PDF Data Sheet Rev. G

Low Power, 350 MHz
Voltage Feedback Amplifiers
AD8038/AD8039
FUNCTIONAL BLOCK DIAGRAM
Low power: 1 mA supply current/amp
High speed
350 MHz, −3 dB bandwidth (G = +1)
425 V/μs slew rate
Low cost
Low noise
8 nV/√Hz @ 100 kHz
600 fA/√Hz @ 100 kHz
Low input bias current: 750 nA maximum
Low distortion
−90 dB SFDR @ 1 MHz
−65 dB SFDR @ 5 MHz
Wide supply range: 3 V to 12 V
Small packaging: 8-lead SOT-23, 5-lead SC70, and 8-lead SOIC
AD8038
8
DISABLE
–IN 2
NC 1
7
+VS
+IN 3
6
VOUT
–VS 4
5
NC
02951-001
FEATURES
NC = NO CONNECT
Figure 1. 8-lead SOIC (R)
VOUT 1
AD8038
5
+VS
4
–IN
+IN 3
02951-002
–VS 2
Figure 2. 5-Lead SC70 (KS)
AD8039
Battery-powered instrumentation
Filters
A/D drivers
Level shifting
Buffering
Photo multipliers
8
+VS
–IN1 2
7
VOUT2
+IN1 3
6
–IN2
–VS 4
5
+IN2
02951-003
APPLICATIONS
VOUT1 1
NC = NO CONNECT
Figure 3. 8-Lead SOIC (R) and 8-Lead SOT-23 (RJ)
GENERAL DESCRIPTION
The AD8038 and AD8039 amplifiers have a wide input commonmode range of 1 V from either rail and swing to within 1 V of each
rail on the output. These amplifiers are optimized for driving
capacitive loads up to 15 pF. If driving larger capacitive loads, a small
series resistor is needed to avoid excessive peaking or overshoot.
24
G = +10
21
18
15
G = +5
12
9
G = +2
6
3
G = +1
0
–3
–6
0.1
1
10
FREQUENCY (MHz)
100
1000
02951-004
The Analog Devices, Inc., proprietary XFCB process allows low
noise operation (8 nV/√Hz and 600 fA/√Hz) at extremely low
quiescent currents. Given a wide supply voltage range (3 V to 12 V),
wide bandwidth, and small packaging, the AD8038 and AD8039
amplifiers are designed to work in a variety of applications
where power and space are at a premium.
The AD8039 amplifier is available in a 8-lead SOT-23 package,
and the single AD8038 is available in both an 8-lead SOIC and a
5-lead SC70 package. These amplifiers are rated to work over
the industrial temperature range of −40°C to +85°C.
GAIN (dB)
The AD8038 (single) and AD8039 (dual) amplifiers are high speed
(350 MHz) voltage feedback amplifiers with an exceptionally low
quiescent current of 1.0 mA/amplifier typical (1.5 mA maximum).
The AD8038 single amplifier in the 8-lead SOIC package has a
disable feature. Despite being low power and low cost, the amplifier
provides excellent overall performance. Additionally, it offers a
high slew rate of 425 V/μs and a low input offset voltage of 3 mV
maximum.
Figure 4. Small Signal Frequency Response for Various Gains,
VOUT = 500 mV p-p, VS = ±5 V
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.
AD8038/AD8039
TABLE OF CONTENTS
Features .............................................................................................. 1 Disable ......................................................................................... 13 Applications ....................................................................................... 1 Power Supply Bypassing ............................................................ 13 Functional Block Diagram .............................................................. 1 Grounding ................................................................................... 13 General Description ......................................................................... 1 Input Capacitance ...................................................................... 13 Revision History ............................................................................... 2 Output Capacitance ................................................................... 13 Specifications..................................................................................... 3 Input-to-Output Coupling ........................................................ 13 Absolute Maximum Ratings............................................................ 5 Applications Information .............................................................. 14 Maximum Power Dissipation ..................................................... 5 Low Power ADC Driver ............................................................ 14 Output Short Circuit .................................................................... 5 Low Power Active Video Filter ................................................. 14 ESD Caution .................................................................................. 5 Outline Dimensions ....................................................................... 15 Typical Performance Characteristics ............................................. 6 Ordering Guide .......................................................................... 16 Layout, Grounding, and Bypassing Considerations .................. 13 REVISION HISTORY
8/09—Rev. F to Rev. G
5/02—Rev. A to Rev. B
Changes to Applications Section and General Description
Section ................................................................................................ 1
Changes to Disable Section and Grounding Section ................. 13
Changes to Low Power ADC Driver Section and Low Power
Active Video Filter Section ............................................................ 14
Updated Outline Dimensions ....................................................... 15
Changes to Ordering Guide .......................................................... 16
Add Part Number AD8038 ............................................... Universal
Changes to Product Title ..................................................................1
Changes to Features ..........................................................................1
Changes to Product Description .....................................................1
Changes to Connection Diagram ....................................................1
Update to Specifications ...................................................................2
Update to Maximum Power Dissipation ........................................4
Update to Output Short Circuit.......................................................4
Update to Ordering Guide ...............................................................4
Change to Figure 2 ............................................................................4
Change to TPC 2 ...............................................................................5
Change to TPC 18 .............................................................................6
Change to TPC 27 .............................................................................7
Change to TPC 29 .............................................................................8
Change to TPC 30 .............................................................................8
Change to TPC 31 .............................................................................8
Added TPC 36....................................................................................8
Added TPC 37....................................................................................9
Edits to Low Power Active Video Filter....................................... 10
Change to Figure 4 ......................................................................... 10
8/04—Rev. E to Rev. F
Changes to Figure 4 ........................................................................ 10
8/03—Rev. D to Rev. E
Change to TPC 34............................................................................. 8
7/03—Rev. C to Rev. D
Changes to Ordering Guide ............................................................ 4
Updated TPC 35 Caption ................................................................ 8
6/03—Rev. B to Rev. C
Updated Connection Diagrams ...................................................... 1
Updated Ordering Guide ................................................................. 4
Updated Outline Dimensions ....................................................... 11
4/02—Rev. 0 to Rev. A
Changes to Features ..........................................................................1
Update Specifications ................................................................... 2, 3
Edits to TPC 19 ..................................................................................7
Rev. G | Page 2 of 16
AD8038/AD8039
SPECIFICATIONS
TA = 25°C, VS = ±5 V, RL = 2 kΩ, Gain = +1, unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Slew Rate
Overdrive Recovery Time
Settling Time to 0.1%
NOISE/HARMONIC PERFORMANCE
SFDR
Second Harmonic
Third Harmonic
Second Harmonic
Third Harmonic
Crosstalk, Output-to-Output (AD8039)
Input Voltage Noise
Input Current Noise
DC PERFORMANCE
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Input Bias Current Drift
Input Offset Current
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
OUTPUT CHARACTERISTICS
DC Output Voltage Swing
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current per Amplifier
Power Supply Rejection Ratio
POWER-DOWN DISABLE 1
Turn-On Time
Turn-Off Time
Disable Voltage—Part is Off
Disable Voltage—Part is On
Disabled Quiescent Current
Disabled In/Out Isolation
1
Conditions
Min
Typ
G = +1, VO = 0.5 V p-p
G = +2, VO = 0.5 V p-p
G = +1, VO = 2 V p-p
G = +2, VO = 0.2 V p-p
G = +1, VO = 2 V step, RL = 2 kΩ
G = +2, 1 V overdrive
G = +2, VO = 2 V step
300
350
175
100
45
425
50
18
MHz
MHz
MHz
MHz
V/μs
ns
ns
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ
f = 5 MHz, G = +2
f = 100 kHz
f = 100 kHz
−90
−92
−65
−70
−70
8
600
dBc
dBc
dBc
dBc
dB
nV/√Hz
fA/√Hz
VO = ±2.5 V
0.5
4.5
400
3
±25
70
RL = 1 kΩ
VCM = ±2.5 V
10
2
±4
67
MΩ
pF
V
dB
±4
20
V
pF
400
61
RL = 2 kΩ, saturated output
30% overshoot, G = +2
3.0
−Supply
+Supply
f = 1 MHz
Only available in AD8038 8-lead SOIC package.
Rev. G | Page 3 of 16
−71
−64
1.0
−77
−70
180
700
+VS − 4.5
+VS − 2.5
0.2
−60
Max
3
750
12
1.5
Unit
mV
μV/°C
nA
nA/°C
nA
dB
V
mA
dB
dB
ns
ns
V
V
mA
dB
AD8038/AD8039
TA = 25°C, VS = 5 V, RL = 2 kΩ to VS/2, Gain = +1, unless otherwise noted.
Table 2.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Slew Rate
Overdrive Recovery Time
Settling Time to 0.1%
NOISE/HARMONIC PERFORMANCE
SFDR
Second Harmonic
Third Harmonic
Second Harmonic
Third Harmonic
Crosstalk, Output-to-Output
Input Voltage Noise
Input Current Noise
DC PERFORMANCE
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Input Bias Current Drift
Input Offset Current
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
OUTPUT CHARACTERISTICS
DC Output Voltage Swing
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current per Amplifier
Power Supply Rejection Ratio
POWER-DOWN DISABLE 1
Turn-On Time
Turn-Off Time
Disable Voltage—Part is Off
Disable Voltage—Part is On
Disabled Quiescent Current
Disabled In/Out Isolation
1
Conditions
Min
Typ
G = +1, VO = 0.2 V p-p
G = +2, VO = 0.2 V p-p
G = +1, VO = 2 V p-p
G = +2, VO = 0.2 V p-p
G = +1, VO = 2 V step, RL = 2 kΩ
G = +2, 1 V overdrive
G = +2, VO = 2 V step
275
300
150
30
45
365
50
18
MHz
MHz
MHz
MHz
V/μs
ns
ns
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ
fC = 1 MHz, VO = 2 V p-p, RL = 2 kΩ
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ
fC = 5 MHz, VO = 2 V p-p, RL = 2 kΩ
f = 5 MHz, G = +2
f = 100 kHz
f = 100 kHz
−82
−79
−60
−67
−70
8
600
dBc
dBc
dBc
dBc
dB
nV/√Hz
fA/√Hz
VO = ±2.5 V
0.8
3
400
3
±30
70
RL = 1 kΩ
VCM = ±1 V
10
2
1.0 − 4.0
65
MΩ
pF
V
dB
0.9 − 4.1
20
V
pF
340
59
RL = 2 kΩ, saturated output
30% overshoot
3
−65
f = 1 MHz
Only available in AD8038 8-lead SOIC package.
Rev. G | Page 4 of 16
0.9
−71
210
700
+VS − 4.5
+VS − 2.5
0.2
−60
Max
3
750
12
1.5
Unit
mV
μV/°C
nA
nA/°C
nA
dB
V
mA
dB
ns
ns
V
V
mA
dB
AD8038/AD8039
ABSOLUTE MAXIMUM RATINGS
2.0
Rating
12.6 V
See Figure 5
±VS
±4 V
−65°C to +125°C
−40°C to +85°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
MAXIMUM POWER DISSIPATION
The maximum safe power dissipation in the AD8038/AD8039
package is limited by the associated rise in junction temperature
(TJ) on the die. The plastic encapsulating the die locally reaches
the junction temperature. At approximately 150°C, which is the
glass transition temperature, the plastic changes its properties.
Even temporarily exceeding this temperature limit may change
the stresses that the package exerts on the die, permanently
shifting the parametric performance of the AD8038/AD8039.
Exceeding a junction temperature of 175°C for an extended
time can result in changes in the silicon devices, potentially
causing failure.
The still-air thermal properties of the package and PCB (θJA),
ambient temperature (TA), and total power dissipated in the
package (PD) determine the junction temperature of the die.
The junction temperature can be calculated as
1.5
SOIC-8
SOT-23-8
1.0
SC70-5
0.5
0
–55
–25
5
35
65
95
AMBIENT TEMPERATURE (°C)
125
02951-005
Parameter
Supply Voltage
Power Dissipation
Common-Mode Input Voltage
Differential Input Voltage
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)
MAXIMUM POWER DISSIPATION (W)
Table 3.
Figure 5. Maximum Power Dissipation vs. Temperature for a 4-Layer Board
RMS output voltages should be considered. If RL is referenced to
VS−, as in single-supply operation, then the total drive power is
VS × IOUT. If the rms signal levels are indeterminate, consider the
worst case, when VOUT = VS /4 for RL to midsupply
PD = (VS × IS) + (VS/4)2/RL
In single-supply operation with RL referenced to VS−, worst case
is VOUT = VS /2.
Airflow increases heat dissipation, effectively reducing θJA. In
addition, more metal directly in contact with the package leads
from metal traces, throughholes, ground, and power planes reduce
the θJA. Care must be taken to minimize parasitic capacitances at
the input leads of high speed op amps as discussed in the
Layout, Grounding, and Bypassing Considerations section.
Figure 5 shows the maximum safe power dissipation in the
package vs. the ambient temperature for the 8-lead SOIC
(125°C/W), 5-lead SC70 (210°C/W), and 8-lead SOT-23
(160°C/W) packages on a JEDEC standard 4-layer board.
θJA values are approximations.
OUTPUT SHORT CIRCUIT
TJ = TA + (PD × θJA)
The power dissipated in the package (PD) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the load drive for all outputs. The quiescent power
is the voltage between the supply pins (VS) multiplied by the
quiescent current (IS). Assuming the load (RL) is referenced to
midsupply, then the total drive power is VS/2 × IOUT, some of which
is dissipated in the package and some in the load (VOUT × IOUT).
The difference between the total drive power and the load
power is the drive power dissipated in the package.
Shorting the output to ground or drawing excessive current
from the AD8038/AD8039 will likely cause a catastrophic failure.
ESD CAUTION
PD = quiescent power + (total drive power − load power)
PD = [VS × IS] + [(VS/2) × (VOUT/RL)] − [VOUT2/RL]
Rev. G | Page 5 of 16
AD8038/AD8039
TYPICAL PERFORMANCE CHARACTERISTICS
Default Conditions: ±5 V, CL = 5 pF, G = +2, RG = RF = 1 kΩ, RL = 2 kΩ, VO = 2 V p-p, Frequency = 1 MHz, TA = 25°C.
24
21
7
G = +10
RL = 2kΩ
6
18
5
G = +5
RL = 500Ω
12
GAIN (dB)
9
6
G = +2
3
0
3
RL = 1kΩ
2
G = +1
1
–3
1
100
10
1000
FREQUENCY (MHz)
0
0.1
02951-006
–6
0.1
4
1
10
100
1000
FREQUENCY (MHz)
Figure 6. Small Signal Frequency Response for Various Gains,
VOUT = 500 mV p-p
02951-009
GAIN (dB)
15
Figure 9. Small Signal Frequency Response for Various RL,
VS = 5 V, VOUT = 500 mV p-p
7
8
VS = ±1.5V
6
RL = 2kΩ
7
VS = ±2.5V
5
6
RL = 500Ω
5
4
GAIN (dB)
GAIN (dB)
VS = ±5V
3
2
4
3
RL = 1kΩ
2
1
10
100
1000
FREQUENCY (MHz)
0
0.1
100
Figure 10. Large Signal Frequency Response for Various RL,
VOUT = 3 V p-p, VS = 5 V
7
8
6
RL = 2kΩ
7
RL = 2kΩ
6
5
RL = 500Ω
5
GAIN (dB)
4
3
RL = 500Ω
2
RL = 1kΩ
4
3
RL = 1kΩ
2
1
1
10
100
1000
FREQUENCY (MHz)
Figure 8. Small Signal Frequency Response for Various RL,
VS = ±5 V, VOUT = 500 mV p-p
0
0.1
1
10
100
FREQUENCY (MHz)
Figure 11. Large Signal Frequency Response for Various RL,
VOUT = 4 V p-p, VS = ±5 V
Rev. G | Page 6 of 16
02951-011
1
02951-008
GAIN (dB)
10
FREQUENCY (MHz)
Figure 7. Small Signal Frequency Response for Various Supplies,
VOUT = 500 mV p-p
0
0.1
1
02951-010
1
02951-007
1
0
0.1
AD8038/AD8039
5
70
OPEN-LOOP GAIN (dB)
GAIN (dB)
2
1
0
–1
CL = 5pF
–2
50
PHASE
30
FREQUENCY (MHz)
02951-012
–4
1000
45
10
0
100
GAIN
20
–10
10
90
40
–3
1
135
60
CL = 10pF
PHASE (Degrees)
3
0
–20
0.01
1
0.1
10
–45
1000
100
02951-015
4
–5
180
80
CL = 15pF
FREQUENCY (MHz)
Figure 15. Open-Loop Gain and Phase, VS = ±5 V
Figure 12. Small Signal Frequency Response for Various CL,
VOUT = 500 mV p-p, VS = ±5 V, G = +1
9
7
CL = 15pF
5
6
–40°C
CL = 10pF
GAIN (dB)
GAIN (dB)
3
1
–1
+25°C
3
+85°C
CL = 5pF
0
1
10
100
1000
FREQUENCY (MHz)
–3
0.1
02951-013
100
1000
Figure 16. Frequency Response vs. Temperature,
Gain = +2, VS = ±5 V, VOUT = 2 V p-p
–50
2
VOUT = 200mV
1
HARMONIC DISTORTION (dBc)
VOUT = 1V
–1
–2
VOUT = 500mV
–3
VOUT = 2V
–4
RL = 500Ω HD2
–55
0
RL = 500Ω HD3
–60
–65
–70
RL = 2kΩ HD3
–75
RL = 2kΩ HD2
–80
–85
–5
–90
1
10
100
1000
FREQUENCY (MHz)
02951-014
GAIN (dB)
10
FREQUENCY (MHz)
Figure 13. Small Signal Frequency Response for Various CL,
VOUT = 500 mV p-p, VS = 5 V, G = +1
–6
0.1
1
1
2
3
4
5
6
7
8
9
10
FREQUENCY (MHz)
Figure 17. Harmonic Distortion vs. Frequency for Various Loads,
VS = ±5 V, VOUT = 2 V p-p, G = +2
Figure 14. Frequency Response for Various Output Voltage Levels
Rev. G | Page 7 of 16
02951-017
–5
02951-016
–3
AD8038/AD8039
–40
–45
10MHz HD2
RL = 500Ω HD2
–55
–50
HARMONIC DISTORTION (dBc)
HARMONIC DISTORTION (dBc)
–50
RL = 500Ω HD3
–60
–65
–70
RL = 2kΩ HD3
–75
RL = 2kΩ HD2
–80
5MHz HD2
10MHz HD3
–60
5MHz HD3
–70
1MHz HD3
–80
1MHz HD2
–90
1
2
3
4
5
6
7
8
9
10
FREQUENCY (MHz)
–100
02951-018
–90
2
1
3
4
AMPLITUDE (V p-p)
Figure 18. Harmonic Distortion vs. Frequency for Various Loads,
VS = 5 V, VOUT = 2 V p-p, G = +2
02951-021
–85
Figure 21. Harmonic Distortion vs. VOUT Amplitude for Various Frequencies,
VS = ±5 V, G = +2
–45
–50
G = +2 HD2
–70
G = +2 HD3
–80
G = +1 HD3
–90
–100
1
2
3
4
5
6
7
8
9
10
FREQUENCY (MHz)
–55
10MHz HD3
5MHz HD2
–65
5MHz HD3
–75
1MHz HD3
1MHz HD2
–85
–95
1.0
1.5
2.0
2.5
3.0
AMPLITUDE (V p-p)
Figure 19. Harmonic Distortion vs. Frequency for Various Gains,
VS = ±5 V, VOUT = 2 V p-p
02951-022
HARMONIC DISTORTION (dBc)
–60
02951-019
HARMONIC DISTORTION (dBc)
10MHz HD2
G = +1 HD2
Figure 22. Harmonic Distortion vs. Amplitude for Various Frequencies,
VS = 5 V, G = +2
1000
VOLTAGE NOISE (nV/ Hz)
G = +1 HD2
–60
G = +2 HD2
–70
G = +2 HD3
–80
10
1
10
1
2
3
4
5
6
7
8
9
10
FREQUENCY (MHz)
Figure 20. Harmonic Distortion vs. Frequency for Various Gains,
VS = 5 V, VOUT = 2 V p-p
Rev. G | Page 8 of 16
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 23. Input Voltage Noise vs. Frequency
100M
02951-023
–100
100
G = +1 HD3
–90
02951-020
HARMONIC DISTORTION (dBc)
–50
AD8038/AD8039
NOISE (fA/√Hz)
100k
CL = 25pF WITH
RSNUB = 19.6Ω
10k
CL = 5pF
1k
1k
100
10k
100k
1M
FREQUENCY (Hz)
50mV/DIV
02951-024
100
10
Figure 27. Small Signal Transient Response for Various CL, VS = 5 V
Figure 24. Input Current Noise vs. Frequency
RL = 500Ω
5ns/DIV
02951-027
CL = 10pF
CL = 25pF WITH
RSNUB = 19.6Ω
RL = 2kΩ
CL = 5pF
5ns/DIV
50mV/DIV
Figure 25. Small Signal Transient Response for Various RL, VS = 5 V
RL = 500Ω
5ns/DIV
02951-028
50mV/DIV
02951-025
CL = 10pF
Figure 28. Small Signal Transient Response for Various CL, VS = ±5 V
RL = 2kΩ
RL = 500Ω
RL = 2kΩ
5ns/DIV
500mV/DIV
02951-026
50mV/DIV
Figure 26. Small Signal Transient Response for Various RL, VS = ±5 V
5ns/DIV
02951-029
2.5V
Figure 29. Large Signal Transient Response for Various RL, VS = 5 V
Rev. G | Page 9 of 16
AD8038/AD8039
IN
RL = 2kΩ
RL = 500Ω
5ns/DIV
2V/DIV
02951-033
1V/DIV
02951-030
OUT
50ns/DIV
Figure 33. Input Overdrive Recovery, Gain = +1
Figure 30. Large Signal Transient Response for Various RL, VS = ±5 V
CL = 25pF
IN
OUT
CL = 5pF
5ns/DIV
INPUT 1V/DIV
OUTPUT 2V/DIV
Figure 31. Large Signal Transient Response for Various CL, VS = 5 V
50ns/DIV
02951-034
500mV/DIV
02951-031
2.5V
Figure 34. Output Overdrive Recovery, Gain = +2
CL = 10pF
VS = ±5V
G = +2
VOUT = 2V p-p
2mV/DIV
CL = 5pF
ERROR
VOLTAGE
+0.1%
0
–0.1%
t=0
5ns/DIV
0.5V/DIV
5ns/DIV
Figure 35. 0.1% Settling Time VOUT = 2 V p-p
Figure 32. Large Signal Transient Response for Various CL, VS = ±5 V
Rev. G | Page 10 of 16
02951-035
500mV/DIV
02951-032
VIN
–10
10
–20
0
–30
–10
–20
–40
PSRR (dB)
–50
SIDE B
–60
SIDE A
–70
–PSRR
–30
–40
+PSRR
–50
–60
–80
–70
–90
100
1000
–90
0.01
0.1
1
10
100
1000
400
500
02951-040
10
FREQUENCY (MHz)
02951-036
1
12
FREQUENCY (MHz)
Figure 36. AD8039 Crosstalk, VIN = 1 V p-p, Gain = +1
02951-039
–80
–100
0.1
02951-041
CROSSTALK (dB)
AD8038/AD8039
Figure 39. PSRR vs. Frequency
9
–10
8
–20
6
VOUT (p-p)
CMRR (dB)
–30
–40
VS = +5V
VS = ±5V
–50
5
4
VS = +5V
3
–60
2
–70
1
1
10
100
1000
FREQUENCY (MHz)
0
100
02951-037
0
–80
VS = ±5V
7
200
300
RLOAD (Ω)
Figure 40. Output Swing vs. Load Resistance
Figure 37. CMRR vs. Frequency, VIN = 1 V p-p
1.25
1000
1.00
SUPPLY CURRENT (mA)
10
1
0.75
0.50
0.25
VS = ±5V
VS = +5V
0.1
0.01
0.1
1
10
100
FREQUENCY (MHz)
1000
02951-038
IMPEDANCE Ω)
100
0
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
Figure 41. AD8038 Supply Current vs. Supply Voltage
Figure 38. Output Impedance vs. Frequency
Rev. G | Page 11 of 16
AD8038/AD8039
0
–10
ISOLATION (dB)
–20
–30
–40
–50
–60
–70
–90
0.1
1
10
FREQUENCY (MHz)
100
1000
02951-042
–80
Figure 42. AD8038 Input-Output Isolation (G = +2, RL = 2 kΩ, VS = ±5 V)
Rev. G | Page 12 of 16
AD8038/AD8039
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS
DISABLE
INPUT CAPACITANCE
The AD8038 in the 8-lead SOIC package provides a disable
feature. This feature disables the input from the output (see
Figure 42 for input-output isolation) and reduces the quiescent
current from typically 1 mA to 0.2 mA. When the DISABLE
node is pulled below 4.5 V from the positive supply rail, the part
becomes disabled. To enable the part, the DISABLE node needs
to be pulled to greater than (VS – 2.5).
Along with bypassing and ground, high speed amplifiers can be
sensitive to parasitic capacitance between the inputs and ground. A
few picofarads of capacitance reduces the input impedance at
high frequencies, in turn increasing the gain of the amplifiers,
causing peaking of the frequency response, or even oscillations
if severe enough. It is recommended that the external passive
components that are connected to the input pins be placed as
close as possible to the inputs to avoid parasitic capacitance.
The ground and power planes must be kept at a distance of at
least 0.05 mm from the input pins on all layers of the board.
POWER SUPPLY BYPASSING
Power supply pins are actually inputs, and care must be taken
so that a noise-free stable dc voltage is applied. The purpose of
bypass capacitors is to create low impedances from the supply
to ground at all frequencies, thereby shunting or filtering a
majority of the noise.
Decoupling schemes are designed to minimize the bypassing
impedance at all frequencies with a parallel combination of
capacitors. The 0.01 μF or 0.001 μF (X7R or NPO) chip capacitors
are critical and should be placed as close as possible to the
amplifier package. Larger chip capacitors, such as 0.1 μF
capacitors, can be shared among a few closely spaced active
components in the same signal path. A 10 μF tantalum capacitor
is less critical for high frequency bypassing and, in most cases,
only one per board is needed at the supply inputs.
GROUNDING
A ground plane layer is important in densely packed PC boards
to spread the current minimizing parasitic inductances. However,
an understanding of where the current flows in a circuit is critical
to implementing effective high speed circuit design. The length
of the current path is directly proportional to the magnitude of
parasitic inductances and, therefore, the high frequency impedance
of the path. High speed currents in an inductive ground return
create an unwanted voltage noise.
OUTPUT CAPACITANCE
To a lesser extent, parasitic capacitances on the output can cause
peaking of the frequency response. Two methods to minimize
this effect include the following:
•
•
Put a small value resistor in series with the output to isolate
the load capacitor from the output stage of the amplifier, see
Figure 12, Figure 13, Figure 27, and Figure 28.
Increase the phase margin with higher noise gains or add
a pole with a parallel resistor and capacitor from −IN to
the output.
INPUT-TO-OUTPUT COUPLING
The input and output signal traces should not be parallel to
minimize capacitive coupling between the inputs and outputs,
avoiding any positive feedback.
The length of the high frequency bypass capacitor leads is most
critical. A parasitic inductance in the bypass grounding works
against the low impedance created by the bypass capacitor. Because
load currents flow from the supplies as well, the ground for the
load impedance should be at the same physical location as the
bypass capacitor grounds. For the larger value capacitors, which
are intended to be effective at lower frequencies, the current
return path distance is less critical.
Rev. G | Page 13 of 16
AD8038/AD8039
APPLICATIONS INFORMATION
LOW POWER ADC DRIVER
LOW POWER ACTIVE VIDEO FILTER
2.5V
0.1µF
Some composite video signals derived from a digital source
contain clock feedthrough that can limit picture quality. Active
filters made from op amps can be used in this application, but
they consume 25 mW to 30 mW for each channel. In powersensitive applications, this can be too much, requiring the use
of passive filters that can create impedance matching problems
when driving any significant load.
10µF
3V
0.1µF
0V
3
8
REF
50Ω
1
VIN
2
1kΩ
1kΩ
AD9203
AD8039
1kΩ
6
1kΩ
50Ω
7
5
1kΩ
VINP
VINN
4
0.1µF
–5V
10µF
02951-043
1kΩ
10µF
1kΩ
The AD8038 can be used to make an effective low-pass active
filter that consumes one-fifth of the power consumed by an
active filter made from an op amp. Figure 44 shows a circuit
that uses a AD8038 with ±2.5 V supplies to create a three-pole
Sallen-Key filter. This circuit uses a single RC pole in front of a
standard 2-pole active section.
RF
1Ω
680pF
Figure 43. Schematic to Drive AD9203 with the AD8039
+2.5V
The AD9203 is a low power (125 mW on a 5 V supply), 40 MSPS
10-bit converter. As such, the low power, high performance
AD8039 is an appropriate amplifier choice to drive it.
The AD9203 works best when the common-mode voltage at the
input is at the midsupply or 2.5 V. The output stage design of
the AD8039 makes it ideal for driving these types of ADCs.
In this circuit, one of the op amps is configured in the inverting
mode, and the other is in the noninverting mode. However, to
provide better bandwidth matching, each op amp is configured
for a noise gain of +2. The inverting op amp is configured for a
gain of −1, and the noninverting op amp is configured for a gain
of +2. Each has a very similar ac response. The input signal to
the noninverting op amp is divided by 2 to normalize its voltage
level and make it equal to the inverting output.
R1
200Ω
VIN
R4
49.9Ω
R2
499Ω
C1
100pF
R3
49.9Ω
AD8038
C3
33pF
–2.5V
R5
75Ω
0.1µF
VOUT
10µF
Figure 44. Low-Pass Filter for Video
Figure 45 shows the frequency response of this filter. The
response is down 3 dB at 6 MHz; therefore, it passes the video
band with little attenuation. The rejection at 27 MHz is 45 dB,
which provides more than a factor of 100 in suppression of the
clock components at this frequency.
10
0
–10
GAIN (dB)
In low supply voltage applications, differential analog inputs
are needed to increase the dynamic range of the ADC inputs.
Differential driving can also reduce second and other even-order
distortion products. The AD8039 can be used to make a dccoupled, single-ended-to-differential driver for driving these
ADCs. Figure 43 is a schematic of such a circuit for driving the
AD9203, 10-bit, 40 MSPS ADC.
10µF
0.1µF
02951-044
+5V
The outputs of the op amps are centered at 2.5 V, which is the
midsupply level of the ADC. This is accomplished by first taking
the 2.5 V reference output of the ADC and dividing it by 2 with
a pair of 1 kΩ resistors. The resulting 1.25 V is applied to the
positive input of each op amp. This voltage is then multiplied by
the gain of the op amps to provide a 2.5 V level at each output.
Rev. G | Page 14 of 16
–20
–30
–40
–50
–60
0.1
1
10
FREQUENCY (MHz)
Figure 45. Video Filter Response
100
02951-045
1kΩ
AD8038/AD8039
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2441)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
SEATING
PLANE
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-A A
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 46. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
2.20
2.00
1.80
1.35
1.25
1.15
5
1
4
2
3
PIN 1
2.40
2.10
1.80
0.65 BSC
1.00
0.90
0.70
1.10
0.80
0.10 MAX
0.30
0.15
0.40
0.10
SEATING
PLANE
0.22
0.08
0.46
0.36
0.26
0.10 COPLANARITY
COMPLIANT TO JEDEC STANDARDS MO-203-AA
Figure 47. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
Rev. G | Page 15 of 16
012407-A
8
4.00 (0.1574)
3.80 (0.1497)
AD8038/AD8039
3.00
2.90
2.80
1.70
1.60
1.50
8
7
6
5
1
2
3
4
PIN 1
INDICATOR
3.00
2.80
2.60
0.65 BSC
1.95
BSC
1.45 MAX
0.95 MIN
0.15 MAX
0.05 MIN
0.38 MAX
0.22 MIN
0.22 MAX
0.08 MIN
SEATING
PLANE
8°
4°
0°
0.60
BSC
0.60
0.45
0.30
COMPLIANT TO JEDEC STANDARDS MO-178-BA
121608-A
1.30
1.15
0.90
Figure 48. 8-Lead Small Outline Transistor Package [SOT-23]
(RJ-8)
Dimensions shown in millimeters
ORDERING GUIDE
Model
AD8038AR
AD8038AR-REEL
AD8038AR-REEL7
AD8038ARZ 1
AD8038ARZ-REEL1
AD8038ARZ-REEL71
AD8038AKSZ-R21
AD8038AKSZ-REEL1
AD8038AKSZ-REEL71
AD8039AR
AD8039AR-REEL
AD8039AR-REEL7
AD8039ARZ1
AD8039ARZ-REEL1
AD8039ARZ-REEL71
AD8039ART-R2
AD8039ART-REEL
AD8039ART-REEL7
AD8039ARTZ-R21
AD8039ARTZ-REEL1
AD8039ARTZ-REEL71
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
5-Lead Thin Shrink Small Outline Transistor Package [SC70]
5-Lead Thin Shrink Small Outline Transistor Package [SC70]
5-Lead Thin Shrink Small Outline Transistor Package [SC70]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Small Outline Transistor Package [SOT-23]
8-Lead Small Outline Transistor Package [SOT-23]
8-Lead Small Outline Transistor Package [SOT-23]
8-Lead Small Outline Transistor Package [SOT-23]
8-Lead Small Outline Transistor Package [SOT-23]
8-Lead Small Outline Transistor Package [SOT-23]
Z = RoHS Compliant Part, # denotes RoHS compliant part may be top or bottom marked..
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D02951-0-8/09(G)
Rev. G | Page 16 of 16
Package Option
R-8
R-8
R-8
R-8
R-8
R-8
KS-5
KS-5
KS-5
R-8
R-8
R-8
R-8
R-8
R-8
RJ-8
RJ-8
RJ-8
RJ-8
RJ-8
RJ-8
Branding
H1C
H1C
H1C
HYA
HYA
HYA
HYA#
HYA#
HYA#