INFINEON IL5

IL1/2/5
PHOTOTRANSISTOR
OPTOCOUPLER
FEATURES
• Current Transfer Ratio at IF=10 mA
IL1, 20% Min.
IL2, 100% Min.
IL5, 50% Min.
• High Collector-Emitter Voltage
IL1 – BVCEO=50 V
IL2, IL5 – BVCEO=70 V
• Field-Effect Stable by TRansparent IOn Shield
(TRIOS)
• Double Molded Package Offers Isolation Test
Voltage 5300 VACRMS
• Underwriters Lab File #E52744
V
•
VDE Approval #0884
(Available with Option 1)
Dimensions in inches (mm)
Pin One ID
3
2
Anode 1
.248 (6.30)
.256 (6.50)
4
5
5 Collector
NC 3
6
4 Emitter
.335 (8.50)
.343 (8.70)
.039
(1.00)
Min.
4°
typ.
DESCRIPTION
See Appnote 45, “How to Use Optocoupler Normalized
Curves.”
6 Base
Cathode 2
D E
The IL1/2/5 are optically coupled isolated pairs employing GaAs infrared LEDs and silicon NPN phototransistor.
Signal information, including a DC level, can be transmitted by the drive while maintaining a high degree of
electrical isolation between input and output. The IL1/2/5
are especially designed for driving medium-speed logic
and can be used to eliminate troublesome ground loop
and noise problems. These couplers can be used also
to replace relays and transformers in many digital interface applications such as CRT modulation.
1
.018 (0.45)
.022 (0.55)
.300 (7.62)
typ.
.130 (3.30)
.150 (3.81)
18° typ.
.020 (.051) min.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.010 (.25)
.014 (.35)
.110 (2.79)
.150 (3.81)
.300 (7.62)
.347 (8.82)
Maximum Ratings
Emitter
Reverse Voltage.................................................................................. 6 V
Forward Current ............................................................................. 60 mA
Surge Current .................................................................................. 2.5 A
Power Dissipation ........................................................................ 100 mW
Derate Linearly from 25°C .................................................... 1.33 mW/°C
Detector
Collector-Emitter Reverse Voltage
IL1 ................................................................................................... 50 V
IL2, IL5 ............................................................................................. 70 V
Emitter-Base Reverse Voltage ............................................................. 7 V
Collector-Base Reverse Voltage ........................................................ 70 V
Collector Current ............................................................................ 50 mA
Collector Current (t<1 ms) ............................................................ 400 mA
Power Dissipation ........................................................................ 200 mW
Derate Linearly from 25°C ...................................................... 2.6 mW/°C
Package
Package Power Dissipation ........................................................ 250 mW
Derate Linearly from 25°C ...................................................... 3.3 mW/°C
Isolation Test Voltage (between emitter and detector
referred to standard climate 23°C/50%RH, DIN 50014)5300 VACRMS
Creepage..................................................................................min. 7 mm
Clearance .................................................................................min. 7 mm
Comparative Tracking Index per
DIN IEC 112/VDE 0303, part 1.........................................................175
Isolation Resistance
VIO=500 V, TA=25°C .........................................................................≥1012 Ω
VIO=500 V, TA=100°C .......................................................................≥1011 Ω
Storage Temperature .................................................... –40°C to +150°C
Operating Temperature................................................. –40°C to +100°C
Junction Temperature ..................................................................... 100°C
Soldering Temperature (2 mm from case bottom).......................... 260°C
5–1
This document was created with FrameMaker 4.0.4
Characteristics
Symbol
Min
Typ
Max
Unit
Condition
1.25
1.65
V
IF=60 mA
V
IR=10 µA
µA
VR=6 V
VR=0 V, f=1 MHz
Emitter
Forward Voltage
VF
Breakdown Voltage
VBR
Reverse Current
IR
0.01
Capacitance
CO
40
pF
Thermal Resistance Junction to Lead
RTHJL
750
°C/W
Capacitance
CCE
CCB
CEB
6.8
8.5
11
pF
pF
pF
VCE=5 V, f=1 MHz
VCB=5 V, f=1 MHz
VEB=5 V, f=1 MHz
Collector-Emitter Leakage Current
ICEO
5
nA
VCE=10 V
Collector-Emitter Saturation Voltage
VCESAT
0.25
Base-Emitter Voltage
VBE
0.65
DC Forward Current Gain
HFE
200
650
1800
VCE=10 V, IB=20 µA
Saturated DC Forward Current Gain
HFESAT
120
400
600
VCE=0.4 V, IB=20 µA
Thermal Resistance Junction to Lead
RTHJL
500
°C/W
Saturated Current Transfer Ratio
(Collector-Emitter)
CTRCESAT
75
%
IF=10 mA, VCE=0.4 V
Current Transfer Ratio
(Collector-Emitter)
CTRCE
%
IF=10 mA, VCE=10 V
Current Transfer Ratio
(Collector-Base)
CTRCB
0.25
%
IF=10 mA, VCB=9.3 V
Saturated Current Transfer Ratio
(Collector-Emitter)
CTRCESAT
170
%
IF=10 mA, VCE=0.4 V
Current Transfer Ratio
(Collector-Emitter)
CTRCE
%
IF=10 mA, VCE=10 V
Current Transfer Ratio
CTRCB
0.25
%
IF=10 mA, VCB=9.3 V
Saturated Current Transfer Ratio
(Collector-Emitter)
CTRCESAT
100
%
IF=10 mA, VCE=0.4 V
Current Transfer Ratio
(Collector-Emitter)
CTRCE
%
IF=10 mA, VCE=10 V
Current Transfer Ratio
CTRCB
0.25
%
IF=10 mA, VCB=9.3 V
Common Mode Rejection Output High
CMH
5000
V/µs
VCM=50 VP-P, RL=1 kΩ, IF=0 mA
Common Mode Rejection Output Low
CML
5000
V/µs
VCM=50 VP-P, RL=1 kΩ, IF=10
mA
Common Mode Coupling Capacitance
CCM
0.01
pF
Package Capacitance
CI-O
0.6
pF
VI-O=0 V, f=1 MHz
Insulation Resistance
RS
10+14
Ω
VI-O=500 V
6
30
10
Detector
50
ICE=1 mA, IB=20 µA
V
VCE=10 V, IB=20 µA
Package Transfer Characteristics
IL1
20
80
300
IL2
100
200
500
IL5
50
130
400
Isolation and Insulation
IL1/2/5
5–2
SWITCHING TIMES
Figure 3. Non-saturated switching timing
IF
Figure 1. Non-saturated switching timing
VCC=5 V
IF=10 mA
F=10 KHz
DF=50%
VO
RL=75 Ω
tPHL
V0
tPLH
tS
50%
Figure 2. Saturated switching timing
tD
VCC=5 V
F=10 KHz
DF=50%
Figure 4. Saturated switching timing
RL
VO
IF=10 mA
tF
tR
IF
VO
tD
tR
tPLH
tPHL
tS
VTH=1.5 V
tF
Non-Saturated Switching Time Table-Typical
Characteristic
Sym
IL1
IF=20 mA
IL2
IF=5 mA
IL5
IF=10 mA
Unit
Test Condition
Delay
TD
0.8
1.7
1.7
µs
Rise Time
tR
1.9
2.6
2.6
µs
VCC=5 V
Storage
tS
0.2
0.4
0.4
µs
RL=75 Ω
Fall Time
tF
1.4
2.2
2.2
µs
Propagation H-L
tPHL
0.7
1.2
1.1
µs
Propagation L-H
tPLH
1.4
2.3
2.5
µs
tp measured at 50% of output
Saturated Switching Time Table-Typical
Characteristic
Sym
IL1
IF=20 mA
IL2
IF=5 mA
IL5
IF=10 mA
Unit
Test Condition
Delay
TD
0.8
1
1.7
µs
Rise Time
tR
1.2
2
7
µs
VCL=5.0 V
Storage
tS
7.4
5.4
4.6
µs
VCE=0.4
Fall Time
tF
7.6
13.5
20
µs
RL=1 K
Propagation H-L
tPHL
1.6
5.4
2.6
µs
VTH=1.5 V
Propagation L-H
tPLH
8.6
7.4
7.2
µs
IL1/2/5
5–3
Figure 5. gForward voltage versus forward current
Figure 9. Normalized non-saturated and saturated CTR at
TA=100°C versus LED current
NCTR - Normalized CTR
VF - Forward Voltage - V
1.4
Ta = -55°C
1.3
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 100°C
0.8
0.7
.1
1
10
IF - Forward Current - mA
100
NCTR - Normalized CTR
Ice - Collector Current - mA
100
Iceo - Collector-Emitter - nA
NCTR - Normalized CTR
0.5
NCTR(SAT)
NCTR
0.0
100
Figure 8. Normalized non-saturated and saturated CTR at
TA=70°C versus LED current
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
1.0
0.5
Ta = 70°C
NCTR(SAT)
NCTR
.1
1
10
IF - LED Current - mA
30
25
50°C
20
15
70°C
25°C
100°C
10
5
0
0
10
20
30
40
IF - LED Current - mA
50
60
10
10
5
4
10 3
WORST
CASE
10 2
Vce = 10V
10 1
TYPICAL
10 0
10 -1
10 -2
-20
0
20
40
60
80
100
Ta - Ambient Temperature - °C
1.5
CTRce(sat) Vce = 0.4V
0.0
100
Figure 12. Normalized CTRcb versus LED current and temperature
NCTRcb - Normalized CTRcb
NCTR - Normalized CTR
1.5
1
10
IF - LED Current - mA
Figure 11. Collector-emitter leakage current versus temperature
Ta = 50°C
1
10
IF - LED Current - mA
Ta = 100°C
NCTR(SAT)
NCTR
35
Figure 7. Normalized non-saturated and saturated CTR at
TA=50°C versus LED current
1.5
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
.1
0.5
Figure 10. Collector-emitter current versus temperature
and LED current
NCTR(SAT)
NCTR
1.0
1.0
.1
0.5
1
10
IF - LED Current - mA
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
0.0
Figure 6. Normalized non-saturated and saturated CTR at
TA=25°C versus LED current
1.5
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
1.0
CTRce(sat) Vce = 0.4V
0.0
.1
1.5
100
Normalized to:
IF =10 mA
Vcb = 9.3 V
Ta = 25°C
1.0
0.5
25°C
50°C
70°C
0.0
.1
1
10
IF - LED Current - mA
100
IL1/2/5
5–4
Figure 16. Normalized saturated HFE versus base current
and temperature
1.5
Normalized to:
Vce = 10V
70°C 50°C
Ib = 20µA
1.0
Ta
= 25°C
25°C
1000
Icb = 1.0357 *IF ^1.3631
NHFE(sat) - Normalized
Saturated HFE
Icb - Collector Base
Photocurrent - µA
Ta = 25°C
100
10
1
.1
.01
.1
100
1
10
IF - LED Current - mA
Vce = 0.4V
0.0
1
Figure 14. Normalized photocurrent versus If and temperature
1000
tp – Propagatio Delay - µs
Normalized to:
If = 10ma, Ta = 25¡C
1
NIB-Ta=-20¡C
.1
NIb,Ta=25¡C
NIb,Ta=50¡C
NIb,Ta=70¡C
.01
.1
1
10
If -LED Current- mA
1000
2.5
Ta = 25°C, IF = 10mA
Vcc = 5 V, Vth = 1.5 V
tpHL
100
2.0
1.5
10
tpLH
1
100
10
100
Ib - Base Current - (µA)
Figure 17. Propagation delay versus collector load resistor
10
Normalized Photocurrent
-20°C
0.5
1.0
.1
1
10
RL - Collector Load Resistor - KΩ
tpHL - Propagation Delay - µs
Figure 13. Collector base photocurrent versus LED current
100
Table 15. Normalized non-saturated HFE versus base current
and temperature
NHFE - Normalized HFE
1.2
70°C
50°C
1.0
25°C
Normalized to:
Ib = 20µA
Vce = 10 V
Ta = 25°C
-20°C
0.8
0.6
0.4
1
10
100
Ib - Base Current - µA
1000
IL1/2/5
5–5