PDF Data Sheet Rev. 0

Precision Analog Microcontroller, Analog I/O
with MDIO Interface, ARM Cortex-M3
ADuCM322
Data Sheet
FEATURES
Software triggered in-circuit reprogrammability via
management data input/output (MDIO)
On-chip peripherals
MDIO slave up to 4 MHz
2 × I2C, 2 × SPI, UART
Multiple general-purpose input/output (GPIO) balls: 3.6 V
compliant
7 × 1.2 V compatible when used for MDIO
32-element programmable logic array (PLA)
3 general-purpose timers
Wake-up timer
Watchdog timer
16-bit pulse width modulator (PWM)
Power
Supply range: 2.9 V to 3.6 V
Flexible operating modes for low power applications
Packages and temperature range
6 mm × 6 mm, 96-ball CSP_BGA package
Fully specified for −40°C to +105°C ambient operation
Tools
QuickStart development system
Full third-party support
Analog input/output
Multichannel, 12-bit, 1 MSPS analog-to-digital
converter (ADC)
Up to 16 ADC input channels
0 V to VREF analog input range
Single-ended modes
AVDD and IOVDD monitors
12-bit voltage output digital-to-analog converters (VDACs)
8 VDACs with a range of 0 V to 2.5 V or AVDD outputs
Voltage comparator
Microcontroller
ARM Cortex-M3 processor, 32-bit RISC architecture
Serial wire port supports code download and debug
Clocking options
80 MHz phase-locked loop (PLL) with programmable divider
Trimmed on-chip oscillator (±3%)
External 16 MHz crystal option
External clock source up to 80 MHz
Memory
2 × 128 kB independent Flash/EE memories
10,000 cycle Flash/EE endurance
20-year Flash/EE retention
32 kB SRAM
APPLICATIONS
Optical networking
FUNCTIONAL BLOCK DIAGRAM
BUF_VREF2V5
2.5V BAND GAP
XTALO XTALI ECLKIN
1.8 V LDO
AIN0
AIN5
AIN6
MUX
SAR ADC
AIN15
INTERNAL
CHANNELS:
TEMPERATURE,
AVDD, IOV DD
COMPARATOR
VDAC0
ARM
CORTEX-M3
PROCESSOR
MEMORY
2 × 128kB FLASH
32kB SRAM
VDAC
CLOCK SYSTEM
32.768kHz
16MHz OSC
80MHz PLL
GENERAL
PURPOSE
I/O PORTS
3 × GP TIMER
WD TIMER
WAKE-UP TIMER
PWM
PWM0 TO
PWM6
SERIAL WIRE
VDAC
IOVDDx
IOGNDx
GPIO PORTS
UART
2 × SPI
2 × I2C
EXT IRQS
MDIO
PLA
DMA
NVIC
VDAC7
DGNDx
AVDDx
AGNDx
SWDIO
SWCLK
ADuCM322
RESET
13754-001
RESET SYSTEM
Figure 1.
Rev. 0
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2016 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADuCM322
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
ESD Caution................................................................................ 14
Applications ....................................................................................... 1
Ball Configuration and Function Descriptions .......................... 15
Revision History ............................................................................... 2
Typical Performance Characteristics ........................................... 20
Functional Block Diagram .............................................................. 1
Recommended Circuit and Component Values ........................ 21
General Description ......................................................................... 3
Packaging and Ordering Information ......................................... 23
Specifications..................................................................................... 4
Outline Dimensions ................................................................... 23
Microcontroller Electrical Specifications .................................. 4
Ordering Guide .......................................................................... 23
Absolute Maximum Ratings ..................................................... 14
REVISION HISTORY
2/16—Revision 0: Initial Version
Rev. 0 | Page 2 of 23
Data Sheet
ADuCM322
GENERAL DESCRIPTION
The ADuCM322 is a fully integrated, single package device that
incorporates high performance analog peripherals together
with digital peripherals controlled by an 80 MHz ARM®
Cortex™-M3 processor and integral flash for code and data.
The ADC on the ADuCM322 provides 12-bit, 1 MSPS data
acquisition on up to 16 input balls. Additionally, chip temperature
and supply voltages can be measured.
The device includes an MDIO interface capable of operating at
up to 4 MHz. The capability to simultaneously execute from
one flash block and write/erase the other flash block makes the
ADuCM322 ideal for 10G, 40G, and 100G optical applications.
In addition, the nonerasable kernel code plus flags in user flash
provide assistance by allowing user code to robustly switch
between the two blocks of user flash code and data spaces.
The ADC input voltage range is 0 V to VREF. A sequencer is
provided, which allows a user to select a set of ADC channels to
measure in sequence without software involvement during the
sequence. The sequence can optionally repeat automatically at a
user selectable rate. Up to eight VDACs are provided with
output ranges that are programmable to one of two voltage
ranges.
The ADuCM322 integrates a range of on-chip peripherals that
can be configured under software control, as required in the
application. These peripherals include 1 × UART, 2 × I2C, and 2 ×
SPI serial input/output communication controllers, GPIO,
32-element PLA, three general-purpose timers, plus a wake-up
timer and system watchdog timer. A
16-bit PWM with seven output channels is also provided.
The ADuCM322 can be configured so that the digital and analog
outputs retain their output voltages through a watchdog or software
reset sequence. Thus, a product can remain functional even
while the ADuCM322 is resetting itself.
GPIO balls on the device power up in high impedance input
mode. In output mode, the software chooses between opendrain mode and push-pull mode. The pull-up resistors can be
disabled and enabled in software. In GPIO output mode, the
inputs can remain enabled to monitor the balls. The GPIO balls
can also be programmed to handle digital or analog peripheral
signals; in such cases, the ball characteristics are matched to the
specific requirement.
The ADuCM322 has a low power ARM Cortex-M3 processor and
a 32-bit RISC machine that offers up to 100 MIPS peak performance. Also integrated on-chip are 2 × 128 kB Flash/EE memory
blocks and 32 kB of SRAM. The flash comprises two separate
128 kB blocks supporting execution from one flash block and
simultaneous writing/erasing of the other flash block.
The ADuCM322 operates from an on-chip oscillator or a 16 MHz
external crystal and a PLL at 80 MHz. This clock can optionally
be divided down to reduce current consumption. Additional low
power modes can be set via software. In normal operating mode,
the ADuCM322 digital core consumes about 300 µA per MHz.
A large support ecosystem is available for the ARM Cortex-M3
processor to ease product development of the ADuCM322. Access
is via the ARM serial wire debug port (SW-DP). On-chip factory
firmware supports in-circuit serial download via MDIO. These
features are incorporated into a QuickStart™ development system,
supporting this precision analog microcontroller family.
Rev. 0 | Page 3 of 23
ADuCM322
Data Sheet
SPECIFICATIONS
MICROCONTROLLER ELECTRICAL SPECIFICATIONS
AVDD = IOVDD = VDD1 = 2.9 V to 3.6 V (see Figure 12), maximum difference between supplies = 0.3 V, VREF = 2.5 V internal reference,
fCORE = 80 MHz, TA = −40°C to +105°C, unless otherwise noted. The power-up sequence must be VDD1, IOVDDx, and AVDDx, but no
delays in the sequence are required.
Table 1.
Parameter
ADC BASIC SPECIFICATIONS
ADC Power-Up Time
Data Rate
DC Accuracy 1
Resolution1
Integral Nonlinearity
Differential Nonlinearity
Symbol
Min
DNL
−0.99
−3.92
±1.75
LSB
±0.75
+1.5
LSB
±0.75
LSB
±3
LSB
±200
0.3
±1
±400
−4
+1.21
+5
±1
µV
µV/°C
LSB
µV
µV/°C
80
dB
THD
−86
−88
−90
dB
dB
dB
AGND
AGND4
1 LSB = 2.5 V/212
Number of data bits
2.5 V internal reference; 1 LSB =
2.5 V/212
2.5 V external reference; 1 LSB =
2.5 V/212
2.5 V internal reference; 1 LSB =
2.5 V/212
2.5 V external reference; 1 LSB =
2.5 V/212
ADC input 1.25 V; 1 LSB = 2.5 V/212
Using 2.5 V external reference
Matching compared to AIN8
Full-scale error drift minus offset
error drift
fIN = 665.25 Hz sine wave, fSAMPLE =
100 kSPS; input filter = 15 Ω, CL = 2 nF
Includes distortion and noise
components
Measured on adjacent channels
VREF
AVDD4
±1.5
±9
±6
±4
nA
µA/V
µA/V
µA/V
20
2.51
pF
V
±5
PSRR
Test Conditions/Comments
Single-ended mode, unless
otherwise stated
LSB
SNR
Input Capacitance
ON-CHIP VOLTAGE REFERENCE
Accuracy
Reference Temperature Coefficient1
Power Supply Rejection Ratio
Internal VREF Power-On Time
±1.75
12
16
INL
Unit
µs
MSPS
Bits
Bits
LSB
1
Match
ADC DYNAMIC PERFORMANCE
Total Harmonic Distortion
Peak Harmonic or Spurious Noise
Channel-to-Channel Crosstalk
ADC INPUT
Input Voltage Ranges
Single-Ended Mode1
Compliance1
Leakage Current
Input Current
Max
5
fSAMPLE
DC Code Distribution
ADC ENDPOINT ERRORS
Offset Error
Drift1
Match
Full-Scale Error
Gain Drift1
Signal-to-Noise Ratio
Typ
±15
60
50
Rev. 0 | Page 4 of 23
mV
ppm/°C
dB
ms
At 1 MSPS
≤800 kSPS
500 kSPS, ADCCNVC, Bits[25:16] =
0x1E
During ADC acquisition
0.47 µF from VREF_1V2 to AGND4;
reference is measured with all ADC
and VDACs enabled
TA = 25°C
Data Sheet
ADuCM322
Parameter
EXTERNAL REFERENCE INPUT
Range1
Input Current
BUFFERED REFFERNCE OUTPUT
Output Voltage
Accuracy
Reference Temperature Coefficient1
Output Impedance
Load Current1
VDAC CHANNEL SPECIFICATIONS
DC Accuracy1
Resolution1
Relative Accuracy 3
Differential Nonlinearity3
Symbol
Min
Typ
1.8
Unit
Test Conditions/Comments
2.5
V
µA
ADC
200
2.504
±8
±15
10
1.2
V
mV
µV/°C
Ω
mA
+1
Bits
Bits
LSB
LSB
±15
mV
12
12
INL
DNL
±4
−0.99
Offset Error
±3
Drift
Gain Error 4
±18
±0.3
±0.4
6.5
0.1
Drift
Mismatch
Analog Outputs
Output Voltage Range 11
0.15
Output Voltage Range 2
Output Impedance
DAC AC Characteristics
Output Settling Time
Glitch Energy
COMPARATOR
Input
Offset Voltage
Bias Current
Voltage Range1
Capacitance
Hysteresis1
Response Time
TEMPERATURE SENSOR
±0.85
±1
AVDDx − 0.15
V
Ω
10
µs
Settled to ±1 LSB
±20
nV-sec
1 LSB change when the maximum
number of bits changes simultaneously in the DACxDAT register
±10
1
7
mV
nA
V
pF
mV
µs
0.5
°C
AVDDx − 1.2
8.5
15
1.34
POR
WDT
0 V to internal VREF range
0 V to AVDD range
Excluding reference drift
% of full scale on DAC0
2
7
Accuracy1
RL = 5 kΩ, CL = 100 pF 2
1 LSB = 2.5 V/212
Number of data bits
1 LSB = 2.5 V/212
Guaranteed monotonic, 1 LSB =
2.5 V/212
2.5 V internal reference,
DAC Output Code 0
V
AGNDx
Resolution
µV/°C
%
%
ppm/°C
%
TA = 25°C, load = 1.2 mA
100 nF from BUF_VREF2V5 to AGND4
TA = 25°C
2.5
0.15
1
POWER-ON RESET
WATCHDOG TIMER
Timeout Period
FLASH/EE MEMORY
Endurance1
Data Retention1
Max
2.85
32
10,000
20
Rev. 0 | Page 5 of 23
1.43
V
2.9
V
When enabled in software
AFECOMP, Bits[2:1] = 0
Indicates die temperature, see
Figure 9
When precision calibrated by the
user 5
ADC measured voltage for
temperature sensor channel without
calibration, TA = 25°C
sec
Default at power-up
Cycles
Years
TJ = 85°C
ADuCM322
Parameter
DIGITAL INPUTS
Input Leakage Current
Logic 1 GPIO
Logic 0 GPIO
PRTADDRx
Input Leakage Current
Data Sheet
Symbol
Input Voltage
Input Capacitance, All Balls Except
MCK, MDIO, PRTADDRx, and XTALx
Input Capacitance
MCK, PRTADDRx
MDIO
Ball Capacitance
XTALI
XTALO
LOGIC INPUTS
GPIO Input Voltage
Low
High
MDIO
PRTADDRx Input Voltage
Low
High
MCK, MDIO Input Voltage
Low
High
XTALI Input Voltage
Low
High
Pull-Up Current
Pull-Down Current
LOGIC OUTPUTS
GPIO Output Voltage 6
High
Low
GPIO Short-Circuit Current1
MDIO
Output Voltage
High
Low
Delay Time
OSCILLATORS
Internal System Oscillator
Accuracy
System PLL
External Crystal Oscillator
32 kHz Internal Oscillator
Accuracy
External Clock
START-UP TIME
At Power-On
After Other Reset
From All Power-Down Modes
Min
Typ
Unit
Test Conditions/Comments
1
10
nA
nA
VIH = VDD, pull-up resistor disabled
VIL = 0 V, pull-up resistor disabled
16
µA
VIN = 0 V to 1.8 V, due to weak pullup resistors to 1.8 V
External resistor 91 kΩ ± 1% to
ground; range for CFP MSA high1
0.84
Max
1.5
VINL
VINH
0.58 × IOVDDx
VINL
VINH
0.84
V
10
pF
6.5
8.5
pF
pF
5
5
pF
pF
0.25 × IOVDDx
V
V
0.36
V
V
Setup time ≥10 ns; hold time ≥10 ns;
MCK/MDIO
VINL
VINH
0.36
0.84
VINL
VINH
1.1
1.7
30
30
VOH
VOL
120
100
IOVDDx − 0.4
0.4
11
VOH
VOL
1.0
0.2
100
16
±0.5
80
16
32.768
±5
0.05
40
1.5
1.25
Rev. 0 | Page 6 of 23
±3
±20
80
V
V
V
V
µA
µA
VIN = 0 V, see Figure 10
VIN = 3.3 V, see Figure 10
All digital outputs excluding XTALO
V
V
mA
ISOURCE = 2 mA
ISINK = 2 mA
See Figure 11
V
V
ns
ISOURCE = 4 mA
ISINK = 4 mA
MCK to MDIO out
MHz
%
MHz
MHz
kHz
%
MHz
ms
ms
µs
Main system clock
Can be selected in place of the
internal oscillator
Use for watchdog
Can be selected in place of PLL
Processor clock = 80 MHz
POR to first user code execution
Reset to first user code execution
Data Sheet
Parameter
PROGRAMMABLE LOGIC ARRAY
Propagation Delay
Ball
Element
EXTERNAL INTERRUPTS
Pulse Width1
Level Triggered
Edge Triggered
POWER REQUIREMENTS 7
Power Supply Voltage Range
AVDDx to AGNDx and IOVDDx
to DGNDx1
Analog Power Supply Currents
AVDDx Current
Digital Power Supply Current
IOVDDx Current in Normal Mode
VDDx Current
Normal Mode
ADuCM322
Symbol
PLA
Min
Typ
Max
17
1.5
7
1
2.9
Unit
Test Conditions/Comments
ns
ns
From input ball to output ball
Per PLA cell
ns
ns
3.3
3.6
V
4.9
mA
Analog peripherals in idle mode
2.7
mA
All GPIO pull-up resistors enabled
29
mA
20
10
16
8
4
mA
mA
mA
mA
mA
Clock divider (CD) = 0 (80 MHz
clock), executing typical code
CD = 1, executing typical code
CD = 7, executing typical code
4.1
mA
340
µA
Total Supply Current
37
mA
Thermal Performance
Impedance Junction to Ambient
45
°C/W
CORE_SLEEP Mode
SYS_SLEEP Mode
Hibernate Mode
Additional Power Supply Currents
ADC
DAC
Continuously converting at
100 kSPS
Per powered up DAC, excluding
load current
VDD1, IOVDDx, AVDDx connected
together; condition when entering
user code: peripheral clocks on,
peripherals idle, no load currents
JEDEC 2S2P
These specifications are not production tested but are guaranteed by design and/or characterization data at production release.
The data in this section also applies for a load of RL =1 kΩ and CL = 100 pF but only an output range of 0 V to 2.5 V.However, this specification is not production tested.
3
DAC linearity is calculated using a reduced code range of 100 to 3900.
4
DAC gain error is calculated using a reduced code range of 100 to an internal 2.5 V VREF.
5
Due to self heating, internal temperature measurements cannot be used to predict external temperatures. This value is only relevant after user calibration and only for
internal and external conditions identical to those at calibration.
6
The average current from all GPIO balls must not exceed 3 mA per ball.
7
Power figures exclude any load currents to external circuits.
1
2
Rev. 0 | Page 7 of 23
ADuCM322
Data Sheet
TIMING SPECIFICATIONS
I2C Timing
Table 2. I2C Timing in Standard Mode (100 kHz)
Parameter
tL
tH
tSHD
tDSU
tDHD
tRSU
tPSU
tBUF
tR
tF
tVD;DAT
tVD;ACK
Description
SCL low pulse width
SCL high pulse width
Start condition hold time
Data setup time
Data hold time (SDA held internally for 300 ns after falling edge of SCL)
Setup time for repeated start
Stop condition setup time
Bus-free time between a stop condition and a start condition
Rise time for both SLC and SDA
Fall time for both SLC and SDA
Data valid time
Data valid acknowledge time
Min
4.7
4.0
4.0
250
0
4.7
4.0
4.7
Slave
Typ
Max
Unit
μs
ns
μs
ns
μs
μs
μs
μs
μs
ns
μs
μs
3.45
1
300
3.45
3.45
15
Table 3. I2C Timing in Fast Mode (400 kHz)
Description
SCL low pulse width
SCL high pulse width
Start condition hold time
Data setup time
Data hold time (SDA held internally for 300 ns after falling edge of SCL)
Setup time for repeated start
Stop condition setup time
Bus-free time between a stop condition and a start condition
Rise time for both SCL and SDA
Fall time for both SCL and SDA
Data valid time
Data valid acknowledge time
Min
1.3
0.6
0.3
100
0
0.6
0.3
1.3
20
Max
Unit
μs
ns
μs
ns
μs
μs
μs
μs
ns
ns
μs
μs
300
300
0.9
0.9
15
tBUF
tR
SDA (I/O)
MSB
LSB
tVD; DAT
tR
tVD; ACK
1
S
tF
tRSU
tH
tSHD
MSB
tDHD
tDHD
tPSU
SCL (I)
ACK
tDSU
tDSU
P
Slave
Typ
2–7
8
tL
STOP
START
CONDITION CONDITION
9
1
S(R)
REPEATED
START
Figure 2. I2C Compatible Interface Timing
Rev. 0 | Page 8 of 23
tF
13754-010
Parameter
tL
tH
tSHD
tDSU
tDHD
tRSU
tPSU
tBUF
tR
tF
tVD;DAT
tVD;ACK
Data Sheet
ADuCM322
SPI Timing
Table 4. SPI Master Mode Timing (Phase Mode = 1)
Description
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
SCLK
(POLARITY = 0)
tSH
Min
0
tSL
tSR
SCLK
(POLARITY = 1)
tDAV
tDF
MOSI
MISO
Max
tSF
tDR
MSB
MSB IN
Typ
(SPIDIV + 1) × tHCLK/2
(SPIDIV + 1) × tHCLK/2
3
½ SCLK
SCLK
SCLK
25
25
20
BITS 6 TO 1
BITS 6 TO 1
tDSU
LSB
LSB IN
13754-011
Parameter
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tDHD
Figure 3. SPI Master Mode Timing (Phase Mode = 1)
Rev. 0 | Page 9 of 23
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ADuCM322
Data Sheet
Table 5. SPI Master Mode Timing (Phase Mode = 0)
Description
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data output setup before SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
Min
Typ
(SPIDIV + 1) × tHCLK/2
(SPIDIV + 1) × tHCLK/2
3
½ SCLK
SCLK
SCLK
25
25
20
20
0
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
SCLK
(POLARITY = 0)
tSH
tSL
tSR
tSF
SCLK
(POLARITY = 1)
tDAV
tDOSU
MOSI
MISO
tDF
MSB
MSB IN
tDR
BITS 6 TO 1
BITS 6 TO 1
LSB
LSB IN
tDSU
13754-012
Parameter
tSL
tSH
tDAV
tDOSU
tDSU
tDHD
tDF
tDR
tSR
tSF
tDHD
Figure 4. SPI Master Mode Timing (Phase Mode = 0)
Rev. 0 | Page 10 of 23
Data Sheet
ADuCM322
Table 6. SPI Slave Mode Timing (Phase Mode = 1)
Parameter
tCS
Description
CS to SCLK edge
Min
10
tCSM
CS high time between active periods
SCLKx
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tSFS
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
CS high after SCLK edge
E
E
Typ
Max
Unit
ns
ns
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
10
10
25
25
1
1
20
E
tCSM
CS
tSFS
tCS
SCLK
(POLARITY = 0)
tSH
tSL
tSR
tSF
SCLK
(POLARITY = 1)
tDAV
MISO
tDF
tDR
MSB
MOSI
MSB IN
BITS 6 TO 1
BITS 6 TO 1
tDSU
tDHD
Figure 5. SPI Slave Mode Timing (Phase Mode = 1)
Rev. 0 | Page 11 of 23
LSB
LSB IN
13754-013
E
ADuCM322
Data Sheet
Table 7. SPI Slave Mode Timing (Phase Mode = 0)
Parameter
tCS
Description
CS to SCLK edge
Min
10
tCSM
CS high time between active periods
SCLKx
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tDOCS
tSFS
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
Data output valid after CS edge
CS high after SCLK edge
E
E
E
E
Typ
Max
Unit
ns
ns
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
20
10
10
25
25
1
1
20
10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tCSM
CS
tCS
tSFS
SCLK
(POLARITY = 0)
tSH
tSL
tSF
tSR
SCLK
(POLARITY = 1)
tDAV
tDOCS
tDF
MISO
MOSI
MSB
MSB IN
tDSU
tDR
BITS 6 TO 1
BITS 6 TO 1
LSB
LSB IN
13754-014
E
tDHD
Figure 6. SPI Slave Mode Timing (Phase Mode = 0)
Rev. 0 | Page 12 of 23
Data Sheet
ADuCM322
Table 8. MDIO vs. MDC Timing
Parameter
tSETUP
tHOLD
tDELAY
Description
MDIO setup before MCK edge
MDIO valid after MCK edge
Data output after MCK edge
Min
10
10
Typ
Max
Unit
ns
ns
ns
100
MDK
VIH
VIL
CFP
INPUT
MDIO
VIH
VIL
CFP
INPUT
MDIO
tSETUP
tHOLD
Figure 7. MDIO Timing
Rev. 0 | Page 13 of 23
tDELAY
13754-015
VOH
VOL
CFP
OUTPUT
ADuCM322
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Table 9.
Parameter
Any Ball to GND
Any RES1 Type Ball to GND
MDIO,1 MCK and PRTADDR0 to
PRTADDR4 in MDIO Mode to GND
Between Any of AVDDx, IOVDDx, and
VDD1 Balls
Any I Type Ball to GND2
Any RES Type, AI Type, or AO Type
Ball to GND3
ADC_REFP to GND
Total Positive GPIO Ball Currents
Total Negative GPIO Ball Currents
Maximum Power Dissipation
Operating Ambient Temperature
Range
Storage Temperature Range
Operating Junction Temperature
Range
Electrostatic Discharge (ESD)
Human Body Model (HBM)
Field Induced Charged Device
Mode (FICDM)
Rating
−0.3 V to +3.9 V
−0.3 V to +2.8 V
−0.3 V to +2.1 V
−0.3 V to +0.3 V
−0.3 V to IOVDDx + 0.3 V
−0.3 V to AVDDx + 0.3 V
−0.3 V to AVDDx + 0.3 V
0 mA to 30 mA
−30 mA to 0 mA
1W
−40°C to +105°C
−65°C to +160°C
−40°C to +120°C
2 kV
1 kV
All requirements applicable to each ball must be met. Where
multiple limits apply to a ball, each one must be met individually.
The limits apply according to the functionality of the balls at the
time. Balls that can be either analog or digital, that is, that have
two types indicated in the ball descriptions, must meet the
limits for both types. For ball types, see Table 10.
When powered up, it is required that all ground balls and
ADC_REFN be connected together to a node referred to as
GND in Table 9. The limits that are listed must be reduced by
any difference between any GNDs. Also, it is required that
AVDD3 is connected to AVDD4 and that IOVDD1 to IOVDD3
are connected together.
ESD CAUTION
Note this ball is always in MDIO mode.
This limit does not apply if no current can be drawn by external circuits on
IOVDDx, because then IOVDD follows to a suitable level.
3
This limit does not apply if no current can be drawn by external circuits on
AVDDx, because then AVDD follows to a suitable level.
1
2
Rev. 0 | Page 14 of 23
Data Sheet
ADuCM322
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
9
10
11
A
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
DGND
RESERVED
RESERVED
RESERVED
RESERVED
IREF
B
IOVDD1
RESET
P3.3/
PRTADDR3/
PLAI[15]
RESERVED
RESERVED
DGND
RESERVED
RESERVED
P1.0/SIN/ P1.1/SOUT/
ECLKIN/ PLACLK1/
PLAI[5]
PLAI[4]
C
IOGND1
P0.0/
SCLK0/
PLAI[0]
P2.3/BM
P1.3/
PWM1/
PLAI[7]
P1.4/
PWM2/
SCLK1/
PLAO[10]
P1.5/
PWM3/
MISO1/
PLAO[11]
P1.6/
P1.7/IRQ1/
P3.4/
PWM4/
PWM5/
PRTADDR4/
MOSI1/
CS1/
PLAO[26]
PLAO[12] PLAO[13]
D
P0.2/
MOSI0/
PLAI[2]
P0.1/
MISO0/
PLAI[1]
P3.2/
PRTADDR2/
PLAI[14]
P2.4/IRQ5/
ADCCONV/
PWM6/
PLAO[18]
DGND2
IOVDD2
E
P0.5/
SDA0/
PLAO[3]
P0.4/
SCL0/
PLAO[2]
P0.3/
IRQ0/CS0/
PLACLK0/
PLAI[3]
SWCLK
SWDIO
IOGND2
F
P2.6/
IRQ7/
PLAO[20]
P0.7/
SDA1/
PLAO[5]
P0.6/
SCL1/
PLAO[4]
AVDD_
REG0
AVDD_
REG1
VREF_1V2
G
P2.7/
IRQ8/
PLAO[21]
P3.1/
PRTADDR1/
PLAI[13]
P3.0/
PRTADDR0/
PLAI[12]
AIN15/
P4.7
AIN13/
P4.5
AVDD4
H
P3.5/
MCK/
PLAO[27]
XTALO
MDIO
AIN14/
P4.6
AIN12/
P4.4
AGND4
J
IOVDD3
XTALI
VDAC7/
P5.2
VDAC4
AGND1
AIN0
AIN1
AIN2
AIN7
AIN10
AIN11/
BUF_
VREF2V5
K
IOGND3
DVDD_
2V5
VDAC6/
P5.1
VDAC3/
P5.0
VDAC1
VDD1
AGND2
AIN3
AIN6
AIN9/
P4.3
ADC_
REFP
L
DGND1
DVDD_1V8
VDAC5
VDAC2/
P3.7/
PLAO[29]
VDAC0/
P5.3
AVDD3
AGND3
AIN4
AIN5
AIN8/
P4.2
ADC_
REFN
ADuCM322
TOP VIEW
(Not to Scale)
13754-002
DIGITAL PINS
P2.2/
P2.0/IRQ2/
IRQ4/POR/ PWMTRIP/
CLKOUT/ PLACLK2/
PLAI[10]
PLAI[8]
P1.2/
PWM0/
PLAI[6]
ANALOG PINS
Figure 8. Pin Configuration
Table 10. Pin Function Descriptions
Pin No.
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
Mnemonic
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
DGND
RESERVED
RESERVED
RESERVED
RESERVED
IREF
Type 1
RES
RES
RES1
RES1
RES
S
RES
RES1
RES1
RES
AI
B1
B2
B3
IOVDD1
RESET
P3.3/PRTADDR3/PLAI[15]
S
I
I/O
B4
B5
B6
RESERVED
RESERVED
DGND
RES
RES
S
Description
No Connect. Leave this ball unconnected.
Connect to AGND.
Connect to AVDD_REG1.
Connect to AVDD_REG1.
Connect to AGND.
Power Supply Ground.
Connect to AGND.
Connect to AVDD_REG1.
Connect to AVDD_REG1.
Connect to AGND.
Reference Current. This ball generates the reference current and is set by an
external resistor, REXT. Connect a 3.3 kΩ REXT from IREF to DGND.
3.3 V GPIO Supply.
Reset Input (Active Low). An internal pull-up resistor is included.
Digital Input/Output Port 3.3 (P3.3).
MDIO Port Address Bit 3 (PRTADDR3). See the Digital Inputs parameter in
Table 1 for details.
Output of PLA Element 15 (PLAI[15]).
No Connect. Leave this ball unconnected.
No Connect. Leave this ball unconnected.
Power Supply Ground.
Rev. 0 | Page 15 of 23
ADuCM322
Data Sheet
Pin No.
B7
B8
B9
Mnemonic
RESERVED
RESERVED
P1.0/SIN/ECLKIN/PLAI[4]
Type 1
RES
RES
I/O
B10
P1.1/SOUT/PLACLK1/PLAI[5]
I/O
B11
P1.2/PWM0/PLAI[6]
I/O
C1
C2
IOGND1
P0.0/SCLK0/PLAI[0]
S
I/O
C3
P2.3/BM
I/O
C4
P2.2/IRQ4/POR/CLKOUT/PLAI[10]
I/O
C5
P2.0/IRQ2/PWMTRIP/PLACLK2/PLAI[8]
I/O
C6
P1.3/PWM1/PLAI[7]
I/O
C7
P1.4/PWM2/SCLK1/PLAO[10]
I/O
C8
P1.5/PWM3/MISO1/PLAO[11]
I/O
C9
P1.6/PWM4/MOSI1/PLAO[12]
I/O
C10
P1.7/IRQ1/PWM5/CS1/PLAO[13]
I/O
Description
No Connect. Leave this ball unconnected.
No Connect. Leave this ball unconnected.
Digital Input/Output Port 1.0 (P1.0).
UART Input (SIN).
External Input Clock (ECLKIN).
Input to PLA Element 4 (PLAI[4]).
Digital Input/Output Port 1.1 (P1.1).
UART Output (SOUT).
PLA Clock 1(PLACLK1).
Input to PLA Element 5 (PLAI[5]).
Digital Input/Output Port 1.2 (P1.2).
PWM Output 0 (PWM0).
Input to PLA Element 6 (PLAI[6]).
Ground for IOVDD1.
Digital Input/Output Port 0.0 (P0.0).
SPI0 Clock (SCLK0).
Input to PLA Element 0 (PLAI[0]).
Digital Input/Output Port 2.3 (P2.3).
Boot Mode (BM). This ball determines the start-up sequence after every reset.
Pull-up is enabled at power-up.
Digital Input/Output Port 2.2 (P2.2).
External Interrupt 4 (IRQ4).
Reset Output (POR). This ball function is an output and it is the default for Ball C4.
Clock Output (CLKOUT).
Input to PLA Element 10 (PLAI[10]).
Digital Input/Output Port 2.0 (P2.0).
External Interrupt 2 (IRQ2).
PWM Trip (PWMTRIP).
PLA Input Clock 2 (PLACLK2).
Input to PLA Element 8 (PLAI[8]).
Digital Input/Output Port 1.3 (P1.3).
PWM Output 1 (PWM1).
Input to PLA Element 7 (PLAI[7]).
Digital Input/Output Port 1.4 (P1.4).
PWM Output 2 (PWM2).
SPI1 Clock (SCLK1).
Output of PLA Element 10 (PLAO[10]).
Digital Input/Output Port 1.5 (P1.5).
PWM Output 3 (PWM3).
SPI1 Master In, Slave Out (MISO1).
Output of PLA Element 11 (PLAO[11]).
Digital Input/Output Port 1.6 (P1.6).
PWM Output 4 (PWM4).
SPI1 Master Out, Slave Input (MOSI1).
Output of PLA Element 12 (PLAO[12]).
Digital Input/Output Port 1.7 (P1.7).
External Interrupt 1 (IRQ1).
PWM Output 5 (PWM5).
SPI1 Chip Select 1 (CS1). When using SPI1, configure this ball as CS1.
Output of PLA Element 13 (PLAO[13]).
Rev. 0 | Page 16 of 23
Data Sheet
ADuCM322
Pin No.
C11
Mnemonic
P3.4/PRTADDR4/PLAO[26]
Type 1
I/O
D1
P0.2/MOSI0/PLAI[2]
I/O
D2
P0.1/MISO0/PLAI[1]
I/O
D3
P3.2/PRTADDR2/PLAI[14]
I/O
D9
P2.4/IRQ5/ADCCONV/PWM6/PLAO[18]
I/O
D10
D11
E1
DGND2
IOVDD2
P0.5/SDA0/PLAO[3]
S
S
I/O
E2
P0.4/SCL0/PLAO[2]
I/O
E3
P0.3/IRQ0/CS0/PLACLK0/PLAI[3]
I/O
E9
E10
E11
F1
SWCLK
SWDIO
IOGND2
P2.6/IRQ7/PLAO[20]
I
I/O
S
I/O
F2
P0.7/SDA1/PLAO[5]
I/O
F3
P0.6/SCL1/PLAO[4]
I/O
F9
AVDD_REG0
AO
F10
AVDD_REG1
AO
F11
VREF_1V2
S
G1
P2.7/IRQ8/PLAO[21]
I/O
Description
Digital Input/Output Port 3.4 (P3.4).
MDIO Port Address Bit 4 (PRTADDR4). See the Digital Inputs parameter in
Table 1 for details.
Output of PLA Element 26 (PLAO[26]).
Digital Input/Output Port 0.2 (P0.2).
SPI0 Master Out, Slave In (MOSI0).
Input to PLA Element 2 (PLAI[2]).
Digital Input/Output Port 0.1 (P0.1).
SPI0 Master In, Slave Out (MISO0).
Input to PLA Element 1 (PLAI[1]).
Digital Input/Output Port 3.2 (P3.2).
MDIO Port Address Bit 2 (PRTADDR2). See the Digital Inputs parameter in
Table 1 for details.
Input to PLA Element 14 (PLAI[14]).
Digital Input/Output Port 2.4 (P2.4).
External Interrupt 5 (IRQ5).
External Input to Start ADC Conversions (ADCCONV).
PWM Output 6 (PWM6).
Output of PLA Element 18 (PLAO[18]).
Digital Ground 2. Connect to DGND1.
3.3 V GPIO Supply.
Digital Input/Output Port 0.5 (P0.5).
I2C0 Serial Data (SDA0).
Output of PLA Element 3 (PLAO[3]).
Digital Input/Output Port 0.4 (P0.4).
I2C0 Serial Clock (SCL0).
Output of PLA Element 2 (PLAO[2]).
Digital Input/Output Port 0.3 (P0.3).
External Interrupt 0 (IRQ0).
SPI0 Chip Select 0 (CS0). When using SPI0, configure this ball as CS0.
PLA Clock 0 (PLACLK0).
Input to PLA Element 3 (PLAI[3]).
Serial Wire Debug Clock.
Serial Wire Bidirectional Data.
Ground for IOVDD2.
Digital Input/Output Port 2.6 (P2.6).
External Interrupt 7 (IRQ7).
Output of PLA Element 20 (PLAO[20]).
Digital Input/Output Port 0.7 (P0.7).
I2C1 Serial Data (SDA1).
Output of PLA Element 5 (PLAO[5]).
Digital Input/Output Port 0.6 (P0.6).
I2C1 Serial Clock (SCL1).
Output of PLA Element 4 (PLAO[4]).
Analog Regulator 0 Supply. A 470 nF capacitor to AGND4 must be connected
to this ball to stabilize the internal 2.5 V regulator that supplies the ADC.
Analog Regulator 1 Supply. Output of 2.5 V on-chip LDO regulator. A 470 nF
capacitor to AGND4 must be connected to this ball.
1.2 V Reference. This ball cannot be used to source current externally.
Connect VREF_1V2 to AGNDx via a 470 nF capacitor.
Digital Input/Output Port 2.7 (P2.7).
External Interrupt 8 (IRQ8).
Output of PLA Element 21 (PLAO[21]).
Rev. 0 | Page 17 of 23
ADuCM322
Data Sheet
Pin No.
G2
Mnemonic
P3.1/PRTADDR1/PLAI[13]
Type 1
I/O
G3
P3.0/PRTADDR0/PLAI[12]
I/O
G9
AIN15/P4.7
AI/I/O
G10
AIN13/P4.5
AI/I/O
G11
H1
AVDD4
P3.5/MCK/PLAO[27]
S
I/O
H2
XTALO
O
H3
H9
MDIO
AIN14/P4.6
I/O
AI/I/O
H10
AIN12/P4.4
AI/I/O
H11
J1
J2
AGND4
IOVDD3
XTALI
S
S
I
J3
VDAC7/P5.2
AO/I/O
J4
J5
J6
J7
J8
J9
J10
J11
VDAC4
AGND1
AIN0
AIN1
AIN2
AIN7
AIN10
AIN11/BUF_VREF2V5
AO
S
AI
AI
AI
AI
AI
AI/AO
K1
K2
IOGND3
DVDD_2V5
S
AO
K3
VDAC6/P5.1
AO/I/O
K4
VDAC3/P5.0
AO/I/O
K5
K6
K7
K8
K9
K10
VDAC1
VDD1
AGND2
AIN3
AIN6
AIN9/P4.3
AO
S
S
AI
AI
AI/I/O
Description
Digital Input/Output Port 3.1 (P3.1).
MDIO Port Address Bit 1 (PRTADDR1). See the Digital Inputs parameter in
Table 1 for details.
Input to PLA Element 13 (PLAI[13]).
Digital Input/Output Port 3.0 (P3.0).
MDIO Port Address Bit 0 (PRTADDR0). See the Digital Inputs parameter in
Table 1 for details.
Input to PLA Element 12 (PLAI[12]).
Analog Input 15 (AIN15).
Digital Input/Output Port 4.7 (P4.7).
Analog Input 13 (AIN13).
Digital Input/Output Port 4.5 (P4.5).
ADC Supply (3.3 V).
Digital Input/Output Port 3.5 (P3.5).
MDIO Clock (MCK). See the Digital Inputs parameter in Table 1 for more details.
Output of PLA Element 27 (PLAO[27]).
Output from the Crystal Oscillator Inverter. When not using an external
crystal, leave XTALO unconnected.
MDIO Data.
Analog Input 14 (AIN14).
Digital Input/Output Port 4.6 (P4.6).
Analog Input 12 (AIN12).
Digital Input/Output Port 4.4 (P4.4).
Ground for AVDD4, AVDD_REG0, and AVDD_REG1.
3.3 V GPIO Supply.
Input to the Crystal Oscillator Inverter and Input to the Internal Clock
Generator Circuits. When not using an external crystal, connect XTALI to
DGND.
Voltage DAC7 Output (VDAC7).
Digital Input/Output Port 5.2 (P5.2).
Voltage DAC4 Output (VDAC4).
Analog Ground for VDD1.
Analog Input 0.
Analog Input 1.
Analog Input 2.
Analog Input 7.
Analog Input 10.
Analog Input 11 (AIN11).
Buffered 2.5 V Bias (BUF_VREF2V5). The maximum load is 1.2 mA. Connect
BUF_VREF2V5 to AGNDx via a 100 nF capacitor.
Ground for IOVDD3.
2.5 V Digital Supply. A 470 nF capacitor to IOGND3 must be connected to this
ball to stabilize the internal 2.5 V regulator that supplies the analog digital control.
Voltage DAC6 Output (VDAC6).
Digital Input/Output Port 5.1 (P5.1).
Voltage DAC3 Output (VDAC3).
Digital Input/Output Port 5.0 (P5.0).
Voltage DAC1 Output.
3.3 V Supply for Digital Die.
ESD Ground for Pad Ring.
Analog Input 3.
Analog Input 6. AIN6 is also the positive input for the comparator.
Analog Input 9 (AIN9).
Digital Input/Output Port 4.3 (P4.3).
Rev. 0 | Page 18 of 23
Data Sheet
ADuCM322
Pin No.
K11
Mnemonic
ADC_REFP
Type 1
AO/A
L1
L2
DGND1
DVDD_1V8
S
AO
L3
L4
VDAC5
VDAC2/P3.7/PLAO[29]
AO
AO/I/O
L5
VDAC0/P5.3
AO/I/O
L6
L7
L8
L9
L10
AVDD3
AGND3
AIN4
AIN5
AIN8/P4.2
S
S
AI
AI
AI/I/O
L11
ADC_REFN
AO/A
1
Description
Decoupling Capacitor Connection for ADC Reference Buffer. Connect this ball
to a 4.7 µF capacitor to the ADC_REFN ball. ADC_REFP can be overdriven by
an external reference.
Digital Ground 1 for DVDD_1V8.
1.8 V Digital Supply. A 470 nF capacitor to DGND1 must be connected to this
ball to stabilize the internal 1.8 V regulator that supplies flash memory and
the ARM Cortex-M3 processor.
Voltage DAC5 Output (VDAC5).
Voltage DAC2 Output (VDAC2).
Digital Input/Output Port 3.7 (P3.7).
Output of PLA Element 29 (PLAO[29]).
Voltage DAC0 Output (VDAC0).
Digital Input/Output Port 5.3 (P5.3).
VDAC Supply (3.3 V).
Ground for AVDD3.
Analog Input 4.
Analog Input 5. AIN5 can be the negative input for the comparator.
Analog Input 8 (AIN8).
Digital Input/Output Port 4.2 (P4.2).
Decoupling Capacitor Connection for ADC Reference Buffer. Connect this ball
to AGND4.
RES and RES1 are reserved, S is supply, AI is analog input, I is digital input, I/O is input/output, AO is analog output, and O is digital output.
Rev. 0 | Page 19 of 23
ADuCM322
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
1
2
3
4
5
3.0
2.5
40000
35000
30000
1.5
1.0
0
–40
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
6
8
10
12
14
16
3.6
60
VDD1 (V)
50
40
AFTER 40ms VDD1 MUST
STAY ABOVE 2.9V INCLUDING
NOISE EXCURSIONS
3.0
30
2.9
20
40ms min
10
VDD1 MUST BE ABOVE 3V
FOR AT LEAST 40ms TO
COMPLETE POR
0
–10
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
BALL VOLTAGE (V)
13754-004
BALL CURRENT (µA)
70
4
Figure 11. Output Voltage vs. Load Current
MAXIMUM PULL UP
MINIMUM PULL UP
MINIMUM PULL DOWN
MAXIMUM PULL DOWN
80
2
LOAD CURRENT (mA)
Figure 9. Temperature Measurement vs. Internal Temperature
(VDD = 3.3 V, 50 kSPS)
90
0
13754-007
0.5
13754-003
25000
–60
VOH MAXIMUM
VOH MINIMUM
VOL MINIMUM
VOL MAXIMUM
2.0
Figure 10. Pull-Up/Pull-Down Ball Current vs. Ball Voltage
(VDD = 3.3 V, TA = 25°C)
TIME (Not to Scale)
Figure 12. VDD1 Power-On Requirements
Rev. 0 | Page 20 of 23
13754-008
ADC CODE (LSB 16)
45000
DEVICE
DEVICE
DEVICE
DEVICE
DEVICE
OUTPUT VOLTAGE (V)
50000
Data Sheet
ADuCM322
APPLICATIONS INFORMATION
The ADC reference requires a 4.7 μF capacitor placed between
ADC_REFP and ADC_REFN and located as near as possible to
each ball. ADC_REFN must be connected directly to AGND4.
RECOMMENDED CIRCUIT AND COMPONENT
VALUES
Figure 13 shows a typical connection diagram for the
ADuCM322.
Supplies and regulators must be adequately decoupled
with capacitors connected between the AVDDx, DVDD_x,
AVDD_REGx, IOVDDx, and VDD1 balls and their associated
GND balls (AGNDx, IOGNDx, and DGNDx). Table 10
indicates which ground balls are paired with which supply balls.
There are four digital supply balls: IOVDD1, IOVDD2, IOVDD3,
and VDD1. Decouple these balls with a 100 nF capacitor placed
as near as possible to each of the four balls and their associated
ground balls (IOGNDx and AGND1, respectively). In addition,
place a 10 μF capacitor conveniently near to these balls.
Similarly, the analog supply balls, AVDD3 and AVDD4, each
require a 100 nF capacitor placed as near as possible to each ball
and its associated AGNDx ball, and place a 10 μF capacitor
conveniently near to these balls.
The ADuCM322 contains four internal regulators. These
regulators require external decoupling capacitors. The
DVDD_1V8 and DVDD_2V5 balls each require a 470 nF
capacitor to DGND1 and IOGND3, respectively. AVDD_REG0
and AVDD_REG1 each require a decoupling capacitor to
AGND4. The AVDD_REG1 output ball must be connected to
Ball A3, Ball A4, Ball A8, and Ball A9.
Connect the IREF ball to DGND via a standard 3.3 kΩ resistor.
Take care in the layout to ensure that currents flowing from the
ground end of each decoupling capacitor to its associated
ground ball share as little track as possible with other ground
currents on the printed circuit board.
Rev. 0 | Page 21 of 23
ADuCM322
Data Sheet
VDD1
DVDD
0.47µF 0.47µF
12pF
D11
J1
K6
L2
K2
L1
D10
C1
E11
K1
IOVDD2
IOVDD3
VDD1
DVDD_1V8
DVDD_2V5
DGND1
DGND2
IOGND1
IOGND2
IOGND3
10kΩ
B1
IOVDD1
VDD1
RESET
DGND
B2
RESET
J2
XTALI
H2
XTALO
A3
RESERVED
VDD1
12pF
AVDD_REG1
A9
RESERVED
A4
RESERVED
A8
RESERVED
10kΩ
P2.3/BM C3
ADuCM322
P1.0/SIN/ECLKIN/PLAI[4] B9
SWCLK E9
NC B4 RESERVED
NC B8 RESERVED
P1.1/SOUT/PLACLK1/PLAI[5] B10
NC B5 RESERVED
SWDIO E10
AVDD_REG1
AGND1
AGND2
AGND3
AGND4
F11
AVDD_REG0
G11
ADC_REFN
L6
AVDD
ADC_REFP
VREF_1V2
DGND
AVDD4
DGND
B6
AVDD3
A6
IREF
NC B7 RESERVED
A11
K11
L11
F9
F10
J5
K7
L7
H11
3.3kΩ
0.47µF
4.7µF
0.47µF 0.47µF
RESET
RESET
GND
SWDIO
TX
DGND
SWCLK
RX
NC
DVDD
VDD1
1.6Ω
10µF
VIN
0.1µF
DVDD
ADP7102ARDZ3.3
10µF
VIN
EN/UVLO
GND
1.6Ω
VOUT
0.1µF
SENSE/ADJ
PG
10µF
0.1µF
DGND DGND1
10µF
AVDD
0.1µF
10kΩ
DGND
Figure 13. Recommended Circuit and Component Values
Rev. 0 | Page 22 of 23
AGND
0.1µF
AGND1
AGND
13754-009
INTERFACE BOARD CONNECTOR
AGND
Data Sheet
ADuCM322
PACKAGING AND ORDERING INFORMATION
OUTLINE DIMENSIONS
6.10
6.00 SQ
5.90
A1 BALL
CORNER
A1 BALL
CORNER
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
5.00 REF
SQ
0.50
BSC
1.200
1.083
1.000
0.50
REF
BOTTOM VIEW
DETAIL A
DETAIL A
0.223 NOM
0.173 MIN
SEATING
PLANE
0.35
0.30
0.25
BALL DIAMETER
0.93
0.86
0.79
COPLANARITY
0.08
04-02-2013-A
TOP VIEW
COMPLIANT TO JEDEC STANDARDS MO-195-AC
WITH THE EXCEPTION TO BALL COUNT.
Figure 14. 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-96-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
Temperature Range
Package Description
Package Option
Downloader
Ordering Quantity
ADuCM322BBCZ
ADuCM322BBCZ-RL
EV-ADuCM322QSPZ
−40°C to +105°C
−40°C to +105°C
96-Ball CSP_BGA
96-Ball CSP_BGA
Evaluation Board with QuickStart
Development System
BC-96-2
BC-96-2
MDIO
MDIO
MDIO
429
2,500
1
1
Z = RoHS Compliant Part.
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13754-0-2/16(0)
www.analog.com/ADuCM322
Rev. 0 | Page 23 of 23