Number: 71117
29-Feb-00
www.siliconix.com FaxBack 408-970-5600
5
Si9113DB
Vishay Siliconix
SCHEMATIC, PCB LAYOUT AND BILL OF MATERIAL (SI9113D1)
P1
VIN
T1
XFMR_LPE9080
D2
1
BR1
4
3
P2
GND
AC +
AC –
1
C2
0.1 mF
160 V
(NU)
+ C1
22 mF
160 V
2
DF02S
3
D5*
BZX84C15
P3
3.3 V
C4
1 mF
R13
D1
2.7 W
ESIG
C12
0.1 mF
C5
0.1 mF
NS3
51 W
R9
20 kW
R1
R10
13 kW
1 MW
C7
8
7
OSCOUT
0.1 mF
12
B130LB
8
R6
5
5.1 W
1 (Q1)
3 (Q01)
Q1
BSP89 (NU)
Q01 Si3420DV
3 (Q1)
4 (Q01)
PWR_G
FB
ICS
COMP
VIN
START
STOP
13
3
R11
2
1 kW
C9
0.01 mF
1
C3
220 pF
Si9113
C13
100 pF
1
5
4
VREF
14
R2
C8
300 kW 0.01 mF
D4*
BZX84C43
2, 4 (Q1)
1, 2, 5, 6, (Q01)
6
GND
SS
9
3
+
P6
COM2
NP
P5
COM1
DR
10
11
C10
2.2 mF
50 V
VCC
OSCIN
9
0.001 mF
C6
R12
5.1 kW
(NU)
C10
NS2
2.2 mF
50 V
3
7
D3
R8
ESIG
6
1
TP2
P3
40 V
R7
2W
1/ W
2
R3
5.1 MW
R4
1 MW
R5
3.96 MW
*Optional
TP1
PWR_GD
Dual Output Flyback Converter with Tightly Regulated Main Output
FIGURE 15. Demo Board—Si9113D1
www.Vishay Siliconix.com FaxBack 408-970-5600
6
Document Number: 71117
29-Feb-00
Si9113DB
Vishay Siliconix
FIGURE 16. Silk Screen—Si9113D1
FIGURE 17. Top Layer—Si9113D1
FIGURE 18. Bottom Layer—Si9113D1
Document Number: 71117
29-Feb-00
www.siliconix.com FaxBack 408-970-5600
7
Si9113DB
Vishay Siliconix
TABLE 1. BILLĆOFĆMATERIALSĊSi9113D1
Item
Qty
Designator
Part Type
Description
Footprint
Vendor Part #
Manufacturer
1
2
“R1, R4”
1 MW
“RES, 1%, 1/8 W”
0805
CRCW08051004FRT1
Vishay Dale
2
1
R2
300 kW
“RES, 1%, 1/8 W”
0805
CRCW08053003FRT1
Vishay Dale
3
1
R3
5.1 MW
“RES, 1%, 1/8 W”
0805
CRCW08055104FRT1
Vishay Dale
1/ W”
8
0805
CRCW08053964FRT1
Vishay Dale
RES, 5%, 1/8 W”
0805
CRCW080551JRT1
Vishay Dale
Vishay Dale
4
1
R5
3.96 MW
5
1
R6
5.1 W
RES, 1%,
6
1
R7
2W
2010
WSC-1/2
7
1
R8
51 W
“RES, 5%, 1/8 W”
0805
CRCW0805510JRT1
Vishay Dale
8
1
R9
20 kW
“RES, 1%, 1/8 W”
0805
CRCW08052002FRT1
Vishay Dale
1/ W”
8
“RES, 1%,
1/ W,
2
PWR Metal”
9
1
R10
13 kW
“RES, 1%,
0805
CRCW08051302FRT1
Vishay Dale
10
1
R11
1 kW
“RES, 1%, 1/8 W”
0805
CRCW08051001FRT1
Vishay Dale
11
1
R12 (NU)
5.1 kW
“RES, 1%, 1/8 W (NU)”
0805
CRCW08055101FRT1
Vishay Dale
0805
CRCW080527JRT1
Vishay Dale
UVR2C220MEA
Nichicon
12
1
R13
2.7 W
13
1
C1
22 mF
“CAP, ELEC, 160 V, VR ”
RB.2/.4
14
1
C2 (NU)
0.1 mF
“CAP, CER, 200 V”
1206
VJ1210Y104KXC
Vishay Vitramon
15
1
C3
220 pF
“CAP, CER”
0805
VJ0805Y221KXXAT
Vishay Vitramon
16
1
C4
1 mF
“CAP, CER, 25 V”
1210
VJ1210U105ZXAA
Vishay Vitramon
17
3
“C5, C6, C12”
0.1 mF
“CAP, CER”
0805
VJ0805Y104KXXAT
Vishay Vitramon
18
1
C7
0.001 mF
“CAP, CER”
0805
VJ0805Y102KXXAT
Vishay Vitramon
19
2
“C8, C9”
0.01 mF
“CAP, CER”
0805
VJ0805Y103KXXAT
Vishay Vitramon
20
1
C10
2.2 mF
“CAP, TAN, 50 V”
595D_C
595D225X0050C2T
Vishay Sprague
21
1
C11
220 mF
“CAP, TAN, 6.3 V”
594D_C
594D227X06R3C2T
Vishay Sprague
22
1
C13
100 pF
“CAP, CER”
0805
VJ0805Y101KXXAT
Vishay Vitramon
23
2
“D1, D2”
ES1G
“Diode, 1 A”
SMA
ES1G
Vishay Liteon
24
1
D3
B130LB
“Schottky Diode, 1 A”
SMB
B130LB
Vishay Liteon
25
1
D4*
BZX84C43
“Zener Diode, 41 V”
SOT-23
BZX84C43
Vishay Liteon
26
1
D5
BZX84C15
Zener Diode
SOT-23
BZX84C15
Vishay Dale
27
1
T1
LPE-9080-A413
Transformer
XFMR_LPE9080
LPE-9080-A413
Vishay Liteon
28
1
BR1
DF04S
Bridge
BR1
Vishay Liteon
29
1
Q1 (NU)
BSP89
N–Channel DMOSFET (NU)
SOT-223
BSP89
Philips Semiconductors
30
1
Q01
Si3420DV
N–Channel MOSFET
TSOP-6
Si3420DV
Vishay Siliconix
31
1
U1
Si9113
Power IC
SO–14
Si9113
Vishay Siliconix
32
2
“TP1, TP2”
Test Point
1-Pin Header
TP1
Multi-Source
33
6
P1 TO P6
“PWR, GND”
1-Pin Header
TP1
Multi-Source
“RES, 5%,
1/ W”
8
*Optional
www.Vishay Siliconix.com FaxBack 408-970-5600
8
Document Number: 71117
29-Feb-00
Si9113DB
Vishay Siliconix
SCHEMATIC, PCB LAYOUT AND BILL OF MATERIAL (SI9113D2)
P1
VIN
T1
LPE9080
4
BR1
4
3
P2
GND
AC +
AC –
P3
40 V
D2
1
+ C1
22 mF
160 V
2
ESIG
DF02S
R13
R8
51 W
2.7 W
D1
5
NS3
7
NP
R1
1 MW
C7
VCC
OSCIN
1
6
9
OSCOUT
10
11
0.1 mF
12
5
5.1 W
3 (Q01)
1 (Q1)
R12
5.1 kW
(NU)
C12
0.1 mF
P5
COM
1
3 (Q1)
4 (Q01)
PWR_G
FB
ICS
COMP
VIN
START
STOP
13
3
R11
2
1 kW
C9
0.01 mF
1
C3
470 pF
Si9113
C2
100 pF
+
Q1
BSP89(NU)
Q01 Si3420DV
4
VREF
14
R2
C8
300 kW 0.01 mF
R6
GND
SS
0.001 mF
C6
6
DR
C11
220 mF
10 V
1, 2, 5, 6, (Q01)
2, 4 (Q1)
C5
0.1 mF
P4
3.3 V
B130LB
9
12.7 kW
7
1
D4*
BZX84C43
P6C
OM2
D3
2
NS1
R9
89 kW
R10
8
3
+
ESIG 8
C4
1 mF
TP2
C10
NS2
2.2 mF
50 V
3
R7
2W
1/ W
2
R3
5.1 MW
R4
1 MW
R5
3.96 MW
*Optional
TP1
PWR_GD
Dual Output Flyback Converter with Moderately Regulated Outputs
FIGURE 19. Demo Board—Si9113D2
Document Number: 71117
29-Feb-00
www.siliconix.com FaxBack 408-970-5600
9
Si9113DB
Vishay Siliconix
FIGURE 20. Silk Screen—Si9113D2
FIGURE 21. Top Layer—Si9113D2
FIGURE 22. Bottom Layer—Si9113D2
www.Vishay Siliconix.com FaxBack 408-970-5600
10
Document Number: 71117
29-Feb-00
Si9113DB
Vishay Siliconix
TABLE 2. BILLĆOFĆMATERIALSĊSi9113D2
Item
Qty
Designator
Part Type
Description
“RES, 1%,
Footprint
Vendor Part #
Manufacturer
1/ W”
8
1
2
“R1, R4”
1 MW
0805
CRCW08051004FRT1
Vishay Dale
2
1
R2
300 kW
“RES, 1%, 1/8 W”
0805
CRCW08053003FRT1
Vishay Dale
1/ W”
8
3
1
R3
5.1 MW
“RES, 1%,
0805
CRCW08055104FRT1
Vishay Dale
4
1
R5
3.96 MW
“RES, 1%, 1/8 W”
0805
CRCW08053964FRT1
Vishay Dale
5
1
R6
5.1 W
“RES, 5%, 1/8 W”
0805
CRCW080551JRT1
Vishay Dale
Vishay Dale
6
1
R7
2W
7
1
R8
51 W
2010
WSC-1/2
“RES, 5%, 1/8 W”
0805
CRCW0805510JRT1
Vishay Dale
1/ W”
8
“RES, 1%,
1/ W, PWR Metal”
2
8
1
R9
89 kW
0805
CRCW08058902FRT1
Vishay Dale
9
1
R10
12.7 kW
“RES, 1%,
“RES, 1%, 1/8 W”
0805
CRCW08051272FRT1
Vishay Dale
10
1
R11
1 kW
“RES, 1%, 1/8 W”
0805
CRCW08051001FRT1
Vishay Dale
1/ W”
8
11
1
R12
5.1 kW
“RES, 1%,
0805
CRCW08055101FRT1
Vishay Dale
12
1
R13
2.7 W
“RES, 5%, 1/8 W”
0805
CRCW080527JRT1
Vishay Dale
13
1
C1
22 mF
“CAP, ELEC, 160 V, VR”
RB.2/.4
UVR2C220MEA
Nichicon
14
1
C2
100 pF
“CAP, CER”
0805
VJ0805Y101KXXAT
Vishay Vitramon
15
1
C3
470 pF
“CAP, CER”
0805
VJ0805Y471KXXAT
Vishay Vitramon
16
1
C4
1 mF
“CAP, CER, 25 V”
1210
VJ1210U105ZXAA
Vishay Vitramon
17
3
“C5, C6, C12”
0.1 mF
“CAP, CER”
0805
VJ0805Y104KXXAT
Vishay Vitramon
18
1
C7
0.001 mF
“CAP, CER”
0805
VJ0805Y102KXXAT
Vishay Vitramon
19
2
“C8, C9”
0.01 mF
“CAP, CER”
0805
VJ0805Y103KXXAT
Vishay Vitramon
20
1
C10
2.2 mF
“CAP, TAN, 50 V”
595D_C
595D225X0050C2T
Vishay Sprague
21
1
C11
220 mF
“CAP, TAN, 6.3 V”
594D_C
594D227X06R3C2T
Vishay Sprague
22
2
“D1, D2”
ES1G
“Diode, 1 A”
SMA
ES1G
Vishay Liteon
23
1
D3
B130LB
“Schottky Diode, 1 A”
SMB
B130LB
Vishay Liteon
24
1
D4*
BZX84C43
“Zener Diode, 41 V”
SOT–23
BZX84C43
Vishay Liteon
25
1
T1
LPE-9080-A414
Transformer
XFMR_LPE908
0
LPE-9080-A414
Vishay Dale
26
1
BR1
DF04S
Bridge
BR1
Vishay Liteon
27
1
Q1 (NU)
BSP89
N–Channel DMOSFET (NU)
SOT-223
BSP89
Philips Semicoductors
28
1
Q01
Si3420DV
N–Channel MOSFET
TSOP-6
Si2320DS
Vishay Siliconix
29
1
U1
Si9113
Power IC
SO-14
Si9113
Vishay Siliconix
30
2
“TP1, TP2”
Test Point
1-Pin Header
TP1
Multi-Source
31
6
P1 TO P6
“PWR, GND”
1-Pin Header
TP1
Multi-Source
*Optional
Document Number: 71117
29-Feb-00
www.siliconix.com FaxBack 408-970-5600
11