AVX N_06K00331

AVX
NTC Thermistors
Contents
NTC Thermistors
NTC THERMISTORS
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Ordering Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
RoHS/ELV Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
NTC SMD Thermistors
NC 12 - NC 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
With Nickel Barrier Termination NB 12 - NB 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
With Nickel Barrier Termination NB 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
NTC Accurate
NJ 28 - NI 24 - NK 20 - NP 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
NTC Disc Thermistors
ND 03/06/09 - NE 03/06/09 - NV 06/09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
NTC Leadless Disc Thermistors
NR Series for Consumer and Automotive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Resistance
Tables of Resistance vs Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Identification – Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
As we are anxious that our customers should benefit from the latest developments in the technology and standards,
AVX reserves the right to modify the characteristics published in this brochure.
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements,
information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind,
expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such
use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are
indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.
1
NTC Thermistors
General Characteristics
1 – INTRODUCTION
NTC thermistors are thermally sensitive resistors made from
a mixture of Mn, Ni, Co, Cu, Fe oxides. Sintered ceramic
bodies of various sizes can be obtained. Strict conditions
of mixing, pressing, sintering and metallization ensure an
excellent batch-to-batch product characteristics.
This semi-conducting material reacts as an NTC resistor,
whose resistance decreases with increasing temperature.
This Negative Temperature Coefficient effect can result from
an external change of the ambient temperature or an internal heating due to the Joule effect of a current flowing
through the thermistor.
By varying the composition and the size of the thermistors,
a wide range of resistance values (0.1Ω to 1MΩ) and temperature coefficients (-2 to -6% per °C) can be achieved.
RoHS (Restriction of Hazardous Substances - European
Union directive 2002/95/EC).
ELV (End of Life-Vehicle - European Union directive
2000/53/EC).
All Thermistor Products have been fully RoHS/ELV since
before 2006.
Chip Thermistor NB RoHS/ELV Status: external Plating
100% smooth semi-bright Sn as standard SnPb Termination
available on request.
2 – MAIN CHARACTERISTICS
The nominal resistance of an NTC thermistor is generally
given at 25°C. It has to be measured at near zero power
so that the resultant heating only produces a negligible
measurement error.
The following table gives the maximum advised measurement voltage as a function of resistance values and thermal
dissipation factors.
This voltage is such that the heating effect generated by the
measurement current only causes a resistance change of
1% ΔRn/Rn.
R 10
10 < R 100
100 < R 1,000
1,000 < R 10,000
10,000 < R 100,000
R < 100,000
2
Maximum measuring voltage
(V)
δ = 2 mW/°C δ = 5 mW/°C δ = 10 mW/°C δ = 20 mW/°C
0.25
0.73
2.1
6.4
0.13
0.38
1.1
3.2
9.7
0.18
0.53
1.5
4.6
14.5
This is the relation between the zero power resistance and
the temperature. It can be determined by experimental measurements and may be described by the ratios R (T) /R
(25°C) where:
R (T)
is the resistance at any temperature T
R (25°C) is the resistance at 25°C.
These ratios are displayed on pages 29 to 33.
2.1.3. Temperature coefficient (α)
The temperature coefficient (␣) which is the slope of the
curve at a given point is defined by:
␣=
100
dR
•
R
dT
and expressed in % per °C.
2.1.4. Sensitivity index (B)
The equation R = A exp (B/T) may be used as a rough
approximation of the characteristic R (T).
B is called the sensitivity index or constant of the material
used.
To calculate the B value, it is necessary to know the resistances R1 and R2 of the thermistor at the temperatures
T1 and T2.
1 1
The equation: R1 = R2 exp B T - T
1
2
R1
1
leads to:
B (K) =
• ᐍn
1-1
R2
T1 T2
Conventionally, B will be most often calculated for temperatures T1 = 25°C and T2 = 85°C (298.16 K and 358.16 K).
In fact, as the equation R = A exp (B/T) is an approximation,
the value of B depends on the temperatures T1 and T2 by
which it is calculated.
For example, from the R (T) characteristic of material M
(values given on page 29), it can be calculated:
B (25 – 85) = 3950
B (0 – 60) = 3901
B (50 – 110) = 3983
When using the equation R = A exp (B/T) for this material,
the error can vary by as much as 9% at 25°C, 0.6% at 55°C
and 1.6% at 125°C.
Using the same equation, it is possible to relate the values of
the index B and the coefficient α:
(
(
2.1 CHARACTERISTICS WITH NO DISSIPATION
2.1.1. Nominal Resistance (Rn)
Ranges of
values
(Ω)
2.1.2. Temperature Resistance characteristics R (T)
0.10
0.24
0.24
2.0
␣=
)
)
( )
1
-B
1
dR =
•
• A exp (B/T) • T2
A
exp
(B/T)
R
dT
B
thus ␣ = – T2 expressed in %/°C
NTC Thermistors
General Characteristics
2.1.5. Further approximation of R (T) curve
The description of the characteristic R (T) can be improved
by using a greater number of experimental points, and by
using the equation:
1 = A + B (ᐍn R) + C (ᐍn R)3
T
The parameters A, B and C are determined by solving the
set of equations obtained by using the measured resistances at three temperatures.
The solution of the above equation gives the resistance at
any temperature:
[冑
( ) 冑 (冑 ( ) ( ) )
- 3冑+ 27 (A- 1/T) + 3 冑 3(冑27(A- 1/T) + 4 (B) )]
C
2
2
C
C
ᐍn R (T) =
1 3 27 A- 1/T 3 3 27 A- 1/T 2+ 4 B
+
3
C
C
C
2
2
2
Thus, the tolerance on the resistance (⌬R2/R2) at a temperature T2 is the sum of two contributions as illustrated on
Figure 1:
– the tolerance ⌬R1/R1 at a temperature T1 used as a
reference.
– an additional contribution due to the dispersion on
the characteristic R (T) which may be called
“Manufacturing tolerance” (Tf).
Graph with B
RΩ
Graph with B ± ΔB
3
}(ΔR)
R 25
25°C
3
} (ΔR)
+
The precision of this description is typically 0.2°C for the
range –50 to +150°C (A, B, C being determined with experimental values at –20, +50 and 120°C) or even better if this
temperature range is reduced. The ratios R(T)/R(25°C) for
each of the different materials shown on pages 29 to 33
have been calculated using the above method.
}
25°C
T
2.1.6. Resistance tolerance and temperature
precision
An important characteristic of a thermistor is the tolerance
on the resistance value at a given temperature.
This uncertainty on the resistance (DR/R) may be related to
the corresponding uncertainty on the temperature (DT),
using the relationship:
⌬R 1
⌬T = 100 • R • ␣
Example: consider the thermistor ND06M00152J —
• R (25°C) = 1500 ohms
• Made from M material
• R (T) characteristic shown on page 23 gives:
␣ = - 4.4%/°C at 25°C
• Tolerance ⌬R/R = ±5% is equivalent to:
⌬T = 5%/4.4%/°C = ±1.14°C
2.1.7. Resistance tolerance at any temperature
Any material used for NTC manufacturing always displays a
dispersion for the R (T) characteristic.
This dispersion depends on the type of material used
and has been especially reduced for our accuracy series
thermistors.
25°C
TF
}
= (ΔR) T
Temperature (°C)
Figure 1
Differentiating the equation R = A exp (B/T), the two contributions on the tolerance at T can also be written:
⌬R2
= ⌬R1 + ⎪1 - 1 ⎪ • ⌬B
T1 T2
R1
R2
The T(f) values given with the resistance – temperature
characteristics on pages 29 to 33 are based on a computer
simulation using this equation and experimental values.
2.1.8. Designing the resistance tolerances
Using the fact that the coefficient ␣ decreases with temperature (α = –B/T2), it is generally useful to define the closest
tolerance of the thermistor at the maximum value of the
temperature range where an accuracy in °C is required.
For example, let us compare the two designs 1 and 2
hereafter:
T
R
(°C)
(Ω)
0
25
55
85
100
3275
1000
300
109
69.4
α
Design 1
(%/°C) ⌬R/R(%)
-5.2
-4.4
-3.7
-3.1
-2.9
3.5
3.0
3.5
4.1
4.5
Design 2
⌬T(°C)
⌬R/R(%)
0.7
0.7
1.0
1.3
1.6
5.0
4.5
4.0
3.4
3.0
⌬T(°C)
1.0
1.1
1.1
1.1
1.0
Only the Design 2 is able to meet the requirement ΔT ⯝ 1°C
from 25°C to 100°C.
3
NTC Thermistors
General Characteristics
2.1.9. Shaping of the R (T) characteristic
By the use of a resistor network, it is possible to modify the
R (T) characteristic of a thermistor so that it matches the
required form, for example a linear response over a restricted temperature range.
A single fixed resistor Rp placed in parallel with a thermistor
gives a S–shape resistance–temperature curve (see Figure 2)
which is substantially more linear at the temperature range
around the inflexion point (Ro, To).
R
(kΩ)
RTO
2.2 CHARACTERISTICS WITH ENERGY
DISSIPATION
When a current is flowing through an NTC thermistor, the
power due to the Joule effect raises the temperature of the
NTC above ambient.
The thermistor reaches a state of equilibrium when the
power supplied becomes equal to the power dissipated in
the environment.
The thermal behavior of the thermistor is mainly dependent
on the size, shape and mounting conditions.
Several parameters have been defined to characterize these
properties:
2.2.1. Heat capacity (H)
Rp
The heat capacity is the amount of heat required to change
the temperature of the thermistor by 1°C and is expressed in
J/°C.
Rp
2.2.2. Dissipation factor (␦)
This is the ratio between the variation in dissipated power
and the variation of temperature of the NTC. It is expressed
in mW/°C and may be measured as:
U.I
␦=
85 – 25
RO
TO
T (°C)
Figure 2 – Linearization of a thermistor
where U.I is the power necessary to raise to 85°C the temperature of a thermistor maintained in still air at 25°C.
2.2.3. Maximum permissible temperature (T max)
It can be calculated that better linearization is obtained when
the fixed resistor value and the mid-range temperature are
related by the formula:
B – To
Rp = R x
To
B+ 2To
This is the maximum ambient temperature at which the thermistor may be operated with zero dissipation. Above this
temperature, the stability of the resistance and the leads
attachment can no longer be guaranteed.
For example, with a thermistor ND03N00103J —
R 25°C = 10kΩ, B = 4080 K
good linearization is obtained with a resistor in parallel where
the value is:
4080 - 298
Rp = 10,000 Ω x
= 8088 Ω
4080 + (2 x 298)
This is the power required by a thermistor maintained in still
air at 25°C to reach the maximum temperature for which it is
specified.
For higher ambient temperatures, the maximum permissible
power is generally derated according to the Figure 3 hereafter and TL = Tmax – 10°C.
2.1.10. Demonstration of the R (T) parameters
calculation
2.2.4. Maximum permissible power at 25°C (Pmax)
P
max
To help our customers when designing thermistors for
temperature measurement or temperature compensation,
software developed by our engineering department is available upon request.
25°
TL
T max
Figure 3 – Derating of maximum power
4
T°C
NTC Thermistors
General Characteristics
2.2.5. Voltage – Current curves V (l)
2.2.7. Thermal time constant
These curves describe the behavior of the voltage drop V
measured across the NTC as the current l through the NTC
is increased.
They describe the state of equilibrium between power
resulting from Joule effect and dissipated power in the
surroundings. (Figure 4)
When a thermistor is self-heated to a temperature T above
ambient temperature Tamb, and allowed to cool under zero
power resistance, this will show a transient situation.
At any time interval dt, dissipation of the thermistor
(␦(T – Tamb)dt) generates a temperature decrease –HdT,
resulting in the equation:
1
␦
dT = dt
(T - Tamb)
H
The solution to this equation for any value of t, measured
from t = 0, is:
(T - Tamb) = - ␦ t
ᐍn (To
- Tamb)
H
V
Vmax
Io
I
Figure 4 – Voltage – current curve V (l)
Several zones can be identified:
– low current zone
dissipated energy only produces negligible heating and
the curve V (l) is almost linear.
– non-linear zone
the curve V (l) displays a maximum voltage Vmax for a
current lo.This maximum voltage Vmax and the temperature Tmax reached by the NTC under these conditions
can be determined by using the equations:
and
P = V2/R = ␦ (T - Tamb)
R = Ramb • exp B (1/T - 1/Tamb)
therefore:
1+Tamb
Tmax = B/2 - B2/4 - BTamb ~ Tamb
B
冑
Vmax =
(
)
1 - 1
冑 ␦ (Tmax - Tamb ) • Ramb exp [B(Tmax
Tamb)]
where ␦ is the dissipation factor and Tamb is the ambient temperature.
– high current zone
for higher currents, an increase in temperature of the
NTC decreases the resistance and the voltage more
rapidly than the increase of the current. Above a certain
dissipated power, the temperature of the NTC exceeds
the permissible value.
We can define a thermal time constant ␶ as:
␶ = H/␦
expressed in seconds.
Where the time t = ␶ :
(T - Tamb) / (To - Tamb) = exp - 1 = 0.368
expressing that for t = ␶, the thermistor cools to 63.2% of the
temperature difference between the initial To and Tamb (see
Figure 5).
According to IEC 539 our technical data indicates ␶ measured with To = 85°C, Tamb = 25°C and consequently
T = 47.1°C.
T (°C)
85
47.1
25
t
t (s)
Figure 5 – Temperature – time curve T(t)
2.2.8. Response time
More generally, it is possible to define a response time as the
time the thermistor needs to reach 63.2% of the total
temperature difference when submitted to a change in the
thermal equilibrium (for example from 60°C to 25°C in
silicone oil 47V20 Rhodorsil).
2.2.6. Current – Time curves l(t)
When voltage is applied to a thermistor, a certain amount of
time is necessary to reach the state of equilibrium described
by the V(l) curves.
This is the heating up time of the thermistor which depends
on the voltage and the resistance on one side and the heat
capacity and dissipation on the other.
The curves l(t) are of particular interest in timing applications.
5
NTC Thermistors
Application Notes
TEMPERATURE MEASUREMENT
Thermistor
circuit
High sensitivity and low cost make NTC thermistors the most
common device used for temperature measurement.
Non-linearity of the R -T curve generally leads to the use of
a resistor network to linearize the signal. An example is
given in Figure 6.
More precise measurements and temperature display can
also be achieved with simple electronic equipment as
shown in Figure 7.
The choice of the model will particularly take into account
the small size (better response time) and the resistance
tolerance. Mounting conditions (dissipation), and input voltage (self-heating) will also be carefully defined to avoid serious
errors in temperature measurement.
TEMPERATURE CONTROL
AND ALARM
R2
R3
A/D
converter
R1
μ processor
with R/T
R NTC
algorithm
Display T°C
Figure 6
Figure 7
NTC thermistors can be used as a simple on-off control temperature system or temperature alarm system. Figure 8 gives
an example of such a circuit.
When the temperature increases to a defined value, the
resistance of the thermistor decreases and the current
becomes sufficiently high to energize the relay and provide
temperature alarm or heating system turn-off.
The high sensitivity of thermistors (about 4% resistance
change for 1°C) allows the temperature to be controlled very
precisely.
R1
R3
R2
R NTC
Figure 8
TEMPERATURE COMPENSATION
As many electronic components (integrated circuits, amplifiers,...) have a positive temperature coefficient of resistance,
NTC thermistors represent a cheap and interesting solution
to compensate for this effect and provide an improved
temperature stability for electronic equipment.
It is necessary to include the thermistor in a resistor network
(Figure 10) calculated in such a manner that the network
coefficient compensates exactly for the positive temperature
coefficient of the other component (Figure 9).
Common leaded discs or chip thermistors are well suited for
this application.
Resistance
RC
R Total
RC
R
R NTC
R
R NTC
Temperature
Figure 9
6
Figure 10
NTC Thermistors
Application Notes
RS
LIQUID LEVEL OR FLOW DETECTION
The dissipation of a thermistor is significantly different in a
liquid or in a gas, in a static fluid or in a stirred one. A liquid
level detector or a gas–flow measurement can be designed
using this property.
In Figure 11, the output voltage measured on the thermistor
depends upon the dissipation factor of its environment, and
can be illustrated by V-l curves (Figure 12).
This voltage can be used to detect the presence (V2) or
absence (V1) of liquid around the thermistor or measure the
flow speed.
A good design should define a precise operating temperature
range, where dissipation in the high dissipating medium at
highest ambient temperature remains higher than the dissipation in low dissipating medium at lowest ambient temperature.
R NTC
V
V in
Figure 11
Voltage
V in
V2
V1
k2
k1
SURGE PROTECTION
A soft start of sensitive apparatus can be achieved by using
NTC thermistors as described in Figures 13 and 14.
At turn-on, the NTC absorbs the surge current, limits the
current across the equipment and protects it. Then, the
thermistor heats, its resistance decreases and most of the
power becomes applied to the apparatus.
In its design, the thermistor will be selected with a thermal
capacity higher than the surge energy to absorb.
V in/RS
Figure 12
R NTC
Equipment
Figure 13
TIME DELAY
The current-time characteristic of a thermistor is used in time
delay applications such as delaying energization of a relay
after application of power to an electrical circuit.
The time delay, time necessary for the thermistor to heat up
to the temperature where its resistance allows the current to
reach the switching value of the relay, is mainly defined with
the nominal resistance of the thermistor.
The time delay is also strongly dependent upon the ambient
temperature, as shown in Figure 15.
Current
Power
Unprotected equipment
Protected equipment
NTC absorbed power
Time
Figure 14
T = 50°C
Current
T = 40°C
T = 25°C
Time
Figure 15
7
NTC Thermistors
Selection Guide
Types
Range of Values
R at 25°C
SMD
NC 12/20
NB 12/20
NB 21/23
Main Applications
10 Ω
1 MΩ
- Hybrid circuit
- Temperature
Compensation
Page
10
12
14
Accuracy Series
NJ 28
NI 24
2 kΩ
NP 30
NK 20
2 kΩ
Leaded Discs
100 kΩ
100 kΩ
330 Ω
1 MΩ
N.03
150 Ω
330 kΩ
N.06
N.09
68 Ω
150 kΩ
- Temperature
measurement
19
- Temperature
measurement
and regulation
- Level detection
- Compensation
21
- Automotive
and industrial
thermal control
27
Leadless Discs
NR
8
Custom designed products
generally defined at two temperatures
NTC Thermistors
Ordering Code
HOW TO ORDER
NC20
K
0
0103
Type
NC 12
NC 20
Material
Code
I
J
K
L
M
N
P
Q
R
S
T
U
(See tables
pages 29 to 33)
Material Code
2nd Digit
NJ, NK Types: A
NB, NC Types:
C or O or 5 or 2
Other Types: 0
Resistance at 25ºC
(EIA Code)
NB 12
NB 20
NB 21
NB 23
NJ 28
NI 24
NK 20
ND 03
ND 06
ND 09
NR ..
For leadless discs
(types NR) see
specification and
ordering code on
pages 28.
1. Resistance expressed by two
significant figures
1st digit: 0 (zero)
2nd and 3rd digits: the first two
significant figures of the resistance
value at 25°C.
4th digit:
– for values ≥ 10 Ω:
the number of ZEROS to be
added to the resistance value
– for values ≥ 1 Ω and ≤ 9.9 Ω:
the numerical 9 signifying that the
resistance value is to be multiplied
by 0.1
– for values < 1 Ω: the numerical 8
signifying that the resistance
value is to be multiplied by 0.01
Examples: 1000 Ω: 0102
8.2 Ω: 0829
0.47 Ω: 0478
ROHS/ELV COMPLIANCE BY PRODUCT FAMILY
M
Tolerance
on Resistance
at 25°C
F: ± 1%
G: ± 2%
H: ± 3%
J: ± 5%
K: ± 10%
L: ± 15%
M: ± 20%
X: ± 25%
– –
Suffix
2. Resistance expressed by three
significant figures
1st, 2nd and 3rd digits: the first three
significant figures of the resistance
value at 25°C.
4th digit:
– for values > 100 Ω:
the number of ZEROS to be
added to the resistance value
– for values > 10 Ω and < 100 Ω:
the numerical 9 signifying that the
resistance value is to be multiplied
by 0.01
– for values > 1 Ω and < 10 Ω:
the numerical 8 signifying that the
capacitance value is to be multiplied
by 0.01
Examples : 196 Ω: 1960
47.2 Ω: 4729
LEAD-FREE COMPATIBLE
COMPONENT
RoHS (Restriction of Hazardous Substances - European Union directive 2002/95/EC).
ELV (End of Life-Vehicle - European Union directive 2000/53/EC).
All Thermistor Products have been fully RoHS/ELV since before 2006.
Chip Thermistor NB RoHS/ELV Status: external Plating 100% smooth semi-bright Sn as standard SnPb Termination available
on request.
Products that are supplied AS STANDARD in RoHS/ELV compliant form for listed
Industrial Product Family
Group
Leaded NTC
Thermistors
SMD
Thermistors
Series
Cadmium
Thermistors NF NI
Thermistors ND NJ NP
Thermistors NC
Thermistors NB
4
4
4
4
RoHS Compliant for Material Listed
Hexavalent
Lead
Mercury
PBBs
Chromium
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
PBDEs
4
4
4
4
9
NTC SMD Thermistors
NC 12 – NC 20
Chip thermistors are a high quality and low cost device especially developed for surface mounting applications. They are
widely used for temperature compensation but can also
achieve temperature control of printed circuits. Its silver -
palladium - platinum metallization provides a high degree of
resistance to dewetting of the terminations during soldering
(typically 260°C / 30 s).
NC 12
IEC SIZE : 0805
Types
NC 20
IEC SIZE : 1206
3.2 (.126) ± 0.4 (.016)
2 (.079) ± 0.3 (.012)
DIMENSIONS:
millimeters (inches)
1.6 (.063)
± 0.25 (.010)
1.25 (.049)
± 0.2 (.008)
0.5 (.020)
... 1.5 (.059)
0.5 (.020)
... 1.3 (.051)
0.2 (.008) min
0.2 (.008) min
0.2 (.008) min
Terminations
0.2 (.008) min
Silver – palladium – platinum metallization
Marking
On packaging only
Climatic category
40/125/56
Operating temperature
-55°C to +150°C
Tolerance on Rn (25°C)
±5%, ±10%, ±20%
Maximum dissipation at 25°C
Thermal dissipation factor
Thermal time constant
0.12 W
0.24 W
2 mW/°C
4 mW/°C
5s
7s
Resistance - Temperature characteristics: pages 29 to 33.
APPLICATIONS
•
•
•
•
•
•
•
•
•
LCD compensation
Battery packs
Mobile phones
CD players
Heating systems
Air-conditioning systems
Temperature control of Switch Mode Power Supplies
Compensation of pressure sensors
Protection of power transistors in various electronic circuits
HOW TO ORDER
10
NC 20
K0
0103
M
BA
Type
Material Code
K
(See tables pages 11, 29-33)
Resistance
10,000 Ω
Tolerance
M (±20%)
J (±5%)
K (±10%)
Suffix: Packaging
– –: Bulk
BA: Plastic tape
(180mm diam. reel)
BE: Plastic tape (1/2 reel)
BC: Plastic tape
(330mm diam. reel)
BB: Cardboard tape
(180mm diam. reel)
BF: Cardboard tape (1/2 reel)
BD: Cardboard tape
(330mm diam. reel)
NTC SMD Thermistors
NC 12 – NC 20
TABLE OF VALUES
NC 20
IEC SIZE : 1206
NC 12
IEC SIZE : 0805
Types
Rn at 25°C
(Ω)
NC 12 KC 0 180
NC 12 KC 0 220
NC 12 KC 0 270
NC 12 KC 0 330
NC 12 KC 0 390
NC 12 KC 0 470
NC 12 KC 0 560
NC 12 KC 0 680
NC 12 KC 0 820
NC 12 KC 0 101
NC 12 MC 0 121
NC 12 MC 0 151
NC 12 MC 0 181
NC 12 MC 0 221
NC 12 MC 0 271
NC 12 MC 0 331
NC 12 MC 0 391
NC 12 MC 0 471
NC 12 MC 0 561
NC 12 MC 0 681
NC 12 MC 0 821
NC 12 MC 0 102
NC 12 MC 0 122
NC 12 MC 0 152
NC 12 MC 0 182
NC 12 MC 0 222
NC 12 MC 0 272
NC 12 MC 0 332
NC 12 J 0 0332
NC 12 J 0 0392
NC 12 J 0 0472
NC 12 J 0 0562
NC 12 K 0 0682
NC 12 K 0 0822
NC 12 K 0 0103
NC 12 K 0 0123
NC 12 L 0 0153
NC 12 L 0 0183
NC 12 M 0 0223
NC 12 M 0 0273
NC 12 M 0 0333
NC 12 M 0 0393
NC 12 N 0 0473
NC 12 N 0 0563
NC 12 L 2 0683
NC 12 N 0 0823
NC 12 P 0 0104
NC 12 P 0 0124
NC 12 P 0 0154
NC 12 P 0 0184
NC 12 Q 0 0224
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1,000
1,200
1,500
1,800
2,200
2,700
3,300
3,300
3,900
4,700
5,600
6,800
8,200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
Material
Code
KC
MC
B (K)
(⌬B/B
(1) ± 5%
(2) ± 3%
3470 ± 5%
3910 ± 3%
)
␣ at 25°C
(%/°C)
– 3.9
– 4.4
J
3480 ± 3%
– 3.9
K
3630 ± 3%
– 4.0
L
3790 ± 3%
– 4.2
M
3950 ± 3%
– 4.4
N
4080 ± 3%
– 4.6
L2
N
3805 ± 3%
4080 ± 3%
– 4.1
– 4.6
P
4220 ± 3%
– 4.7
Q
4300 ± 3%
-4.7
Types
Rn at 25°C
(Ω)
NC 20 KC 0 100
10
NC 20 KC 0 120
12
NC 20 KC 0 150
15
NC 20 KC 0 180
18
NC 20 KC 0 220
22
NC 20 KC 0 270
27
NC 20 KC 0 330
33
NC 20 KC 0 390
39
NC 20 KC 0 470
47
NC 20 KC 0 560
56
NC 20 KC 0 680
68
NC 20 KC 0 820
82
NC 20 KC 0 101
100
NC 20 MC 0 121
120
NC 20 MC 0 151
150
NC 20 MC 0 181
180
NC 20 MC 0 221
220
NC 20 MC 0 271
270
NC 20 MC 0 331
330
NC 20 MC 0 391
390
NC 20 MC 0 471
470
NC 20 MC 0 561
560
NC 20 MC 0 681
680
NC 20 MC 0 821
820
NC 20 MC 0 102
1,000
NC 20 MC 0 122
1,200
NC 20 MC 0 152
1,500
NC 20 I 0 0182
1,800
NC 20 I 0 0222
2,200
NC 20 I 0 0272
2,700
NC 20 I 0 0332
3,300
NC 20 J 0 0392
3,900
NC 20 J 0 0472
4,700
NC 20 J 0 0562
5,600
NC 20 J 0 0682
6,800
NC 20 K 0 0822
8,200
NC 20 K 0 0103
10,000
NC 20 K 0 0123
12,000
NC 20 K 0 0153
15,000
NC 20 L 0 0183
18,000
NC 20 L 0 0223
22,000
NC 20 M 0 0273
27,000
NC 20 M 0 0333
33,000
NC 20 M 0 0393
39,000
NC 20 M 0 0473
47,000
NC 20 N 0 0563
56,000
NC 20 N 0 0683
68,000
NC 20 N 0 0823
82,000
NC 20 N 0 0104
100,000
NC 20 P 0 0124
120,000
NC 20 P 0 0154
150,000
NC 20 P 0 0184
180,000
NC 20 P 0 0224
220,000
NC 20 Q 0 0274
270,000
NC 20 Q 0 0334
330,000
NC 20 Q 0 0394
390,000
NC 20 Q 0 0474
470,000
NC 20 R 0 0564
560,000
NC 20 R 0 0684
680,000
NC 20 R 0 0824
820,000
NC 20 R 0 0105 1,000,000
Material
Code
B (K)
(⌬B/B
(1) ± 5%
(2) ± 3%
)
␣ at 25°C
(%/°C)
KC
3470 ± 5%
– 3.9
MC
3910 ± 3%
– 4.4
I
3250 ± 5%
– 3.7
J
3480 ± 3%
– 3.9
K
3630 ± 3%
– 4.0
L
3790 ± 3%
– 4.2
M
3950 ± 3%
– 4.4
N
4080 ± 3%
– 4.6
P
4220 ± 3%
– 4.7
Q
4300 ± 3%
– 4.7
R
4400 ± 3%
– 4.8
11
NTC SMD Thermistors
With Nickel Barrier Termination NB 12 - NB 20
Chip thermistors are high quality and low cost devices
especially developed for surface mounting applications. They
are widely used for temperature compensation but can also
achieve temperature control of printed circuits.
A nickel barrier metallization provides outstanding qualities of
solderability and enables this chip to meet the requirements
of the most severe soldering processes.
NB 12
IEC SIZE : 0805
Types
NB 20
IEC SIZE : 1206
2 (.079) ± 0.3 (.012)
3.2 (.126) ± 0.4 (.016)
1.25 (.049)
± 0.2 (.008)
DIMENSIONS:
1.6 (.063)
± 0.25 (.010)
0.5 (.020)
... 1.3 (.051)
millimeters (inches)
0.5 (.020)
... 1.5 (.059)
0.2 (.008) min
0.2 (.008) min
Terminations
0.2 (.008) min
0.2 (.008) min
Nickel Barrier
Marking
On packaging only
Climatic category
40/125/56
Operating temperature
-55°C to +150°C
Tolerance on Rn (25°C)
±5%, ±10%, ±20%
Maximum dissipation at 25°C
Thermal dissipation factor
Thermal time constant
0.12 W
0.24 W
2 mW/°C
4 mW/°C
5s
7s
Resistance - Temperature characteristics: pages 29 to 33.
APPLICATIONS
•
•
•
•
•
•
•
•
•
LCD compensation
Battery packs
Mobile phones
CD players
Heating systems
Air-conditioning systems
Temperature control of Switch Mode Power Supplies
Compensation of pressure sensors
Protection of power transistors in various electronic circuits
HOW TO ORDER
12
NB 20
K0
0103
M
BA
Type
Material Code
K
(See tables page 13)
Resistance
10,000 Ω
Tolerance
M (±20%)
J (±5%)
K (±10%)
Suffix: Packaging
– –: Bulk
BA: Plastic tape
(180mm diam. reel)
BE: Plastic tape (1/2 reel)
BC: Plastic tape
(330mm diam. reel)
BB: Cardboard tape
(180mm diam. reel)
BF: Cardboard tape (1/2 reel)
BD: Cardboard tape
(330mm diam. reel)
NTC SMD Thermistors
With Nickel Barrier Termination NB 12 – NB 20
TABLE OF VALUES
NB 12
IEC SIZE : 0805
Types
Rn at 25°C
(Ω)
Material
Code
NB 20
IEC SIZE : 1206
B (K)
(⌬B/B
(1) ± 5%
(2) ± 3%
)
␣ at 25°C
(%/°C)
NB 12 KC 0 180
NB 12 KC 0 220
NB 12 KC 0 270
NB 12 KC 0 330
NB 12 KC 0 390
NB 12 KC 0 470
NB 12 KC 0 560
NB 12 KC 0 680
NB 12 KC 0 820
NB 12 KC 0 101
18
22
27
33
39
47
56
68
82
100
NB 12 MC 0 121
NB 12 MC 0 151
NB 12 MC 0 181
NB 12 MC 0 221
NB 12 MC 0 271
NB 12 MC 0 331
NB 12 MC 0 391
NB 12 MC 0 471
NB 12 MC 0 561
NB 12 MC 0 681
NB 12 MC 0 821
NB 12 MC 0 102
NB 12 MC 0 122
NB 12 MC 0 152
NB 12 MC 0 182
NB 12 MC 0 222
NB 12 MC 0 272
NB 12 MC 0 332
120
150
180
220
270
330
390
470
560
680
820
1,000
1,200
1,500
1,800
2,200
2,700
3,300
NB 12 J 0 0332
NB 12 J 0 0392
NB 12 J 0 0472
NB 12 J 0 0562
3,300
3,900
4,700
5,600
NB 12 K 0 0682
NB 12 K 0 0822
NB 12 K 0 0103
6,800
8,200
10,000
K
3630 ± 3%
– 4.0
NB 12 L 0 0123
NB 12 L 0 0153
12,000
15,000
L
3790 ± 3%
– 4.2
NB 12 M 0 0183
NB 12 M 0 0223
NB 12 M 0 0273
NB 12 M 0 0333
18,000
22,000
27,000
33,000
M
3950 ± 3%
– 4.4
NB 12 N 0 0393
NB 12 N 0 0473
NB 12 N 0 0563
39,000
47,000
56,000
N
4080 ± 3%
– 4.6
NB 12 L 2 0683
68,000
L2
3805 ± 3%
– 4.1
NB 12 N 5 0683
NB 12 N 5 0823
68,000
82,000
N5
4160 ± 3%
– 4.7
NB 12 P 0 0104
100,000
P
4220 ± 3%
– 4.7
NB 12 SC 0104
100,000
SC
4500 ± 3%
– 4.8
NB 12 P 0 0124
NB 12 P 0 0154
NB 12 P 0 0184
120,000
150,000
180,000
P
4220 ± 3%
– 4.7
NB 12 Q 0 0224
NB 12 Q 0 0274
220,000
270,000
Q
4300 ± 3%
– 4.7
NB 12 R 0 0105
1,000,000
R
4400 ± 3%
– 4.8
KC
MC
J
3470 ± 5%
3910 ± 3%
3480 ± 3%
– 3.9
– 4.4
– 3.9
Types
Rn at 25°C
(Ω)
Material
Code
B (K)
(⌬B/B
(1) ± 5%
(2) ± 3%
)
␣ at 25°C
(%/°C)
NB 20 MC 0 221
NB 20 MC 0 102
220
1,000
MC
MC
3910 ± 3%
3910 ± 3%
– 4.4
– 4.4
NB 20 J 0 0472
NB 20 J 0 0562
NB 20 J 0 0682
4,700
5,600
6,800
J
3480 ± 3%
– 3.9
NB 20 J 5 0822
8,200
J5
3480 ± 3%
– 3.9
NB 20 K 0 0103
NB 20 K 0 0123
10,000
12,000
K
3630 ± 3%
– 4.0
NB 20 L 0 0153
NB 20 L 0 0183
NB 20 L 0 0223
15,000
18,000
22,000
L
3790 ± 3%
– 4.2
NB 20 M 0 0273
NB 20 M 0 0333
NB 20 M 0 0393
NB 20 M 0 0473
27,000
33,000
39,000
47,000
M
3950 ± 3%
– 4.4
NB 20 N 0 0563
NB 20 N 0 0683
NB 20 N 0 0823
56,000
68,000
82,000
N
4080 ± 3%
– 4.6
NB 20 N 5 0104
100,000
N5
4160 ± 3%
– 4.7
NB 20 P 0 0124
NB 20 P 0 0154
NB 20 P 0 0184
NB 20 P 0 0224
120,000
150,000
180,000
220,000
P
4220 ± 3%
– 4.7
NB 20 Q 0 0274
NB 20 Q 0 0334
NB 20 Q 0 0394
NB 20 Q 0 0474
NB 20 Q 0 0564
270,000
330,000
390,000
470,000
560,000
Q
4300 ± 3%
– 4.7
NB 20 R 0 0684
NB 20 R 0 0824
NB 20 R 0 0105
680,000
820,000
1,000,000
R
4400 ± 3%
– 4.8
13
NTC SMD Thermistors
With Nickel Barrier Termination NB 21
Chip thermistors are high quality and low cost devices
especially developed for surface mounting applications. They
are widely used for temperature compensation but can also
achieve temperature control of printed circuits.
A nickel barrier metallization provides outstanding qualities of
solderability and enables this chip to meet the requirements
of the most severe soldering processes.
NB 21
IEC SIZE : 0603
Types
1.6 (.063) 0.2 (.008)
0.8 (.031)
±0.2 (.008)
DIMENSIONS:
millimeters (inches)
0.8 (.031)
±0.2 (.008)
0.2 (.008) min
0.2 (.008) min
Terminations
Nickel Barrier
Marking
On packaging only
Climatic category
40/125/56
Operating temperature
-55°C to +150°C
Tolerance on Rn (25°C)
±5%, ±10%, ±20%
Maximum dissipation at 25°C
0.07 W
Thermal dissipation factor
1 mW/°C
Thermal time constant
4s
Resistance - Temperature characteristics: pages 29 to 33.
APPLICATIONS
•
•
•
•
•
•
•
•
•
LCD compensation
Battery packs
Mobile phones
CD players
Heating systems
Air-conditioning systems
Temperature control of Switch Mode Power Supplies
Compensation of pressure sensors
Protection of power transistors in various electronic circuits
HOW TO ORDER
14
NB 21
K0
0103
M
BB
Type
Material Code
K
(See tables page 15)
Resistance
10,000 Ω
Tolerance
M (±20%)
J (±5%)
K (±10%)
Suffix: Packaging
– –: Bulk
BB: Cardboard tape
(180mm diam. reel)
BF: Cardboard tape (1/2 reel)
BD: Cardboard tape
(330mm diam. reel)
NTC SMD Thermistors
With Nickel Barrier Termination NB 21
TABLE OF VALUES
NB 21
IEC SIZE : 0603
Types
Rn at 25°C
(Ω)
Material
Code
B (K)
(⌬B/B
(1) ± 5%
(2) ± 3%
)
␣ at 25°C
(%/°C)
NB 21 KC 0 470
NB 21 KC 0 101
NB 21 KC 0 471
47
100
470
KC
3470 ± 5%
– 3.9
NB 21 MC 0 102
1,000
MC
3910 ± 3%
– 4.4
NB 21 J 0 0472
4,700
J
3480 ± 3%
– 3.9
NB 21 J 5 0682
NB 21 J 5 0103
6,800
10,000
J5
3480 ± 3%
3480 ± 3%
– 3.9
– 3.9
NB 21 K 0 0103
NB 21 K 0 0153
10,000
15,000
K
3630 ± 3%
– 4.0
NB 21 L 0 0223
22,000
L
3790 ± 3%
– 4.2
NB 21 M 0 0333
NB 21 M 0 0473
33,000
47,000
M
3950 ± 3%
– 4.4
NB 21 L 2 0683
68,000
L2
3805 ± 3%
– 4.1
NB 21 N 0 0683
68,000
N
4080 ± 3%
– 4.6
NB 21 N 5 0104
100,000
N5
4160 ± 3%
– 4.7
NB 21 P 0 0154
150,000
P
4220 ± 3%
– 4.7
NB 21 Q 0 0334
NB 21 Q 0 0474
330,000
470,000
Q
4300 ± 3%
– 4.7
15
Packaging for Automatic Insertion
NTC Chip Thermistors / NC/NB Series
AUTOMATIC INSERTION
(.008)
Hole ⭋1 (.039) +0.2
-0
Cover Tape
Max
3°
The mechanical and dimensional reel characteristics are in
accordance with the IEC publication 286-3.
5.5 (.217)
±0.2 (.008)
Max
3°
30μ ± 5μ
T
K
Designation
Tape width
Tape thickness
Pitch of the sprocket holes
Diameter of the sprocket holes
Symbol
W
T
P0
D0
Distance
Distance (center to center)
Distance (center to center)
Sizes of the
NC 12 (0805)
cavities
E
F
P2
A0
B0
K
Value
8
0.4 max.
4
1.5
-0
1.75
3.5
2
1.5
2.4
1.4 max.
NC 20 (1206)
A0
B0
K
1.95
3.55
1.5 max.
A1
B1
B0
F
R = 0.3 (.012) Max.
Super 8 Plastic Tape Packaging:
D0
P2
E
P0
Max
3°
Max
3°
A0
Direction of
unreeling
Tolerance
±0.2
±0.1
±0.1
±0.1
±0.05
±0.1
±0.1
±0.1
K ±0.1
(size is adjustable)
(K = t1 +0.2)
±0.1
±0.1
K ±0.1
(size is adjustable)
(K = t1 +0.2)
+0
ø180 (7.09) - 2 (.079)
+ 0.15 (.006)
Reel
ø 62 (2.44)
± 1.5 (.059)
Direction of unreeling
ø 12.75 (.502) - 0
Reel
according to
ISO/DIS 3639-2
8.4 (.331)
14.4 (.567)
max.
+0.15 (.006)
+ 0.5 (.020)
ø 20.5 (.087) - 0
QUANTITY PER REEL
Type
NC - NB 12
NC 20 - NB 20
16
Suffix
BA
BE
BA
BE
Qty Per Reel
4000
2000
3000
1500
W
Upper side
Bottom side
Packaging for Automatic Insertion
NTC Chip Thermistors / NC/NB Series
AUTOMATIC INSERTION
8mm Paper Tape Packaging:
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
0.20mm (0.008)
P0
The mechanical and dimensional reel characteristics
are in accordance with the IEC publication 286-3.
BOTTOM
COVER
TAPE
D0
T
P2
E1
TOP
COVER
TAPE
F
W
E2
B0
G
T1
T1
Designation
Tape width
Tape thickness
Pitch of the sprocket holes
Diameter of the sprocket holes
Symbol
W
T
P0
Value
8
1.1 max.
4
1.5
-0/+0.1
1.75
3.5
2
0.10 max.
6.25 min.
0.75 min.
4
2
D0
Distance
Distance (center to center)
Distance (center to center)
Cover tape thickness
Distance
Distance
Component pitch
0805/0603
0402
CAVITY SIZE
SEE NOTE 1
A0
CENTER LINES
OF CAVITY
E1
F
P2
T1
E2
G
P1
P1
User Direction of Feed
Tolerance
-.0.1/+0.3
±0.1
±0.1
±0.1
±0.05
±0.05
±0.1
±0.1
+0
ø180 (7.09) - 2 (.079)
+ 0.15 (.006)
Reel
ø 62 (2.44)
± 1.5 (.059)
Direction of unreeling
ø 12.75 (.502) - 0
Reel
according to
ISO/DIS 3639-2
8.4 (.331)
14.4 (.567)
max.
+0.15 (.006)
Upper side
Bottom side
+ 0.5 (.020)
ø 20.5 (.087) - 0
QUANTITY PER REEL
Type
NB - NC 12
NB 21
Suffix
BB
BF
Qty Per Reel
4000
2000
17
Surface Mounting Guide
Chip Thermistor – Application Notes
Wave
STORAGE
300
Good solderability is maintained for at least twelve months,
provided the components are stored in their “as received”
packaging at less than 40°C and 70% RH.
Preheat
Solder Temp.
SOLDERABILITY / LEACHING
Terminations to be well soldered after immersion in a 60/40
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds.
Terminations will resist leaching for at least the immersion
times and conditions recommendations shown below.
P/N
Termination
Type
AgPdPt
Nickel Barrier
NC
NB
Solder
Tin/Lead
60/40
60/40
Solder
Temp ºC
260 ± 5
260 ± 5
T
200
230ºC
to
250ºC
150
100
50
0
Immersion
Time Seconds
15 max
30 ± 1
NB products are compatible with a wide range of soldering
conditions consistent with good manufacturing practice for
surface mount components. This includes Pb free reflow
processes with peak temperatures up to 270ºC.
Recommended profiles for reflow and wave soldering are
shown below for reference.
NC products are recommended for lead soldering application
or gluing techniques.
Natural
Cooling
250
1 to 2 min
3 sec. max
(Preheat chips before soldering)
T/maximum 150°C
a) The visual standards used for evaluation of solder joints
will need to be modified as lead free joints are not as bright
as with tin-lead pastes and the fillet may not be as large.
b) Resin color may darken slightly due to the increase in
temperature required for the new pastes.
c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting
pads are acceptable, but machine set up may need to be
modified.
Reflow
300
D2
RECOMMENDED
SOLDERING PAD
LAYOUT
Natural
Cooling
Preheat
Solder Temp.
250
Dimensions in
mm (inches)
220ºC
to
250ºC
150
100
Case
Size
1min
1min
P/N
0402
NB23
0603
NB21
0805
NB12
1206
NB20
10 sec. max
(Minimize soldering time)
Temperature °C
D5
REFLOW SOLDERING
0
D1
D2
D3
D4
D5
1.70
(.067)
2.30
(.091)
3.00
(.118)
4.00
(.157)
0.60
(.024)
0.80
(.031)
1.00
(.039)
1.00
(.039)
0.50
(.020)
0.70
(.028)
1.00
(.039)
2.00
(.079)
0.60
(.024)
0.80
(0.31)
1.00
(.039)
1.00
(.039)
0.50
(.020)
0.75
(.030)
1.25
(.049)
2.50
(.098)
WAVE SOLDERING
50
100
150
• Pre-heating: 150°C ±15°C / 60-90s
• Max. Peak Gradient: 2.5°C/s
• Peak Temperature: 245°C ±5°C
• Time at >230°C: 40s Max.
18
D3
D4
200
50
300
250
200
150
100
50
0
0
D1
200
250
Time (s)
300
Case
Size
P/N
0603
NB21
0805
NB12
1206
NB20
D1
D2
D3
D4
D5
3.10
(.122)
4.00
(.157)
5.00
(.197)
1.20
(.047)
1.50
(.059)
1.50
(.059)
0.70
(.028)
1.00
(.039)
2.00
(.079)
1.20
(.047)
1.50
(.059)
1.50
(.059)
0.75
(.030)
1.25
(.049)
1.60
(.063)
NTC Accurate Thermistors
NJ 28 – NI 24 – NK 20
High precision resistance and an outstanding ability to
reproduce the sensibility index B, make these ranges of
products the types of thermistors ideal for temperature
measurement applications.
Leaded or unleaded, these small size and rapid response
time thermistors are able to meet the most accurate
requirements.
NJ 28
NP 30
NI 24
NK 20
Finish
Coated chip with phenolic
resin + varnish
+ tinned copper wires
Coated chip with epoxy
AWG30 insulated leads
+ Silver plated nickel wires
Chip
Coated chip with epoxy
Marking
0.4 (.016) +10%
-15%
2.4 (.094) max
3 (.118) max
3 (.118) max
2.4 (.094) max
0.57 (.022) +7%
-7%
1.
± 75 (
0. .0
25 69
(0 )
.1
0)
3.0 (.118) max
35 (1.38) min
%
0.4 (.016) +10
- 15%
35 (1.38) min
millimeters (inches)
3.0 (.118) max
3 (.118) max
DIMENSIONS:
35 (1.38) min
2.8 (.110) max 2.8 (.110) max
0.75 (.030) ± 0.25 (.010)
Types
1.75 (.069) ± 0.25 (0.10)
On packaging only
Operating temperature
-55°C to +150°C
Tolerance on Rn (25°C)
±1%, ±2%, ±3%
Maximum dissipation at 25°C
Thermal dissipation factor*
0.16 W
3 mW/°C
3 mW/°C
2 mW/°C
8s
8s
6s
Thermal time constant
Response time
<2s
TABLE OF VALUES
Types
N_ _ _ KA 0202
N_ _ _ MA 0302
N_ _ _ MA 0502
N_ _ _ MA 0103
N_ _ _ NA 0103
N_ _ _ PA 0203
N_ _ _ QA 0503
N_ _ _ RA 0104
Rn at 25°C (Ω)
2,000
3,000
5,000
10,000
10,000
20,000
50,000
100,000
Material Code
KA
MA
MA
MA
NA
PA
QA
RA
B (K)
3625 ± 1%
3960 ± 0.5%
3960 ± 0.5%
3960 ± 0.5%
4100 ± 1%
4235 ± 1%
4250 ± 1%
4380 ± 1%
␣ at 25°C (%/°C)
– 4.1
– 4.5
– 4.5
– 4.5
– 4.6
– 4.8
– 4.8
– 4.9
* – = Add type as outlined above (Example NJ 2 8).
Resistance - Temperature characteristics: pages 29 to 33.
HOW TO ORDER
NJ28
MA
0502
Type
Material Code
MA
(See table above)
Resistance
5 kΩ
F--
Tolerance
F (±1%)
19
NTC Thermistors Manufacturing Process
NJ 28 – NI 24 – NK 20
20
NTC Disc Thermistors
ND 03/06/09 • NE 03/06/09 • NV 06/09
APPLICATIONS
• Commodity Product: 2 families
ND or NE : general purpose
NV : professional
• Alarm and temperature measurement application
• Temperature regulation application
• Level detection application
• Compensation application
TECHNOLOGY
• ND: epoxy-phenolic resin coating
NE: epoxy resin coating (recommended for severe
mounting conditions)
NV: epoxy varnish coating
• Leads: Radial copper wire tinned
• Marking: on package only for ND03 & NE03
ND/NE 06/09:Nominal resistance and tolerance for
±5%, ±10%
NV06/09:
Nominal resistance and tolerance
• Delivery Mode: Bulk, reeled or ammopacked
Leaded Discs
N.03
N.06
N.09
PERFORMANCE CHARACTERISTICS
General purpose
Types
ND03 or NE03
Climatic category
Operating Temperature
Tolerance on Rn
(25°C)
ND06 or NE06
Professional
ND09 or NE09
NV06
NV09
55/125/56-434
–55 to +150°C
±2%, ±5%, ±10%
–55 to +150°C
330Ω to 1MΩ : ±
5, 10, 20%
1500Ω to 150 kΩ : ±
3%
–55 to +150°C
±5%, ±10%, ±20%
–55 to +150°C
±5%, ±10%, ±20%
55/125/56-434
–55 to +150°C
±2%, ±5%, ±10%
0.25 W
0.71 W
0.9 W
0.69 W
0.85 W
5 mW/°C
10 s
< 3s
7.1 mW/°C
22 s
9 mW/°C
30 s
6.9 mW/°C
18 s
8.5 mW/°C
30 s
Maximum dissipation
at 25°C
Thermal dissipation
factor
Thermal time constant
Response time
STANDARDIZATION
OPTIONS
NV range : approved by NFC 93271
Type: TN115 A for NV06
TN116 for NV09
List: GAM-T1
List: LNZ
Consult factory for availability of options:
• other nominal resistance values
• other tolerances
• alternative lead materials or lengths
• controlled dimensions
21
NTC Disc Thermistors
ND/NE 03
TABLE OF VALUES
ND03/NE03 TYPE
ND03/NE03
3.5 (.138) max
35 (1.38) min
3 (.118) max
3 (.118) max
+10%
ø 0.5 (.020)-0.05
2.54 (0.1)
Part Number
Rn at 25°C (Ω)
Material Code
B (K)
(ΔB/B
(1) ± 5%
(2) ± 3%
)
␣ at 25°C (%/°C)
N_03I00331
N_03I00471
330
470
I
3250 (1)
– 3.7
N_03J00681
N_03J00102
680
1,000
J
3480 (2)
– 3.9
N_03K00152
N_03K00222
1,500
2,200
K
3630 (2)
– 4.0
N_03L00272
N_03L00332
2,700
3,300
L
3790 (2)
– 4.2
N_03M00472
N_03M00682
4,700
6,800
M
3950 (2)
– 4.4
N_03N00103
N_03N00153
10,000
15,000
N
4080 (2)
– 4.6
N_03P00223
N_03P00333
22,000
33,000
P
4220 (2)
– 4.7
N_03Q00473
N_03Q00683
47,000
68,000
Q
4300 (2)
– 4.7
N_03R00104
N_03R00154
100,000
150,000
R
4400 (2)
– 4.8
N_03S00224
220,000
S
4520 (2)
– 5.0
N_03T00334
N_03T00474
330,000
470,000
T
4630 (2)
– 5.1
N_03U00105
1,000,000
U
4840 (2)
– 5.3
22
NTC Disc Thermistors
ND/NE/NV 06
ND06/NE06
6.3 (.248) max
35 (1.38) min
3 (.118) max
35 (1.38) min
NV06
4 (.157) max
6.3 (.248) max
+10%
ø 0.6 (.024)-0.05
5.08 (0.2) 䉱
Part Number
Rn at 25°C (Ω)
Material Code
3.5 (.138) max
3 (.118) max
TABLE OF VALUES
ND06/NE06/NV06
+10%
ø 0.6 (.024)-0.05
5.08 (0.2) 䉱
B (K)
(ΔB/B
(1) ± 5%
(2) ± 3%
)
␣ at 25°C (%/°C)
N_06J00151
N_06J00221
150
220
J
3480 (2)
– 3.9
N_06K00331
N_06K00471
330
470
K
3630 (2)
– 4.0
N_06L00681
N_06L00102
680
1,000
L
3790 (2)
– 4.2
N_06M00152
1,500
M
3950 (2)
– 4.4
N_06N00222
N_06N00332
2,200
3,300
N
4080 (2)
– 4.6
N_06P00472
N_06P00682
N_06P00103
4,700
6,800
10,000
P
4220 (2)
– 4.7
N_06Q00153
N_06Q00223
15,000
22,000
Q
4300 (2)
– 4.7
N_06R00333
33,000
R
4400 (2)
– 4.8
N_06S00473
N_06S00683
47,000
68,000
S
4520 (2)
– 5.0
N_06T00104
100,000
T
4630 (2)
– 5.1
N_06U00154
N_06U00224
N_06U00334
150,000
220,000
330,000
U
4840 (2)
– 5.3
For other resistance values, please consult us.
23
NTC Disc Thermistors
ND/NE/NV 09
TABLE OF VALUES
ND09/NE09/NV09
ND09/NE09
NV09
9.5 (.374) max
35 (.138) min
+10%
ø 0.6 (.024) -0.05
+10%
ø 0.6 (.024) -0.05
5.08 (.02)
Part Number
Rn at 25°C (Ω)
Material Code
3.5 (.138) max
3 (.118) max
5 (.197) max
3 (.118) max
35 (.138) min
9.5 (.375) max
5.08 (.02)
B (K)
(ΔB/B
(1) ± 5%
(2) ± 3%
)
␣ at 25°C (%/°C)
N_09J00680
N_09J00101
68
100
J
3480 (2)
– 3.9
N_09K00151
N_09K00221
150
220
K
3630 (2)
– 4.0
N_09L00331
330
L
3790 (2)
– 4.2
N_09M00471
N_09M00681
470
680
M
3950 (2)
– 4.4
N_09N00102
N_09N00152
1,000
1,500
N
4080 (2)
– 4.6
N_09P00222
N_09P00332
2,200
3,300
P
4220 (2)
– 4.7
N_09Q00472
N_09Q00682
4,700
6,800
Q
4300 (2)
– 4.7
N_09R00103
N_09R00153
10,000
15,000
R
4400 (2)
– 4.8
N_09S00223
22,000
S
4520 (2)
– 5.0
N_09T00333
N_09T00473
33,000
47,000
T
4630 (2)
– 5.1
N_09U00683
N_09U00104
N_09U00154
68,000
100,000
150,000
U
4840 (2)
– 5.3
24
NTC Disc Thermistors
Packaging for Automatic Insertion
PACKAGING AND KINK SUFFIXES
Tables below indicate the suffixes to specify when ordering to
get the required kink and packaging. For devices on tape, it
is necessary to specify the height (H or Ho) which is the
distance between the tape axis (sprocket holes axis) and
the seating plane on the printed circuit board. The following
types can be ordered on tape either in AMMOPACK
(fan folder) or on REEL in accordance with IEC 286-2.
– Straight leads:
H represents the distance between the sprocket holes axis
and the bottom plane of component body (base of resin or
base of stand off).
– Kinked leads and flat leads:
Ho represents the distance between the sprocket holes
axis and the base on the knee (kinked leads) or the bottom
of the flat part (flat leads).
• Reel & Ammopack
millimeters (inches)
Types
Suffix
ND/NE
03
&
NJ28
16
(0.630
16
(0.630
19.5
(0.768
19.5
(0.768
16
(0.630
16
(0.630
19.5
(0.768
19.5
(0.768
16
(0.630
16
(0.630
19.5
(0.768
19.5
(0.768
CA
CB
CC
CD
ND/NE/NV
06/09
H or Ho
DA
DB
DC
DD
DL
DM
DN
DP
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
0.5
0.020)
0.5
0.020)
0.5
0.020)
0.5
0.020)
0.5
0.020)
0.5
0.020)
0.5
0.020)
0.5
0.020)
0.5
0.020)
0.5)
0.020)
0.5
0.020)
0.5
0.020)
Leads
Quantity/Size
Packaging
Straight
3000
AMMOPACK
Straight
3000
REEL
Straight
3000
AMMOPACK
Straight
3000
REEL
Straight
1500
AMMOPACK
Straight
1500
REEL
Straight
1500
AMMOPACK
Straight
1500
REEL
Kinked
1500
AMMOPACK
Kinked
1500
REEL
Kinked
1500
AMMOPACK
Kinked
1500
REEL
NTC
H
Type
ND03
NE03
NJ28
2.54 (0.10)
NTC
Types
ND/NE/NV
06/09
H
Ho
5.08 (0.20)
• Bulk
Type
Quantity/box
ND/NE03
ND/NE06
ND/NE09
NV06
NV09
NI24
NJ28
NK20
3000
1500
1500
100
100
1000
HOW TO ORDER
ND06
P0
0103
K
––
Type
Material Code
P
Resistance
10 kΩ
Tolerance
K (±10%)
Packaging
Bulk
25
Automatic Insertion
NTC Disc Thermistors
TAPING CHARACTERISTICS
Missing components
A maximum of 3 consecutive components may be missing
from the bandolier, surrounded by at least 6 filled positions.
The number of missing components may not exceed 0.5%
of the total per packing module.
DIMENSIONS:
The beginning and the end of tape exhibit 8 or 9 blank
positions.
millimeters (inches)
REEL
AMMOPACK
30 (1.18)
Interlayer
Paper
H
⭋ 8 (.315)
L
42 (1.66)
Inside
I
L
330 (13.0)
h
⭋ 31 (1.22)
I
46 (1.81)
H
290 (11.4)
48(1.99)
Outside
⭋ 360 (14.2)
P
h
p
p
Marking on
this side
Reference plane
H1
P1
W2
H1
E
A
B
H
W0
H0 W1
W
Adhesive
tape
I2
d
D0
P0
Direction of unreeling
Cross section
t
A-B
E
Value
18
6
9
3 max.
Tolerance
+1 / -0.5
±0.3
+0.75 / -0.5
4
16/19.5
±0.2
±0.5
W
W0
W1
W2
D0
H0
H1
26
Dimensions Characteristics
Leading tape width
Adhesive tape width
Sprocket hole position
Distance between the top of the tape and
the adhesive
Diameter of sprocket hole
Distance between the tape axis and the
seating plane of the component
Distance between the tape axis and the top
of component body
Value
12.7
254
Tolerance
±0.2
±1
0.7
±0.2
+0.6
-0.1
2.54
5.08
5.08
P0
–
t
E
3.85
± 0.7
P1
12.7
0.5
0.6
0
0
±1.0
±5%
±1.3
±2
P
d
3P
3h
Dimensions Characteristics
Sprocket holes pitch
Distance between 21 consecutive holes
20 pitches
Total thickness of tape
Lead spacing
Distance between the sprocket hole axis
and the lead axis
Spacing of components
Lead diameter
Verticality of components
Alignment of components
NTC Leadless Disc Thermistors
This type of product is widely used in automotive and
consumer applications.
They are assembled in custom-probes for sensing the
temperature of liquids (water, oil, ...), gases or surface of any
other component.
The metallization covers completely the surfaces of the
thermistor.
The particularly flat and smooth surfaces ensure an excellent
electrical and thermal contact under pressure.
Types
NR
Metallization
Physical data (dim. in mm)
D
Marking
E
On package only / On parts upon request
Operating temperature
-40°C to +200°C
Custom - designed products defined with:
D ± ΔD R1 ± ΔR1/R1 at T1
E ± ΔE R2 ± ΔR2/R2 at T2, . . .
Values and tolerances
DESIGN OF THE THERMISTOR
Choice of the resistances
Choice of the tolerances
If the application is to measure the temperature around a
defined point, a unique nominal resistance can be chosen
(for example, among standard values of the ND range products presented on pages 20 to 24).
When it is required to measure the temperature over selected
ranges T1 –T2 , T2 –T3 , ..., the corresponding resistance
R1 , R2 , R3 , ..., must be such that they can be located
on the R (T) characteristic of an existing NTC material
(for example among standard materials whose R (T) are
displayed on pages 29 to 33).
The resistances must also be compatible with the resistivity
of the material and the dimensions of the thermistor.
The precision of the temperature measurement determines
the calculation of the tolerance on the resistance:
⌬R/R = ␣ (%/°C). ⌬T (°C)
For example, the NTC NR55--3049-99, using “N5” material
(R (T) characteristic displayed on page 31), requires a precision of 1°C over the temperature range 110°C - 120°C.
The tolerances can be calculated:
⌬R110°C /R110°C = 1°C* 2.91%/°C = 2.91%
⌬R120°C /R120°C = 1°C* 2.76%/°C = 2.76%
*For your specific requirements, please consult us.
HOW TO ORDER
NR55 - - 3002 - 99
Type
P/N Code
27
NTC Leadless Disc Thermistors
We present below some examples of our custom - designed
products as an illustration of the different ways to define
products.
DIMENSIONS:
millimeters (inches)
B
(k)
R1 ± ⌬R1
at T1
T1
(°C)
R2 ± ⌬R2
at T2
D
E
Material
Code
NR 55 -- 3002 - 99
5.5 (.217) ± 0.5 (.020)
1.1 (.043) ± 0.4 (.016)
N5
4160 1230 Ω ± 7.5% 40
160 Ω ± 5%
NR 67 -- 3068 - 99
6.7 (.264) ± 0.5 (.020)
1.7 (.067) ± 0.3 (.012)
N
4080
150 Ω ± 3.3% 100
51 Ω ± 5.3%
NR 55 -- 3049 - 99
5.5 (.217) ± 0.5 (.020)
1.0 (.040) ± 0.2 (.008)
N5
4160
107 Ω ± 2.9%
NR 55 -- 3046 - 99
5.5 (.217) ± 0.5 (.020)
1.3 (.051) ± 0.4 (.016)
S
4520 48600 Ω± 7.5%
NR 49 -- 3119 - 99
4.9 (.193) ± 0.3 (.012)
1.5 (.060) ± 0.4 (.016)
M
3950
NR 55 -- 3114 - 99
5.5 (.217) ± 0.4 (.016)
1.0 (.040) ± 0.2 (.008)
P
4220 5000 Ω ± 10%
NR 70 -- 3121 - 99
7.0 (.275) ± 0.3 (.012)
1.2 (.047) ± 0.2 (.008)
L
3790
NR 29 -- 3107 - 99
2.9 (.014) ± 0.3 (.012)
1.7 (.067) ± 0.3 (.012)
K
NR 55 -- 3122 - 99
5.5 (.217) ± 0.5 (.020)
1.5 (.060) ± 0.4 (.016)
J
NR 55 -- 3126 - 99
5.5 (.217) ± 0.5 (.020)
1.0 (.040) ± 0.2 (.008)
P
NR 47 -- 3116 - 99
4.7 (.185) ± 0.4 (.016)
1.2 (.047) ± 0.2 (.008)
R
NR 49 -- 3113 - 99
4.9 (.193) ± 0.3 (.012)
1.2 (.047) ± 0.2 (.008)
N
NR 47 -- 3101 - 99
4.6 (.181) ± 0.3 (.012)
1.4 (.055) ± 0.3 (.012)
J
NR 55 -- 3071 - 99
5.8 (.228) ± 0.3 (.012)
1.0 (.040) ± 0.2 (.008)
NR 61 -- 3063 - 99
6.1 (.240) ± 0.3 (.012)
NR 67 -- 3053 - 99
NR 50 -- 3048 - 99
Types
T2
(°C)
R3 ± ⌬R3
at T3
96.5
T3
(°C)
–
–
140
–
–
80.6 Ω ± 2.8% 120
–
–
3210 Ω ± 5%
90
–
–
84 Ω ± 5%
104.4
–
–
25
–
–
–
–
210 Ω ± 10%
40
40 Ω ± 7.5%
90
30 Ω ± 6.7%
100
3630
2050 Ω ± 6%
25
193 Ω ± 5.4%
96.5
–
–
3480
210 Ω ± 5%
25
–
–
–
–
4220 3340 Ω ± 10%
25
264 Ω ± 7%
90
107 Ω ± 7%
120
4400 33000 Ω ± 2%
25
–
–
–
–
4080 1680 Ω ± 10%
40
382 Ω ± 6.7%
80
176 Ω ± 5%
105
3480
146 Ω ± 13%
40
22 Ω ± 10%
100
–
–
L
3790
262 Ω ± 8.7%
40
120 Ω ± 10%
60
35.5 Ω ± 7.8% 100
1.5 (.060) ± 0.3 (.012)
N
4080
760 Ω ± 9.2%
50
130 Ω ± 8.5%
100
56.6 Ω ± 8.5% 130
6.7 (.264) ± 0.4 (.016)
1.7 (.067) ± 0.3 (.012)
N
4080
540 Ω ± 11%
60
144 Ω ± 7%
100
–
–
5.0 (.197) ± 0.5 (.020)
1.5 (.060) ± 0.5 (.020)
J
3480
233 Ω ± 10%
25
13.3 Ω ± 7%
121
–
–
NR 60 -- 3021 - 99
6.0 (.236) ± 0.5 (.020)
3.2 (.125) ± 0.3 (.012)
P
4220
3640 Ω ± 3%
40
457 Ω ± 3%
96.5
–
–
NR 55 -- 3016 - 99
5.5 (.217) ± 0.5 (.020)
1.1 (.043) ± 0.4 (.016)
Q
4300
5500 Ω ± 9%
40
650 Ω ± 7.7%
96.5
–
–
Resistance - Temperature characteristics: pages 29 to 33.
28
840 Ω ± 10%
110
25
37.8
Tables of Resistance vs Temperature
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
T
(°C)
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
R (T) / R25
42.35
31.48
23.63
17.91
13.70
10.58
8.232
6.460
5.110
4.072
3.268
2.641
2.148
1.759
1.449
1.200
1.000
.8377
.7054
.5969
.5076
.4336
.3720
.3206
.2774
.2410
.2102
.1839
.1616
.1424
.1259
.1117
.09938
.08869
.07938
.07124
.06410
.05783
.05230
.04741
.04308
.03924
I 3250
TF (%)
21.9
20.0
18.1
16.3
14.6
13.1
11.6
10.1
8.8
7.5
6.3
5.1
4.0
2.9
1.9
0.9
0.0
0.9
1.8
2.6
3.5
4.3
5.1
5.9
6.6
7.4
8.1
8.8
9.5
10.2
10.9
11.5
12.2
12.8
13.4
14.0
14.6
15.2
15.7
16.3
16.8
17.4
R (T) / R25
61.21
44.24
32.33
23.88
17.81
13.41
10.19
7.814
6.040
4.707
3.696
2.923
2.329
1.867
1.507
1.224
1.0000
.8217
.6788
.5638
.4707
.3948
.3328
.2818
.2396
.2046
.1754
.1510
.1305
.1131
.09846
.08597
.07531
.06618
.05834
.05158
.04573
.04066
.03625
.03240
.02903
.02608
KA 3625
TF (%)
7.1
6.1
5.3
4.5
3.8
3.2
2.7
2.2
1.8
1.5
1.1
.9
.6
.4
.3
.1
0.0
.1
.2
.4
.5
.7
.9
1.0
1.2
1.4
1.6
1.8
2.0
2.3
2.5
2.7
2.9
3.1
3.4
3.6
3.8
4.0
4.3
4.5
4.7
5.0
α (%/°C)
- 5.98
- 5.78
- 5.59
- 5.41
- 5.23
- 5.06
- 4.90
- 4.74
- 4.59
- 4.45
- 4.31
- 4.18
- 4.05
- 3.92
- 3.81
- 3.69
- 3.58
- 3.48
- 3.38
- 3.28
- 3.19
- 3.10
- 3.01
- 2.93
- 2.85
- 2.77
- 2.70
- 2.63
- 2.56
- 2.49
- 2.43
- 2.36
- 2.30
- 2.25
- 2.19
- 2.14
- 2.08
- 2.03
- 1.98
- 1.94
- 1.89
- 1.85
Material code B (K)
J-J5 3480
R (T) / R25
TF (%)
α (%/°C)
51.74
20.5
- 6.43
37.97
17.7
- 6.21
28.15
15.2
- 6.01
21.07
13.0
- 5.81
15.91
11.0
- 5.62
12.13
9.3
- 5.44
9.320
7.8
- 5.26
7.221
6.4
- 5.10
5.640
5.2
- 4.94
4.438
4.2
- 4.78
3.517
3.3
- 4.64
2.807
2.5
- 4.50
2.255
1.8
- 4.36
1.824
1.2
- 4.23
1.484
0.7
- 4.10
1.215
0.3
- 3.98
1.0000
0.0
- 3.87
.8278
0.3
- 3.76
.6889
0.7
- 3.65
.5763
1.1
- 3.55
.4845
1.5
- 3.45
.4092
2.0
- 3.35
.3473
2.5
- 3.26
.2960
3.0
- 3.17
.2534
3.5
- 3.09
.2178
4.1
- 3.01
.1879
4.7
- 2.93
.1628
5.3
- 2.85
.1415
5.9
- 2.78
.1235
6.5
- 2.70
.1081
7.1
- 2.64
.09500
7.7
- 2.57
.08373
8.4
- 2.50
.07403
9.0
- 2.44
.06565
9.7
- 2.38
.05838
10.3
- 2.33
.05207
11.0
- 2.27
.04567
11.6
- 2.22
.04175
12.3
- 2.16
.03753
13.0
- 2.11
.03382
13.6
- 2.06
.03055
14.3
- 2.02
R (T) / R25
56.26
41.21
30.47
22.73
17.11
12.98
9.930
7.654
5.945
4.650
3.663
2.905
2.319
1.862
1.505
1.223
1.0000
.8219
.6792
.5641
.4708
.3949
.3327
.2816
.2393
.2043
.1751
.1507
.1301
.1128
.09812
.08565
.07502
.06592
.05810
.05137
.04555
.04050
.03611
.03229
.02894
.02600
K 3630
TF (%)
21.4
18.5
15.9
13.6
11.5
9.7
8.1
6.7
5.4
4.4
3.4
2.6
1.9
1.3
0.8
0.3
0.0
0.3
0.7
1.1
1.6
2.1
2.6
3.1
3.7
4.3
4.9
5.5
6.1
6.8
7.4
8.1
8.7
9.4
10.1
10.8
11.5
12.2
12.8
13.5
14.2
14.9
α (%/°C)
- 6.46
- 6.26
- 6.06
- 5.88
- 5.70
- 5.53
- 5.36
- 5.21
- 5.05
- 4.91
- 4.76
- 4.63
- 4.50
- 4.37
- 4.25
- 4.13
- 4.01
- 3.90
- 3.80
- 3.69
- 3.59
- 3.50
- 3.41
- 3.32
- 3.23
- 3.14
- 3.06
- 2.99
- 2.91
- 2.84
- 2.77
- 2.70
- 2.63
- 2.57
- 2.50
- 2.44
- 2.39
- 2.33
- 2.27
- 2.22
- 2.17
- 2.12
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
α (%/°C)
- 6.77
- 6.53
- 6.30
- 6.08
- 5.88
- 5.68
- 5.49
- 5.31
- 5.14
- 4.98
- 4.83
- 4.68
- 4.53
- 4.40
- 4.27
- 4.14
- 4.02
- 3.91
- 3.80
- 3.69
- 3.59
- 3.49
- 3.40
- 3.31
- 3.22
- 3.14
- 3.06
- 2.98
- 2.90
- 2.83
- 2.76
- 2.69
- 2.63
- 2.56
- 2.50
- 2.44
- 2.39
- 2.33
- 2.28
- 2.23
- 2.18
- 2.13
Material code B (K)
KC 3470
R (T) / R25
TF (%)
α (%/°C)
60.08
34.0
- 7.00
43.19
29.4
- 6.71
31.42
25.3
- 6.44
23.13
21.6
- 6.18
17.22
18.4
- 5.94
12.95
15.5
- 5.71
9.842
12.9
- 5.49
7.550
10.7
- 5.29
5.845
8.7
- 5.10
4.564
6.9
- 4.91
3.594
5.4
- 4.74
2.853
4.1
- 4.58
2.281
3.0
- 4.42
1.838
2.0
- 4.27
1.491
1.2
- 4.13
1.217
0.5
- 4.00
1.0000
0.0
- 3.90
.8267
0.5
- 3.74
.6873
1.1
- 3.63
.5747
1.8
- 3.52
.4830
2.5
- 3.41
.4081
3.3
- 3.31
.3465
4.1
- 3.21
.2955
5.0
- 3.12
.2532
5.9
- 3.03
.2179
6.8
- 2.94
.1883
7.8
- 2.86
.1634
8.7
- 2.78
.1423
9.7
- 2.71
.12441
10.8
- 2.63
.10915
11.8
- 2.56
.09608
12.9
- 2.50
.08486
13.9
- 2.43
.07519
15.0
- 2.37
.06683
16.1
- 2.31
.05957
17.2
- 2.25
.05325
18.3
- 2.20
.04774
19.4
- 2.14
.04290
20.5
- 2.09
.03866
21.6
- 2.04
.03492
22.7
- 1.99
.03162
23.8
- 1.95
R (T) / R25
82.52
58.01
41.30
29.75
21.67
15.96
11.88
8.930
6.776
5.188
4.007
3.120
2.449
1.937
1.543
1.238
1.0000
.8129
.6648
.5409
.4525
.3765
.3148
.2646
.2235
.1896
.1616
.1383
.1189
.1026
.08889
.07729
.06745
.05906
.05189
.04573
.04043
.03585
.03188
.02843
.02543
.02279
L 3790
TF (%)
22.3
19.3
16.6
14.2
12.0
10.1
8.5
7.0
5.7
4.5
3.6
2.7
2.0
1.3
.8
.4
0.0
.3
.7
1.2
1.6
2.2
2.7
3.3
3.8
4.5
5.1
5.7
6.4
7.1
7.7
8.4
9.1
9.8
10.5
11.3
12.0
12.7
13.4
14.1
14.8
15.6
α (%/°C)
- 7.38
- 7.11
- 6.84
- 6.60
- 6.36
- 6.13
- 5.92
- 5.72
- 5.32
- 5.34
- 5.16
- 4.99
- 4.83
- 4.68
- 4.53
- 4.39
- 4.25
- 4.12
- 4.00
- 3.88
- 3.77
- 3.66
- 3.55
- 3.45
- 3.36
- 3.26
- 3.17
- 3.09
- 3.00
- 2.92
- 2.85
- 2.77
- 2.70
- 2.63
- 2.57
- 2.50
- 2.44
- 2.38
- 2.33
- 2.27
- 2.22
- 2.17
T
(°C)
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
29
Tables of Resistance vs Temperature
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
T
(°C)
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
30
R (T) / R25
62.45
45.40
33.33
24.70
18.47
13.92
10.58
8.110
6.260
4.867
3.810
3.003
2.382
1.901
1.526
1.232
1.0000
.8161
.6694
.5518
.4570
.3802
.3178
.2667
.2248
.1902
.1615
.1377
.1179
.1012
.08721
.07539
.06538
.05688
.04963
.04343
.03812
.03354
.02960
.02618
.02322
.02064
L2 3805
TF (%)
22.4
19.3
16.6
14.2
12.1
10.2
8.5
7.0
5.7
4.6
3.6
2.7
2.0
1.3
0.8
0.4
0.0
0.3
0.7
1.2
1.7
2.2
2.7
3.3
3.9
4.5
5.1
5.8
6.4
7.1
7.8
8.5
9.2
9.9
10.6
11.3
12.0
12.7
13.5
14.2
14.9
15.6
R (T) / R25
100.6
69.29
48.41
34.27
24.57
17.83
13.09
9.714
7.283
5.515
4.215
3.251
2.528
1.983
1.567
1.247
1.0000
.8072
.6558
.5361
.4409
.3647
.3033
.2535
.2130
.1798
.1525
.1299
.1112
.09551
.08238
.07132
.06198
.05405
.04730
.04153
.03657
.03231
.02863
.02544
.02267
.02025
MC 3910
TF (%)
23.0
19.9
17.1
14.6
12.4
10.5
8.7
7.2
5.9
4.7
3.7
2.8
2.0
1.4
0.8
0.4
0.0
0.4
0.8
1.2
1.7
2.2
2.8
3.4
4.0
4.6
5.2
5.9
6.6
7.3
8.0
8.7
9.4
10.1
10.9
11.6
12.3
13.1
13.8
14.6
15.3
16.1
α (%/°C)
- 6.4
- 6.2
- 6.0
- 5.9
- 5.7
- 5.5
- 5.4
- 5.2
- 5.1
- 4.9
- 4.8
- 4.7
- 4.5
- 4.4
- 4.3
- 4.2
- 4.1
- 4.0
- 3.9
- 3.8
- 3.7
- 3.6
- 3.5
- 3.5
- 3.4
- 3.3
- 3.2
- 3.1
- 3.1
- 3.0
- 2.9
- 2.9
- 2.8
- 2.8
- 2.7
- 2.6
- 2.6
- 2.5
- 2.5
- 2.4
- 2.4
- 2.3
Material code B (K)
M 3950
R (T) / R25
TF (%)
α (%/°C)
99.56
23.2
- 7.71
68.95
20.1
- 7.42
48.38
17.3
- 7.15
34.37
14.8
- 6.89
24.71
12.5
- 6.64
17.96
10.6
- 6.41
13.20
8.8
- 6.18
9.803
7.3
- 5.97
7.351
5.9
- 5.77
5.585
4.7
- 5.57
4.251
3.7
- 5.39
3.275
2.8
- 5.21
2.544
2.0
- 5.04
1.992
1.4
- 4.88
1.572
.8
- 4.73
1.249
.4
- 4.58
1.0000
0.0
- 4.44
.8057
.4
- 4.30
.6534
.8
- 4.17
.5331
1.2
- 4.05
.4376
1.7
- 3.93
.3612
2.2
-3.81
.2998
2.8
- 3.71
.2501
3.4
- 3.60
.2097
4.0
- 3.50
.1767
4.6
- 3.40
.1496
5.3
- 3.31
.1272
6.0
- 3.22
.1087
6.7
- 3.13
.09321
7.4
- 3.05
.08027
8.1
- 2.97
.06939
8.8
- 2.89
.06020
9.5
- 2.82
.05243
10.2
- 2.75
.04581
11.0
- 2.68
.04017
11.7
- 2.61
.03533
12.5
- 2.55
.03117
13.2
- 2.48
.02759
14.0
- 2.42
.02449
14.7
- 2.37
.02180
15.5
- 2.31
.01945
16.2
- 2.26
R (T) / R25
104.2
71.63
49.94
35.28
25.25
18.28
13.39
9.917
7.419
5.605
4.275
3.289
2.552
1.997
1.574
1.250
1.0000
.8053
.6527
.5323
.4367
.3604
.2990
.2493
.2090
.1760
.1489
.1266
.1081
.09262
.07970
.06885
.05969
.05194
.04535
.03973
.03491
.03077
.02721
.02412
.02145
.01912
MA 3960
TF (%)
3.9
3.4
2.9
2.5
2.1
1.8
1.5
1.2
1.0
.8
.6
.5
.3
.2
.1
.1
0.0
.1
.1
.2
.3
.4
.5
.6
.7
.8
.9
1.0
1.1
1.2
1.3
1.5
1.6
1.7
1.8
2.0
2.1
2.2
2.3
2.5
2.6
2.7
α (%/°C)
- 7.89
- 7.57
- 7.28
- 7.00
- 6.73
- 6.48
- 6.25
- 6.02
- 5.81
- 5.61
- 5.42
- 5.24
- 5.06
- 4.90
- 4.74
- 4.59
- 4.45
- 4.31
- 4.18
- 4.06
- 3.94
- 3.82
- 3.71
- 3.61
- 3.51
- 3.41
- 3.32
- 3.23
- 3.14
- 3.06
- 2.98
- 2.91
- 2.83
- 2.76
- 2.69
- 2.63
- 2.56
- 2.50
- 2.44
- 2.39
- 2.33
- 2.28
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
α (%/°C)
- 7.88
- 7.55
- 7.24
- 6.96
- 6.68
- 6.42
- 6.18
- 5.95
- 5.73
- 5.53
- 5.33
- 5.15
- 4.97
- 4.80
- 4.65
- 4.49
- 4.40
- 4.21
- 4.08
- 3.96
- 3.84
- 3.72
- 3.61
- 3.51
- 3.41
- 3.31
- 3.22
- 3.13
- 3.05
- 2.97
- 2.89
- 2.81
- 2.74
- 2.67
- 2.60
- 2.54
- 2.48
- 2.42
- 2.36
- 2.30
- 2.25
- 2.20
Material code B (K)
N 4080
R (T) / R25
TF (%)
α (%/°C)
110.1
24.0
- 7.81
75.90
20.7
- 7.53
52.98
17.8
- 7.26
37.43
15.2
- 7.01
26.75
12.9
- 6.77
19.33
10.9
- 6.54
14.12
9.1
- 6.32
10.41
7.5
- 6.10
7.758
6.1
- 5.90
5.834
4.9
- 5.71
4.426
3.8
- 5.53
3.387
2.9
- 5.35
2.614
2.1
- 5.18
2.033
1.4
- 5.02
1.593
.9
- 4.87
1.258
.4
- 4.72
1.0000
0.0
- 4.57
.8004
.4
- 4.44
.6448
.8
- 4.31
.5228
1.3
- 4.18
.4264
1.8
- 4.06
.3497
2.3
- 3.94
.2885
2.9
- 3.83
.2392
3.5
- 3.72
.1994
4.1
- 3.62
.1671
4.8
- 3.52
.1406
5.5
- 3.42
.1189
6.2
- 3.33
.1010
6.9
- 3.24
.08617
7.6
- 3.16
.07381
8.3
- 3.07
.06347
9.1
- 2.99
.05480
9.8
- 2.92
.04148
10.6
- 2.84
.04129
11.3
- 2.77
.03603
12.1
- 2.70
.03155
12.9
- 2.64
.02771
13.7
- 2.57
.02442
14.4
- 2.51
.02158
15.2
- 2.45
.01913
16.0
- 2.39
.01700
16.8
- 2.34
R (T) / R25
109.5
75.42
52.63
37.18
26.58
19.22
14.04
10.37
7.730
5.817
4.416
3.382
2.611
2.032
1.593
1.258
1.0000
.8004
.6446
.5224
.4258
.3491
.2877
.2383
.1984
.1660
.1396
.1178
.09991
.08507
.07273
.06241
.05376
.04648
.04032
.03510
.03065
.02685
.02359
.02079
.01838
.01629
NA 4100
TF (%)
8.0
6.9
6.0
5.1
4.3
3.7
3.1
2.5
2.1
1.6
1.3
1.0
.7
.5
.3
.1
0.0
.1
.3
.4
.6
.8
1.0
1.2
1.4
1.6
1.8
2.1
2.3
2.5
2.8
3.0
3.3
3.5
3.8
4.1
4.3
4.6
4.8
5.1
5.4
5.6
α (%/°C)
- 7.83
- 7.54
- 7.27
- 7.01
- 6.76
- 6.52
- 6.30
- 6.09
- 5.89
- 5.70
- 5.51
- 5.34
- 5.17
- 5.01
- 4.86
- 4.71
- 4.57
- 4.44
- 4.31
- 4.19
- 4.07
- 3.96
- 3.85
- 3.74
- 3.64
- 3.55
- 3.45
- 3.36
- 3.28
- 3.20
- 3.12
- 3.04
- 2.96
- 2.89
- 2.82
- 2.76
- 2.69
- 2.63
- 2.57
- 2.51
- 2.45
- 2.40
T
(°C)
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
Tables of Resistance vs Temperature
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
R (T) / R25
105.44
72.89
51.04
36.18
25.94
18.81
13.78
10.20
7.621
5.748
4.373
3.355
2.595
2.023
1.588
1.256
1.0000
.8014
.6463
.5243
.4278
.3510
.2896
.2401
.2001
.1675
.1409
.1190
.1010
.08605
.07360
.06319
.05446
.04710
.04087
.03559
.03109
.02724
.02394
.02111
.01866
.01654
NC 4080
TF (%)
24.0
20.7
17.8
15.2
12.9
10.9
9.1
7.5
6.1
4.9
3.8
2.9
2.1
1.4
0.9
0.4
0.0
0.4
0.8
1.3
1.8
2.3
2.9
3.5
4.1
4.8
5.5
6.2
6.9
7.6
8.3
9.1
9.8
10.6
11.3
12.1
12.9
13.7
14.4
15.2
16.0
16.8
R (T) / R25
121.3
83.32
57.91
40.71
28.95
20.80
15.10
11.07
8.196
6.123
4.615
3.507
2.688
2.078
1.616
1.267
1.0000
.7949
.6360
.5120
.4148
.3380
.2769
.2282
.1890
.1573
.1316
.1106
.09338
.07919
.06744
.05767
.04951
.04267
.03691
.03204
.02791
.02440
.02139
.01882
.01660
.01469
P 4220
TF (%)
24.8
21.4
18.4
15.8
13.4
11.3
9.4
7.8
6.3
5.1
4.0
3.0
2.2
1.5
.9
.4
0.0
.4
.8
1.3
1.8
2.4
3.0
3.6
4.3
5.0
5.7
6.4
7.1
7.9
8.6
9.4
10.2
10.9
11.7
12.5
13.3
14.1
14.9
15.7
16.5
17.3
α (%/°C)
- 7.5
- 7.2
- 7.0
- 6.7
- 6.5
- 6.3
- 6.1
- 5.9
- 5.7
- 5.5
- 5.4
- 5.2
- 5.0
- 4.9
- 4.7
- 4.6
- 4.5
- 4.4
- 4.2
- 4.1
- 4.0
- 3.9
- 3.8
- 3.7
- 3.6
- 3.5
- 3.4
- 3.3
- 3.2
- 3.2
- 3.1
- 3.0
- 2.9
- 2.9
- 2.8
- 2.7
- 2.7
- 2.6
- 2.5
- 2.5
- 2.4
- 2.4
Material code B (K)
NE 4100
R (T) / R25
TF (%)
α (%/°C)
97.27
24.1
- 7.2
67.99
20.8
- 7.0
48.08
17.9
- 6.8
34.39
15.3
- 6.5
24.85
13.0
- 6.3
18.15
11.0
- 6.1
13.38
9.2
- 6.0
9.96
7.6
- 5.8
7.479
6.2
- 5.6
5.664
4.9
- 5.4
4.325
3.8
- 5.3
3.328
2.9
- 5.1
2.581
2.1
- 5.0
2.016
1.4
- 4.9
1.585
0.9
- 4.7
1.255
0.4
- 4.6
1.0000
0.0
- 4.5
.8017
0.4
- 4.3
.6466
0.8
- 4.2
.5245
1.3
- 4.1
.4278
1.8
- 4.0
.3508
2.3
- 3.9
.2891
2.9
- 3.8
.2394
3.5
- 3.7
.1992
4.2
- 3.6
.1666
4.8
- 3.5
.1399
5.5
- 3.4
.11794
6.2
- 3.4
.09987
6.9
- 3.3
.08491
7.6
- 3.2
.07246
8.4
- 3.1
.06207
9.1
- 3.1
.05336
9.9
-3.0
.04604
10.6
- 2.9
.03985
11.4
- 2.8
.03461
12.2
- 2.8
.03015
12.9
-2.7
.02635
13.7
- 2.7
.02309
14.5
- 2.6
.02030
15.3
- 2.5
.01789
16.1
- 2.5
.01581
16.8
- 2.4
R (T) / R25
115.8
79.70
55.53
39.14
27.90
20.11
14.64
10.77
7.995
5.991
4.529
3.453
2.655
2.057
1.606
1.263
1.0000
.7973
.6398
.5167
.4198
.3430
.2819
.2329
.1934
.1615
.1354
.1141
.09660
.08212
.07011
.06010
.05172
.04467
.03873
.03370
.02942
.02576
.02264
.01995
.01764
.01564
N5
TF (%)
16.3
14.1
12.1
10.4
8.8
7.4
6.2
5.1
4.2
3.3
2.6
2.0
1.4
1.0
.6
.3
0.0
.3
.5
.9
1.2
1.6
2.0
2.4
2.8
3.3
3.7
4.2
4.7
5.2
5.7
6.2
6.7
7.2
7.7
8.2
8.8
9.3
9.8
10.3
10.9
11.4
α (%/°C)
- 7.83
- 7.56
- 7.30
- 7.06
- 6.82
- 6.60
- 6.38
- 6.17
- 5.97
- 5.78
- 5.60
- 5.43
- 5.26
- 5.10
- 4.95
- 4.80
- 4.65
- 4.52
- 4.39
- 4.26
- 4.14
- 4.02
- 3.91
- 3.80
- 3.69
- 3.59
- 3.50
- 3.40
- 3.31
- 3.23
- 3.14
- 3.06
- 2.98
- 2.91
- 2.83
- 2.76
- 2.70
- 2.63
- 2.57
- 2.51
- 2.45
- 2.39
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
α (%/°C)
- 7.88
- 7.61
- 7.36
- 7.11
- 6.88
- 6.66
- 6.44
- 6.24
- 6.04
- 5.85
- 5.67
- 5.49
- 5.33
- 5.16
- 5.01
- 4.86
- 4.72
- 4.58
- 4.45
- 4.32
- 4.20
- 4.06
- 3.96
- 3.86
- 3.75
- 3.65
- 3.55
- 3.45
- 3.36
- 3.28
- 3.19
- 3.11
- 3.03
- 2.95
- 2.88
- 2.81
- 2.74
- 2.67
- 2.61
- 2.55
- 2.49
- 2.43
Material code B (K)
PA 4235
R (T) / R25
TF (%)
α (%/°C)
23.3
8.3
- 8.00
84.31
7.2
- 7.71
58.37
6.2
- 7.43
40.92
5.3
-7.17
29.03
4.5
- 6.92
20.83
3.8
- 6.69
15.10
3.2
- 6.46
11.07
2.6
- 6.25
8.189
2.1
- 6.05
6.117
1.7
- 5.85
4.610
1.3
- 5.67
3.504
1.0
- 5.49
2.686
.7
- 5.32
2.075
.5
- 5.16
1.615
.3
- 5.01
1.266
.1
- 4.86
1.0000
0.0
- 4.72
.7949
.1
- 4.58
.6359
.3
- 4.45
.5119
.4
- 4.32
.4145
.6
- 4.20
.3376
.8
- 4.09
.2765
1.0
- 3.98
.2276
1.2
- 3.87
.1883
1.4
- 3.77
.1566
1.7
- 3.67
.1308
1.9
- 3.58
.1098
2.1
- 3.48
.09258
2.4
- 3.40
.07838
2.6
- 3.31
.06662
2.9
- 3.23
.05686
3.1
- 3.15
.04871
3.4
- 3.07
.04189
3.7
- 3.00
.03614
3.9
- 2.93
.03130
4.2
- 2.86
.02719
4.5
- 2.79
.02370
4.7
- 2.73
.02072
5.0
- 2.67
.01817
5.3
- 2.61
.01598
5.5
- 2.55
.01410
5.8
- 2.49
R (T) / R25
98.02
69.51
49.72
35.86
26.08
19.12
14.12
10.51
7.876
5.946
4.520
3.460
2.666
2.067
1.613
1.266
1.0000
.7944
.6347
.5099
.4119
.3345
.2730
.2239
.1846
.1529
.1272
.1063
.08928
.07527
.06373
.05417
.04623
.03961
.03405
.02939
.02545
.02211
.01928
.01686
.01479
.01302
Q 4300
TF (%)
25.5
22.0
18.9
16.2
13.7
11.6
9.7
8.0
6.5
5.2
4.1
3.1
2.2
1.5
.9
.4
0.0
.4
.8
1.3
1.9
2.5
3.1
3.7
4.4
5.1
5.8
6.5
7.3
8.1
8.8
9.6
10.4
11.2
12.0
12.9
13.7
14.5
15.3
16.1
17.0
17.8
α (%/°C)
- 7.14
- 6.95
- 6.77
- 6.59
- 6.42
- 6.26
- 6.10
- 5.94
- 5.79
- 5.64
- 5.50
- 5.36
- 5.23
- 5.09
- 4.96
- 4.84
- 4.72
- 4.60
- 4.48
- 4.37
- 4.26
- 4.15
- 4.05
- 3.95
- 3.85
- 3.75
- 3.66
- 3.57
- 3.48
- 3.39
- 3.31
- 3.23
- 3.15
- 3.07
- 3.00
- 2.93
- 2.86
- 2.79
- 2.72
- 2.66
- 2.60
- 2.54
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
31
Tables of Resistance vs Temperature
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
32
R (T) / R25
1101.8
71.33
50.51
36.14
26.11
19.05
14.02
10.41
7.791
5.879
4.470
3.424
2.642
2.052
1.605
1.263
1.0000
.7965
.6380
.5139
.4162
.3388
.2771
.2278
.1881
.1560
.1300
.1088
.0914
.07708
.06527
.05547
.04731
.04049
.03160
.02996
.02590
.02246
.01953
.01704
.01490
.01307
QA 4250
TF (%)
8.3
7.2
6.2
5.3
4.5
3.8
3.2
2.6
2.1
1.7
1.3
1.0
.7
.5
.3
.1
0.0
.1
.3
.4
.6
.8
1.0
1.2
1.4
1.7
1.9
2.1
2.4
2.6
2.9
3.2
3.4
3.7
12.2
4.2
4.5
4.7
5.0
5.3
5.5
5.8
R (T) / R25
105.68
74.01
52.37
37.43
27.01
19.66
14.44
10.70
7.990
6.013
4.559
3.482
2.678
2.074
1.616
1.267
1.0000
.7936
.6334
.5083
.4100
.3325
.2709
.2218
.1825
.1508
.1251
.1043
.08727
.07332
.06184
.05235
.04448
.03793
.03245
.02785
.02399
.02072
.01796
.01561
.01360
.01189
RC 4340
TF (%)
25.5
22.1
19.0
16.2
13.8
11.6
9.7
8.0
6.5
5.2
4.1
3.1
2.2
1.5
0.9
0.4
0.0
0.4
0.8
1.3
1.9
2.5
3.1
3.7
4.4
5.1
5.8
6.6
7.3
8.1
8.9
9.7
10.5
11.3
12.1
12.9
13.7
14.5
15.4
16.2
17.0
17.8
α (%/°C)
- 7.36
- 7.13
- 6.91
- 6.70
- 6.50
- 6.31
- 6.12
- 5.85
- 5.78
- 5.62
- 5.46
- 5.31
- 5.17
- 5.03
- 4.90
- 4.77
- 4.65
- 4.53
- 4.42
- 4.31
- 4.20
- 4.10
- 4.00
- 3.90
- 3.81
- 3.72
- 3.63
- 3.55
- 3.47
- 3.39
- 3.31
- 3.24
- 3.17
- 3.10
- 3.06
- 2.96
- 2.90
- 2.84
- 2.78
- 2.72
- 2.67
- 2.61
Material code B (K)
R 4400
R (T) / R25
TF (%)
α (%/°C)
113.9
25.9
- 7.42
79.69
22.4
- 7.22
56.29
19.2
- 7.03
40.12
16.4
- 6.84
28.85
14.0
- 6.66
20.92
11.8
- 6.48
15.29
9.8
- 6.31
11.27
8.1
- 6.14
8.367
6.6
- 5.98
6.260
5.3
- 5.83
4.719
4.1
- 5.67
3.583
3.1
- 5.53
2.739
2.3
- 5.38
2.108
1.5
- 5.24
1.634
.9
- 5.11
1.274
.4
- 4.97
1.0000
0.0
- 4.84
.7897
.4
- 4.72
.6273
.9
- 4.60
.5012
1.4
- 4.48
.4026
1.9
- 4.36
.3255
2.5
- 4.25
.2644
3.1
- 4.14
.2159
3.8
- 4.04
.1772
4.5
- 3.03
.1462
5.2
- 3.83
.1212
5.9
- 3.74
.1009
6.7
- 3.64
.08441
7.4
- 3.55
.07093
8.2
- 3.46
.05985
9.0
- 3.38
.05072
9.8
- 3.29
.04315
10.6
- 3.21
.03686
11.4
- 3.13
.03478
3.9
- 3.03
.02720
13.1
- 2.98
.02349
13.9
- 2.91
.02036
14.7
- 2.84
.01771
15.6
- 2.77
.01545
16.4
- 2.71
.01353
17.2
- 2.64
.01188
18.1
- 2.58
R (T) / R25
110.7
77.22
54.43
38.76
27.86
20.22
14.81
10.94
8.143
6.112
4.622
3.522
2.702
2.087
1.623
1.270
1.0000
.7920
.6308
.5052
.4068
.3292
.2678
.2189
.1797
.1483
.1228
.1022
.08537
.07160
.06029
.05095
.04322
.03679
.03143
.02693
.02316
.01997
.01728
.01499
.01305
.01138
RA 4380
TF (%)
8.6
7.4
6.4
5.5
4.6
3.9
3.3
2.7
2.2
1.8
1.4
1.0
.8
.5
.3
.1
0.0
.1
.3
.5
.6
.8
1.0
1.3
1.5
1.7
2.0
2.2
2.5
2.7
3.0
3.2
3.5
3.8
4.1
4.3
4.6
4.9
5.2
5.4
5.7
6.0
α (%/°C)
- 7.53
- 7.29
- 7.07
- 6.85
- 6.65
- 6.46
- 6.27
- 6.09
- 5.92
- 5.76
- 5.60
- 5.45
- 5.31
- 5.17
- 5.03
- 4.91
- 4.78
- 4.66
- 4.55
- 4.43
- 4.33
- 4.22
- 4.12
- 4.02
- 3.93
- 3.84
- 3.75
- 3.67
- 3.58
- 3.50
- 3.42
- 3.35
- 3.28
- 3.21
- 3.14
- 3.07
- 3.01
- 2.94
- 2.88
- 2.82
- 2.77
- 2.71
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
α (%/°C)
- 7.2
- 6.9
- 6.7
- 6.6
- 6.4
- 6.2
- 6.0
- 5.9
- 5.7
- 5.6
- 5.4
- 5.3
- 5.2
- 5.0
- 4.9
- 4.8
- 4.7
- 4.5
- 4.4
- 4.3
- 4.2
- 4.1
- 4.0
- 3.9
- 3.8
- 3.8
- 3.7
- 3.6
- 3.5
- 3.4
- 3.4
- 3.3
- 3.2
- 3.1
- 3.1
- 3.0
- 3.0
- 2.9
- 2.8
- 2.8
- 2.7
- 2.7
Material code B (K)
S 4520
R (T) / R25
TF (%)
α (%/°C)
126.1
26.6
- 7.55
87.73
23.0
- 7.35
61.59
19.8
- 7.16
43.62
16.9
- 6.97
31.17
14.3
- 6.79
22.45
12.1
- 6.62
16.31
10.1
- 6.45
11.94
8.3
- 6.28
8.808
6.8
- 6.12
6.548
5.4
- 5.96
4.904
4.2
- 5.81
3.699
3.2
- 5.66
2.810
2.3
- 5.52
2.149
1.6
- 5.38
1.654
1.0
- 5.24
1.282
.4
- 5.10
1.0000
0.0
- 4.97
.7848
.4
- 4.85
.6196
.9
- 4.72
.4922
1.4
- 4.60
.3932
2.0
- 4.48
.3158
2.6
- 4.37
.2551
3.2
- 4.26
.2072
3.9
- 4.15
.1691
4.6
- 4.05
.1387
5.3
- 3.94
.1144
6.1
- 3.84
.09477
6.8
- 3.75
.07888
7.6
- 3.65
.06595
8.4
- 3.56
.05539
9.2
- 3.47
.04671
10.1
- 3.39
.03956
10.9
- 3.30
.03364
11.7
- 3.22
.02872
12.6
- 3.14
.02461
13.4
- 3.07
.02117
14.3
- 2.99
.01828
15.1
- 2.92
.01584
16.0
- 2.85
.01376
16.8
- 2.78
.01201
17.7
- 2.72
.01050
18.6
- 2.65
R (T) / R25
129.77
89.31
62.15
43.72
31.07
22.29
16.15
11.80
8.703
6.470
4.849
3.662
2.786
2.135
1.647
1.279
1.0000
.7865
.6223
.4953
.3963
.3189
.2579
.2096
.1712
.1405
.1159
.09595
.07980
.06664
.05588
.04704
.03975
.03371
.02869
.02450
.02100
.01805
.01557
.01347
.01169
.01017
SC 4500
TF (%)
26.5
22.9
19.7
16.8
14.3
12.0
10.0
8.3
6.8
5.4
4.2
3.2
2.3
1.6
0.9
0.4
0.0
0.4
0.9
1.4
2.0
2.6
3.2
3.9
4.6
5.3
6.0
6.8
7.6
8.4
9.2
10.0
10.8
11.7
12.5
13.4
14.2
15.1
15.9
16.8
17.6
18.5
α (%/°C)
- 7.5
- 7.3
- 7.1
- 6.9
- 6.7
- 6.5
- 6.3
- 6.1
- 6.0
- 5.8
- 5.7
- 5.5
- 5.4
- 5.2
- 5.1
- 5.0
- 4.8
- 4.7
- 4.6
- 4.5
- 4.4
- 4.3
- 4.2
- 4.1
- 4.0
- 3.9
- 3.8
- 3.7
- 3.6
- 3.6
- 3.5
-3.4
- 3.3
- 3.3
- 3.2
- 3.1
- 3.0
- 3.0
- 2.9
- 2.9
- 2.8
- 2.7
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
Tables of Resistance vs Temperature
Material code B (K)
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
R (T) / R25
137.0
94.92
66.34
46.77
33.25
23.83
17.22
12.54
9.205
6.806
5.069
3.803
2.873
2.185
1.673
1.289
1.0000
.7805
.6129
.4842
.3847
.3074
.2470
.1996
.1621
.1323
.1086
.08953
.07417
.06173
.05161
.04334
.03655
.03095
.02632
.02247
.01925
.01656
.01429
.01238
.01076
.00938
T 4630
TF (%)
27.2
23.5
20.2
17.3
14.7
12.4
10.3
8.5
6.9
5.6
4.3
3.3
2.4
1.6
1.0
.4
0.0
.4
.9
1.4
2.0
2.6
3.3
4.0
4.7
5.4
6.2
7.0
7.8
8.6
9.5
10.3
11.2
12.0
12.9
13.7
14.6
15.5
16.4
17.3
18.1
19.0
α (%/°C)
- 7.64
- 7.45
- 7.26
- 7.09
- 6.90
- 6.72
- 6.56
- 6.39
- 6.23
- 6.08
- 5.92
- 5.78
- 5.63
- 5.49
- 5.35
- 5.22
- 5.09
- 4.96
- 4.83
- 4.71
- 4.59
- 4.48
- 4.37
- 4.26
- 4.15
- 4.04
- 3.94
- 3.84
- 3.75
- 3.65
- 3.56
- 3.47
- 3.39
- 3.31
- 3.22
- 3.15
- 3.07
- 2.99
- 2.92
- 2.85
- 2.78
- 2.72
R (T) / R25
173.7
118.2
81.16
56.25
39.33
27.74
19.73
14.15
10.23
7.456
5.475
4.051
3.019
2.267
1.714
1.305
1.0000
.7715
.5991
.4681
.3681
.2911
.2316
.1853
.1491
.1207
.09813
.08023
.06592
.05443
.04515
.03763
.03151
.02650
.02237
.01897
.01615
.01381
.01185
.01020
.00882
.00765
U 4840
TF (%)
28.5
24.6
21.2
18.1
15.4
12.9
10.8
8.9
7.3
5.8
4.5
3.4
2.5
1.7
1.0
.5
0.0
.4
.9
1.5
2.1
2.8
3.4
4.2
4.9
5.7
6.5
7.3
8.2
9.0
9.9
10.8
11.7
12.6
13.5
14.4
15.3
16.2
17.1
18.0
19.0
19.9
α (%/°C)
- 8.04
- 7.83
- 7.63
- 7.44
- 7.25
- 7.07
- 6.89
- 6.71
- 6.54
- 6.38
- 6.22
- 6.06
- 5.91
- 5.76
- 5.61
- 5.47
- 5.33
- 5.20
- 5.06
- 4.94
- 4.81
- 4.69
- 4.57
- 4.45
- 4.34
- 4.23
- 4.12
- 4.02
- 3.91
- 3.82
- 3.72
- 3.63
- 3.54
- 3.45
- 3.38
- 3.28
- 3.20
- 3.12
- 3.04
- 2.97
- 2.90
- 2.83
T
(°C)
- 55
- 50
- 45
- 40
- 35
- 30
- 25
- 20
- 15
- 10
-5
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
33
Identification – Traceability
On the packaging of all shipped thermistors, you will find a bar code label.
This label gives systematic information on the type of product, part number, lot number, manufacturing date and quantity.
An example is given below:
Manufacturing date
(YYMMDD)
Lot number
RoHS Logo
Quantity of parts
per packaging
Product and part
number reference
This information allows complete traceability of the entire manufacturing process, from raw materials to final inspection.
This is extremely useful for any information request, customer complaint or product return.
34
Over Current Protection
Data Sheet
Frequency Response
TS
low S
MT F
use (S
urfac
SMT
e Mo
Broad
unt F
band
use)
LCT F
ilter (F
SMT
eedth
Broad
ru)
band
LCT F
SMT
ilter A
H
r
r
ig
ay (Fe
h
(High
edthr
CurreCurrent B
u Arra
nt Fe
ro
y)
edthr adband
SMT
u)
LCT F
B
id
Supp irectio
il
te
r
resso
n
rs & Eal Transie
MI Fil nt Volt
SMT
ters (T age
Supp Bidirectio
ransG
resso
nal Tr
uard)
rs & E ansie
Low C
MI Fil nt Volt
te
a
rs Arr age
Voltag pacitan
ays (M
e Sup ce SM
ultiGu
press
ard)
ors &T Bidirecti
SMT
EMI F onal T
VoltagBidirectio
il
te
r
n
s (Staransient
e Sup
al LC
ticGu
press
T
ard)
or FilteTransient
Low
rs (Tra
VoltagCapacitan
nsFee
e Sup ce Bid
d)
press
ors (Airectional T
Bidir
ntenn ransie
Mediuectional Tr
a
Guard nt
m & H ansien
)
t
igh S
Bidire
peed Voltage S
uppre
CAN
for USctional Tr
N
s
e
tw
B Ap ansien
orks sors for L
plicati
t Volt
(CAN
o
ons (U
age S
Bidire
BUS w,
SB S uppre
Serie
for Lo ctional Tr
eries)
ssors
s)
w Lea ansie
kage nt Volt
a
C
Bidire
ge Su
M
O
S
Appli ppres
High ctional Tr
cation sors
Energ
a
s (Ult
y Trannsient Volt
raGua
sients age S
Bidire
rd)
c
ti
(M
o
nal Tra
edium uppresso
Jump
nsien
Start
r
P
o
w
t
Auto
Voltag
er MLs for
A
e
pplica
V)
Bidir
tions Suppress
o
(Med
Appli ectional Tr
ium P rs for Loa
cation
a
ower
d
s (Mensient Vo
Autom Dump &
lta
dium
Lead
otive
Powe ge Suppre
Serie
Coeff ed Negati
r
s
MLV
s)
icient
v
for Tesors for Te
Therme Tempera
lecom
lecom
istors ture
SMT
)
N
e
Coeff gative
icient
T
Thermemperatu
istors re
Gene
r
a
l
P
MOV
(Metaurpose Ra
l Oxid dial L
e
e Var
istorsaded Pow
)
er
Fast B
AVX
PRO
DUC
Circuit Protection Portfolio
Application Guide
APPLICATIONS
ESD
X
Long Wave Transient
EMI Filtering
X
X
EMI Filtering + Transient
X
X
Load Dump
X
X
Automotive
Industrial
Medical (EN 60601)
X
X
X
X
X
X
Application Notes
X
X
X
X
X
X
Reliability Data
X
X
X
X
X
X
X
X
X
X
Mil Std 461-E
X
X
X
Diode Replacement
X
X
X
X
X
X
X
Zener Replacement
X
X
X
X
X
X
X
Military A-A-55682
X
Radiation Resistance
X
X
X
X
X
X
X
X
X
Distributed Element Model
X
X
X
ISO 7637
X
IEC 61000
X
Telecom Protection
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
In Rush Current Limit
X
X
X
X
X
X
High Speed Data Line Protection
X
X
Optic Transceiver Protection
X
X
Low Leakage Circuit
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Temperature Sensing
X
X
X
X
X
X
X
X
X
X
UL 1449
X
X
X
UL 1414
X
X
X
DATA
X
X
X
X
X
X
X
X
X
X
35
Circuit Protection Portfolio
Terminology Guide
Fast Blow SMT Fuse (Surface Mount Fuse)
High accuracy, fast blow, surface mount fuses. Case sizes: 0402,
0603, 0805, 1206, 0612. Current ratings 250 mA to 5 Amps.
SMT Broadband LCT Filter (Feedthru)
Miniature surface mount broadband LC T configuration EMI filters.
FeedThru current ratings to 300 mA.
SMT Broadband LCT Filter Array (Feedthru Array)
Miniature surface mount broadband 4 element LC T configuration
EMI filter arrays. FeedThru current ratings of 300 mA.
SMT High Current Broadband LCT Filter
(High Current Feedthru)
High current, surface mount, broadband LC T configuration filters.
Feedthru currents up to 5 Amps.
SMT Bidirectional Transient Voltage Suppressors
& EMI Filters (TransGuard)
Miniature surface mount, bidirectional transient voltage
suppressor. Steady state operating voltages of 3.3 volts to 60
volts. Case sizes: 0402, 0603, 0805, 1206, 1210, 1812, 2220.
SMT Bidirectional Transient Voltage Suppressors
& EMI Filter Arrays (MultiGuard)
Miniature surface mount bidirectional transient voltage suppressor
2 or 4 element arrays. Steady state operating voltages of 5.6 volts
to 18 volts. Case sizes: 0405, 0508, 0612.
Low Capacitance SMT Bidirectional Transient Voltage
Suppressors & EMI Filters (StaticGuard)
Bidirectional transient voltage suppressor intended for low leakage
CMOS based IC protection. Can be operated at voltages up to
18V. Case sizes: 0402, 0405, 0508, 0603, 0612, 0805, 1206.
SMT Bidirectional LCT Transient Voltage Suppressor
Filters (TransFeed)
Miniature bidirectional transient voltage suppressor filter LC T
configuration. Relatively narrow band, high attenuation filter.
Discrete filter in 0508 package, 4 element array filter in 0612
package.
Low Capacitance Bidirectional Transient Voltage
Suppressors (AntennaGuard)
Low capacitance, bidirectional transient voltage suppressor
intended for high speed or high frequency applications. Available
in 0402 and 0603 case sizes. Capacitance values of 3 pF and 12
pF available.
Bidirectional Transient Voltage Suppressors for
Low, Medium & High Speed CAN Networks
(CAN BUS Series)
Bidirectional transient voltage suppressor intended for high speed
and slow speed CAN circuitry. Available configurations: 0603
discrete, 0405 two element array, 0612 four element array.
36
Bidirectional Transient Voltage Suppressors
for USB Applications (USB Series)
Bidirectional transient voltage suppressor intended for Universal
Serial Bus applications. Available configurations: 0402 and 0603
discrete; 0405 two element array; 0508 three element array; 0612
four element array.
Bidirectional Transient Voltage Suppressors
for Low Leakage CMOS Applications (UltraGuard)
Low leakage, bidirectional transient voltage suppressor intended
for CMOS battery powered designs. Steady state operating
voltages of 3, 5, 7, 10 and 15 volts (DC). Available configurations:
0402, 0603 and 0805 discrete; 0405 two element array; 0508
and 0612 four element array.
Bidirectional Transient Voltage Suppressors
for High Energy Transients (Medium Power MLV)
Medium power, bidirectional transient voltage suppressor.
Available in operating voltages of: 18, 26, 30, 48, 60 volts (DC).
Case sizes: 1206, 1210, 1812, 2220. Energy ratings 0.9 to
1.5 joules.
Bidirectional Transient Voltage Suppressors
for Load Dump & Jump Start Auto Applications (Medium
Power Automotive Series)
Medium power, bidirectional transient voltage suppressor.
Available in operating voltages of: 16 and 34 volts (DC). Case
sizes: 1206, 1210, 1812, 2220. Energy ratings 0.6 to 12 joules.
Load dump and jump start rated.
Bidirectional Transient Voltage Suppressors
for Telecom Applications (Medium Power MLV for Telecom)
Medium power, bidirectional transient voltage suppressor.
Available in operating voltages of: 60 and 90 Vrms in 1812 case
size. Energy ratings of 5 and 6 joules. CCITT 10x700μs 2kV
capable.
Leaded Negative Temperature Coefficient Thermistors
Negative temperature coefficient thermistors high accuracy NTCs
from 2k ohm to 100k ohm, general purpose NTCs from 10 ohms
to 1 meg ohm. Stud mounted NTCs from 10 ohms to 330 k ohms.
SMT Negative Temperature Coefficient Thermistors
Surface mount negative temperature coefficient thermistor in
0402, 0603, 0805 and 1206 case sizes.
General Purpose Radial Leaded Power
MOV (Metal Oxide Varistors)
Radial Metal Oxide varistors 11 Vrms to 625 Vrms. Energy ratings
to >500 J. Peak current ratings to 10,000 A.
AMERICAS
EUROPE
ASIA-PACIFIC
ASIA-KED
(KYOCERA Electronic Devices)
AVX Greenville, SC
AVX Limited, England
Tel: 864-967-2150
Tel: +44-1276-697000
AVX Northwest, WA
AVX S.A.S., France
Tel: 360-699-8746
Tel: +33-1-69-18-46-00
AVX/Kyocera, Asia, Ltd.,
Hong Kong
AVX Midwest, IN
AVX GmbH, Germany
Tel: +852-2363-3303
Tel: 317-861-9184
Tel: +49-0811-95949-0
AVX/Kyocera (S) Pte Ltd.,
Singapore
KED Hong Kong Ltd.
Tel: +852-2305-1080/1223
Tel: +65-6286-7555
AVX Mid/Pacific, CA
AVX SRL, Italy
AVX/Kyocera Yuhan Hoesa,
South Korea
Tel: 408-988-4900
Tel: +39-02-614-571
Tel: +82-2785-6504
AVX Northeast, MA
AVX Czech Republic
Tel: 617-479-0345
Tel: +420-57-57-57-521
AVX/Kyocera HK Ltd.,
Taiwan
KED Hong Kong Ltd.
Shenzen
Tel: +86-755-3398-9600
KED Company Ltd.
Shanghai
Tel: +86-21-3255-1833
KED Hong Kong Ltd.
Beijing
Tel: +86-10-5869-4655
Tel: +886-2-2656-0258
AVX Southwest, CA
AVX/ELCO UK
Tel: 949-859-9509
Tel: +44-1638-675000
AVX/Kyocera (M) Sdn Bhd,
Malaysia
AVX Canada
ELCO Europe GmbH
Tel: +60-4228-1190
Tel: 905-238-3151
Tel: +49-2741-299-0
AVX South America
AVX S.A., Spain
AVX/Kyocera International
Trading Co. Ltd.,
Shanghai
Tel: +55-11-4688-1960
Tel: +34-91-63-97-197
Tel: +86-21-3255 1933
AVX Benelux
AVX/Kyocera Asia Ltd.,
Shenzen
Tel: +65-6509-0328
Tel: +86-755-3336-0615
Kyocera Corporation
Japan
AVX/Kyocera International
Trading Co. Ltd.,
Beijing
Tel: +81-75-604-3449
Tel: +31-187-489-337
KED Taiwan Ltd.
Tel: +886-2-2950-0268
KED Korea Yuhan Hoesa,
South Korea
Tel: +82-2-783-3604/6126
KED (S) Pte Ltd.
Singapore
Tel: +86-10-6588-3528
AVX/Kyocera India
Liaison Office
Tel: +91-80-6450-0715
Contact:
A KYOCERA GROUP COMPANY
http://www.avx.com
S-TNTC0M412-C