IRF IRGPS40B120UP

PD- 95899A
IRGPS40B120UP
INSULATED GATE BIPOLAR TRANSISTOR
UltraFast IGBT
VCES = 1200V
C
Features
• Non Punch Through IGBT Technology.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Positive VCE (on) Temperature Coefficient.
• Super-247 Package.
• Lead-Free
VCE(on) typ. = 3.12V
G
@ VGE = 15V,
E
ICE = 40A, Tj=25°C
n-channel
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Significantly Less Snubber Required
• Excellent Current Sharing in Parallel Operation.
Super-247™
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current 
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
Units
1200
80
40
160
160
± 20
595
238
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
Le
www.irf.com
Junction-to-Case - IGBT
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Recommended Clip Force
Weight
Internal Emitter Inductance (5mm from package)
Min.
Typ.
Max.
Units
–––
–––
–––
20 (2)
–––
–––
–––
0.24
–––
–––
6.0 (0.21)
13
0.20
–––
40
–––
–––
–––
°C/W
N(kgf)
g (oz)
nH
1
03/15/05
IRGPS40B120UP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 1200 –––
Temperature Coeff. of Breakdown Voltage ––– 0.40
Collector-to-Emitter Saturation Voltage ––– 3.12
––– 3.39
––– 3.88
––– 4.24
Gate Threshold Voltage
4.0 5.0
Temperature Coeff. of Threshold Voltage ––– -12
Forward Transconductance
––– 30.5
Zero Gate Voltage Collector Current
––– –––
––– 100
Gate-to-Emitter Leakage Current
––– –––
Ref.Fig.
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C)
5, 6
3.40
IC = 40A
VGE = 15V
7, 9
3.71
V
IC = 50A
10
4.39
IC = 40A, TJ = 125°C
4.79
IC = 50A, TJ = 125°C
11
8, 9
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C) 10 ,11
–––
S
VCE = 50V, IC = 40A, PW=80µs
500
µA
VGE = 0V, VCE = 1200V
1200
VGE = 0V, VCE = 1200V, TJ = 125°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operting Area
SCSOA
Short Circuit Safe Operting Area
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
340
43
165
1400
1650
3050
1950
2200
4150
76
39
332
25
4300
270
160
Max. Units
Conditions
510
IC = 40A
65
nC VCC = 600V
248
VGE = 15V
1750
µJ
IC = 40A, VCC = 600V
2050
VGE = 15V,RG = 4.7Ω, L =200µH
3800
Ls = 150nH
TJ = 25°C
2300
TJ = 125°C
2950
µJ
Energy losses include "tail" and
5250
diode reverse recovery.
99
IC = 40A, VCC = 600V
55
VGE = 15V, RG = 4.7Ω L =200µH
365
ns
Ls = 150nH, T J = 125°C
33
–––
VGE = 0V
–––
pF
VCC = 30V
–––
f = 1.0MHz
TJ = 150°C, IC = 160A, Vp =1200V
FULL SQUARE
VCC = 1000V, VGE = +15V to 0V
RG = 4.7Ω
TJ = 150°C, Vp =1200V
10 ––– –––
µs VCC = 900V, VGE = +15V to 0V,
RG = 4.7Ω
Note:
 VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 4.7Ω.
2
www.irf.com
Ref.Fig.
17
CT1
CT4
WF1
WF2
12,14
13, 15
CT4
WF1
WF2
16
4
CT3
WF4
IRGPS40B120UP
100
700
600
80
500
IC (A)
Ptot (W)
60
40
400
300
200
20
100
0
0
0
20
40
60
80
100 120 140 160
0
50
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
150
200
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
2 µs
100
100
10
100 µs
1ms
1
IC A)
10 µs
IC (A)
100
T C (°C)
10
10ms
DC
0.1
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJS ≤ 150°C
www.irf.com
10000
1
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGPS40B120UP
120
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
60
50
ICE (A)
ICE (A)
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
70
60
40
30
40
20
20
10
0
0
0
1
2
3
4
5
0
2
VCE (V)
6
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
500
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
450
T J = 25°C
400
T J = 125°C
350
ICE (A)
60
ICE (A)
4
40
300
250
200
150
20
TJ = 125°C
100
T J = 25°C
50
0
0
0
2
4
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
4
0
5
10
15
20
VGE (V)
Fig. 8 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGPS40B120UP
20
20
18
18
16
16
14
12
ICE = 20A
10
ICE = 40A
8
ICE = 80A
VCE (V)
VCE (V)
14
ICE = 20A
12
ICE = 40A
10
ICE = 80A
8
6
4
6
2
4
0
2
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
18
16
VCE (V)
14
ICE = 20A
ICE = 40A
ICE = 80A
12
10
8
6
4
2
5
10
15
20
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 125°C
www.irf.com
5
IRGPS40B120UP
4500
1000
4000
tdOFF
3500
Energy (µJ)
Swiching Time (ns)
EON
EOFF
3000
2500
2000
1500
tdON
100
tR
1000
tF
500
0
0
20
40
60
10
80
20
IC (A)
60
80
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 125°C; L=200µH; VCE= 600V
RG= 4.7Ω; VGE= 15V
Fig. 13 - Typ. Switching Time vs. IC
TJ = 125°C; L=200µH; VCE= 600V
RG= 4.7Ω; VGE= 15V
5000
1000
4500
tdOFF
4000
EOFF
Swiching Time (ns)
3500
Energy (µJ)
40
3000
EON
2500
2000
1500
td ON
100
tR
tF
1000
500
0
10
0
5
10
15
20
RG (Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 125°C; L=200µH; VCE= 600V
ICE= 40A; VGE= 15V
6
25
0
5
10
15
20
25
RG (Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 125°C; L=200µH; VCE= 600V
ICE= 40A; VGE= 15V
www.irf.com
IRGPS40B120UP
16
10000
Cies
14
600V
1000
800V
10
VGE (V)
Capacitance (pF)
12
Coes
Cres
8
6
100
4
2
0
10
0
20
40
60
80
100
0
50
100 150 200 250 300 350 400
Q G , Total Gate Charge (nC)
VCE (V)
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 40A; L = 600µH
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
0.01
0.02
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGPS40B120UP
L
L
80 V
VCC
DUT
DUT
0
1000V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-on)
DRIVER
L
DIODE CLAMP
900V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGPS40B120UP
Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
Fig. WF.2 - Typ. Turn-on Loss Waveform
@ Tj=125C using Fig. CT.4
50
1100
1000
40
900
900
90
800
80
700
70
800
500
tf
500
400
20
VCE (V)
600
5% V CE
10
300
400
300
30
5% V CE
100
20
10
0
0
40
90% test current
200
0
100
50
10% test current
5% ICE
200
-100
-0.20
60
TEST CURRENT
I CE (A)
VCE (V)
600
30
ICE (A)
90% ICE
700
0
Eoff Loss
0.00
0.20
0.40
-100
4.10
-10
0.80
0.60
4.20
Time(µs)
4.30
4.40
4.50
-10
4.60
Time (µs)
Fig. WF.3 - Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
500
1000
450
900
VCE
400
800
ICE
350
600
300
500
250
400
200
300
150
200
100
100
50
0
-5.00
0.00
5.00
10.00
ICE (A)
V CE (V)
700
0
15.00
time (µS)
www.irf.com
9
IRGPS40B120UP
Case Outline and Dimensions — Super-247
Super-247 (TO-274AA) Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"
PART NUMBER
INTERNATIONAL RECTIFIER
LOGO
IRFPS37N50A
719C
17
89
ASSEMBLY LOT CODE
Note: "P" in assembly line position
indicates "Lead-Free"
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
TOP
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/05
10
www.irf.com