INFINEON SKB10N60A

SKP10N60A, SKB10N60A
SKW10N60A
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
• 75% lower Eoff compared to previous generation
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
• Very soft, fast recovery anti-parallel EmCon diode
C
G
P-TO-220-3-1
(TO-220AB)
E
P-TO-263-3-2 (D²-PAK) P-TO-247-3-1
(TO-263AB)
(TO-247AC)
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
Package
Ordering Code
TO-220AB
Q67040-S4458
SKB10N60A
TO-263AB
Q67040-S4459
SKW10N60A
TO-247AC
Q67040-S4506
SKP10N60A
VCE
IC
VCE(sat)
Tj
600V
10A
2.3V
150°C
Maximum Ratings
Parameter
Symbol
Value
Unit
SKP10N60A
SKB10N60A
SKW10N60A
Collector-emitter voltage
VCE
DC collector current
IC
600
A
TC = 25°C
20
TC = 100°C
10.6
Pulsed collector current, tp limited by Tjmax
ICpul s
Turn off safe operating area
-
VCE ≤ 600V, Tj ≤ 150°C
40
40
IF
Diode forward current
TC = 25°C
21
TC = 100°C
10
Diode pulsed current, tp limited by Tjmax
IFpul s
42
Gate-emitter voltage
VGE
±20
1)
tSC
Short circuit withstand time
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Ptot
Power dissipation
TC = 25°C
Tj , Tstg
Operating junction and storage temperature
1)
V
10
92
-55...+150
V
µs
W
°C
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
Thermal Resistance
Parameter
Symbol
Conditions
Unit
Max. Value
SKP10N60A
SKB10N60A
SKW10n60A
Characteristic
IGBT thermal resistance,
RthJC
1.35
RthJCD
2.4
K/W
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
RthJA
TO-220AB
TO-247AC
62
40
RthJA
TO-263AB
40
junction – ambient
1)
SMD version, device on PCB
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
2
2.4
-
2.3
2.8
1.2
1.4
1.8
T j =1 5 0° C
-
1.25
1.65
3
4
5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 5 00 µA
Collector-emitter saturation voltage
VCE(sat)
V G E = 15 V , I C = 10 A
T j =2 5 °C
T j =1 5 0° C
VF
Diode forward voltage
V
V G E = 0V , I F = 1 0 A
T j =2 5 °C
Gate-emitter threshold voltage
VGE(th)
I C = 30 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V, V G E = 0 V
µA
T j =2 5 °C
-
-
40
T j =1 5 0° C
-
-
1500
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
100
nA
Transconductance
gfs
V C E = 20 V , I C = 10 A
-
6.7
-
S
Input capacitance
Ciss
V C E = 25 V ,
-
550
660
pF
Output capacitance
Coss
V G E = 0V ,
-
62
75
Reverse transfer capacitance
Crss
f= 1 MH z
-
42
51
Gate charge
QGate
V C C = 48 0 V, I C =1 0 A
-
52
68
nC
T O - 22 0A B
-
7
-
nH
T O - 24 7A C
-
13
-
V G E = 15 V ,t S C ≤ 10 µs
V C C ≤ 6 0 0 V,
T j ≤ 15 0° C
-
100
-
Dynamic Characteristic
V G E = 15 V
LE
Internal emitter inductance
measured 5mm (0.197 in.) from case
2)
Short circuit collector current
IC(SC)
A
1)
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for collector connection. PCB is
vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
T j =2 5 °C ,
V C C = 40 0 V, I C = 1 0 A,
V G E = 0/ 15 V ,
R G = 25 Ω,
1)
L σ =1 8 0n H,
1)
C σ = 5 5p F
-
28
34
-
12
15
-
178
214
-
24
29
-
0.15
0.173
-
0.17
0.221
-
0.320
0.394
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
Energy losses include
“tail” and diode
reverse recovery.
trr
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
T j =2 5 °C ,
-
220
-
tS
V R = 2 00 V , I F = 1 0 A,
-
20
-
tF
d i F / d t =2 0 0 A/ µs
-
200
-
ns
Diode reverse recovery charge
Qrr
-
310
-
nC
Diode peak reverse recovery current
Irrm
-
4.5
-
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
180
-
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
T j =1 5 0° C
V C C = 40 0 V, I C = 1 0 A,
V G E = 0/ 15 V ,
R G = 25 Ω
1)
L σ =1 8 0n H,
1)
C σ = 5 5p F
-
28
34
-
12
15
-
198
238
-
26
32
-
0.260
0.299
-
0.280
0.364
-
0.540
0.663
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
Energy losses include
“tail” and diode
reverse recovery.
trr
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
T j =1 5 0° C
-
350
-
tS
V R = 2 00 V , I F = 1 0 A,
-
36
-
tF
d i F / d t =2 0 0 A/ µs
-
314
-
ns
Diode reverse recovery charge
Qrr
-
690
-
nC
Diode peak reverse recovery current
Irrm
-
6.3
-
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
200
-
A/µs
1)
Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E.
3
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
tp = 5 µs
Ic
50A
40A
30A
20A
10A
1 5 µs
10A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
T C =80°c
T C =110°c
5 0 µs
2 0 0 µs
1A
1m s
Ic
DC
0 ,1 A
0A
10H z
100H z
1kH z
10kH z 100kH z
1V
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 25Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
120W
25A
100W
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
20A
80W
60W
40W
20W
0W
25°C
50°C
75°C
100°C
15A
10A
5A
0A
25°C
1 25°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
50°C
75°C
1 0 0 °C
1 2 5 °C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Sep-02
35A
35A
30A
30A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SKP10N60A, SKB10N60A
SKW10N60A
25A
V G E= 2 0 V
20A
15V
13V
15A
11V
9V
10A
7V
5V
1V
2V
3V
4V
15V
13V
15A
11V
9V
10A
7V
5V
30A
T j=+25°C
+150°C
25A
20A
15A
10A
5A
2V
4V
6V
8V
10V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
35A
IC, COLLECTOR CURRENT
20A
0A
0V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
0A
0V
V G E= 2 0 V
5A
5A
0A
0V
25A
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
3 ,5 V
IC = 2 0 A
3 ,0 V
2 ,5 V
IC = 1 0 A
2 ,0 V
IC = 5 A
1 ,5 V
0 °C
5 0 °C
1 0 0 °C
1 5 0 °C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
t, SWITCHING TIMES
t, SWITCHING TIMES
t d (o ff)
100ns
tf
t d (o n )
tr
10ns
0A
5A
10A
15A
20A
100ns
t d (o ff)
tf
t d (o n )
10ns
0Ω
25A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 25Ω,
Dynamic test circuit in Figure E)
tr
20Ω
40Ω
60Ω
80Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 10A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5 ,5V
t, SWITCHING TIMES
t d (off)
100ns
t d(on )
tf
10ns
0°C
tr
50°C
100°C
150°C
5 ,0V
4 ,5V
4 ,0V
3 ,5V
m a x.
3 ,0V
2 ,5V
ty p.
2 ,0V
1 ,5V
m in.
1 ,0V
-50 °C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 10A, RG = 2 5Ω,
Dynamic test circuit in Figure E)
0 °C
5 0°C
100 °C
150 °C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.3mA)
6
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
1,6m J
1 ,0m J
E ts *
1,2m J
1,0m J
0,8m J
E on *
0,6m J
E off
0,4m J
0,2m J
0,0m J
0A
5A
10A
1 5A
20A
E, SWITCHING ENERGY LOSSES
1,4m J
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
0 ,8m J
0 ,6m J
E off
0 ,4m J
E on *
0 ,2m J
0Ω
2 5A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 25Ω,
Dynamic test circuit in Figure E)
E ts *
20Ω
40 Ω
60Ω
80 Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 10A,
Dynamic test circuit in Figure E)
0,8mJ
0
10 K/W
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
0,6mJ
0,4mJ
Ets*
0,2mJ
Eoff
Eon*
0,0mJ
0°C
D=0.5
0.2
0.1
-1
10 K/W
R,(K/W)
0.4287
0.4830
0.4383
0.05
0.02
R1
-2
10 K/W 0.01
τ, (s)
0.0358
4.3*10-3
3.46*10-4
R2
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
single pulse
-3
50°C
100°C
10 K/W
1µs
150°C
10µs
100µs
1m s
10m s 100m s
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 10A, RG = 2 5Ω,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
1nF
25V
C iss
15V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
120V
480V
10V
C o ss
C rss
5V
0V
0nC
25nC
50nC
10pF
0V
75nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 10A)
20V
30V
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
200A
20µ s
15µ s
10µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
25µ s
tsc, SHORT CIRCUIT WITHSTAND TIME
100pF
11V
12V
13V
14V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
150A
100A
50A
0A
10V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V, Tj = 150°C)
8
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
500ns
1400nC
trr, REVERSE RECOVERY TIME
300ns
I F = 20A
200ns
I F = 10A
I F = 5A
100ns
Qrr, REVERSE RECOVERY CHARGE
1200nC
400ns
d i F / d t, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
600nC
IF = 5 A
400nC
200nC
d i F / d t, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery charge
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
16A
80 0A / µs
IF = 2 0 A
IF = 1 0 A
IF = 5 A
8A
4A
0A
1 0 0 A / µs 3 0 0 A / µs 5 0 0 A / µs 7 0 0 A / µs 9 0 0 A / µs
OF REVERSE RECOVERY CURRENT
100 0A / µs
d i r r /d t, DIODE PEAK RATE OF FALL
20A
12A
IF = 1 0 A
800nC
0nC
100A / µs 300A/ µs 500A/ µs 700A/ µs 900A/ µs
0ns
100A / µs 300A / µs 500A/ µs 700A / µs 900A / µs
Irr, REVERSE RECOVERY CURRENT
I F = 2 0A
1000nC
60 0A / µs
40 0A / µs
20 0A / µs
0A / µs
10 0A / µs
d i F / d t, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
300A / µs
500 A / µs
70 0A / µs
9 00A / µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
9
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
2.0V
20A
I F = 20A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
15A
150°C
10A
100°C
25°C
5A
1.5V
IF =
F hl !
-55°C
1.0V
0A
0.0V
0.5V
1.0V
1.5V
2.0V
ZthJCD, TRANSIENT THERMAL IMPEDANCE
VF, FORWARD VOLTAGE
Figure 25. Typical diode forward current as
a function of forward voltage
-40°C
0°C
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 26. Typical diode forward voltage as
a function of junction temperature
D=0.5
0
10 K/W
0.2
0.1
R,(K/W)
0.759
0.481
0.609
0.551
0.05
-1
10 K/W 0.02
R1
0.01
single pulse
τ, (s)
5.53*10-2
4.28*10-3
4.83*10-4
5.77*10-5
R2
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
-2
10 K/W
1µs
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
10
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
dimensions
TO-220AB
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
dimensions
TO-263AB (D2Pak)
symbol
[inch]
max
A
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
E
F
G
H
2.54 typ.
0.65
0.85
5.08 typ.
4.30
4.50
min
max
0.1 typ.
0.0256
0.0335
0.2 typ.
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
11
[mm]
min
8° max
8° max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
Z
16.15
0.6358
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
dimensions
TO-247AC
symbol
[mm]
min
max
min
max
A
4.78
5.28
0.1882
0.2079
B
2.29
2.51
0.0902
0.0988
C
1.78
2.29
0.0701
0.0902
D
1.09
1.32
0.0429
0.0520
E
1.73
2.06
0.0681
0.0811
F
2.67
3.18
0.1051
0.1252
G
0.76 max
0.0299 max
H
20.80
21.16
0.8189
0.8331
K
15.65
16.15
0.6161
0.6358
L
5.21
5.72
0.2051
0.2252
M
19.81
20.68
0.7799
0.8142
N
3.560
4.930
0.1402
0.1941
∅P
Q
12
[inch]
3.61
6.12
0.1421
6.22
0.2409
0.2449
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
tr r
IF
tS
QS
Ir r m
tF
10% Ir r m
QF
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
an d Stray capacity C σ =55pF.
Published by
Infineon Technologies AG,
13
Sep-02
SKP10N60A, SKB10N60A
SKW10N60A
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2001
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
14
Sep-02
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.