INTERSIL IRF330

IRF330
Data Sheet
March 1999
5.5A, 400V, 1.000 Ohm, N-Channel
Power MOSFET
1570.4
Features
• 5.5A, 400V
This N-Channel enhancement mode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdown avalanche mode of operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
Formerly developmental type TA17414.
Ordering Information
PART NUMBER
File Number
• rDS(ON) = 1.000Ω
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
PACKAGE
BRAND
D
IRF330
TO-204AA
IRF330
NOTE: When ordering, use the entire part number.
G
S
Packaging
JEDEC TO-204AA
DRAIN
(FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
IRF330
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ , TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
IRF330
400
400
5.5
3.5
22
±20
75
0.6
300
-55 to 150
UNITS
V
V
A
A
A
V
W
W/oC
mJ
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V (Figure 10)
400
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS , ID = 250µA
2.0
-
4.0
V
VDS = Rated BVDSS , VGS = 0V
-
-
25
µA
VDS = 0.8 x Rated BVDSS , VGS = 0V, TJ = 125oC
-
-
250
µA
5.5
-
Zero Gate Voltage Drain Current
IDSS
On-State Drain Current (Note 2)
ID(ON)
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance (Note 2)
Forward Transconductance (Note 2)
Turn-On Delay Time
rDS(ON)
gfs
td(ON)
Rise Time
tr
Turn-Off Delay Time
td(OFF)
Fall Time
VDS > ID(ON) x rDS(ON)MAX , VGS = 10V
VGS = ±20V
ID = 3.0A, VGS = 10V (Figures 8, 9)
VDS ≥ 10V, ID = 3.3A (Figure 12)
VDD = 200V, ID ≈ 5.5A, RG = 12Ω, RL = 36Ω,
VGS = 10V (Figures 17, 18) MOSFET Switching
Times are Essentially Independent of Operating
Temperature
tf
Total Gate Charge
(Gate to Source + Gate to Drain)
Qg(TOT)
Gate to Source Charge
Qgs
Gate to Drain “Miller” Charge
Qgd
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
Internal Drain Inductance
LD
Internal Source Inductance
LS
VGS = 10V, ID = 5.5A, VDS = 0.8 x Rated BVDSS ,
IG(REF) = 1.5mA (Figures 14, 19, 20) Gate Charge is
Essentially Independent of Operating Temperature
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11)
Measured between the
Contact Screw on the
Flange that is Closer to
Source and Gate Pins and
the Center of Die
Measured from the Source
Lead, 6mm (0.25in) from
the Flange and the Source
Bonding Pad
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
-
A
±100
nA
-
0.8
1.0
Ω
2.9
4.0
-
S
-
11
17
ns
-
20
29
ns
-
35
56
ns
-
15
24
ns
-
21
35
nC
-
4
-
nC
-
17
-
nC
-
700
-
pF
-
150
-
pF
-
40
-
pF
-
5.0
-
nH
-
12.5
-
nH
-
-
1.67
oC/W
-
-
30
oC/W
D
LD
G
LS
S
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to Ambient
RθJA
2
Free Air Operation
IRF330
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Continuous Source to Drain Current
ISD
Pulse Source to Drain Current (Note 3)
TEST CONDITIONS
Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction Diode
ISDM
MIN
TYP
MAX
UNITS
-
-
5.5
A
-
-
22
A
-
-
1.6
V
140
400
660
ns
0.93
2.4
4.3
µC
D
G
S
Source to Drain Diode Voltage (Note 2)
TJ = 25oC, ISD = 5.5A, VGS = 0V (Figure 13)
VSD
Reverse Recovery Time
TJ = 25oC, ISD = 5.5A, dISD/dt = 100A/µs
TJ = 25oC, ISD = 5.5A, dISD/dt = 100A/µs
trr
Reverse Recovery Charge
QRR
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 17.75mH, RG = 25Ω, peak IAS = 6.5A. See Figures 15, 16.
Typical Performance Curves
Unless Otherwise Specified
10
ID , DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
8
6
4
2
0
0
50
100
150
0
50
100
75
150
125
TC , CASE TEMPERATURE (oC)
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
1.0
THERMAL IMPEDANCE
ZθJC, NORMALIZED TRANSIENT
POWER DISSIPATION MULTIPLIER
1.2
0.5
0.5
0.2
0.2
0.1
0.05
0.02
0.01
10-5
0.1
0.05
0.02
0.01
PDM
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
t1, RECTANGULAR WAVE PULSE DURATION (s)
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
1.0
10
IRF330
Typical Performance Curves
(Continued)
8
OPERATION IN THIS
AREA IS LIMITED
BY rDS(ON)
10
10µs
100µs
1ms
1
10ms
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
100ms
DC
VGS = 5.5V
6
5
5V
4
3
4.5V
2
1
0.1
4V
0
1
10
100
VDS , DRAIN TO SOURCE VOLTAGE (V)
0
500
VGS = -10V
300
80ms PULSE TEST
VDS ≥ 50V
3
VGS = 4.5V
2
1
250
5
VGS = 5V
4
200
FIGURE 5. OUTPUT CHARACTERISTICS
VGS = 6V
80µs PULSE TEST
150
VDS , DRAIN TO SOURCE VOLTAGE (V)
4
ID, DRAIN CURRENT (A)
5
100
50
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
ID, DRAIN CURRENT (A)
80µs PULSE TEST
10V
7
ID , DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
100
Unless Otherwise Specified
125oC
3
25oC
-55oC
2
1
VGS = 4V
0
0
2
4
6
8
VDS, DRAIN TO SOURCE VOLTAGE (V)
0
10
FIGURE 6. SATURATION CHARACTERISTICS
5
2
3
4
VGS, GATE TO SOURCE VOLTAGE (V)
6
7
FIGURE 7. TRANSFER CHARACTERISTICS
3
2.2
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
rDS(ON) , DRAIN TO SOURCE
ON RESISTANCE (Ω)
1
VGS = 10V
2
VGS = 20V
1
0
ID = 2.0A
VGS = 10V
1.8
1.4
1.0
0.6
0.2
0
5
10
15
20
ID , DRAIN CURRENT (A)
25
30
NOTE: Heating effect of 2µs pulse is minimal.
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
IRF330
Typical Performance Curves
Unless Otherwise Specified
(Continued)
2000
VGS = 0V
ID = 250µA
1.15
1.05
0.95
1600
1200
0.85
CISS
800
COSS
400
CRSS
0.75
-40
0
0
40
80
0
160
120
10
TJ , JUNCTION TEMPERATURE (oC)
ISD , SOURCE TO DRAIN CURRENT (A)
80µs PULSE TEST
8
TJ = -55oC
TJ = 25oC
4
TJ = 125oC
2
2
4
6
ID, DRAIN CURRENT (A)
10
8
100
10
TJ = 150oC
TJ = 25oC
1
2
3
VSD , SOURCE TO DRAIN VOLTAGE (V)
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
VGS , GATE TO SOURCE VOLTAGE (V)
20
ID = 5.5A
VDS = 320V
VDS = 200V
VDS = 80V
16
12
8
4
0
8
16
24
32
40
Qg(TOT), TOTAL GATE CHARGE (nC)
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
5
50
TJ = 150oC
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT
0
40
TJ = 25oC
80µs PULSE TEST
0.1
0
0
0
30
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10
6
20
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
gfs, TRANSCONDUCTANCE (S)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
f = 1MHz
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.25
4
IRF330
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
+
RG
REQUIRED PEAK IAS
-
VGS
VDS
IAS
VDD
VDD
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
RG
-
VDD
10%
10%
0
DUT
90%
VGS
VGS
0
FIGURE 17. SWITCHING TIME TEST CIRCUIT
0.2µF
50%
PULSE WIDTH
10%
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
12V
BATTERY
50%
VDD
Qg(TOT)
SAME TYPE
AS DUT
50kΩ
Qgd
0.3µF
VGS
Qgs
D
VDS
DUT
G
IG(REF)
0
S
0
IG CURRENT
SAMPLING
RESISTOR
VDS
ID CURRENT
SAMPLING
RESISTOR
FIGURE 19. GATE CHARGE TEST CIRCUITS
6
IG(REF)
0
FIGURE 20. GATE CHARGE WAVEFORMS
IRF330
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
7
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029