INFINEON IL222AT

N
EW
IL221AT/IL222AT/IL223AT
FEATURES
PHOTODARLINGTON
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
• High Current Transfer Ratio, IF=1 mA,
•
•
•
•
•
•
•
IL221AT, 100% Minimum
IL222AT, 200% Minimum
IL223AT, 500% Minimum
Withstand Test Voltage, 2500 VACRMS
Electrical Specifications Similar to
Standard 6 Pin Coupler
Industry Standard SOIC-8 Surface
Mountable Package
Standard Lead Spacing, .05"
Available in Tape and Reel (suffix T)
(Conforms to EIA Standard RS481A)
Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
Underwriters Lab File #E52744
(Code Letter P)
8 NC
Anode 1
.120±.005
(3.05
±.13)
.240
(6.10)
.154±.005
CL
(3.91
±.13)
7 Base
Cathode 2
NC 3
6 Collector
NC 4
5 Emitter
.016 (.41)
Pin One ID
.015±.002
(.38
±.05)
.192±.005
(4.88
±.13)
.004 (.10)
.008 (.20)
40°
.008 (.20)
5° max.
.050 (1.27)
typ.
.040 (1.02)
7°
.058±.005
(1.49
±.13)
.125±.005
(3.18
±.13)
R.010
Lead
(.25) max. Coplanarity
±.0015 (.04)
max.
.020±.004
(.15
±.10)
2 plcs.
TOLERANCE: ±.005 (unless otherwise noted)
DESCRIPTION
The IL221AT/IL222AT/IL223AT is a high current
transfer ratio (CTR) optocoupler with a Gallium
Arsenide infrared LED emitter and a silicon NPN
photodarlington transistor detector.
This device has a CTR tested at an 1 mA LED
current. This low drive current permits easy interfacing from CMOS to LSTTL or TTL.
This optocoupler is constructed in a standard SOIC8 foot print which makes it ideally suited for high
density applications. In addition to eliminating
through-holes requirements, this package conforms
to standards for surface mounted devices.
Maximum Ratings
Emitter
Peak Reverse Voltage ............................................ 6.0 V
Continuous Forward Current ............................... 60 mA
Power Dissipation at 25°C .................................. 90 mW
Derate Linearly from 25°C ............................ 1.2 mW/°C
Detector
Collector-Emitter Breakdown Voltage ..................... 30 V
Emitter-Collector Breakdown Voltage ....................... 5 V
Collector-Base Breakdown Voltage ........................ 70 V
Power Dissipation ............................................. 150 mW
Derate Linearly from 25°C ........................... 2.0 mW/°C
Package
Total Package Dissipation at 25°C Ambient
(LED + Detector) ........................................... 240 mW
Derate Linearly from 25°C ........................... 3.3 mW/°C
Storage Temperature ......................... –55°C to +150°C
Operating Temperature ..................... –55°C to +100°C
Soldering Time at 260°C .................................... 10 sec.
Semiconductor Group
Characteristics (TA=25°C)
Symbol Min. Typ.
Emitter
Forward Voltage
Reverse Current
Capacitance
Detector
Breakdown Voltage
Collector-Emitter
Emitter-Collector
Collector-Base Voltage
Collector-Emitter
Capacitance
Package
DC Current Transfer
Ratio
IL221AT
IL222AT
IL223AT
Collector-Emitter
Saturation Voltage
Isolation Test
Voltage
Capacitance,
Input to Output
Resistance,
Input to Output
1.0
0.1
25
VF
IR
CO
Max.
Unit
Condition
1.5
100
V
µA
pF
I F =1mA
VR=6.0 V
VF=0 V,
F=1 MHz
30
5
70
BVCEO
BVECO
BV CBO
3.4
CCE
V
V
IC=100 µA
IE=100 µA
IC=10 µA
pF
VCE=10 V
IF=1 mA,
VCE=5 V
CTR DC
100
200
500
1
V CE sat
V IO
2500
V
ICE=0.5 mA,
IF=1 mA
VAC RMS t=1 sec.
C IO
0.5
pF
R IO
100
GΩ
Specifications subject to change.
4–10
10.95
Figure 1. Forward voltage versus forward current
Figure 2. Peak LED current versus duty factor, Tau
10000
τ
1.3
Ta = -55°C
Duty Factor
If(pk) - Peak LED Current - mA
VF - Forward Voltage - V
1.4
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 85°C
0.8
0.7
.1
.005
.01
.02
1000
10
10-5
2
1
10
If - LED Current - mA
10-2
10-1
10 0
10 1
Ta = -20°C
Ta = 25°C
Ta = 50°C
Ta = 70°C
10
Normalized to:
If = 1mA, Vce = 5V
Ta = 25°C
1
.1
100
.1
Figure 5. CTR C B versus LED current
1
10
If - LED Current - mA
100
Figure 6. CTR versus LED current
0.10
0.05
Ta = -20°C
Ta = 25°C
Ta = 50°C
Ta = 70°C
0.00
.1
1
10
If - LED Current - mA
Semiconductor Group
100
CTRce - Current Transfer Ratio -%
2000
VCB =10 V
If/Icb - CTRcb - %
10-3
100
Normalized to:
If = 1mA, Ta = 25°C
Vcb = 10V
1
0
.1
10-4
Figure 4. Normalized CTRCE versus LED current
Normalized CTRce
Normalized CTRcb
Ta = -20°C
Ta = 25°C
Ta = 50°C
Ta =70°C
= τ /t
t - LED Pulse Duration - s
Figure 3. Normalized CTR CB versus I F
3
τ
DF = /t
.5
100
10010-6
1
10
IF - Forward Current - mA
t
.05
.1
.2
1500
Ta = -20°C
Ta = 25°C
Ta = 50°C
Ta = 70°C
Vce = 10V
1000
500
0
.1
1
10
If - LED Current - mA
4–11
100
y
Figure 7. Collector current versus LED current
100
Ta -20°C Ta
Ta = 25°C Ta
Ta = 50°C Ta
Ta = 70°C Ta
100
=
=
=
=
20°C
25°C
50°C
70°C
Vce = 10V
10
10
=
=
=
=
20°C
25°C
50°C
70°C
1
.1
1
.1
1
10
If - LED Current - mA
.1
100
100
100
IF
1000
Ta = -20°C
Ta = 25°C
Ta = 50°C
Ta =70°C
1
10
If - LED Current - mA
Figure 10. Switching Timing
Figure 9. Normalized ICB versus IF
Normalized Icb
Icb-20°CTa
Icb 25°CTa
Icb 50°CTa
Icb 70°CTa
Vce = 5V
Icb - Photocurrent - µA
1000
Ice - Collector Current - mA
Figure 8. Photocurrent versus LED current
Normalized to:
IF = 1mA, Ta =25°C
Vcb = 10V
10
VO
tD
tR
tPLH
1
.1
.1
1
10
If - LED Current - mA
tPHL
100
Figure 11. Switching schematic
VCC =10 V
F=10 KHz,
DF=50%
RL
VO
IF=5 mA
Semiconductor Group
4–12
tS
VTH =1.5 V
tF