stm32f401cb

STM32F401xB STM32F401xC
ARM® Cortex®-M4 32b MCU+FPU, 105 DMIPS,
256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces
Datasheet - production data
Features
• Core: ARM® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 84 MHz,
memory protection unit, 105 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
• Memories
– Up to 256 Kbytes of Flash memory
– Up to 64 Kbytes of SRAM
• Clock, reset and supply management
– 1.7 V (PDR OFF) or 1.8 V (PDR ON) to
3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
• Power consumption
– Run: 128 µA/MHz (peripheral off)
– Stop (Flash in Stop mode, fast wakeup
time): 42 µA typ @ 25 °C;
65 µA max @25 °C
– Stop (Flash in Deep power down mode,
slow wakeup time): down to 10 µA typ@
25 °C; 28 µA max @25 °C
– Standby: 2.4 µA @25 °C / 1.7 V without
RTC; 12 µA @85 °C @1.7 V
– VBAT supply for RTC: 1 µA @25 °C
• 1×12-bit, 2.4 MSPS A/D converter: up to 16
channels
• General-purpose DMA: 16-stream DMA
controllers with FIFOs and burst support
• Up to 11 timers: up to six 16-bit, two 32-bit
timers up to 84 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input, two watchdog
timers (independent and window) and a
SysTick timer
August 2015
This is information on a product in full production.
)%*$
WLCSP49
UFQFPN48
(7 × 7 mm)
(2.965x2.965 mm)
LQFP100 (14 × 14 mm)
LQFP64 (10 × 10 mm)
UFBGA100
(7 x 7 mm)
• Debug mode
– Serial wire debug (SWD) & JTAG
interfaces
– Cortex-M4 Embedded Trace Macrocell™
• Up to 81 I/O ports with interrupt capability
– All IO ports 5 V tolerant
– Up to 78 fast I/Os up to 42 MHz
• Up to 11 communication interfaces
– Up to 3 × I2C interfaces (1Mbit/s,
SMBus/PMBus)
– Up to 3 USARTs (2 x 10.5 Mbit/s, 1 x
5.25 Mbit/s), ISO 7816 interface, LIN, IrDA,
modem control)
– Up to 4 SPIs (up to 42 Mbits/s at fCPU = 84
MHz), SPI2 and SPI3 with muxed fullduplex I2S to achieve audio class accuracy
via internal audio PLL or external clock
– SDIO interface
• Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
• CRC calculation unit
• 96-bit unique ID
• RTC: subsecond accuracy, hardware calendar
Table 1. Device summary
Reference
Part number
STM32F401xB
STM32F401CB, STM32F401RB,
STM32F401VB
STM32F401xC
STM32F401CC, STM32F401RC,
STM32F401VC
DocID024738 Rev 5
1/134
www.st.com
STM32F401xB STM32F401xC
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1
3
Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 15
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 15
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 16
3.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 17
3.10
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.12
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.13
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.14
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.15
3.14.1
Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14.2
Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.15.1
Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15.2
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15.3
Regulator ON/OFF and internal power supply supervisor availability . . 24
3.16
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24
3.17
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.19
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19.1
Advanced-control timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DocID024738 Rev 5
2/134
4
Contents
STM32F401xB STM32F401xC
3.19.3
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.19.4
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.19.5
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.20
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.21
Universal synchronous/asynchronous receiver transmitters (USART) . . 28
3.22
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.23
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.24
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.25
Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 30
3.26
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 30
3.27
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.28
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.29
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.30
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.31
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1
3/134
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2
VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.3
Operating conditions at power-up/power-down (regulator ON) . . . . . . . 61
6.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 62
6.3.5
Embedded reset and power control block characteristics . . . . . . . . . . . 62
DocID024738 Rev 5
STM32F401xB STM32F401xC
7
Contents
6.3.6
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.7
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.11
PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 82
6.3.12
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.14
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 87
6.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.18
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.20
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.23
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.24
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 111
6.3.25
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1
WLCSP49 2.965x2.965 mm package information . . . . . . . . . . . . . . . . . . . . . .114
7.2
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
7.3
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.6
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.6.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DocID024738 Rev 5
4/134
4
List of tables
STM32F401xB STM32F401xC
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
5/134
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F401xB/C features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 24
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32F401xB/STM32F401xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32F401xB/STM32F401xC register boundary addresses . . . . . . . . . . . . . . . . . . . . . . 51
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 60
VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 61
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 62
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD =1.8V . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.8 V . . . 65
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.3 V . . 66
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory . . . . . . . . . . . . . . . . 67
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 67
Typical and maximum current consumptions in Stop mode - VDD=1.8 V . . . . . . . . . . . . . . 68
Typical and maximum current consumption in Stop mode - VDD=3.3 V. . . . . . . . . . . . . . . 68
Typical and maximum current consumption in Standby mode - VDD=1.8 V . . . . . . . . . . . . 68
Typical and maximum current consumption in Standby mode - VDD=3.3 V . . . . . . . . . . . . 69
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 69
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Low-power mode wakeup timings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
DocID024738 Rev 5
STM32F401xB STM32F401xC
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
List of tables
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
EMS characteristics for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMI characteristics for WLCSP49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
EMI characteristics for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 107
ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 107
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
WLCSP49 - 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . 115
WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 116
UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data. . . 121
LQPF100- 100-pin, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 124
UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 127
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DocID024738 Rev 5
6/134
6
List of figures
STM32F401xB STM32F401xC
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
7/134
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STM32F401xB/STM32F401xC block diagram
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 19
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . . 23
Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . 23
STM32F401xB/STM32F401xC WLCSP49 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32F401xB/STM32F401xC UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32F401xB/STM32F401xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32F401xB/STM32F401xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32F401xB/STM32F401xC UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Typical VBAT current consumption (LSE and RTC ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 104
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 109
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 110
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
WLCSP49 - 0.4 mm pitch wafer level chip scale package outline . . . . . . . . . . . . . . . . . . 114
DocID024738 Rev 5
STM32F401xB STM32F401xC
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
List of figures
WLCSP49 0.4 mm pitch wafer level chip scale recommended footprint . . . . . . . . . . . . . 115
WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
UFQFPN48 marking example (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . 120
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
LQFP64 marking example (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
LQPF100 marking example (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
UFGBA100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
UFBGA100 marking example (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DocID024738 Rev 5
8/134
8
Introduction
1
STM32F401xB STM32F401xC
Introduction
This datasheet provides the description of the STM32F401xB/STM32F401xC line of
microcontrollers.
The STM32F401xB/STM32F401xC datasheet should be read in conjunction with RM0368
reference manual which is available from the STMicroelectronics website www.st.com. It
includes all information concerning Flash memory programming.
For information on the Cortex-M4 core, please refer to the Cortex-M4 programming
manual (PM0214) available from www.st.com.
9/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
2
Description
Description
The STM32F401XB/STM32F401XC devices are based on the high-performance
ARM® Cortex® -M4 32-bit RISC core operating at a frequency of up to 84 MHz. Its Cortex®M4 core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security.
The STM32F401xB/STM32F401xC incorporate high-speed embedded memories (up to
256 Kbytes of Flash memory, up to 64 Kbytes of SRAM), and an extensive range of
enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit
multi-AHB bus matrix.
All devices offer one 12-bit ADC, a low-power RTC, six general-purpose 16-bit timers
including one PWM timer for motor control, two general-purpose 32-bit timers. They also
feature standard and advanced communication interfaces.
•
Up to three I2Cs
•
Up to four SPIs
•
Two full duplex I2Ss. To achieve audio class accuracy, the I2S peripherals can be
clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
•
Three USARTs
•
SDIO interface
•
USB 2.0 OTG full speed interface
Refer to Table 2: STM32F401xB/C features and peripheral counts for the peripherals
available for each part number.
The STM32F401xB/STM32F401xC operate in the –40 to +105 °C temperature range from a
1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows
the design of low-power applications.
These features make the STM32F401xB/STM32F401xC microcontrollers suitable for a
wide range of applications:
•
Motor drive and application control
•
Medical equipment
•
Industrial applications: PLC, inverters, circuit breakers
•
Printers, and scanners
•
Alarm systems, video intercom, and HVAC
•
Home audio appliances
•
Mobile phone sensor hub
Figure 3 shows the general block diagram of the devices.
DocID024738 Rev 5
10/134
53
Description
STM32F401xB STM32F401xC
Table 2. STM32F401xB/C features and peripheral counts
Peripherals
Flash memory in Kbytes
SRAM in
Kbytes
Timers
STM32F401xB
STM32F401xC
128
256
System
64
Generalpurpose
7
Advancedcontrol
1
SPI/ I2S
4/2 (full
duplex)
3/2 (full duplex)
Communication I2C
interfaces
USART
SDIO
3
3
-
1
-
USB OTG FS
GPIOs
12-bit ADC
Number of channels
36
50
81
36
50
81
1
10
16
10
16
84 MHz
Operating voltage
1.7 to 3.6 V
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Operating temperatures
11/134
1
1
Maximum CPU frequency
Package
4/2 (full
duplex)
3/2 (full duplex)
Junction temperature: –40 to + 125 °C
WLCSP49
UFQFPN48
LQFP64
UFBGA100
LQFP100
DocID024738 Rev 5
WLCSP49
UFQFPN48
LQFP64
UFBGA100
LQFP100
STM32F401xB STM32F401xC
Compatibility with STM32F4 series
The STM32F401xB/STM32F401xC are fully software and feature compatible with the
STM32F4 series (STM32F42x, STM32F43x, STM32F41x, STM32F405 and STM32F407)
The STM32F401xB/STM32F401xC can be used as drop-in replacement of the other
STM32F4 products but some slight changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP100 package
670)[
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9 &$3
3'
3'
3'
3'
3%
3%
3% 3%
3(
3(
3(
3(
3(
3(
3%
9&$3
966
9''
670)670)OLQH
670)670)OLQH
670)670)OLQH
670)670)OLQH
3(
3(
3(
3(
3(
3(
3%
3%
9&$3
9''
2.1
Description
3'
3'
3'
3'
3%
3%
3% 3%
966 9''
966 9''
069
DocID024738 Rev 5
12/134
53
Description
STM32F401xB STM32F401xC
Figure 2. Compatible board design for LQFP64 package
670)[
3%
9&$3
9''
3%
3%
9''
9&$3
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
9''
966
3%QRWDYDLODEOHDQ\PRUH 5HSODFHGE\9&$3
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
9''
966
3%
3%
9&$3
966
9''
3&
3&
3&
3$
3$
3&
3&
3&
3$
3$
670)670)OLQH
9LQFUHDVHGWR—I
&$3
(65ŸRUEHORZ
966 9''
966 9''
069
13/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Description
Figure 3. STM32F401xB/STM32F401xC block diagram
-7$*6:
038
19,&
(70
'%86
'0$
6WUHDPV
),)2
'0$
6WUHDPV
),)2
)ODVK
XSWR
.%
65$0.%
$+%0+]
&)&/
6%86
$&&(/
&$&+(
)38
0(9
$50&RUWH[0
0+]
,%86
$+%EXVPDWUL[60
1-7567-7',
-7&.6:&/.
-7'26:'-7'2
75$&(&/.
75$&('>@
53"
/4'&3
$+%0+]
3RZHUPDQDJPW
9''
9ROWDJH
UHJXODWRU
WR9
#9''
#9''$
3$>@
3%>@
*3,23257$
*3,23257%
3&>@
*3,23257&
3'>@
*3,23257'
5&+6
325
UHVHW
5&/6
,QW
3//
$0
$)$6"533/&
6XSSO\
VXSHUYLVLRQ
3253'5
%25
39'
9'' WR9
0$2/&&
TO6
966 0$2/.
9&$3
9''$966$
1567
#9''$ #9''
3(>@
*3,23257(
3:5
LQWHUIDFH
*3,23257+
/6
/6
'0$
FRPSOFKDQQHOV7,0B&+>@1
FKDQQHOV7,0B&+>@(75
%.,1DV$)
3$)/--#
;7$/N+]
57&
$:8
%DFNXSUHJLVWHU
$+%$3% $+%$3%
67$03
7,0
E
FKDQQHOV(75DV$)
7,0
E
FKDQQHOV(75DV$)
7,0
E
FKDQQHOV(75DV$)
7,0
E
FKDQQHOV
VPFDUG
E
FKDQQHODV$)
7,0
E
FKDQQHODV$)
7,0
5;7;&.
&76576DV$)
VPFDUG
86$57
LU'$
5;7;&.DV$)
VPFDUG
86$57
LU'$
026,0,62
6&.166DV$)
026,0,62
6&.166DV$)
E
::'*
$3%0+]
63,
86$57 LU'$
$3%0+]
$3%0+]PD[
7,0
$3%0+]
FKDQQHOVDV$)
9''5()B$'&
$/$50B287
7,03:0 E
DQDORJLQSXWV
26&B,1
26&B287
'0$
(;7,7:.83
&)&/
$;=
#-$#+AS!&
9%$7 WR9
#9%$7
&5&
XSWR$)
26&B,1
26&B287
:'*.
+&/.
$3%&/.
$3%&/.
$+%3&/.
$+%3&/.
3+>@
;7$/26&
0+]
5HVHW
FORFN
0$1$*7
FRQWURO
63,
5;7;DV$)
&76576DV$)
63,6
026,6'0,626'BH[W6&.&.
166:60&.DV$)
63,6
026,6'0,626'BH[W6&.&.
166:60&.DV$)
,&60%86
6&/6'$60%$DV$)
,&60%86
6&/6'$60%$DV$)
,&60%86
6&/6'$60%$DV$)
86$570%SV
7HPSHUDWXUHVHQVRU
$'&
,)
#9''$
069
1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 42 MHz.
DocID024738 Rev 5
14/134
53
Functional overview
STM32F401xB STM32F401xC
3
Functional overview
3.1
ARM® Cortex®-M4 with FPU core with embedded Flash and
SRAM
The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size
usually associated with 8- and 16-bit devices. The processor supports a set of DSP
instructions which allow efficient signal processing and complex algorithm execution. Its
single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F401xB/STM32F401xC devices are compatible with all ARM tools and software.
Figure 3 shows the general block diagram of the STM32F401xB/STM32F401xC.
Note:
Cortex®-M4 with FPU is binary compatible with Cortex®-M3.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 105 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 256-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 84 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
15/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
3.4
Functional overview
Embedded Flash memory
The devices embed up to 256 Kbytes of Flash memory available for storing programs and
data.
3.5
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6
Embedded SRAM
All devices embed:
•
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 4. Multi-AHB matrix
6
6
6
6
'0$B3
*3
'0$
'0$B0(0
'0$B0(0
'0$B3,
6EXV
*3
'0$
6
0
,&2'(
0 '&2'(
$&&(/
6
'EXV
$50
&RUWH[0
,EXV
3.7
Up to 64 Kbytes of system SRAM which can be accessed (read/write) at CPU clock
speed with 0 wait states
)ODVK
0
65$0
0
$+%
SHULSK
$3%
0
$+%
SHULSK
$3%
%XVPDWUL[6
069
DocID024738 Rev 5
16/134
53
Functional overview
3.8
STM32F401xB STM32F401xC
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
3.9
•
SPI and I2S
•
I2C
•
USART
•
General-purpose, basic and advanced-control timers TIMx
•
SD/SDIO/MMC host interface
•
ADC
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the
Cortex®-M4 with FPU.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.10
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 21 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 81 GPIOs can be connected
to the 16 external interrupt lines.
17/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
3.11
Functional overview
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 84 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 84 MHz while the maximum frequency of the high-speed APB domains is 84 MHz.
The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.12
Boot modes
At startup, boot pins are used to select one out of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using either USART1(PA9/10), USART2(PD5/6), USB OTG FS in device mode (PA11/12)
through DFU (device firmware upgrade), I2C1(PB6/7), I2C2(PB10/3), I2C3(PA8/PB4),
SPI1(PA4/5/6/7), SPI2(PB12/13/14/15) or SPI3(PA15, PC10/11/12).
For more detailed information on the bootloader, refer to Application Note: AN2606,
STM32™ microcontroller system memory boot mode.
3.13
Power supply schemes
•
VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor
(POR/PDR) disabled, provided externally through VDD pins. Requires the use of an
external power supply supervisor connected to the VDD and PDR_ON pins.
•
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
•
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with
decoupling technique.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 18: Power supply scheme for more details.
DocID024738 Rev 5
18/134
53
Functional overview
STM32F401xB STM32F401xC
3.14
Power supply supervisor
3.14.1
Internal reset ON
This feature is available for VDD operating voltage range 1.8 V to 3.6 V.
The internal power supply supervisor is enabled by holding PDR_ON high.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.14.2
Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to
low.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 5: Power supply supervisor
interconnection with internal reset OFF.
Figure 5. Power supply supervisor interconnection with internal reset OFF(1)
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
3'5B21
1567
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
9''
069
1. The PRD_ON pin is only available on the WLCSP49 and UFBGA100 packages.
19/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Functional overview
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 6).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no longer supported:
•
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
•
The brownout reset (BOR) circuitry must be disabled.
•
The embedded programmable voltage detector (PVD) is disabled.
•
VBAT functionality is no more available and VBAT pin should be connected to VDD.
Figure 6. PDR_ON control with internal reset OFF
9 ''
3'5 9
WLPH
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
1567
3'5B21
3'5B21
WLPH
069
3.15
Voltage regulator
The regulator has four operating modes:
•
•
Regulator ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator OFF
DocID024738 Rev 5
20/134
53
Functional overview
3.15.1
STM32F401xB STM32F401xC
Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
•
MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
•
LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
•
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Depending on the package, one or two external ceramic capacitors should be connected on
the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the LQFP100 and
UFBGA100 packages.
All packages have the regulator ON feature.
3.15.2
Regulator OFF
The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG
pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode
allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency. Refer to Table 14: General operating
conditions.
The two 2.2 µF VCAP ceramic capacitors should be replaced by two 100 nF decoupling
capacitors. Refer to Figure 18: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
21/134
•
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
•
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
DocID024738 Rev 5
STM32F401xB STM32F401xC
Functional overview
Figure 7. Regulator OFF
9
([WHUQDO9&$3BSRZHU
$SSOLFDWLRQUHVHW
VXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYH VLJQDORSWLRQDO
ZKHQ9&$3B0LQ9
9''
3$
9''
1567
%<3$66B5(*
9
9&$3B
9&$3B
DL9
The following conditions must be respected:
Note:
•
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
•
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 8).
•
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 9).
•
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
The minimum value of V12 depends on the maximum frequency targeted in the application
DocID024738 Rev 5
22/134
53
Functional overview
STM32F401xB STM32F401xC
Figure 8. Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization
9''
3'5 9
9
0LQ9
9&$3B9&$3B
WLPH
1567
WLPH
06Y9
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 9. Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization
9''
3'5 9
9&$3B9&$3B
9
0LQ9
1567
WLPH
3$DVVHUWHGH[WHUQDOO\
WLPH
1. This figure is valid whatever the internal reset mode (ON or OFF).
23/134
DocID024738 Rev 5
06Y9
STM32F401xB STM32F401xC
3.15.3
Functional overview
Regulator ON/OFF and internal power supply supervisor availability
Table 3. Regulator ON/OFF and internal power supply supervisor availability
Package
Regulator ON
Regulator OFF
Power supply
supervisor ON
Power supply
supervisor OFF
UFQFPN48
Yes
No
Yes
No
WLCSP49
Yes
No
Yes
PDR_ON set to VDD
Yes
PDR_ON external
control(1)
LQFP64
Yes
No
Yes
No
LQFP100
Yes
No
Yes
No
Yes
PDR_ON set to VDD
Yes
PDR_ON external
control (1)
UFBGA100
Yes
Yes
BYPASS_REG set to BYPASS_REG set to
VSS
VDD
1. Refer to Section 3.14: Power supply supervisor
3.16
Real-time clock (RTC) and backup registers
The backup domain includes:
•
The real-time clock (RTC)
•
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC features a reference clock detection, a more precise
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC
provides a programmable alarm and programmable periodic interrupts with wakeup from
Stop and Standby modes. The sub-seconds value is also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.17: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
DocID024738 Rev 5
24/134
53
Functional overview
STM32F401xB STM32F401xC
The RTC and backup registers are supplied through a switch that is powered either from the
VDD supply when present or from the VBAT pin.
3.17
Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/
tamper/ time stamp events).
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp event
occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and
the 1.2 V domain is controlled by an external power.
3.18
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
super-capacitor, or from VDD when no external battery and an external super-capacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC and the backup registers.
Note:
25/134
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
DocID024738 Rev 5
STM32F401xB STM32F401xC
3.19
Functional overview
Timers and watchdogs
The devices embed one advanced-control timer, seven general-purpose timers and two
watchdog timers.
All timer counters can be frozen in debug mode.
Table 4 compares the features of the advanced-control and general-purpose timers.
Table 4. Timer feature comparison
Timer
type
Advanced
-control
Timer
TIM1
16-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
Yes
84
84
32-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
No
42
84
16-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
No
42
84
16-bit
Up
Any
integer
between 1
and
65536
No
2
No
84
84
Up
Any
integer
between 1
and
65536
No
1
No
84
84
TIM2,
TIM5
TIM3,
TIM4
General
purpose
TIM9
TIM10,
TIM11
3.19.1
Max.
Max.
DMA
Capture/
Complemen- interface timer
request
compare
tary output
clock
clock
generation channels
(MHz)
(MHz)
Counter Counter Prescaler
resolution
type
factor
16-bit
Advanced-control timers (TIM1)
The advanced-control timer (TIM1) can be seen as three-phase PWM generators
multiplexed on 4 independent channels. It has complementary PWM outputs with
programmable inserted dead times. It can also be considered as a complete generalpurpose timer. Its 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge- or center-aligned modes)
•
One-pulse mode output
DocID024738 Rev 5
26/134
53
Functional overview
STM32F401xB STM32F401xC
If configured as standard 16-bit timers, it has the same features as the general-purpose
TIMx timers. If configured as a 16-bit PWM generator, it has full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 supports independent DMA request generation.
3.19.2
General-purpose timers (TIMx)
There are seven synchronizable general-purpose timers embedded in the
STM32F401xB/STM32F401xC (see Table 4 for differences).
•
TIM2, TIM3, TIM4, TIM5
The STM32F401xB/STM32F401xC devices are 4 full-featured general-purpose timers:
TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit autoreload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on
a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature four
independent channels for input capture/output compare, PWM or one-pulse mode
output. This gives up to 16 input capture/output compare/PWMs on the largest
packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
•
TIM9, TIM10 and TIM11
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10 and TIM11 feature one independent channel, whereas TIM9 has two
independent channels for input capture/output compare, PWM or one-pulse mode
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured
general-purpose timers. They can also be used as simple time bases.
3.19.3
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.19.4
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
27/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
3.19.5
Functional overview
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
3.20
•
A 24-bit downcounter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
Inter-integrated circuit interface (I2C)
Up to three I2C bus interfaces can operate in multimaster and slave modes. They can
support the standard (up to 100 kHz) and fast (up to 400 kHz) modes. The I2C bus
frequency can be increased up to 1 MHz. For more details about the complete solution,
please contact your local ST sales representative.They also support the 7/10-bit addressing
mode and the 7-bit dual addressing mode (as slave). A hardware CRC
generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 5).
Table 5. Comparison of I2C analog and digital filters
Pulse width of
suppressed spikes
3.21
Analog filter
Digital filter
≥ 50 ns
Programmable length from 1 to 15 I2C peripheral clocks
Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed three universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART6).
These three interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The USART2 interface communicates at up to
5.25 bit/s.
USART1 and USART2 also provide hardware management of the CTS and RTS signals,
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller.
DocID024738 Rev 5
28/134
53
Functional overview
STM32F401xB STM32F401xC
Table 6. USART feature comparison
Max. baud
Max. baud
USART Standard Modem
SPI
Smartcard rate in Mbit/s rate in Mbit/s
APB
LIN
irDA
name
features (RTS/CTS)
master
(ISO 7816) (oversampling (oversampling mapping
by 16)
by 8)
USART1
X
X
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
USART2
X
X
X
X
X
X
2.62
5.25
APB1
(max.
42 MHz)
USART6
X
N.A
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
3.22
Serial peripheral interface (SPI)
The devices feature up to four SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1 and SPI4 can communicate at up to 42 Mbit/s, SPI2 and SPI3
can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies
and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.23
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.24
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for the CPU.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 kHz to 192 kHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
29/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
3.25
Functional overview
Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.26
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
3.27
•
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
4 bidirectional endpoints
•
8 host channels with periodic OUT support
•
HNP/SNP/IP inside (no need for any external resistor)
•
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
3.28
Analog-to-digital converter (ADC)
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
DocID024738 Rev 5
30/134
53
Functional overview
STM32F401xB STM32F401xC
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4 or TIM5 timer.
3.29
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the ADC_IN18 input channel which is used to convert the sensor output
voltage into a digital value. Refer to the reference manual for additional information.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.30
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.31
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F401xB/STM32F401xC through a small number of ETM pins to an external
hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using
any high-speed channel available. Real-time instruction and data flow activity can be
recorded and then formatted for display on the host computer that runs the debugger
software. TPA hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
31/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
4
Pinouts and pin description
Pinouts and pin description
Figure 10. STM32F401xB/STM32F401xC WLCSP49 pinout
$
3$
3$
3%
3%
%227
966
9''
%
966
9''
3$
3%
3%
3'5
B21
9%$7
&
3$
3$
3$
3%
3%
3&
3&
26&B287 26&B,1
'
3$
3$
966
3%
3&
3+
3+
26&B287 26&B,1
(
3%
3%
3%
3$
3$
966$
95()
1567
)
3%
9''
3$
3$
3$
3$
9''$
95()
*
3%
9&$3
B
3%
3%
3%
3$
3$
069
1. The above figure shows the package top view.
DocID024738 Rev 5
32/134
53
Pinouts and pin description
STM32F401xB STM32F401xC
3%
3%
3%
3%
3$
3$
3%
3%
%227
966
9%$7
3%
9''
Figure 11. STM32F401xB/STM32F401xC UFQFPN48 pinout
9''
3&
966
3&26&B,1
3$
3&26&B287
3$
3+26&B,1
3$
3+26&B287
3$
1567
3$
966$95()
3$
3%
3%
3$
3%
3$
3%
3$
3$
3$
3$
3%
3%
3%
3%
966
9''
9&$3B
3$
3$
9''$95()
8)4)31
069
1. The above figure shows the package top view.
33/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Pinouts and pin description
3&
3&26&B,1
3$
966
9''
3&26&B287
3+26&B,1
3+26&B287
1567
3&
3&
3&
3&
966$95()
9''$95()
3$
3$
3$
/4)3
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
9&$3B
966
9''
9%$7
3%
3%
%227
3%
3%
3%
3%
3%
3'
3& 3& 3& 3$
3$
9''
966
Figure 12. STM32F401xB/STM32F401xC LQFP64 pinout
069
1. The above figure shows the package top view.
DocID024738 Rev 5
34/134
53
Pinouts and pin description
STM32F401xB STM32F401xC
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 13. STM32F401xB/STM32F401xC LQFP100 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0" 0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
6#!0?
633
6$$
0%
0%
0%
0%
0%
6"!4
0#
0#/3#?).
0#/3#?/54
633
6$$
0(/3#?).
0(/3#?/54
.234
0#
0#
0#
0#
6$$
633!62%&
6$$!62%&
6$$!
0!
0!
0!
-36
1. The above figure shows the package top view.
35/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Pinouts and pin description
Figure 14. STM32F401xB/STM32F401xC UFBGA100 pinout
$
3(
3(
3%
%227
3'
3'
3%
3%
3$
3$
3$
3$
%
3(
3(
3%
3%
3%
3'
3'
3'
3'
3&
3&
3$
3&
3(
$17,B7$03
3(
9''
3%
3'
3'
3&
9&$3
B
3$
966
3$
3$
3&
%<3$66B5(*
3&
3&
3&
&
'
(
3&
26&B,1
3(
3&
9%$7
26&B287
)
3+
26&B,1
966
966
966
*
3+
9''
26&B287
9''
9''
+
3&
1567
3'5B21
3'
3'
3'
-
966$
3&
3&
3'
3'
3'
.
95()
3&
3$
3$
3&
/
95()
3$
:.83
3$
3$
3&
3%
0
9''$
3$
3$
3$
3%
3%
3'
3%
3%
3%
3%
3(
3(
3(
3%
9&$3
B
3%
3(
3(
3(
3(
3(
3(
069
1. This figure shows the package top view
DocID024738 Rev 5
36/134
53
Pinouts and pin description
STM32F401xB STM32F401xC
Table 7. Legend/abbreviations used in the pinout table
Name
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin name
Pin type
I/O structure
Notes
S
Supply pin
I
Input only pin
I/O
Input/ output pin
FT
5 V tolerant I/O
B
Dedicated BOOT0 pin
NRST
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
-
1
B2
PE2
I/O FT
-
SPI4_SCK, TRACECLK,
EVENTOUT
-
-
-
-
2
A1
PE3
I/O FT
-
TRACED0, EVENTOUT
-
-
-
-
3
B1
PE4
I/O FT
-
SPI4_NSS, TRACED1,
EVENTOUT
-
-
-
-
4
C2
PE5
I/O FT
-
SPI4_MISO, TIM9_CH1,
TRACED2, EVENTOUT
-
-
-
-
5
D2
PE6
I/O FT
-
SPI4_MOSI, TIM9_CH2,
TRACED3, EVENTOUT
-
-
-
-
-
D3
VSS
S
-
-
-
-
-
-
-
-
C4
VDD
S
-
-
-
-
1
B7
1
6
E2
VBAT
S
-
-
-
-
2
D5
2
7
C1
PC13
37/134
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions
Alternate functions
I/O FT (2) (3) EVENTOUT,
DocID024738 Rev 5
Additional
functions
RTC_TAMP1,
RTC_OUT, RTC_TS
STM32F401xB STM32F401xC
Pinouts and pin description
WLCSP49
LQFP64
LQFP100
UFBGA100
3
C7
3
8
D1
PC14OSC32_IN
(PC14)
I/O FT
4
C6
4
9
E1
PC15OSC32_OUT
(PC15)
I/O FT
-
-
-
10
F2
VSS
S
-
-
-
-
-
-
-
11
G2
VDD
S
-
-
-
-
5
D7
5
12
F1
PH0-OSC_IN
(PH0)
I/O FT
(4)
EVENTOUT
OSC_IN
6
D6
6
13
G1
PH1OSC_OUT
(PH1)
I/O FT
(4)
EVENTOUT
OSC_OUT
7
E7
7
14
H2
NRST
I/O FT
-
EVENTOUT
-
-
-
8
15
H1
PC0
I/O FT
-
EVENTOUT
ADC1_IN10
-
-
9
16
J2
PC1
I/O FT
-
EVENTOUT
ADC1_IN11
-
-
10
17
J3
PC2
I/O FT
-
SPI2_MISO, I2S2ext_SD,
EVENTOUT
ADC1_IN12
-
-
11
18
K2
PC3
I/O FT
-
SPI2_MOSI/I2S2_SD,
EVENTOUT
ADC1_IN13
-
-
-
19
-
VDD
S
-
-
-
-
8
E6
12
20
-
VSSA/VREF-
S
-
-
-
-
-
-
-
-
J1
VSSA
S
-
-
-
-
-
-
-
-
K1
VREF-
S
-
-
-
-
9
-
13
-
-
VDDA/VREF+
S
-
-
-
-
-
-
-
21
L1
VREF+
S
-
-
-
-
-
F7
-
22
M1
VDDA
S
-
-
-
-
10
F6
14
23
L2
PA0
I/O FT
(5)
11
G7 15
24
M2
PA1
I/O FT
12
E5
25
K3
PA2
I/O FT
16
Notes
UQFN48
Pin name
(function
after reset)(1)
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
(2) (3)
(4)
(2) (3)
(4)
Alternate functions
Additional
functions
EVENTOUT
OSC32_IN
EVENTOUT
OSC32_OUT
USART2_CTS,
TIM2_CH1/TIM2_ETR,
TIM5_CH1, EVENTOUT
ADC1_IN0, WKUP
-
USART2_RTS, TIM2_CH2,
TIM5_CH2, EVENTOUT
ADC1_IN1
-
USART2_TX, TIM2_CH3,
TIM5_CH3, TIM9_CH1,
EVENTOUT
ADC1_IN2
DocID024738 Rev 5
38/134
53
Pinouts and pin description
STM32F401xB STM32F401xC
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
13
E4
17
26
L3
PA3
-
-
18
27
-
VSS
S
-
-
-
-
-
-
19
28
-
VDD
S
-
-
-
-
-
-
-
-
E3
BYPASS_
REG
I
FT
-
-
-
I/O FT
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
-
Alternate functions
USART2_RX, TIM2_CH4,
TIM5_CH4, TIM9_CH2,
EVENTOUT
Additional
functions
ADC1_IN3
14
G6 20
29
M3
PA4
I/O FT
-
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK, EVENTOUT
ADC1_IN4
15
F5
21
30
K4
PA5
I/O FT
-
SPI1_SCK,
TIM2_CH1/TIM2_ETR,
EVENTOUT
ADC1_IN5
16
F4
22
31
L4
PA6
I/O FT
-
SPI1_MISO, TIM1_BKIN,
TIM3_CH1, EVENTOUT
ADC1_IN6
17
F3
23
32
M4
PA7
I/O FT
-
SPI1_MOSI, TIM1_CH1N,
TIM3_CH2, EVENTOUT
ADC1_IN7
-
-
24
33
K5
PC4
I/O FT
-
EVENTOUT
ADC1_IN14
-
-
25
34
L5
PC5
I/O FT
-
EVENTOUT
ADC1_IN15
18
G5 26
35
M5
PB0
I/O FT
-
TIM1_CH2N, TIM3_CH3,
EVENTOUT
ADC1_IN8
19
G4 27
36
M6
PB1
I/O FT
-
TIM1_CH3N, TIM3_CH4,
EVENTOUT
ADC1_IN9
20
G3 28
37
L6
PB2
I/O FT
-
EVENTOUT
BOOT1
-
-
-
38
M7
PE7
I/O FT
-
TIM1_ETR, EVENTOUT
-
-
-
-
39
L7
PE8
I/O FT
-
TIM1_CH1N, EVENTOUT
-
-
-
-
40
M8
PE9
I/O FT
-
TIM1_CH1, EVENTOUT
-
-
-
-
41
L8
PE10
I/O FT
-
TIM1_CH2N, EVENTOUT
-
-
-
-
42
M9
PE11
I/O FT
-
SPI4_NSS, TIM1_CH2,
EVENTOUT
-
-
-
-
43
L9
PE12
I/O FT
-
SPI4_SCK, TIM1_CH3N,
EVENTOUT
-
-
-
-
44
M10
PE13
I/O FT
-
SPI4_MISO, TIM1_CH3,
EVENTOUT
-
39/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Pinouts and pin description
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
-
45
M11
PE14
I/O FT
-
SPI4_MOSI, TIM1_CH4,
EVENTOUT
-
-
-
-
46
M12
PE15
I/O FT
-
TIM1_BKIN, EVENTOUT
-
21
E3
29
47
L10
PB10
I/O FT
-
SPI2_SCK/I2S2_CK,
I2C2_SCL, TIM2_CH3,
EVENTOUT
-
-
-
-
-
K9
PB11
I/O FT
-
EVENTOUT
-
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Alternate functions
Additional
functions
22
G2 30
48
L11
VCAP_1
S
-
-
-
-
23
D3
31
49
F12
VSS
S
-
-
-
-
24
F2
32
50
G12
VDD
S
-
-
-
-
25
E2
33
51
L12
PB12
I/O FT
-
SPI2_NSS/I2S2_WS,
I2C2_SMBA, TIM1_BKIN,
EVENTOUT
-
26
G1 34
52
K12
PB13
I/O FT
-
SPI2_SCK/I2S2_CK,
TIM1_CH1N, EVENTOUT
-
27
F1
35
53
K11
PB14
I/O FT
-
SPI2_MISO, I2S2ext_SD,
TIM1_CH2N, EVENTOUT
-
28
E1
36
54
K10
PB15
I/O FT
-
SPI2_MOSI/I2S2_SD,
TIM1_CH3N, EVENTOUT
RTC_REFIN
-
-
-
55
-
PD8
I/O FT
-
EVENTOUT
-
-
-
-
56
K8
PD9
I/O FT
-
EVENTOUT
-
-
-
-
57
J12
PD10
I/O FT
-
EVENTOUT
-
-
-
-
58
J11
PD11
I/O FT
-
EVENTOUT
-
-
-
-
59
J10
PD12
I/O FT
-
TIM4_CH1, EVENTOUT
-
-
-
-
60
H12
PD13
I/O FT
-
TIM4_CH2, EVENTOUT
-
-
-
-
61
H11
PD14
I/O FT
-
TIM4_CH3, EVENTOUT
-
-
-
-
62
H10
PD15
I/O FT
-
TIM4_CH4, EVENTOUT
-
-
-
37
63
E12
PC6
I/O FT
-
I2S2_MCK, USART6_TX,
TIM3_CH1, SDIO_D6,
EVENTOUT
-
-
-
38
64
E11
PC7
I/O FT
-
I2S3_MCK, USART6_RX,
TIM3_CH2, SDIO_D7,
EVENTOUT
-
DocID024738 Rev 5
40/134
53
Pinouts and pin description
STM32F401xB STM32F401xC
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
39
65
E10
PC8
I/O FT
-
USART6_CK, TIM3_CH3,
SDIO_D0, EVENTOUT
-
-
-
40
66
D12
PC9
I/O FT
-
I2S_CKIN, I2C3_SDA,
TIM3_CH4, SDIO_D1,
MCO_2, EVENTOUT
-
29
D1
41
67
D11
PA8
I/O FT
-
I2C3_SCL, USART1_CK,
TIM1_CH1, OTG_FS_SOF,
MCO_1, EVENTOUT
-
30
D2
42
68
D10
PA9
I/O FT
-
I2C3_SMBA, USART1_TX,
TIM1_CH2, EVENTOUT
OTG_FS_VBUS
31
C2
43
69
C12
PA10
I/O FT
-
USART1_RX, TIM1_CH3,
OTG_FS_ID, EVENTOUT
-
32
C1
44
70
B12
PA11
I/O FT
-
USART1_CTS, USART6_TX,
TIM1_CH4, OTG_FS_DM,
EVENTOUT
-
33
C3
45
71
A12
PA12
I/O FT
-
USART1_RTS, USART6_RX,
TIM1_ETR, OTG_FS_DP,
EVENTOUT
-
34
B3
46
72
A11
PA13 (JTMSSWDIO)
I/O FT
-
JTMS-SWDIO, EVENTOUT
-
-
-
-
73
C11
VCAP_2
S
-
-
-
-
35
B1
47
74
F11
VSS
S
-
-
-
-
36
-
48
75
G11
VDD
S
-
-
-
-
-
B2
-
-
-
VDD
S
-
-
-
-
37
A1
49
76
A10
PA14 (JTCKSWCLK)
I/O FT
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Alternate functions
Additional
functions
-
JTCK-SWCLK, EVENTOUT
-
-
38
A2
50
77
A9
PA15 (JTDI)
I/O FT
-
JTDI, SPI1_NSS,
SPI3_NSS/I2S3_WS,
TIM2_CH1/TIM2_ETR, JTDI,
EVENTOUT
-
-
51
78
B11
PC10
I/O FT
-
SPI3_SCK/I2S3_CK,
SDIO_D2, EVENTOUT
-
-
-
52
79
C10
PC11
I/O FT
-
I2S3ext_SD, SPI3_MISO,
SDIO_D3, EVENTOUT
-
-
-
53
80
B10
PC12
I/O FT
-
SPI3_MOSI/I2S3_SD,
SDIO_CK, EVENTOUT
-
-
-
-
81
C9
PD0
I/O FT
-
EVENTOUT
-
41/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Pinouts and pin description
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
-
-
-
82
B9
PD1
I/O FT
-
EVENTOUT
-
-
-
54
83
C8
PD2
I/O FT
-
TIM3_ETR, SDIO_CMD,
EVENTOUT
-
-
-
-
84
B8
PD3
I/O FT
-
SPI2_SCK/I2S2_CK,
USART2_CTS, EVENTOUT
-
-
-
-
85
B7
PD4
I/O FT
-
USART2_RTS, EVENTOUT
-
-
-
-
86
A6
PD5
I/O FT
-
USART2_TX, EVENTOUT
-
-
-
-
87
B6
PD6
I/O FT
-
SPI3_MOSI/I2S3_SD,
USART2_RX, EVENTOUT
-
-
-
-
88
A5
PD7
I/O FT
-
USART2_CK, EVENTOUT
-
A8
PB3
(JTDO-SWO)
-
JTDO-SWO, SPI1_SCK,
SPI3_SCK/I2S3_CK,
I2C2_SDA, TIM2_CH2,
EVENTOUT
-
A7
PB4
(NJTRST)
-
NJTRST, SPI1_MISO,
SPI3_MISO, I2S3ext_SD,
I2C3_SDA, TIM3_CH1,
EVENTOUT
-
-
39
40
A3
A4
55
56
89
90
I/O FT
I/O FT
Notes
UQFN48
Pin type
Pin Number
I/O structure
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Alternate functions
Additional
functions
41
B4
57
91
C5
PB5
I/O FT
-
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
I2C1_SMBA, TIM3_CH2,
EVENTOUT
42
C4
58
92
B5
PB6
I/O FT
-
I2C1_SCL, USART1_TX,
TIM4_CH1, EVENTOUT
-
43
D4
59
93
B4
PB7
I/O FT
-
I2C1_SDA, USART1_RX,
TIM4_CH2, EVENTOUT
-
44
A5
60
94
A4
BOOT0
45
B5
61
95
A3
PB8
I
B
-
-
VPP
I/O FT
-
I2C1_SCL, TIM4_CH3,
TIM10_CH1, SDIO_D4,
EVENTOUT
-
-
46
C5
62
96
B3
PB9
I/O FT
-
SPI2_NSS/I2S2_WS,
I2C1_SDA, TIM4_CH4,
TIM11_CH1, SDIO_D5,
EVENTOUT
-
-
-
97
C3
PE0
I/O FT
-
TIM4_ETR, EVENTOUT
-
-
-
-
98
A2
PE1
I/O FT
-
EVENTOUT
-
DocID024738 Rev 5
42/134
53
Pinouts and pin description
STM32F401xB STM32F401xC
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Pin Number
Alternate functions
47
A6
63
99
-
VSS
S
-
-
-
-
-
B6
-
-
H3
PDR_ON
I
FT
-
-
-
48
A7
-
VDD
S
-
-
-
-
64 100
Additional
functions
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F401xx reference manual.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA100 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode),
then PA0 is used as an internal Reset (active low)
43/134
DocID024738 Rev 5
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/TIM2
TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PA0
-
TIM2_CH1/
TIM2_ETR
TIM5_CH1
-
-
-
-
USART2_
CTS
-
-
-
-
-
-
-
EVENT
OUT
PA1
-
TIM2_CH2
TIM5_CH2
-
-
-
-
USART2_
RTS
-
-
-
-
-
-
-
EVENT
OUT
PA2
-
TIM2_CH3
TIM5_CH3
TIM9_CH1
-
-
-
USART2_
TX
-
-
-
-
-
-
-
EVENT
OUT
PA3
-
TIM2_CH4
TIM5_CH4
TIM9_CH2
-
-
USART2_
RX
-
-
-
-
-
-
-
EVENT
OUT
PA4
-
-
-
-
-
SPI1_NSS
SPI3_NSS/
I2S3_WS
USART2_
CK
-
-
-
-
-
-
-
EVENT
OUT
PA5
-
TIM2_CH1/
TIM2_ETR
-
-
-
SPI1_SCK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA6
-
TIM1_BKIN
TIM3_CH1
-
-
SPI1_
MISO
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA7
-
TIM1_CH1N
TIM3_CH2
-
-
SPI1_
MOSI
-
-
-
-
-
-
PA8
MCO_1
TIM1_CH1
-
-
I2C3_SCL
-
-
USART1_
CK
-
-
OTG_FS_
SOF
-
PA9
-
TIM1_CH2
-
-
I2C3_
SMBA
-
-
USART1_
TX
-
-
OTG_FS_
VBUS
-
-
--
-
EVENT
OUT
PA10
-
TIM1_CH3
-
-
-
-
-
USART1_
RX
-
-
OTG_FS_I
D
-
-
-
-
EVENT
OUT
PA11
-
TIM1_CH4
-
-
-
-
-
USART1_
CTS
USART6_
TX
-
OTG_FS_
DM
-
-
-
-
EVENT
OUT
PA12
-
TIM1_ETR
-
-
-
-
-
USART1_
RTS
USART6_
RX
-
OTG_FS_
DP
-
-
-
-
EVENT
OUT
PA13
JTMS_
SWDIO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA14
JTCK_
SWCLK
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PA15
JTDI
TIM2_CH1/
TIM2_ETR
-
-
-
SPI1_NSS
SPI3_NSS/
I2S3_WS
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 5
Port A
Port
SDIO
-
-
-
EVENT
OUT
-
-
-
EVENT
OUT
44/134
Pinouts and pin description
AF00
STM32F401xB STM32F401xC
Table 9. Alternate function mapping
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/TIM2
TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PB0
-
TIM1_CH2N
TIM3_CH3
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB1
-
TIM1_CH3N
TIM3_CH4
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB3
JTDOSWO
TIM2_CH2
-
-
-
SPI1_SCK
SPI3_SCK/
I2S3_CK
-
-
I2C2_SDA
-
-
-
-
-
EVENT
OUT
PB4
JTRST
-
TIM3_CH1
-
-
SPI1_
MISO
SPI3_MISO
I2S3ext_S
D
-
I2C3_SDA
-
-
-
-
-
EVENT
OUT
PB5
-
-
TIM3_CH2
-
I2C1_
SMBA
SPI1
_MOSI
SPI3_MOSI/
I2S3_SD
-
-
-
-
-
-
-
-
EVENT
OUT
PB6
-
-
TIM4_CH1
-
I2C1_SCL
-
-
USART1_
TX
-
-
-
-
-
-
-
EVENT
OUT
PB7
-
-
TIM4_CH2
-
I2C1_SDA
-
-
USART1_
RX
-
-
-
-
-
-
-
EVENT
OUT
PB8
-
-
TIM4_CH3
TIM10_CH1
I2C1_SCL
-
-
-
-
-
-
-
SDIO_
D4
-
-
EVENT
OUT
PB9
-
-
TIM4_CH4
TIM11_CH1
I2C1_SDA
SPI2_NSS/I
2S2_WS
-
-
-
-
-
-
SDIO_
D5
-
-
EVENT
OUT
PB10
-
TIM2_CH3
-
-
I2C2_SCL
SPI2_SCK/I
2S2_CK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB12
-
TIM1_BKIN
-
-
I2C2_
SMBA
SPI2_NSS/I
2S2_WS
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB13
-
TIM1_CH1N
-
-
-
SPI2_SCK/I
2S2_CK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PB14
-
TIM1_CH2N
-
-
-
SPI2_MISO
I2S2ext_SD
-
-
-
-
-
-
-
-
EVENT
OUT
PB15
RTC_
REFN
TIM1_CH3N
-
-
-
SPI2_MOSI
/I2S2_SD
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 5
Port B
Port
SDIO
STM32F401xB STM32F401xC
AF00
Pinouts and pin description
45/134
Table 9. Alternate function mapping (continued)
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/TIM2
TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PC0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC2
-
-
-
-
-
SPI2_
MISO
I2S2ext_SD
-
-
-
-
-
-
-
-
EVENT
OUT
PC3
-
-
-
-
-
SPI2_MOSI
/I2S2_SD
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC6
-
--
TIM3_CH1
-
-
I2S2_MCK
-
-
USART6_
TX
-
-
-
SDIO_
D6
-
-
EVENT
OUT
PC7
-
TIM3_CH2
-
-
-
I2S3_MCK
-
USART6_
RX
-
-
-
SDIO_
D7
-
-
EVENT
OUT
PC8
-
-
TIM3_CH3
-
-
-
-
-
USART6_
CK
-
-
-
SDIO_
D0
-
-
EVENT
OUT
PC9
MCO_2
-
TIM3_CH4
-
I2C3_SDA
I2S_CKIN
-
-
-
-
-
-
SDIO_
D1
-
-
EVENT
OUT
PC10
-
-
-
-
-
-
SPI3_SCK/
I2S3_CK
-
-
-
-
-
SDIO_
D2
-
-
EVENT
OUT
PC11
-
-
-
-
-
I2S3ext_
SD
SPI3_MISO
-
-
-
-
-
SDIO_
D3
-
-
EVENT
OUT
PC12
-
-
-
-
-
-
SPI3_MOSI/
I2S3_SD
-
-
-
-
-
SDIO_
CK
-
-
EVENT
OUT
PC13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 5
Port C
Port
SDIO
46/134
Pinouts and pin description
AF00
STM32F401xB STM32F401xC
Table 9. Alternate function mapping (continued)
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/TIM2
TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PD0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD2
-
-
TIM3_ETR
-
-
-
-
-
-
-
-
-
SDIO_
CMD
-
-
EVENT
OUT
PD3
-
-
-
-
-
SPI2_SCK/
I2S2_CK
-
USART2_
CTS
--
-
-
-
-
-
-
EVENT
OUT
PD4
-
-
-
-
-
-
-
USART2_
RTS
-
-
-
-
-
-
EVENT
OUT
PD5
-
-
-
-
-
-
-
USART2_
TX
-
-
-
-
-
-
-
EVENT
OUT
PD6
-
-
-
-
-
SPI3_MOSI
/I2S3_SD
-
USART2_
RX
-
-
-
-
-
-
-
EVENT
OUT
PD7
-
-
-
-
-
-
-
USART2_
CK
-
-
-
-
-
-
-
EVENT
OUT
PD8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD11
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD12
-
-
TIM4_CH1
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD13
-
-
TIM4_CH2
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD14
-
-
TIM4_CH3
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD15
-
-
TIM4_CH4
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 5
Port D
Port
SDIO
STM32F401xB STM32F401xC
AF00
Pinouts and pin description
47/134
Table 9. Alternate function mapping (continued)
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/TIM2
TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PE0
-
-
TIM4_ETR
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE1
-
TIM1_CH2N
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE2
TRACECL
K
-
-
-
-
SPI4_SCK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE3
TRACED0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE4
TRACED1
-
-
-
-
SPI4_NSS
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE5
TRACED2
-
-
TIM9_CH1
-
SPI4_MISO
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE6
TRACED3
-
-
TIM9_CH2
-
SPI4_MOSI
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE7
-
TIM1_ETR
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE8
-
TIM1_CH1N
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE9
-
TIM1_CH1
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE10
-
TIM1_CH2N
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE11
-
TIM1_CH2
-
-
-
SPI4_NSS
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE12
-
TIM1_CH3N
-
-
-
SPI4_SCK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE13
-
TIM1_CH3
-
-
-
SPI4_MISO
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE14
-
TIM1_CH4
-
-
-
SPI4_MOSI
-
-
-
-
-
-
-
-
-
EVENT
OUT
PE15
-
TIM1_BKIN
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
DocID024738 Rev 5
Port E
Port
SDIO
48/134
Pinouts and pin description
AF00
STM32F401xB STM32F401xC
Table 9. Alternate function mapping (continued)
AF00
AF01
AF02
AF03
AF04
AF05
AF06
AF07
AF08
AF09
AF10
AF11
AF12
AF13 AF14
AF15
SYS_AF
TIM1/TIM2
TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6
I2C2/
I2C3
OTG1_FS
PH0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
Port H
Port
SDIO
Pinouts and pin description
49/134
Table 9. Alternate function mapping (continued)
DocID024738 Rev 5
STM32F401xB STM32F401xC
STM32F401xB STM32F401xC
5
Memory mapping
Memory mapping
The memory map is shown in Figure 15.
Figure 15. Memory map
5HVHUYHG
[([))))))))
&RUWH[0LQWHUQDO
SHULSKHUDOV
[([()))))
[')))))))
5HVHUYHG
[
[))))
$+%
5HVHUYHG
[))))))))
[(
[')))))))
0E\WH
EORFN
&RUWH[0
V
LQWHUQDO
SHULSKHUDOV
[
[[)))))))
[))
$+%
0E\WH
EORFN
1RWXVHG
[&
[%)))))))
[
5HVHUYHG
[&[))))
[%))
5HVHUYHG
[
[)))))))
$3%
0E\WH
EORFN
3HULSKHUDOV
[
[)))))))
0E\WH
EORFN
65$0
[
[)))))))
0E\WH
EORFN
&RGH
[
5HVHUYHG
[[)))))))
65$0.%DOLDVHG
E\ELWEDQGLQJ
[[))))
5HVHUYHG
[)))&[)))))))
2SWLRQE\WHV
[)))&[)))&
5HVHUYHG
6\VWHPPHPRU\
[)))[)))$)
[
[[))))
[))
[)))$[)))%)))
5HVHUYHG
[[))())))
)ODVKPHPRU\
[[))))
5HVHUYHG
[[))))))
$OLDVHGWR)ODVKV\VWHP
PHPRU\RU65$0GHSHQGLQJ
RQWKH%227SLQV
5HVHUYHG
$3%
[[))))
[
069
DocID024738 Rev 5
50/134
53
Memory mapping
STM32F401xB STM32F401xC
Table 10. STM32F401xB/STM32F401xC register boundary addresses
Bus
®
Cortex -M4
AHB2
AHB1
51/134
Boundary address
Peripheral
0xE010 0000 - 0xFFFF FFFF
Reserved
0xE000 0000 - 0xE00F FFFF
Cortex-M4 internal peripherals
0x5004 0000 - 0xDFFF FFFF
Reserved
0x5000 0000 - 0x5003 FFFF
USB OTG FS
0x4002 6800 - 0x4FFF FFFF
Reserved
0x4002 6400 - 0x4002 67FF
DMA2
0x4002 6000 - 0x4002 63FF
DMA1
0x4002 5000 - 0x4002 4FFF
Reserved
0x4002 3C00 - 0x4002 3FFF
Flash interface register
0x4002 3800 - 0x4002 3BFF
RCC
0x4002 3400 - 0x4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2000 - 0x4002 2FFF
Reserved
0x4002 1C00 - 0x4002 1FFF
GPIOH
0x4002 1400 - 0x4002 1BFF
Reserved
0x4002 1000 - 0x4002 13FF
GPIOE
0x4002 0C00 - 0x4002 0FFF
GPIOD
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
DocID024738 Rev 5
STM32F401xB STM32F401xC
Memory mapping
Table 10. STM32F401xB/STM32F401xC register boundary addresses (continued)
Bus
APB2
Boundary address
Peripheral
0x4001 4C00- 0x4001 FFFF
Reserved
0x4001 4800 - 0x4001 4BFF
TIM11
0x4001 4400 - 0x4001 47FF
TIM10
0x4001 4000 - 0x4001 43FF
TIM9
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
SPI4/I2S4
0x4001 3000 - 0x4001 33FF
SPI1
0x4001 2C00 - 0x4001 2FFF
SDIO
0x4001 2400 - 0x4001 2BFF
Reserved
0x4001 2000 - 0x4001 23FF
ADC1
0x4001 1800 - 0x4001 1FFF
Reserved
0x4001 1400 - 0x4001 17FF
USART6
0x4001 1000 - 0x4001 13FF
USART1
0x4001 0800 - 0x4001 0FFF
Reserved
0x4001 0400 - 0x4001 07FF
TIM8
0x4001 0000 - 0x4001 03FF
TIM1
0x4000 7400 - 0x4000 FFFF
Reserved
DocID024738 Rev 5
52/134
53
Memory mapping
STM32F401xB STM32F401xC
Table 10. STM32F401xB/STM32F401xC register boundary addresses (continued)
Bus
APB1
53/134
Boundary address
Peripheral
0x4000 7000 - 0x4000 73FF
PWR
0x4000 6000 - 0x4000 6FFF
Reserved
0x4000 5C00 - 0x4000 5FFF
I2C3
0x4000 5800 - 0x4000 5BFF
I2C2
0x4000 5400 - 0x4000 57FF
I2C1
0x4000 4800 - 0x4000 53FF
Reserved
0x4000 4400 - 0x4000 47FF
USART2
0x4000 4000 - 0x4000 43FF
I2S3ext
0x4000 3C00 - 0x4000 3FFF
SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF
SPI2 / I2S2
0x4000 3400 - 0x4000 37FF
I2S2ext
0x4000 3000 - 0x4000 33FF
IWDG
0x4000 2C00 - 0x4000 2FFF
WWDG
0x4000 2800 - 0x4000 2BFF
RTC & BKP Registers
0x4000 1000 - 0x4000 27FF
Reserved
0x4000 0C00 - 0x4000 0FFF
TIM5
0x4000 0800 - 0x4000 0BFF
TIM4
0x4000 0400 - 0x4000 07FF
TIM3
0x4000 0000 - 0x4000 03FF
TIM2
DocID024738 Rev 5
Electrical characteristics
STM32F401xB STM32F401xC
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2 σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
Figure 16. Pin loading conditions
-#5PIN
#P&
-36
54/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
6.1.5
Electrical characteristics
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 17. Input voltage measurement
-#5PIN
6).
-36
DocID024738 Rev 5
55/134
113
Electrical characteristics
6.1.6
STM32F401xB STM32F401xC
Power supply scheme
Figure 18. Power supply scheme
9%$7
9%$7
WR9
*3,2V
,1
9&$3B
9&$3B
9''
966
îQ)
î—)
/HYHOVKLIWHU
287
î—) RU î—)
9''
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
3RZHU
VZLWFK
,2
/RJLF
.HUQHOORJLF
&38GLJLWDO
5$0
9ROWDJH
UHJXODWRU
)ODVKPHPRU\
%<3$66B5(*
3'5B21
9''
9''$
95()
Q)
—)
5HVHW
FRQWUROOHU
Q)
—)
95()
95()
$'&
$QDORJ
5&V
3//
966$
069
1. To connect PDR_ON pin, refer to Section 3.14: Power supply supervisor.
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
3. VCAP_2 pad is only available on LQFP100 and UFBGA100 packages.
4. VDDA=VDD and VSSA=VSS.
Caution:
56/134
Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
DocID024738 Rev 5
STM32F401xB STM32F401xC
6.1.7
Electrical characteristics
Current consumption measurement
Figure 19. Current consumption measurement scheme
)$$?6"!4
6"!4
)$$
6$$
6$$!
AI
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 11. Voltage characteristics
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VDD and
VBAT)(1)
–0.3
4.0
Input voltage on FT pins(2)
VSS–0.3
VDD+4.0
Input voltage on any other pin
VSS–0.3
4.0
VSS
9.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
VIN
Input voltage for BOOT0
|ΔVDDx|
|VSSX −VSS|
VESD(HBM)
Electrostatic discharge voltage (human body model)
Unit
V
mV
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
DocID024738 Rev 5
57/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 12. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD_x power lines (source)(1)
160
Σ IVSS
(1)
-160
Total current out of sum of all VSS_x ground lines (sink)
IVDD
Maximum current into each VDD_x power line (source)
(1)
100
IVSS
Maximum current out of each VSS_x ground line (sink)(1)
-100
IIO
ΣIIO
IINJ(PIN) (3)
ΣIINJ(PIN)
Output current sunk by any I/O and control pin
25
Output current sourced by any I/O and control pin
Total output current sunk by sum of all I/O and control pins
-25
(2)
mA
120
Total output current sourced by sum of all I/Os and control pins(2)
Injected current on FT pins
Unit
-120
(4)
–5/+0
Injected current on NRST and B pins (4)
Total injected current (sum of all I/O and control pins)(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 13. Thermal characteristics
Symbol
TSTG
TJ
TLEAD
Ratings
Storage temperature range
Maximum junction temperature
Maximum lead temperature during soldering
(WLCSP49, LQFP64/100, UFQFPN48,
UFBGA100)
Value
–65 to +150
125
°C
see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS
directive 2011/65/EU, July 2011).
58/134
DocID024738 Rev 5
Unit
STM32F401xB STM32F401xC
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 14. General operating conditions
Symbol
fHCLK
Parameter
Internal AHB clock frequency
Conditions
Min
Typ
Max
Power Scale3: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x01
0
-
60
Power Scale2: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x10
0
-
84
fPCLK1
Internal APB1 clock frequency
0
-
42
fPCLK2
Internal APB2 clock frequency
0
-
84
Standard operating voltage
1.7(1)
-
3.6
Analog operating voltage
(ADC limited to 1.2 M samples)
1.7(1)
-
2.4
2.4
-
3.6
1.65
-
3.6
VDD
VDDA
(2)(3)
VBAT
Analog operating voltage
(ADC limited to 2.4 M samples)
Backup operating voltage
VOS[1:0] bits in PWR_CR register = 0x01
1.08(5) 1.14 1.20(5)
Max frequency 60 MHz
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2 pins
Regulator OFF: 1.2 V external
voltage must be supplied on
VCAP_1/VCAP_2 pins
Max. frequency 60 MHz.
1.1
1.14
1.2
V12
Max. frequency 84 MHz.
1.2
1.26
1.32
Input voltage on RST and FT
pins(6)
2 V ≤ VDD ≤ 3.6 V
–0.3
-
5.5
VDD ≤ 2 V
–0.3
-
5.2
0
-
9
UFQFPN48
-
-
625
WLCSP49
-
-
385
LQFP64
-
-
313
LQFP100
-
-
465
UFBGA100
-
-
323
PD
V
VOS[1:0] bits in PWR_CR register = 0x10
1.20(5) 1.26 1.32(5)
Max frequency 84 MHz
Input voltage on BOOT0 pin
Maximum allowed package
power dissipation for suffix 6
and 7(7)
MHz
Must be the same potential as VDD(4)
V12
VIN
Unit
DocID024738 Rev 5
mW
59/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 14. General operating conditions (continued)
Symbol
Parameter
Conditions
Typ
Max
Ambient temperature for 6
suffix version
Maximum power dissipation
–40
-
85
Low power dissipation(8)
–40
-
105
Ambient temperature for 7
suffix version
Maximum power dissipation
–40
-
105
Low power dissipation
–40
-
125
6 suffix version
–40
-
105
7 suffix version
–40
-
125
TA
TJ
Min
Junction temperature range
(8)
Unit
°C
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
reset OFF).
2. When the ADC is used, refer to Table 66: ADC characteristics.
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA
can be tolerated during power-up and power-down operation.
5. Guaranteed by test in production
6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
8. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 15. Features depending on the operating power supply range
Operating
power
supply
range
ADC
operation
VDD =1.7 to
2.1 V(4)
Conversion
time up to
1.2 Msps
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
VDD = 2.7 to
3.6 V(6)
60/134
Conversion
time up to
2.4 Msps
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Clock output
frequency on
I/O pins(3)
Possible
Flash
memory
operations
84 MHz with 4
wait states
– No I/O
up to 30 MHz
compensation
8-bit erase
and program
operations
only
22 MHz
84 MHz with 3
wait states
– No I/O
up to 30 MHz
compensation
16-bit erase
and program
operations
24 MHz
84 MHz with 3
wait states
– I/O
compensation up to 48 MHz
works
16-bit erase
and program
operations
84 MHz with 2
wait states
– up to
84 MHz
when VDD =
– I/O
3.0 to 3.6 V
compensation
– up to
works
48 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
20
MHz(5)
30 MHz
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. Refer to Table 56: I/O AC characteristics for frequencies vs. external load.
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
reset OFF).
5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of
D- and D+ pins will be degraded between 2.7 and 3 V.
6.3.2
VCAP_1/VCAP_2 external capacitors
Stabilization for the main regulator is achieved by connecting 2 external capacitor CEXT to
the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT
capacitors are replaced by a single capacitor.
CEXT is specified in Table 16.
Figure 20. External capacitor CEXT
&
(65
5/HDN
069
1. Legend: ESR is the equivalent series resistance.
Table 16. VCAP_1/VCAP_2 operating conditions(1)
Symbol
Parameter
Conditions
CEXT
Capacitance of external capacitor with available
VCAP_1 and VCAP_2 pins
2.2 µF
ESR
ESR of external capacitor with available VCAP_1 and
VCAP_2 pins
<2Ω
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
6.3.3
Operating conditions at power-up/power-down (regulator ON)
Subject to general operating conditions for TA.
Table 17. Operating conditions at power-up / power-down (regulator ON)
Symbol
tVDD
Parameter
Min
Max
VDD rise time rate
20
∞
VDD fall time rate
20
∞
DocID024738 Rev 5
Unit
µs/V
61/134
113
Electrical characteristics
6.3.4
STM32F401xB STM32F401xC
Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 18. Operating conditions at power-up / power-down (regulator OFF)(1)
Symbol
tVDD
tVCAP
Parameter
Conditions
Min
Max
VDD rise time rate
Power-up
20
∞
VDD fall time rate
Power-down
20
∞
VCAP_1 and VCAP_2 rise time rate
Power-up
20
∞
VCAP_1 and VCAP_2 fall time rate
Power-down
20
∞
Unit
µs/V
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Note:
This feature is only available for UFBGA100 package.
6.3.5
Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage @ 3.3V.
Table 19. Embedded reset and power control block characteristics
Symbol
(2)
VPOR/PDR
62/134
Conditions
Programmable voltage
detector level selection
VPVD
VPVDhyst
Parameter
Min
Typ
Max
PLS[2:0]=000 (rising edge)
2.09
2.14
2.19
PLS[2:0]=000 (falling edge)
1.98
2.04
2.08
PLS[2:0]=001 (rising edge)
2.23
2.30
2.37
PLS[2:0]=001 (falling edge)
2.13
2.19
2.25
PLS[2:0]=010 (rising edge)
2.39
2.45
2.51
PLS[2:0]=010 (falling edge)
2.29
2.35
2.39
PLS[2:0]=011 (rising edge)
2.54
2.60
2.65
PLS[2:0]=011 (falling edge)
2.44
2.51
2.56
PLS[2:0]=100 (rising edge)
2.70
2.76
2.82
PLS[2:0]=100 (falling edge)
2.59
2.66
2.71
PLS[2:0]=101 (rising edge)
2.86
2.93
2.99
PLS[2:0]=101 (falling edge)
2.65
2.84
2.92
PLS[2:0]=110 (rising edge)
2.96
3.03
3.10
PLS[2:0]=110 (falling edge)
2.85
2.93
2.99
PLS[2:0]=111 (rising edge)
3.07
3.14
3.21
PLS[2:0]=111 (falling edge)
2.95
3.03
3.09
-
100
-
Falling edge
1.60(1)
1.68
1.76
Rising edge
1.64
1.72
1.80
PVD hysteresis
Power-on/power-down
reset threshold
DocID024738 Rev 5
Unit
V
mV
V
STM32F401xB STM32F401xC
Electrical characteristics
Table 19. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
-
40
-
mV
Falling edge
2.13
2.19
2.24
Rising edge
2.23
2.29
2.33
Brownout level 2
threshold
Falling edge
2.44
2.50
2.56
Rising edge
2.53
2.59
2.63
Brownout level 3
threshold
Falling edge
2.75
2.83
2.88
Rising edge
2.85
2.92
2.97
-
100
-
mV
0.5
1.5
3.0
ms
InRush current on
voltage regulator poweron (POR or wakeup from
Standby)
-
160
200
mA
InRush energy on
voltage regulator power- VDD = 1.7 V, TA = 105 °C,
on (POR or wakeup from IRUSH = 171 mA for 31 µs
Standby)
-
-
5.4
µC
VPDRhyst(2)
PDR hysteresis
VBOR1
Brownout level 1
threshold
VBOR2
VBOR3
VBORhyst
(2)
TRSTTEMPO
(2)(3)
IRUSH(2)
ERUSH
(2)
Conditions
BOR hysteresis
POR reset timing
V
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design.
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first
instruction is fetched by the user application code.
6.3.6
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
DocID024738 Rev 5
63/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in input mode with a static value at VDD or VSS (no load).
•
All peripherals are disabled except if it is explicitly mentioned.
•
The Flash memory access time is adjusted to both fHCLK frequency and VDD ranges
(refer to Table 15: Features depending on the operating power supply range).
•
The voltage scaling is adjusted to fHCLK frequency as follows:
–
Scale 3 for fHCLK ≤ 60 MHz
–
Scale 2 for 60 MHz < fHCLK ≤ 84 MHz
•
The system clock is HCLK, fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
•
External clock is 4 MHz and PLL is on when fHCLK is higher than 25 MHz.
•
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
Table 20. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD =1.8V
Symbol
Parameter
Conditions
External clock,
all peripherals
enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals
disabled(3)
Max(1)
fHCLK
(MHz)
Typ
84
Unit
TA= 25 °C
TA=85 °C
TA=105 °C
20.0
21
22
23(4)
60
14.5
15
16
17
40
10.4
11
12
13
20
5.5
6
7
8
84
10.9
11
13
14(4)
60
8.0
9
10
11
40
5.8
6
7
8
20
3.2
4
5
6
mA
1. Guaranteed by characterization, unless otherwise specified.
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
4. Guaranteed by test in production.
64/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM
Symbol
Parameter
Conditions
Typ
84
External clock,
all peripherals
enabled(2)(3)
IDD
Max(1)
fHCLK
(MHz)
Supply current
in Run mode
External clock,
all peripherals
disabled(3)
Unit
TA= 25 °C
TA=85 °C
TA=105 °C
20.2
21
22
23
60
14.7
15
16
18
40
10.7
11
12
13
20
5.7
6
7
8
84
11.2
12
13
14
60
8.2
9
10
11
40
6.1
7
8
9
20
3.4
4
5
6
mA
1. Guaranteed by characterization, unless otherwise specified.
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
Table 22. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.8 V
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
84
TA =
25 °C
TA =
85 °C
TA =
105 °C
22.2
23
24
25
60
14.5
15
16
17
40
10.7
11
12
13
30
8.6
9
10
11
20
7.0
8
9
10
84
11.5
12
13
14
60
7.7
8
9
10
40
5.6
6
7
8
30
4.5
5
6
7
20
3.8
5
6
7
Unit
mA
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
DocID024738 Rev 5
65/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.3 V
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
84
22.5
23
24
25
60
14.8
16
17
18
40
11.0
12
13
14
30
8.9
10
11
12
20
7.3
8
9
10
84
11.8
13
14
15
60
7.9
9
10
11
40
5.8
7
8
9
30
4.8
6
7
8
20
4.0
5
6
7
Unit
mA
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
.
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
84
30.6
32
34
35
60
21.4
22
24
25
40
15.6
16
17
18
30
12.7
13
14
15
20
10.0
11
12
13
84
19.9
21
23
25
60
14.6
15
16
17
40
10.4
11
12
13
30
8.6
9
10
11
20
6.7
7
8
9
Unit
mA
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
66/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Run mode
External clock,
all peripherals disabled(3)
Max(1)
fHCLK
(MHz)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
84
31.8
33
35
36
60
21.8
22
23
24
40
16.0
17
18
19
30
12.9
14
15
16
20
10.4
11
12
13
84
21.2
22
23
24
60
15.0
16
17
18
40
10.9
12
13
14
30
8.8
10
11
12
20
7.1
8
9
10
Unit
mA
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
Table 26. Typical and maximum current consumption in Sleep mode
Symbol
Parameter
Conditions
External clock,
all peripherals enabled(2)(3)
IDD
Supply current
in Sleep mode
External clock,
all peripherals disabled(3)(4)
Max(1)
fHCLK
(MHz)
Typ
TA =
25 °C
TA =
85 °C
TA =
105 °C
84
16.2
17
18
19
60
10.7
11
12
13
40
8.3
9
10
11
30
6.8
7
8
9
20
5.9
6
7
8
84
5.2
6
7
8
60
3.6
4
5
6
40
2.9
3
4
5
30
2.6
3
4
5
20
2.6
3
4
5
Unit
mA
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
4. Same current consumption for fHCLK at 30 MHz and 20 MHz due to VCO running slower at 30 MHz.
DocID024738 Rev 5
67/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 27. Typical and maximum current consumptions in Stop mode - VDD=1.8 V
Symbol
Parameter
Conditions
Main regulator usage
Low power regulator usage
IDD_STOP Main regulator usage
Low power regulator usage
Low power low voltage regulator usage
Typ
Max(1)
TA =
25 °C
TA = TA = TA =
25 °C 85 °C 105 °C
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
109
135
440
650
41
65
310
530(2)
Flash in Deep power
down mode, all oscillators
OFF, no independent
watchdog
72
95
345
530
12
36
260
510(2)
10
27
230
460
Unit
µA
1. Guaranteed by characterization.
2. Guaranteed by test in production.
Table 28. Typical and maximum current consumption in Stop mode - VDD=3.3 V
Symbol
Parameter
Main regulator usage
Low power regulator usage
Conditions
Typ
Max(1)
TA =
25 °C
TA = TA = TA =
25 °C 85 °C 105 °C
Flash in Stop mode, all
oscillators OFF, no
independent watchdog
IDD_STOP Main regulator usage
Flash in Deep power
down mode, all oscillators
Low power regulator usage
OFF, no independent
Low power low voltage regulator usage watchdog
111
140
450
670
42
65
330
560
73
100
360
560
12
36
270
520
10
28
230
470
Unit
µA
1. Guaranteed by characterization.
Table 29. Typical and maximum current consumption in Standby mode - VDD=1.8 V
Typ(1)
Symbol
IDD_STBY
Parameter
Conditions
Supply current in Low-speed oscillator (LSE) and RTC ON
Standby mode
RTC and LSE OFF
TA =
25 °C
2.4
1.8
Max(2)
TA = TA =
25 °C 85 °C
4.0
(3)
3.0
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed by characterization, unless otherwise specified.
3. Guaranteed by test in production.
68/134
DocID024738 Rev 5
TA =
105 °C
12.0
24.0
11.0
23.0(3)
Unit
µA
STM32F401xB STM32F401xC
Electrical characteristics
Table 30. Typical and maximum current consumption in Standby mode - VDD=3.3 V
Typ(1)
Symbol
Parameter
Conditions
Supply current in Low-speed oscillator (LSE) and RTC ON
Standby mode RTC and LSE OFF
IDD_STBY
Max(2)
Unit
TA =
105 °C
TA =
25 °C
TA =
25 °C
TA =
85 °C
2.8
5.0
14.0
28.0
13.0
27.0(3)
2.1
4.0
(3)
µA
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed by characterization, unless otherwise specified.
3. Guaranteed by test in production.
Table 31. Typical and maximum current consumptions in VBAT mode
Max(2)
Typ
Symbol
TA =
85 °C
TA = 25 °C
Conditions(1)
Parameter
VBAT = VBAT= VBAT =
1.7 V 2.4 V 3.3 V
Backup
Low-speed oscillator (LSE) and RTC ON
IDD_VBAT domain supply
RTC and LSE OFF
current
TA =
105 °C Unit
VBAT = 3.6 V
0.66
0.76
0.97
3.0
5.0
0.1
0.1
0.1
2.0
4.0
µA
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization.
Figure 21. Typical VBAT current consumption (LSE and RTC ON)
)$$?6"!4—!
6
6
6
6
6
6
6
6
6
#
#
#
#
#
4EMPERATURE
-36
DocID024738 Rev 5
69/134
113
Electrical characteristics
STM32F401xB STM32F401xC
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 33: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
70/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Table 32. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDD = 3.3 V
C = CINT(2)
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT + CS
IDDIO
I/O switching
current
VDD = 3.3 V
CEXT =10 pF
C = CINT + CEXT + CS
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT + CS
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT + CS
I/O toggling
frequency (fSW)
Typ
2 MHz
0.05
8 MHz
0.15
25 MHz
0.45
50 MHz
0.85
60 MHz
1.00
84 MHz
1.40
2 MHz
0.10
8 MHz
0.35
25 MHz
1.05
50 MHz
2.20
60 MHz
2.40
84 MHz
3.55
2 MHz
0.20
8 MHz
0.65
25 MHz
1.85
50 MHz
2.45
60 MHz
4.70
84 MHz
8.80
2 MHz
0.25
8 MHz
1.00
25 MHz
3.45
50 MHz
7.15
60 MHz
11.55
2 MHz
0.32
8 MHz
1.27
25 MHz
3.88
50 MHz
12.34
Unit
mA
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP100 package pin (pad removal).
DocID024738 Rev 5
71/134
113
Electrical characteristics
STM32F401xB STM32F401xC
On-chip peripheral current consumption
The MCU is placed under the following conditions:
•
At startup, all I/O pins are in analog input configuration.
•
All peripherals are disabled unless otherwise mentioned.
•
The ART accelerator is ON.
•
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
•
HCLK is the system clock at 84 MHz. fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
The given value is calculated by measuring the difference of current consumption
•
–
with all peripherals clocked off
–
with only one peripheral clocked on
Ambient operating temperature is 25 °C and VDD=3.3 V.
Table 33. Peripheral current consumption
Peripheral
AHB1
(up to 84MHz)
APB1
(up to 42MHz)
AHB2
(up to 84MHz)
72/134
IDD (typ)
GPIOA
1.55
GPIOB
1.55
GPIOC
1.55
GPIOD
1.55
GPIOE
1.55
GPIOH
1.55
CRC
0.36
DMA1
20.24
DMA2
21.07
TIM2
11.19
TIM3
8.57
TIM4
8.33
TIM5
11.19
PWR
0.71
USART2
3.33
I2C1/2/3
3.10
SPI2(1)
2.62
SPI3(1)
2.86
I2S2
1.90
I2S3
1.67
WWDG
0.71
OTG_FS
23.93
DocID024738 Rev 5
Unit
µA/MHz
µA/MHz
µA/MHz
STM32F401xB STM32F401xC
Electrical characteristics
Table 33. Peripheral current consumption (continued)
Peripheral
IDD (typ)
TIM1
5.71
TIM9
2.86
TIM10
1.79
TIM11
2.02
(2)
ADC1
2.98
SPI1
1.19
USART1
3.10
USART6
2.86
SDIO
5.95
SPI4
1.31
SYSCFG
0.71
APB2
(up to 84MHz)
Unit
µA/MHz
1. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6
mA for the analog part.
6.3.7
Wakeup time from low-power modes
The wakeup times given in Table 34 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
•
For Stop or Sleep modes: the wakeup event is WFE.
•
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 34. Low-power mode wakeup timings(1)
Min(1)
Typ(1)
Max(1)
Unit
Wakeup from Sleep mode
-
4
6
CPU
clock
cycle
Wakeup from Stop mode, usage of main regulator
-
13.5
14.5
Wakeup from Stop mode, usage of main regulator, Flash
memory in Deep power down mode
-
105
111
Wakeup from Stop mode, regulator in low power mode
-
21
33
Wakeup from Stop mode, regulator in low power mode,
Flash memory in Deep power down mode
-
113
130
Wakeup from Standby mode
-
314
407
Symbol
tWUSLEEP(2)
tWUSTOP(2)
tWUSTDBY(2)(3)
Parameter
µs
µs
1. Guaranteed by characterization.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY maximum value is given at –40 °C.
DocID024738 Rev 5
73/134
113
Electrical characteristics
6.3.8
STM32F401xB STM32F401xC
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 54. However, the recommended clock input
waveform is shown in Figure 22.
The characteristics given in Table 35 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 35. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
-
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
5
-
-
tr(HSE)
tf(HSE)
Cin(HSE)
ns
OSC_IN rise or fall
time(1)
OSC_IN input capacitance(1)
DuCy(HSE) Duty cycle
IL
V
OSC_IN Input leakage current
VSS ≤ VIN ≤ VDD
-
-
10
-
5
-
pF
45
-
55
%
-
-
±1
µA
1. Guaranteed by design.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 54. However, the recommended clock input
waveform is shown in Figure 23.
The characteristics given in Table 36 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
74/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Table 36. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1)
-
-
50
OSC32_IN input capacitance(1)
-
5
-
pF
30
-
70
%
-
-
±1
µA
Cin(LSE)
DuCy(LSE)
IL
V
ns
Duty cycle
VSS ≤ VIN ≤ VDD
OSC32_IN Input leakage current
1. Guaranteed by design.
Figure 22. High-speed external clock source AC timing diagram
6(3%(
6(3%,
TR(3%
TF(3%
T7(3% T
T7(3%
4(3%
%XTERNAL
CLOCKSOURCE
F(3%?EXT
/3#?).
),
34-&
AI
DocID024738 Rev 5
75/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 23. Low-speed external clock source AC timing diagram
9/6(+
9/6(/
WU/6(
WI/6(
W:/6(
26&B,1
,/
W:/6( W
7/6(
I/6(BH[W
([WHUQDO
FORFNVRXUFH
670)
DL
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 37. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 37. HSE 4-26 MHz oscillator characteristics(1)
Symbol
fOSC_IN
RF
IDD
Parameter
Min
Typ
Max
Unit
Oscillator frequency
4
-
26
MHz
Feedback resistor
-
200
-
kΩ
VDD=3.3 V,
ESR= 30 Ω,
CL=5 pF @25 MHz
-
450
-
VDD=3.3 V,
ESR= 30 Ω,
CL=10 pF @25 MHz
-
530
-
Startup
-
-
1
mA/V
VDD is stabilized
-
2
-
ms
HSE current consumption
Conditions
Gm_crit_max Maximum critical crystal gm
tSU(HSE)(2)
Startup time
µA
1. Guaranteed by design.
2. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
76/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with an 8 MHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
0+]
UHVRQDWRU
&/
I+6(
26&B,1
5(;7
%LDV
FRQWUROOHG
JDLQ
5)
26&B28 7
670)
DL
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 38. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 38. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RF
Feedback resistor
-
18.4
-
MΩ
IDD
LSE current consumption
-
-
1
µA
Startup
-
-
0.56
µA/V
VDD is stabilized
-
2
-
s
Gm_crit_max Maximum critical crystal gm
tSU(LSE)(2)
startup time
1. Guaranteed by design.
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is guaranteed by characterization. It is measured for a
standard crystal resonator and it can vary significantly with the crystal manufacturer.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID024738 Rev 5
77/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 25. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
I/6(
26&B,1
%LDV
5) FRQWUROOHG
JDLQ
N+ ]
UHVRQDWRU
26&B28 7
&/
670)
DL
6.3.9
Internal clock source characteristics
The parameters given in Table 39 and Table 40 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Table 39. HSI oscillator characteristics (1)
Symbol
fHSI
Parameter
Conditions
Min
Typ
Max
Unit
-
-
16
-
MHz
-
-
1
%
–8
-
4.5
%
–4
-
4
%
–1
-
1
%
Frequency
HSI user trimming
ACCHSI
step(2)
TA = –40 to 105
Accuracy of the HSI oscillator
TA = –10 to 85
TA = 25 °C(4)
tsu(HSI)
(2)
IDD(HSI)(2)
°C(3)
HSI oscillator startup time
-
-
2.2
4
µs
HSI oscillator power
consumption
-
-
60
80
µA
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization.
4. Factory calibrated, parts not soldered.
78/134
°C(3)
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Figure 26. ACCHSI versus temperature
!##(3)
4! #
-IN
-AX
4YPICAL
-36
1. Guaranteed by characterization.
Low-speed internal (LSI) RC oscillator
Table 40. LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)
(3)
IDD(LSI)(3)
Parameter
Min
Typ
Max
Unit
17
32
47
kHz
LSI oscillator startup time
-
15
40
µs
LSI oscillator power consumption
-
0.4
0.6
µA
Frequency
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by characterization.
3. Guaranteed by design.
DocID024738 Rev 5
79/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 27. ACCLSI versus temperature
MAX
AVG
MIN
.ORMALIZEDDEVIATI ON
4EMPERAT URE #
-36
6.3.10
PLL characteristics
The parameters given in Table 41 and Table 42 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.
Table 41. Main PLL characteristics
Symbol
Parameter
fPLL_IN
PLL input clock(1)
fPLL_OUT
PLL multiplier output clock
fPLL48_OUT
48 MHz PLL multiplier output
clock
fVCO_OUT
PLL VCO output
tLOCK
PLL lock time
Conditions
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
24
-
84
MHz
-
48
75
MHz
192
-
432
MHz
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
-
25
-
-
±150
-
-
15
-
-
±200
-
RMS
Cycle-to-cycle jitter
System clock
84 MHz
Jitter(3)
RMS
peak
to
peak
Period Jitter
80/134
peak
to
peak
DocID024738 Rev 5
µs
ps
STM32F401xB STM32F401xC
Electrical characteristics
Table 41. Main PLL characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
IDD(PLL)(4)
PLL power consumption on VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
IDDA(PLL)(4)
PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
Unit
mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization.
Table 42. PLLI2S (audio PLL) characteristics
Symbol
Parameter
Min
Typ
Max
0.95(2)
1
2.10
-
-
216
192
-
432
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
RMS
-
90
-
peak
to
peak
-
±280
-
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-
90
-
WS I2S clock jitter
Cycle to cycle at 48 KHz
on 1000 samples
-
400
-
IDD(PLLI2S)(4)
PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
IDDA(PLLI2S)(4)
PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
fPLLI2S_IN
PLLI2S input clock(1)
fPLLI2S_OUT
PLLI2S multiplier output clock
fVCO_OUT
PLLI2S VCO output
tLOCK
PLLI2S lock time
Conditions
Cycle to cycle at
12.288 MHz on
48 KHz period,
N=432, R=5
Master I2S clock jitter
(3)
Jitter
Unit
MHz
µs
ps
mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization.
DocID024738 Rev 5
81/134
113
Electrical characteristics
6.3.11
STM32F401xB STM32F401xC
PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 49: EMI characteristics for WLCSP49). It is available only on the
main PLL.
Table 43. SSCG parameters constraint
Symbol
Parameter
Min
Typ
Max(1)
Unit
fMod
Modulation frequency
-
-
10
KHz
md
Peak modulation depth
0.25
-
2
%
-
215
MODEPER * INCSTEP
-
-1
-
1. Guaranteed by design.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ f PLL_IN ⁄ ( 4 × fMod ) ]
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
6
3
MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 250
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP = round [ ( ( 2
15
– 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ]
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP = round [ ( ( 2
15
– 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 250 ) ] = 126md(quantitazed)%
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × PLLN )
As a result:
md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2
82/134
DocID024738 Rev 5
15
– 1 ) × 240 ) = 2,002%(peak)
STM32F401xB STM32F401xC
Electrical characteristics
Figure 28 and Figure 29 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 28. PLL output clock waveforms in center spread mode
&REQUENCY0,,?/54
MD
&
MD
TMODE
4IME
XTMODE
AI
Figure 29. PLL output clock waveforms in down spread mode
&REQUENCY0,,?/54
&
XMD
TMODE
4IME
XTMODE
AI
6.3.12
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 44. Flash memory characteristics
Symbol
IDD
Parameter
Supply current
Conditions
Min
Typ
Max
Write / Erase 8-bit mode, VDD = 1.7 V
-
5
-
Write / Erase 16-bit mode, VDD = 2.1 V
-
8
-
Write / Erase 32-bit mode, VDD = 3.3 V
-
12
-
DocID024738 Rev 5
Unit
mA
83/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 45. Flash memory programming
Symbol
tprog
Parameter
Word programming time
tERASE16KB Sector (16 KB) erase time
tERASE64KB Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Vprog
Mass erase time
Programming voltage
Conditions
Min(1)
Typ
Max(1) Unit
Program/erase parallelism
(PSIZE) = x 8/16/32
-
16
100(2)
Program/erase parallelism
(PSIZE) = x 8
-
400
800
Program/erase parallelism
(PSIZE) = x 16
-
300
600
Program/erase parallelism
(PSIZE) = x 32
-
250
500
Program/erase parallelism
(PSIZE) = x 8
-
1200
2400
Program/erase parallelism
(PSIZE) = x 16
-
700
1400
Program/erase parallelism
(PSIZE) = x 32
-
550
1100
Program/erase parallelism
(PSIZE) = x 8
-
2
4
Program/erase parallelism
(PSIZE) = x 16
-
1.3
2.6
Program/erase parallelism
(PSIZE) = x 32
-
1
2
Program/erase parallelism
(PSIZE) = x 8
-
4
8
Program/erase parallelism
(PSIZE) = x 16
-
2.75
5.5
Program/erase parallelism
(PSIZE) = x 32
-
2
4
32-bit program operation
2.7
-
3.6
V
16-bit program operation
2.1
-
3.6
V
8-bit program operation
1.7
-
3.6
V
µs
ms
ms
s
s
1. Guaranteed by characterization.
2. The maximum programming time is measured after 100K erase operations.
Table 46. Flash memory programming with VPP voltage
Symbol
Parameter
tprog
Double word programming
tERASE16KB
Sector (16 KB) erase time
tERASE64KB
Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
84/134
Conditions
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
Mass erase time
DocID024738 Rev 5
Min(1)
Typ
Max(1)
Unit
-
16
100(2)
µs
-
230
-
-
490
-
-
875
-
-
1.750
-
ms
s
STM32F401xB STM32F401xC
Electrical characteristics
Table 46. Flash memory programming with VPP voltage (continued)
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
2.7
-
3.6
V
Vprog
Programming voltage
VPP
VPP voltage range
7
-
9
V
IPP
Minimum current sunk on
the VPP pin
10
-
-
mA
-
-
1
hour
tVPP(3)
Cumulative time during
which VPP is applied
1. Guaranteed by design.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 47. Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
1 kcycle
10
(2)
at TA = 105 °C
kcycles(2)
at TA = 55 °C
10
Unit
kcycles
Years
20
1. Guaranteed by characterization.
2. Cycling performed over the whole temperature range.
6.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
DocID024738 Rev 5
85/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 48. EMS characteristics for LQFP100 package
Symbol
Parameter
Conditions
Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP100, WLCSP49,
TA = +25 °C, fHCLK = 84 MHz,
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, WLCSP49,
TA = +25 °C, fHCLK = 84 MHz,
conforms to IEC 61000-4-4
4A
When the application is exposed to a noisy environment, it is recommended to avoid pin
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,
PA2, on LQFP100 packages and PDR_ON on WLCSP49.
As a consequence, it is recommended to add a serial resistor (1 kΩ maximum) located as
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than
50 mm on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
86/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 49. EMI characteristics for WLCSP49
Symbol
Parameter
Conditions
Monitored
frequency band
Max vs.
[fHSE/fCPU]
Unit
25/84 MHz
SEMI
Peak level
VDD = 3.3 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz
-6
30 to 130 MHz
-6
130 MHz to 1 GHz
-10
SAE EMI Level
1.5
-
Max vs.
[fHSE/fCPU]
Unit
dBµV
Table 50. EMI characteristics for LQFP100
Symbol
Parameter
Conditions
Monitored
frequency band
25/84 MHz
SEMI
6.3.14
Peak level
VDD = 3.3 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz
18
30 to 130 MHz
23
130 MHz to 1 GHz
12
SAE EMI Level
3.5
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
DocID024738 Rev 5
87/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 51. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
value(1)
VESD(HBM)
Electrostatic discharge
TA = +25 °C conforming to JESD22voltage (human body model) A114
2
2000
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
II
500
TA = +25 °C conforming to
ANSI/ESD STM5.3.1
Unit
V
1. Guaranteed by characterization.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 52. Electrical sensitivities
Symbol
LU
6.3.15
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator
frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 53.
88/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Table 53. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on BOOT0 pin
–0
NA
Injected current on NRST pin
–0
NA
Injected current on PB3, PB4, PB5, PB6,
PB7, PB8, PB9, PC13, PC14, PC15, PH1,
PDR_ON, PC0, PC1,PC2, PC3, PD1,
PD5, PD6, PD7, PE0, PE2, PE3, PE4,
PE5, PE6
–0
NA
Injected current on any other FT pin
–5
NA
Injected current on any other pins
–5
+5
Unit
mA
1. NA = not applicable.
Note:
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.16
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 54 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 54. I/O static characteristics
Symbol
Parameter
FT, and NRST I/O input low
level voltage
VIL
BOOT0 I/O input low level
voltage
FT and NRST I/O input high
level voltage(5)
VIH
BOOT0 I/O input high level
voltage
Conditions
Min
Typ
1.7 V≤ VDD≤ 3.6 V
-
-
1.75 V≤ VDD ≤ 3.6 V,
-40 °C≤ TA ≤ 105 °C
-
-
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
-
1.7 V≤ VDD≤ 3.6 V
1.75 V≤ VDD ≤ 3.6 V,
-40 °C≤ TA ≤ 105 °C
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
Max
Unit
0.35VDD–0.04(1)
0.3VDD(2)
V
0.1VDD+0.1
-
0.45VDD+0.3(1)
0.4VDD
(2)
-
-
-
V
0.17VDD+0.7(1)
DocID024738 Rev 5
-
-
89/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 54. I/O static characteristics (continued)
Symbol
Parameter
FT and NRST I/O input
hysteresis
BOOT0 I/O input hysteresis
RPU
RPD
CIO(8)
Weak pull-up
equivalent
resistor(6)
Typ
Max
Unit
1.7 V≤ VDD≤ 3.6 V
-
10%
VDD(3)
-
V
-
100
-
mV
VSS ≤ VIN ≤ VDD
-
-
±1
VIN = 5 V
-
-
3
30
40
50
7
10
14
1.7 V≤ VDD ≤ 3.6 V,
0 °C≤ TA ≤ 105 °C
I/O input leakage current (4)
I/O FT input leakage current
Min
1.75 V≤ VDD ≤ 3.6 V,
-40 °C≤ TA ≤ 105 °C
VHYS
Ilkg
Conditions
(5)
All pins
except for
PA10
(OTG_FS_ID
)
VIN = VSS
PA10
(OTG_FS_ID
)
All pins
except for
PA10
Weak pull-down (OTG_FS_ID
equivalent
)
resistor(7)
PA10
(OTG_FS_ID
)
I/O pin capacitance
kΩ
30
40
50
7
10
14
-
5
-
VIN = VDD
-
1. Guaranteed by design.
2. Guaranteed by test in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 53: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 53: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8.
Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 30.
90/134
µA
DocID024738 Rev 5
pF
STM32F401xB STM32F401xC
Electrical characteristics
Figure 30. FT I/O input characteristics
9,/9,+9
'
9'
L
P
,+
Q
9
QW
H
P
LUH 77/UHTXLUHPHQW
U
9,+PLQ 9
26
0
&
'
9'
Q
R
WL
XF
LQ
RG
+P
,
SU
9
LQ
QV
WLR
HG
VW
XOD
P
L
7H
V
LJQ
HV
$UHDQRW
Q'
R
G
VH
GHWHUPLQHG
''
D
%
9
D[
,/P
QV9
ODWLR
X
LP
V
VLJQ
Q'H
HGR
77/UHTXLUHPHQW9,/PD[
%DV
9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
X
HT
9''9
069
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 12).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
DocID024738 Rev 5
91/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Table 55. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL (1)
Output low level voltage for an I/O pin
VOH (3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
Conditions
Min
Max
CMOS port(2)
IIO = +8 mA
2.7 V ≤ VDD ≤ 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
TTL port(2)
IIO =+8 mA
2.7 V ≤ VDD ≤ 3.6 V
IIO = +20 mA
2.7 V ≤ VDD ≤ 3.6 V VDD–1.3(4)
1.3(4)
IIO = +6 mA
1.8 V ≤ VDD ≤ 3.6 V VDD–0.4(4)
0.4(4)
IIO = +4 mA
1.7 V ≤ VDD ≤ 3.6 V VDD–0.4(5)
0.4(5)
-
-
-
Unit
V
V
V
V
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization.
5. Guaranteed by design.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 31 and
Table 56, respectively.
Unless otherwise specified, the parameters given in Table 56 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14.
Table 56. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
00
tf(IO)out/
tr(IO)out
92/134
Output high to low level fall
time and output low to high
level rise time
Min
Typ
Max
CL = 50 pF, VDD ≥ 2.70 V
-
-
4
CL = 50 pF, VDD≥ 1.7 V
-
-
2
CL = 10 pF, VDD ≥ 2.70 V
-
-
8
CL = 10 pF, VDD ≥ 1.7 V
-
-
4
CL = 50 pF, VDD = 1.7 V to
3.6 V
-
-
100
DocID024738 Rev 5
Unit
MHz
ns
STM32F401xB STM32F401xC
Electrical characteristics
Table 56. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
01
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
fmax(IO)out Maximum frequency(3)
10
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
Fmax(IO)out Maximum frequency(3)
11
tf(IO)out/
tr(IO)out
-
tEXTIpw
Output high to low level fall
time and output low to high
level rise time
Min
Typ
Max
CL = 50 pF, VDD ≥ 2.70 V
-
-
25
CL = 50 pF, VDD ≥ 1.7 V
-
-
12.5
CL = 10 pF, VDD ≥ 2.70 V
-
-
50
CL = 10 pF, VDD ≥ 1.7 V
-
-
20
CL = 50 pF, VDD ≥2.7 V
-
-
10
CL = 50 pF, VDD ≥ 1.7 V
-
-
20
CL = 10 pF, VDD ≥ 2.70 V
-
-
6
CL = 10 pF, VDD ≥ 1.7 V
-
-
10
CL = 40 pF, VDD ≥ 2.70 V
-
-
50(4)
CL = 40 pF, VDD ≥ 1.7 V
-
-
25
CL = 10 pF, VDD ≥ 2.70 V
-
-
100(4)
CL = 10 pF, VDD ≥ 1.7 V
-
-
50(4)
CL = 40 pF, VDD≥ 2.70 V
-
-
6
CL = 40 pF, VDD≥ 1.7 V
-
-
10
CL = 10 pF, VDD≥ 2.70 V
-
-
4
CL = 10 pF, VDD≥ 1.7 V
-
-
6
CL = 30 pF, VDD ≥ 2.70 V
-
-
100(4)
CL = 30 pF, VDD ≥ 1.7 V
-
-
50(4)
CL = 10 pF, VDD ≥ 2.70 V
-
-
180(4)
CL = 10 pF, VDD≥ 1.7 V
-
-
100(4)
CL = 30 pF, VDD ≥ 2.70 V
-
-
4
CL = 30 pF, VDD ≥ 1.7 V
-
-
6
CL = 10 pF, VDD≥ 2.70 V
-
-
2.5
CL = 10 pF, VDD≥ 1.7 V
-
-
4
10
-
-
Pulse width of external signals
detected by the EXTI
controller
Unit
MHz
ns
MHz
ns
MHz
ns
ns
1. Guaranteed by characterization.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 31.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
DocID024738 Rev 5
93/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 31. I/O AC characteristics definition
(;7(51$/
287387
21&/
WU,2RXW
WI,2RXW
7
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI”7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´
6.3.17
DLG
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 54).
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 14. Refer to Table 54: I/O static characteristics for the values of VIH and VIL for
NRST pin.
Table 57. NRST pin characteristics
Symbol
Parameter
RPU
Weak pull-up equivalent
resistor(1)
VF(NRST)(2)
NRST Input filtered pulse
VNF(NRST)(2) NRST Input not filtered pulse
TNRST_OUT
Generated reset pulse duration
Conditions
Min
Typ
Max
Unit
VIN = VSS
30
40
50
kΩ
-
-
100
ns
VDD > 2.7 V
300
-
-
ns
Internal Reset
source
20
-
-
µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
94/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Figure 32. Recommended NRST pin protection
9''
([WHUQDO
UHVHWFLUFXLW 1567 538
,QWHUQDO5HVHW
)LOWHU
—)
670)
DLF
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 57. Otherwise the reset is not taken into account by the device.
6.3.18
TIM timer characteristics
The parameters given in Table 58 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 58. TIMx characteristics(1)(2)
Symbol
tres(TIM)
Parameter
Timer resolution time
Conditions(3)
Min
Max
Unit
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
84 MHz
1
-
tTIMxCLK
11.9
-
ns
1
-
tTIMxCLK
11.9
-
ns
AHB/APBx prescaler>4,
fTIMxCLK = 84 MHz
fEXT
ResTIM
tCOUNTER
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 84 MHz
0
fTIMxCLK/2
MHz
0
42
MHz
Timer resolution
-
16/32
bit
0.0119
780
µs
-
65536 ×
65536
tTIMxCLK
-
51.1
S
16-bit counter clock
period when internal clock fTIMxCLK = 84 MHz
is selected
Maximum possible count
tMAX_COUNT
with 32-bit counter
fTIMxCLK = 84 MHz
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise
TIMxCLK >= 4x PCLKx.
DocID024738 Rev 5
95/134
113
Electrical characteristics
6.3.19
STM32F401xB STM32F401xC
Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table59. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the
complete solution, please contact your local ST sales representative.
Table 59. I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
µs
Stop to Start condition time (bus free)
4.7
-
1.3
-
µs
tw(STO:STA)
µs
ns
µs
tSP
Pulse width of the spikes that are
suppressed by the analog filter for
standard fast mode
0
50(4)
0
50(4)
ns
Cb
Capacitive load for each bus line
-
400
-
400
pF
1. Guaranteed by design.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode
I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.
3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.
4. The minimum width of the spikes filtered by the analog filter is above tSP (max).
96/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Figure 33. I2C bus AC waveforms and measurement circuit
s ''B,&
s ''B,&
53
53
670)[[
56
6'$
,ð&EXV
56
6&/
67$575(3($7('
67$57
67$57
WVX67$
6'$
WI6'$
WU6'$
WK67$
WVX6'$
WZ67267$
6723
WK6'$
WZ6&/+
6&/
WU6&/
WZ6&//
WI6&/
WVX672
DLF
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
Table 60. SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x8019
300
0x8021
200
0x8032
100
0x0096
50
0x012C
20
0x02EE
1. RP = External pull-up resistance, fSCL =
I2 C
speed
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
DocID024738 Rev 5
97/134
113
Electrical characteristics
STM32F401xB STM32F401xC
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 61 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 61. SPI dynamic characteristics(1)
Symbol
fSCK
1/tc(SCK)
Duty(SCK)
Parameter
SPI clock frequency
Conditions
Min
Typ
Max
Master mode, SPI1/4,
2.7 V < VDD < 3.6 V
42
Slave mode, SPI1/4,
2.7 V < VDD < 3.6 V
42
Slave transmitter/full-duplex mode,
SPI1/4, 2.7 V < VDD < 3.6 V
-
-
38(2)
Master mode, SPI1/2/3/4,
1.7 V < VDD < 3.6 V
21
Slave mode, SPI1/2/3/4,
1.7 V < VDD < 3.6 V
21
Duty cycle of SPI clock
Slave mode
frequency
Unit
MHz
30
50
70
%
TPCLK−1.5
TPCLK
TPCLK+1.5
ns
tw(SCKH)
tw(SCKL)
SCK high and low time
Master mode, SPI presc = 2
tsu(NSS)
NSS setup time
Slave mode, SPI presc = 2
4TPCLK
-
-
ns
th(NSS)
NSS hold time
Slave mode, SPI presc = 2
2TPCLK
-
-
ns
Master mode
0
-
-
ns
Slave mode
2.5
-
-
ns
Master mode
6
-
-
ns
Slave mode
2.5
-
-
ns
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO)
Data output access time Slave mode
9
-
20
ns
tdis(SO)
Data output disable time Slave mode
8
-
13
ns
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V
-
9.5
13
ns
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V
-
9.5
17
ns
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V
5.5
-
-
ns
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V
3.5
-
-
ns
tv(SO)
th(SO)
98/134
Data output valid time
Data output hold time
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
Table 61. SPI dynamic characteristics(1) (continued)
Symbol
Parameter
tv(MO)
Data output valid time
th(MO)
Conditions
Data output hold time
Min
Typ
Max
Unit
Master mode (after enable edge)
-
3
5
ns
Master mode (after enable edge)
2
-
-
ns
1. Guaranteed by characterization.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%
Figure 34. SPI timing diagram - slave mode and CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$ &32/ WK166
WF6&.
WZ6&.+
WZ6&./
&3+$ &32/ W962
WD62
0,62
287387
WU6&.
WI6&.
WK62
06%287
%,7287
06%,1
%,7,1
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
Figure 35. SPI timing diagram - slave mode and CPHA = 1(1)
166LQSXW
6&.LQSXW
W68166
&3+$
&32/
&3+$
&32/
WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
%,7287
WU6&.
WI6&.
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
WK166
WF6&.
06%,1
%,7,1
/6%,1
DLE
DocID024738 Rev 5
99/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 36. SPI timing diagram - master mode(1)
+LJK
166LQSXW
6&.2XWSXW
&3+$ &32/ 6&.2XWSXW
WF6&.
&3+$ &32/ &3+$ &32/ &3+$ &32/ WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
WU6&.
WI6&.
%,7,1
06%,1
/6%,1
WK0,
026,
287387
06%287
WY02
% , 7287
/6%287
WK02
DLF
100/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 62 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Table 62. I2S dynamic characteristics(1)
Symbol
Parameter
fMCK
I2S Main clock output
fCK
I2S clock frequency
DCK
Conditions
Min
Max
Unit
256x8K
256xFs(2)
MHz
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
30
70
-
I2S clock frequency duty cycle Slave receiver
tv(WS)
WS valid time
Master mode
0
6
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
1
-
th(WS)
WS hold time
Slave mode
0
-
Master receiver
7.5
-
Slave receiver
2
-
Master receiver
0
-
Slave receiver
0
-
Slave transmitter (after enable edge)
-
27
Master transmitter (after enable edge)
-
20
Master transmitter (after enable edge)
2.5
-
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
th(SD_ST)
Data input setup time
Data input hold time
Data output valid time
tv(SD_MT)
th(SD_MT)
Data output hold time
MHz
%
ns
1. Guaranteed by characterization.
2. The maximum value of 256xFs is 42 MHz (APB1 maximum frequency).
Note:
Refer to the I2S section of the reference manual for more details on the sampling frequency
(FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
DocID024738 Rev 5
101/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 37. I2S slave timing diagram (Philips protocol)(1)
tc(CK)
CK Input
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 38. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
SDreceive
LSB
LSB transmit
th(SD_MR)
tsu(SD_MR)
receive(2)
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
102/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
USB OTG full speed (FS) characteristics
This interface is present in USB OTG FS controller.
Table 63. USB OTG FS startup time
Symbol
tSTARTUP(1)
Parameter
USB OTG FS transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design.
Table 64. USB OTG FS DC electrical characteristics
Symbol
VDD
Input
levels
Parameter
Conditions
USB OTG FS operating
voltage
Min.(1) Typ. Max.(1) Unit
3.0(2)
-
3.6
VDI(3) Differential input sensitivity
I(USB_FS_DP/DM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
1.3
-
2.0
VOL
Static output level low
RL of 1.5 kΩ to 3.6 V(4)
-
-
0.3
VOH
Static output level high
RL of 15 kΩ to VSS(4)
2.8
-
3.6
17
21
24
0.65
1.1
2.0
Output
levels
RPD
PA11, PA12
(USB_FS_DM/DP)
VIN = VDD
PA9 (OTG_FS_VBUS)
RPU
PA11, PA12
(USB_FS_DM/DP)
VIN = VSS
1.5
1.8
2.1
PA9 (OTG_FS_VBUS)
VIN = VSS
0.25
0.37
0.55
V
V
V
kΩ
1. All the voltages are measured from the local ground potential.
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design.
4. RL is the load connected on the USB OTG FS drivers.
Note:
When VBUS sensing feature is enabled, PA9 should be left at their default state (floating
input), not as alternate function. A typical 200 µA current consumption of the embedded
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 when the feature is enabled.
DocID024738 Rev 5
103/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 39. USB OTG FS timings: definition of data signal rise and fall time
Crossover
points
Differen tial
Data L ines
VCRS
VS S
tr
tf
ai14137
Table 65. USB OTG FS electrical characteristics(1)
Driver characteristics
Symbol
Parameter
Rise time(2)
tr
tf
Fall
trfm
time(2)
Conditions
Min
Max
Unit
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
Rise/ fall time matching
VCRS
Output signal crossover voltage
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
6.3.20
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 66 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 66. ADC characteristics
Symbol
VDDA
VREF+
Parameter
Power supply
Positive reference voltage
Conditions
Min
Typ
Max
Unit
1.7(1)
-
3.6
V
(1)
-
VDDA
V
0.6
15
18
MHz
VDDA = 2.4 to 3.6 V
0.6
30
36
MHz
fADC = 30 MHz,
12-bit resolution
-
-
1764
kHz
-
-
17
1/fADC
0 (VSSA or VREFtied to ground)
-
VREF+
V
-
-
50
kΩ
-
-
6
kΩ
-
4
7
pF
VDDA − VREF+ < 1.2 V
(1)
fADC
fTRIG(2)
VAIN
RAIN(2)
ADC clock frequency
External trigger frequency
VDDA = 1.7
to 2.4 V
Conversion voltage range(3)
External input impedance
See Equation 1 for
details
RADC(2)(4) Sampling switch resistance
CADC(2)
104/134
Internal sample and hold
capacitor
DocID024738 Rev 5
1.7
STM32F401xB STM32F401xC
Electrical characteristics
Table 66. ADC characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
-
0.100
µs
-
-
3(5)
1/fADC
-
-
0.067
µs
-
-
2(5)
1/fADC
0.100
-
16
µs
3
-
480
1/fADC
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
tlat(2)
Injection trigger conversion
latency
fADC = 30 MHz
tlatr(2)
Regular trigger conversion
latency
fADC = 30 MHz
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time (including
sampling time)
fADC = 30 MHz
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
Sampling rate
fS(2)
(fADC = 30 MHz, and
tS = 3 ADC cycles)
1/fADC
12-bit resolution
Single ADC
-
-
2
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
3.75
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
6
Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
-
300
500
µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
-
1.6
1.8
mA
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.14.2:
Internal reset OFF).
2. Guaranteed by characterization.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.
DocID024738 Rev 5
105/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Equation 1: RAIN max formula
R AIN
( k – 0,5 )
- – R ADC
= ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 67. ADC accuracy at fADC = 18 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
Typ
Max(1)
±3
±4
±2
±3
±1
±3
±1
±2
±2
±3
Unit
LSB
1. Guaranteed by characterization.
Table 68. ADC accuracy at fADC = 30 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA − VREF < 1.2 V
Typ
Max(1)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. Guaranteed by characterization.
Table 69. ADC accuracy at fADC = 36 MHz
Symbol
ET
Parameter
Test conditions
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA − VREF < 1.2 V
1. Guaranteed by characterization.
106/134
DocID024738 Rev 5
Typ
Max(1)
±4
±7
±2
±3
±3
±6
±2
±3
±3
±6
Unit
LSB
STM32F401xB STM32F401xC
Electrical characteristics
Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol
Parameter
Test conditions
ENOB
Effective number of bits
SINAD
Signal-to-noise and distortion
ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.3
10.4
-
bits
64
64.2
-
64
65
-
-67
-72
-
dB
1. Guaranteed by characterization.
Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol
Parameter
ENOB
Effective number of bits
SINAD
Signal-to noise and distortion
ratio
SNR
Signal-to noise ratio
THD
Total harmonic distortion
Test conditions
fADC = 36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency =
20 KHz
Temperature = 25 °C
Min
Typ
Max
Unit
10.6
10.8
-
bits
66
67
-
64
68
-
-70
-72
-
dB
1. Guaranteed by characterization.
Note:
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
DocID024738 Rev 5
107/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 40. ADC accuracy characteristics
6 $$!
6 2%&
;,3" )$%!, ORDEPENDINGONPACKAGE=
%'
%4
%/
%,
%$
, 3")$%!,
6 33!
6$$!
AIC
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 41. Typical connection diagram using the ADC
670)
9''
5$,1 $,1[
9$,1
&SDUDVLWLF
6DPSOHDQGKROG$'&
FRQYHUWHU
97
9
5$'&
97
9
,/“—$
ELW
FRQYHUWHU
& $'&
DL
1. Refer to Table 66 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
108/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Electrical characteristics
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 42 or Figure 43,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 42. Power supply and reference decoupling (VREF+ not connected to VDDA)
670)
95()
—)Q)
9''$
—)Q)
966$95()
DLE
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
DocID024738 Rev 5
109/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Figure 43. Power supply and reference decoupling (VREF+ connected to VDDA)
670)
95()9''$ —)Q)
95()966$
DLF
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
6.3.21
Temperature sensor characteristics
Table 72. Temperature sensor characteristics
Symbol
TL(1)
Parameter
Min
Typ
Max
Unit
-
±1
±2
°C
-
2.5
-
mV/°C
Voltage at 25 °C
-
0.76
-
V
Startup time
-
6
10
µs
10
-
-
µs
VSENSE linearity with temperature
Avg_Slope(1) Average slope
V25(1)
tSTART
(2)
TS_temp(2)
ADC sampling time when reading the temperature (1 °C accuracy)
1. Guaranteed by characterization.
2. Guaranteed by design.
Table 73. Temperature sensor calibration values
Symbol
Parameter
Memory address
TS_CAL1
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V
0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V
0x1FFF 7A2E - 0x1FFF 7A2F
110/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
6.3.22
Electrical characteristics
VBAT monitoring characteristics
Table 74. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
KΩ
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
4
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
(1)
Er
TS_vbat(2)(2)
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.23
Embedded reference voltage
The parameters given in Table 75 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 75. Embedded internal reference voltage
Symbol
Parameter
Internal reference voltage
VREFINT
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
-
10
-
-
µs
VDD = 3V ± 10mV
-
3
5
mV
ADC sampling time when reading the
internal reference voltage
TS_vrefint(1)
Internal reference voltage spread over the
temperature range
VRERINT_s(2)
TCoeff(2)
Temperature coefficient
-
-
30
50
ppm/°C
tSTART(2)
Startup time
-
-
6
10
µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 76. Internal reference voltage calibration values
6.3.24
Symbol
Parameter
Memory address
VREFIN_CAL
Raw data acquired at temperature of
30 °C VDDA = 3.3 V
0x1FFF 7A2A - 0x1FFF 7A2B
SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 77 for the SDIO/MMC interface
are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load C = 30 pF
•
Measurement points are done at CMOS levels: 0.5VDD
DocID024738 Rev 5
111/134
113
Electrical characteristics
STM32F401xB STM32F401xC
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Figure 44. SDIO high-speed mode
tf
tr
tC
tW(CKH)
tW(CKL)
CK
tOV
tOH
D, CMD
(output)
tISU
tIH
D, CMD
(input)
ai14887
Figure 45. SD default mode
CK
tOVD
tOHD
D, CMD
(output)
ai14888
Table 77. Dynamic characteristics: SD / MMC characteristics(1)(2)
Symbol
Parameter
fPP
Conditions
Min
Typ
Max
Unit
Clock frequency in data transfer mode
0
-
48
MHz
-
SDIO_CK/fPCLK2 frequency ratio
-
-
8/3
-
tW(CKL)
Clock low time
fpp = 48MHz
8.5
9
-
tW(CKH)
Clock high time
fpp = 48MHz
8.3
10
-
ns
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU
Input setup time HS
fpp = 48MHz
3.5
-
-
tIH
Input hold time HS
fpp = 48MHz
0
-
-
ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV
Output valid time HS
fpp = 48MHz
-
4.5
7
tOH
Output hold time HS
fpp = 48MHz
3
-
-
112/134
DocID024738 Rev 5
ns
STM32F401xB STM32F401xC
Electrical characteristics
Table 77. Dynamic characteristics: SD / MMC characteristics(1)(2) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
CMD, D inputs (referenced to CK) in SD default mode
tISUD
Input setup time SD
fpp = 24MHz
1.5
-
-
tIHD
Input hold time SD
fpp = 24MHz
0.5
-
-
ns
CMD, D outputs (referenced to CK) in SD default mode
tOVD
Output valid default time SD
fpp =24MHz
-
4.5
6.5
tOHD
Output hold default time SD
fpp =24MHz
3.5
-
-
ns
1. Data based on characterization results, not tested in production.
2. VDD = 2.7 to 3.6 V.
6.3.25
RTC characteristics
Table 78. RTC characteristics
Symbol
Parameter
-
fPCLK1/RTCCLK frequency ratio
Conditions
Any read/write operation
from/to an RTC register
DocID024738 Rev 5
Min
Max
4
-
113/134
113
Package information
7
STM32F401xB STM32F401xC
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1
WLCSP49 2.965x2.965 mm package information
Figure 46. WLCSP49 - 0.4 mm pitch wafer level chip scale package outline
E
&
!BALLLOCATION
!
'
$ETAIL!
E %
E
'
!
!
E
"UMPSIDE
3IDEVIEW
!
&RONTVIEW
"UMP
$
!
EEE :
B
%
!ORIENTATION
REFERENCE
7AFERBACKSIDE
$ETAIL!
ROTATED !6!?-%?6
1. Drawing is not to scale.
114/134
.OTE
3EATINGPLANE
.OTE
DocID024738 Rev 5
STM32F401xB STM32F401xC
Package information
Table 79. WLCSP49 - 0.4 mm pitch wafer level chip scale package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.525
0.555
0.585
0.0207
0.0219
0.0230
A1
-
0.175
-
-
0.0069
-
A2
-
0.380
-
-
0.0150
-
A3(2)
-
0.025
-
-
0.0010
-
(3)
0.220
0.250
0.280
0.0087
0.0098
0.0110
D
2.930
2.965
3.000
0.1154
0.1167
0.1181
E
2.930
2.965
3.000
0.1154
0.1167
0.1181
e
-
0.400
-
-
0.0157
-
e1
-
2.400
-
-
0.0945
-
e2
-
2.400
-
-
0.0945
-
F
-
0.2825
-
-
0.0111
-
G
-
0.2825
-
-
0.0111
-
aaa
-
0.100
-
-
0.0039
-
bbb
-
0.100
-
-
0.0039
-
ccc
-
0.100
-
-
0.0039
-
ddd
-
0.050
-
-
0.0020
-
eee
-
0.050
-
-
0.0020
-
b
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating.
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 47. WLCSP49 0.4 mm pitch wafer level chip scale recommended footprint
'SDG
'VP
DocID024738 Rev 5
069
115/134
130
Package information
STM32F401xB STM32F401xC
Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch)
Dimension
Recommended values
Pitch
0.4 mm
Dpad
260 µm max. (circular)
220 µm recommended
Dsm
300 µm min. (for 260 µm diameter pad)
PCB pad design
Non-solder mask defined via underbump allowed
WLCSP49 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 48. WLCSP49 marking example (package top view)
%DOO$
LQGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
)%<
5HYLVLRQFRGH
'DWHFRGH
< ::
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
116/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
7.2
Package information
UFQFPN48 package information
Figure 49. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package outline
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
'
$
(
(
7
GGG
6HDWLQJ
SODQH
$
E
H
'HWDLO<
'
([SRVHGSDG
DUHD
<
'
/
&[ƒ
SLQFRUQHU
5W\S
'HWDLO=
(
=
$%B0(B9
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
DocID024738 Rev 5
117/134
130
Package information
STM32F401xB STM32F401xC
Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 50. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat recommended footprint
1. Dimensions are in millimeters.
118/134
DocID024738 Rev 5
!"?&0?6
STM32F401xB STM32F401xC
Package information
UFQFPN48 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 51. UFQFPN48 marking example (top view)
3URGXFWLGHQWLILFDWLRQ
670)
&%8
'DWHFRGH
< ::
3LQLGHQWLILHU
5HYLVLRQFRGH
5
0VY9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID024738 Rev 5
119/134
130
Package information
7.3
STM32F401xB STM32F401xC
LQFP64 package information
Figure 52. LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not to scale.
120/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Package information
Table 82. LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
E3
-
7.5000
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 53. LQFP64 recommended footprint
AIC
1. Dimensions are in millimeters.
DocID024738 Rev 5
121/134
130
Package information
STM32F401xB STM32F401xC
LQFP64 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 54. LQFP64 marking example (top view)
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)
5%7
'DWHFRGH
< ::
3LQ
LQGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
122/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
LQFP100 package information
Figure 55. LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat
package outline
MM
C
!
!
3%!4).'0,!.%
#
!
'!5'%0,!.%
$
,
$
!
+
CCC #
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
7.4
Package information
E
,?-%?6
1. Drawing is not to scale.
DocID024738 Rev 5
123/134
130
Package information
STM32F401xB STM32F401xC
Table 83. LQPF100- 100-pin, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.60
-
-
0.063
A1
0.050
-
0.150
0.002
-
0.0059
A2
1.350
1.40
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.622
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.622
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
K
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
0.080
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
124/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
Package information
Figure 56. LQFP100 recommended footprint
AIC
1. Dimensions are in millimeters.
LQFP100 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 57. LQPF100 marking example (top view)
3URGXFWLGHQWLILFDWLRQ
(6)
9%75
5HYLVLRQFRGH
'DWHFRGH
< ::
3LQ
LQGHQWLILHU
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
DocID024738 Rev 5
125/134
130
Package information
7.5
STM32F401xB STM32F401xC
UFBGA100 package information
Figure 58. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array package outline
= 6HDWLQJSODQH
GGG =
$ $ $
$ $
(
H
$EDOO
$EDOO
LGHQWLILHU LQGH[DUHD
)
;
(
$
)
'
'
H
<
0
%277209,(:
‘EEDOOV
‘ HHH 0 = < ;
‘ III 0 =
7239,(:
$&B0(B9
1. Drawing is not to scale.
Table 84. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array package mechanical data
inches(1)
millimeters
Symbol
126/134
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A3
-
0.130
-
-
0.0051
-
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
D
6.950
7.000
7.050
0.2736
0.2756
0.2776
D1
5.450
5.500
5.550
0.2146
0.2165
0.2185
E
6.950
7.000
7.050
0.2736
0.2756
0.2776
E1
5.450
5.500
5.550
0.2146
0.2165
0.2185
e
-
0.500
-
-
0.0197
-
F
0.700
0.750
0.800
0.0276
0.0295
0.0315
DocID024738 Rev 5
STM32F401xB STM32F401xC
Package information
Table 84. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
ddd
-
-
0.100
-
-
0.0039
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 59. UFGBA100 recommended footprint
'SDG
'VP
$&B)3B9
Table 85. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Dimension
Recommended values
Pitch
0.5
Dpad
0.280 mm
Dsm
0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening
0.280 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
DocID024738 Rev 5
127/134
130
Package information
STM32F401xB STM32F401xC
UFBGA100 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Figure 60. UFBGA100 marking example (top view)
3URGXFWLGHQWLILFDWLRQ
670)
9%+
'DWHFRGH
< ::
%DOO
LQGHQWLILHU
5HYLVLRQFRGH
5
06Y9
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
128/134
DocID024738 Rev 5
STM32F401xB STM32F401xC
7.6
Package information
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 14: General operating conditions on page 59.
The maximum chip-junction temperature, TJ max., in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 86. Package thermal characteristics
Symbol
ΘJA
7.6.1
Parameter
Value
Thermal resistance junction-ambient
UFQFPN48
32
Thermal resistance junction-ambient
WLCSP49
52
Thermal resistance junction-ambient
LQFP64
50
Thermal resistance junction-ambient
LQFP100
42
Thermal resistance junction-ambient
UFBGA100
56
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
DocID024738 Rev 5
129/134
130
Part numbering
8
STM32F401xB STM32F401xC
Part numbering
Table 87. Ordering information scheme
Example:
STM32 F 401 C C T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
401: 401 family
Pin count
C = 48/49 pins
R = 64 pins
V = 100 pins
Flash memory size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
H = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Packing
TR = tape and reel
No character = tray or tube
130/134
DocID024738 Rev 5
Revision history
9
STM32F401xB STM32F401xC
Revision history
Table 88. Document revision history
131/134
Date
Revision
Changes
23-Jul-2013
1
Initial release.
06-Sep-2013
2
Updated product status to production data
Added I2C 1 MBit/s in Features
Updated Figure 1: Compatible board design for LQFP100 package
Added notes and revised the main function after reset columnn
Table 8: STM32F401xB/STM32F401xC pin definitions.
Replaced ‘I2S2_CKIN’ signal name with ‘I2S_CKIN’ and added
EVENTOUT alternate function in Table 8:
STM32F401xB/STM32F401xC pin definitions and Table 9: Alternate
function mapping
Updated Section 3.28: Analog-to-digital converter (ADC)
Updated the reference of VESD(CDM) in Table 51: ESD absolute
maximum ratings
Updated Section 3.20: Inter-integrated circuit interface (I2C), including
Table 5: Comparison of I2C analog and digital filters
Removed first sentence (“Unless otherwise specified...”) in I2C
interface characteristics
Changed the order of the tables in Section 6.3.6: Supply current
characteristics
Modified the “SDA and SCL rise time” fast mode I2C minimum value in
Table 59: I2C characteristics
Updated Figure 33: I2C bus AC waveforms and measurement circuit
and Table 60: SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V)
Replaced “Marking of engineering samples” sections with “Marking of
samples” sections, and added UFBGA100 device marking section for
package UFGBA100 in Section 7: Package information
08-Nov-2013
3
Updated UFBGA100 in Table 86: Package thermal characteristics.
Changed WLCSP49 package measurements to 3 x 3 mm in
Section 7.1.
DocID024738 Rev 5
STM32F401xB STM32F401xC
Revision history
Table 88. Document revision history (continued)
Date
16-May-2014
Revision
Changes
4
Change VDD/VDDA minimum value to 1.7 V.
Changed number of EXTI lines in Section 3.10: External interrupt/event
controller (EXTI).
Updated Figure 18: Power supply scheme.
Updated Table 11: Voltage characteristics, Table 12: Current
characteristics andTable 14: General operating conditions.
Added note 4. in Table 26: Typical and maximum current consumption
in Sleep mode. Updated typical values at TA = 25 °C in Table 27:
Typical and maximum current consumptions in Stop mode VDD=1.8 V.
Updated SDIO current consumption in Table 33: Peripheral current
consumption.
Updated Table 54: I/O static characteristics, Table 56: I/O AC
characteristics and added Figure 30: FT I/O input characteristics.
Updated Table 55: Output voltage characteristics. Updated Table 53:
I/O current injection susceptibility and Table 57: NRST pin
characteristics.
Updated Table 61: SPI dynamic characteristics.
Updated package dimensions in Section 7.1 title. Added note below
engineering sample marking schematics. Updated UFBGA100
Thermal resistance in Table 86: Package thermal characteristics.
DocID024738 Rev 5
132/134
133
Revision history
STM32F401xB STM32F401xC
Table 88. Document revision history (continued)
Date
06-Aug-2015
133/134
Revision
Changes
5
Changed current consumption to 128 µA/MHz on cover page.
Updated Table 3: Regulator ON/OFF and internal power supply
supervisor availability for UFQFPN48.
Updated Figure 10: STM32F401xB/STM32F401xC WLCSP49 pinout
to show top view instead of bump view.
Renamed VCAP1/2 into VCAP_1/_2 in Figure 10:
STM32F401xB/STM32F401xC WLCSP49 pinout, Figure 11:
STM32F401xB/STM32F401xC UFQFPN48 pinout, Figure 13:
STM32F401xB/STM32F401xC LQFP100 pinout and Figure 14:
STM32F401xB/STM32F401xC UFBGA100 pinout.
In whole Section 6: Electrical characteristics, modified notes related to
characteristics guaranteed by design and by tests during
characterization.
Updated PLS[2:0]=101 (falling edge) in Table 19: Embedded reset and
power control block characteristics.
Updated Table 39: HSI oscillator characteristics.
Updated VHYS in Table 56: I/O AC characteristics.
Added tSP in Table 59: I2C characteristics.
Removed note 1 in Table 67: ADC accuracy at fADC = 18 MHz,
Table 68: ADC accuracy at fADC = 30 MHz and Table 69: ADC
accuracy at fADC = 36 MHz.
Added WLCSP49 Figure 47: WLCSP49 0.4 mm pitch wafer level chip
scale recommended footprint and Table 80: WLCSP49 recommended
PCB design rules (0.4 mm pitch). Added Section : WLCSP49 device
marking.
Updated Section : UFQFPN48 device marking.
Updated Table 82: LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile
quad flat package mechanical data and Section : LQFP64 device
marking.
Updated Section : LQFP64 device marking and Section : LQFP100
device marking
Updated Table 84: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch,
ultra fine pitch ball grid array package mechanical data, Figure 59:
UFGBA100 recommended footprint. Added Table 85: UFBGA100
recommended PCB design rules (0.5 mm pitch BGA). updated
Section : UFBGA100 device marking.
Added Temperature range 7 in Table 87: Ordering information scheme.
DocID024738 Rev 5
STM32F401xB STM32F401xC
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID024738 Rev 5
134/134
134