MICROSEMI APT46GA90JD40

APT46GA90JD40
900V
High Speed PT IGBT
E
E
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
7
22
C
G
through leading technology silicon design and lifetime control processes. A reduced Eoff TO S
VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
"UL Recognized"
ISOTOP ®
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT46GA90JD40
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Combi (IGBT and Diode)
®
file # E145592
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
900
V
IC1
Continuous Collector Current @ TC = 25°C
87
IC2
Continuous Collector Current @ TC = 100°C
46
ICM
Pulsed Collector Current 1
136
VGE
Gate-Emitter Voltage
±30
V
PD
Total Power Dissipation @ TC = 25°C
284
W
Vces
Parameter
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
Static Characteristics
Symbol
A
136A @ 900V
°C
-55 to 150
TJ = 25°C unless otherwise specified
Parameter
Test Conditions
Min
VBR(CES)
Collector-Emitter Breakdown Voltage
VGE = 0V, IC = 1.0mA
900
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
3.1
VGE = 15V,
TJ = 25°C
2.5
IC = 47A
TJ = 125°C
2.2
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
TJ = 25°C
350
VGE = 0V
TJ = 125°C
1500
Microsemi Website - http://www.microsemi.com
V
6
VCE = 900V,
VGS = ±30V
Unit
±100
μA
nA
052-6346 Rev C 6- 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg3
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
APT46GA90JD40
TJ = 25°C unless otherwise specified
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
Test Conditions
Min
Typ
Capacitance
4170
VGE = 0V, VCE = 25V
438
f = 1MHz
63
Gate Charge
698
VGE = 15V
380
VCE= 450V
IC = 47A
TJ = 150°C, RG = 4.7Ω4, VGE = 15V,
Inductive Switching (25°C)
18
VCC = 600V
26
Turn-Off Delay Time
VGE = 15V
153
IC = 47A
45
RG = 4.7Ω4
1726
Eoff6
Turn-Off Switching Energy
TJ = +25°C
1222
td(on)
Turn-On Delay Time
Inductive Switching (125°C)
17
Current Rise Time
VCC = 600V
27
Turn-Off Delay Time
VGE = 15V
199
IC = 47A
166
Eon2
Turn-On Switching Energy
RG = 4.7Ω4
3232
Eoff6
Turn-Off Switching Energy
TJ = +125°C
2471
tf
Current Fall Time
nC
A
Turn-On Switching Energy
tr
pF
136
L= 100uH, VCE = 900V
Eon2
td(off)
Unit
50
Current Rise Time
Current Fall Time
Max
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol
Characteristic
RθJC
Junction to Case Thermal Resistance (IGBT)
RθJC
Junction to Case Thermal Resistance (Diode)
WT
Package Weight
VIsolation
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
Min
Typ
Max
-
-
.44
.61
2500
29.2
-
Unit
°C/W
g
Volts
052-6346 Rev C 6 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT46GA90JD40
350
150
V
= 15V
15V
TJ= 25°C
300
125
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
GE
TJ= 55°C
TJ= 125°C
100
TJ= 150°C
75
50
25
13V
10V
9V
250
200
8V
150
7V
100
6V
50
5V
0
1
2
3
4
5
6
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
IC, COLLECTOR CURRENT (A)
125
100
75
50
TJ= 25°C
25
TJ= -55°C
TJ= 125°C
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
IC = 94A
IC = 47A
IC = 23.5A
2
1
0
2
4
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
4
2
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
0
1
2
3
4
5
6
GATE CHARGE (nC)
FIGURE 4, Gate charge
7
6
5
4
IC = 94A
3
IC = 47A
2
IC = 23.5A
1
0
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
0.85
VCE = 720V
6
70
0.90
VCE = 450V
8
1.10
0.95
VCE = 180V
10
80
1.00
J
12
1.15
1.05
I = 47A
C
T = 25°C
14
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
3
0
4
8
12 16 20
24
28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
60
50
40
30
20
10
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6346 Rev C 6- 2009
150
0
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
Typical Performance Curves
APT46GA90JD40
300
VCE = 600V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
40
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
50
30
20
10
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
RG = 4.7Ω, L = 100μH, VCE = 600V
100
VGE =15V,TJ=25°C
VCE = 600V
RG = 4.7Ω
L = 100μH
50
TJ = 125°C, VGE = 15V
tr, FALL TIME (ns)
tr, RISE TIME (ns)
150
160
60
40
TJ = 25 or 125°C,VGE = 15V
20
0
0
20
40
60
80
Eon2, TURN ON ENERGY LOSS (μJ)
G
5000
TJ = 125°C
4000
3000
2000
TJ = 25°C
1000
0
RG = 4.7Ω, L = 100μH, VCE = 600V
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
5000
V
= 600V
CE
V
= +15V
GE
R = 4.7Ω
G
4000
TJ = 125°C
3000
2000
1000
TJ = 25°C
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
7000
V
= 600V
CE
V
= +15V
GE
T = 125°C
10000
Eon2,94A
J
8000
Eoff,94A
6000
Eon2,47A
4000
Eoff,47A
2000
Eon2,23.5A
Eoff,23.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
12000
0
TJ = 25°C, VGE = 15V
6000
V
= 600V
CE
V
= +15V
GE
R =4.7Ω
6000
80
0
100
EOFF, TURN OFF ENERGY LOSS (μJ)
7000
120
40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
VGE =15V,TJ=125°C
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
200
80
052-6346 Rev C 6 - 2009
200
0
0
100
250
V
= 600V
CE
V
= +15V
GE
R = 4.7Ω
6000
Eon294A
G
Eoff,94A
5000
4000
3000
Eon2,47A
2000
Eoff,47A
Eon2,23.5A
1000
0
Eoff,23.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT46GA90JD40
10,000
1000
1,000
Coes
100
Cres
10
0
100
200 300
400
500
600
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
100
10
1
0.1
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0.45
D = 0.9
0.40
0.35
0.7
0.30
0.25
0.5
Note:
0.20
PDM
0.3
0.15
t1
t2
0.10
t
0.1
0.05
0.05
0
10-5
SINGLE PULSE
10-4
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-2
10-3
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
052-6346 Rev C 6- 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.50
APT46GA90JD40
10%
Gate Voltage
td(on)
TJ = 125°C
90%
APT30DQ60
tr
IC
V CC
V CE
5%
Collector Current
10%
Collector Voltage
5%
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
90%
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
052-6346 Rev C 6 - 2009
Figure 22, Turn-off Switching Waveforms and Definitions
ULTRAFAST SOFT RECOVERY RECTIFIER DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT46GA90JD40
Maximum Average Forward Current (TC = 106°C, Duty Cycle = 0.5)
40
RMS Forward Current (Square wave, 50% duty)
60
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
210
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
Min
IF = 40A
2.5
IF = 80A
3.08
IF = 40A, TJ = 125°C
1.97
Forward Voltage
VF
Type
Max
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Maximum Reverse Recovery Current
IRRM
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Maximum Reverse Recovery Current
IRRM
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
Test Conditions
Min
Typ
Max
IF = 1A, diF/dt = -100A/µs,
VR = 30V, TJ = 25°C
-
25
-
IF = 40A, diF/dt = -200A/µs
VR = 667V, TC = 25°C
IF = 40A, diF/dt = -200A/µs
VR = 667V, TC = 125°C
IF = 40A, diF/dt = -1000A/µs
VR = 667V, TC = 125°C
Unit
ns
-
250
-
-
415
-
nC
-
4
-
Amps
-
315
-
ns
-
1650
-
nC
-
9
-
Amps
-
145
-
ns
-
2660
-
nC
-
29
-
Amps
0.60
D = 0.9
0.50
0.7
0.40
0.5
Note:
0.30
PDM
0.3
0.20
0
t2
0.1
0.05
0.10
10-5
t1
t
SINGLE PULSE
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
052-6346 Rev C 6- 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.70
Dynamic Characteristics
TJ = 25°C unless otherwise specified
400
100
80
TJ = 175°C
60
TJ = 125°C
40
TJ = 25°C
trr, REVERSE RECOVERY TIME
(ns)
IF, FORWARD CURRENT
(A)
120
20
1.0
2.0
3.0
4.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 2. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
4000
T = 125°C
J
V = 667V
R
80A
3000
2500
40A
2000
1500
20A
1000
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 4. Reverse Recovery Charge vs. Current Rate of Change
100
35
T = 125°C
J
V = 667V
80A
R
30
25
20
15
40A
10
20A
5
Duty cycle = 0.5
T = 175°C
J
60
50
0.8
0.6
0.4
0.0
Qrr
0
160
140
120
100
80
60
40
20
0
40
30
20
10
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 6. Dynamic Parameters vs. Junction Temperature
CJ, JUNCTION CAPACITANCE
(pF)
150
70
IRRM
0.2
052-6346 Rev C 6 - 2009
20A
200
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 5. Reverse Recovery Current vs. Current Rate of Change
trr
trr
40A
250
0
Qrr
1.0
300
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 3. Reverse Recovery Time vs. Current Rate of Change
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
R
80A
0
IRRM, REVERSE RECOVERY CURRENT
(A)
0
3500
T = 125°C
J
V = 667V
350
50
TJ = -55°C
0
APT46GA90JD40
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 8. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 7. Maximum Average Forward Current vs. CaseTemperature
Dynamic Characteristics
TJ = 25°C unless otherwise specified
APT46GA90JD40
Vr
diF /dt Adjust
+18V
APT10035LLL
0V
D.U.T.
30μH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 9. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
0.25 IRRM
3
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 10, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
052-6346 Rev C 6- 2009
7.8 (.307)
8.2 (.322)