INFINEON IGW15T120

IGW15T120
®
TrenchStop Series
Low Loss IGBT in TrenchStop® and Fieldstop technology
C
•
•
•
•
•
•
•
•
•
•
Approx. 1.0V reduced VCE(sat) compared to BUP313
Short circuit withstand time – 10µs
Designed for :
- Frequency Converters
- Uninterrupted Power Supply
®
TrenchStop and Fieldstop technology for 1200 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
NPT technology offers easy parallel switching capability due to
positive temperature coefficient in VCE(sat)
Low EMI
Low Gate Charge
Qualified according to JEDEC1 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
IGW15T120
G
E
PG-TO-247-3
VCE
IC
VCE(sat),Tj=25°C
Tj,max
Marking Code
Package
1200V
15A
1.7V
150°C
G15T120
PG-TO-247-3
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
DC collector current
IC
A
TC = 25°C
30
TC = 100°C
15
Pulsed collector current, tp limited by Tjmax
ICpuls
45
Turn off safe operating area
-
45
VGE
±20
V
tSC
10
µs
Ptot
110
W
Tj
-40...+150
°C
Storage temperature
Tstg
-55...+150
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
VCE ≤ 1200V, Tj ≤ 150°C
Gate-emitter voltage
Short circuit withstand time
2)
VGE = 15V, VCC ≤ 1200V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Operating junction temperature
1
2)
260
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
1.1
K/W
RthJA
40
Characteristic
IGBT thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
typ.
max.
1200
-
-
T j = 25° C
-
1.7
2.2
T j = 12 5° C
-
2.0
-
T j = 15 0° C
-
2.2
-
5.0
5.8
6.5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V, I C = 0. 5mA
Collector-emitter saturation voltage
VCE(sat)
V
V G E = 15V, I C = 15A
Gate-emitter threshold voltage
VGE(th)
I C = 0. 6mA, V C E = V G E
Zero gate voltage collector current
ICES
V C E = 1200V ,
V G E = 0V
mA
T j = 25° C
-
-
0.2
T j = 15 0° C
-
-
2.0
Gate-emitter leakage current
IGES
V C E = 0V ,V G E = 2 0V
-
-
100
nA
Transconductance
gfs
V C E = 20V, I C = 15A
-
10
-
S
Integrated gate resistor
RGint
none
Ω
Dynamic Characteristic
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
V C C = 9 60V, I C = 15A
V C E = 25V,
pF
-
1100
-
V G E = 0V,
-
100
-
f= 1 M Hz
-
50
-
-
85
-
nC
-
13
-
nH
-
90
-
A
V G E = 1 5V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Short circuit collector current1)
1)
IC(SC)
V G E = 1 5V,t S C ≤10µs
V C C = 600V,
T j = 25° C
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j = 25° C,
V C C = 6 00V, I C = 15A,
V G E = 0/ 1 5V ,
R G = 5 6Ω ,
L σ 2 ) = 180nH,
C σ 2 ) =39pF
Energy losses include
“tail” and diode
reverse recovery.
-
50
-
-
30
-
-
520
-
-
60
-
-
1.3
-
-
1.4
-
-
2.7
-
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
50
-
-
35
-
-
600
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
2)
T j = 15 0° C,
V C C = 6 00V, I C = 15A,
V G E = 0/ 1 5V ,
R G = 56Ω
2)
L σ = 180nH,
C σ 2 ) =39pF
Energy losses include
“tail” and diode
reverse recovery.
-
120
-
-
2.0
-
-
2.1
-
-
4.1
-
ns
mJ
Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.
Power Semiconductors
3
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
tp=2µs
30A
20A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
40A
TC=80°C
TC=110°C
Ic
10A
0A
10Hz
10A
10µs
50µs
1A
150µs
500µs
Ic
100Hz
1kHz
10kHz
0,1A
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 600V,
VGE = 0/+15V, RG = 56Ω)
20ms
DC
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C,
Tj ≤150°C;VGE=15V)
IC, COLLECTOR CURRENT
Ptot,
POWER DISSIPATION
100W
80W
60W
40W
20A
10A
20W
0W
25°C
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 150°C)
Power Semiconductors
4
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≥ 15V, Tj ≤ 150°C)
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
40A
VGE=17V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
40A
15V
30A
13V
11V
20A
9V
7V
10A
0A
15V
30A
13V
11V
20A
9V
7V
10A
0A
0V
1V
2V
3V
4V
5V
6V
0V
40A
35A
30A
25A
20A
15A
10A
TJ=150°C
25°C
5A
0A
0V
2V
4V
6V
8V
10V
12V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=20V)
Power Semiconductors
1V
2V
3V
4V
5V
6V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
IC, COLLECTOR CURRENT
VGE=17V
3,0V
IC=30A
2,5V
2,0V
IC=15A
1,5V
IC=8A
IC=5A
1,0V
0,5V
0,0V
-50°C
0°C
50°C
100°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
5
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
td(off)
1µs
100ns
tf
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
td(on)
tr
10ns
1ns
0A
10A
100ns
10ns
10Ω
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=56Ω,
Dynamic test circuit in Figure E)
td(on)
tr
1ns
20A
tf
35Ω
60Ω
85Ω
110Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=15A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
t, SWITCHING TIMES
td(off)
100ns
tf
td(on)
tr
10ns
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=15A, RG=56Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
7V
6V
max.
5V
typ.
4V
min.
3V
2V
1V
0V
-50°C
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.6mA)
6
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
8,0mJ
6,0mJ
4,0mJ
Ets*
2,0mJ
0,0mJ
Eoff
5A
10A
15A
20A
4 mJ
3 mJ
Eon*
2 mJ
Eoff
1 mJ
0 mJ
25A
6mJ
E, SWITCHING ENERGY LOSSES
4mJ
3mJ
E ts *
2mJ
E off
E on*
50°C
100°C
55Ω
80Ω
105Ω
*) Eon and Ets include losses
due to diode recovery
4mJ
3mJ
2mJ
Ets*
Eoff
Eon*
0mJ
400V
150°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=15A, RG=56Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
30Ω
5mJ
1mJ
0mJ
5Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=15A,
Dynamic test circuit in Figure E)
*) E on and E ts include losses
due to diode recovery
E, SWITCHING ENERGY LOSSES
Ets*
Eon*
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=56Ω,
Dynamic test circuit in Figure E)
1mJ
*) Eon and Ets include losses
due to diode recovery
5 mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) Eon and Etsinclude losses
due to diode recovery
500V
600V
700V
800V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ=150°C,
VGE=0/15V, IC=15A, RG=56Ω,
Dynamic test circuit in Figure E)
7
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
15V
240V
c, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
Ciss
1nF
960V
10V
Crss
5V
0V
0nC
50nC
10pF
100nC
15µs
10µs
tSC,
5µs
0µs
12V
14V
10V
20V
125A
100A
75A
50A
25A
0A
16V
VGE, GATE-EMITTETR VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C)
Power Semiconductors
0V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
IC(sc), short circuit COLLECTOR CURRENT
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC=15 A)
SHORT CIRCUIT WITHSTAND TIME
Coss
100pF
12V
14V
16V
18V
VGE, GATE-EMITTETR VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gateemitter voltage
(VCE ≤ 600V, Tj ≤ 150°C)
8
Rev. 2.5
Nov. 09
IGW15T120
®
600V
VCE
30A
400V
20A
200V
0V
10A
600V
30A
400V
20A
IC
200V
10A
VCE
IC
0A
0us
0.5us
1us
1.5us
t, TIME
Figure 21. Typical turn on behavior
(VGE=0/15V, RG=56Ω, Tj = 150°C,
Dynamic test circuit in Figure E)
ZthJC, TRANSIENT THERMAL RESISTANCE
IC, COLLECTOR CURRENT
VCE, COLLECTOR-EMITTER VOLTAGE
TrenchStop Series
0A
0us
0V
0.5us
1us
1.5us
t, TIME
Figure 22. Typical turn off behavior
(VGE=15/0V, RG=56Ω, Tj = 150°C,
Dynamic test circuit in Figure E)
0
10 K/W
D=0.5
0.2
R,(K/W)
0.121
0.372
0.381
0.226
0.1
-1
10 K/W
0.05
R1
0.02
0.01
τ, (s)
-1
1.73*10
-2
2.75*10
-3
2.57*10
-4
2.71*10
R2
C1=τ1/R1
C2=τ2/R2
10ms
100ms
single pulse
-2
10 K/W
10µs
100µs
1ms
tP, PULSE WIDTH
Figure 23. IGBT transient thermal resistance
(D = tp / T)
Power Semiconductors
9
Rev. 2.5
Nov. 09
®
IGW15T120
TrenchStop Series
Power Semiconductors
10
Rev. 2.5
Nov. 09
IGW15T120
®
TrenchStop Series
τ1
τ2
r1
τn
r2
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
and Stray capacity C σ =39pF.
Figure B. Definition of switching losses
Power Semiconductors
11
Rev. 2.5
Nov. 09
®
IGW15T120
TrenchStop Series
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 11/18/09.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Power Semiconductors
12
Rev. 2.5
Nov. 09