IRF IRFSL3107PBF

PD -97144
IRFS3107PbF
IRFSL3107PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
G
D
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
75V
2.5m:
3.0m:
230A c
ID (Package Limited)
195A
D
D
S
G
G
D2Pak
IRFS3107PbF
D
S
TO-262
IRFSL3107PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
230c
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
160
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
195
IDM
Pulsed Drain Current d
900
PD @TC = 25°C
Maximum Power Dissipation
370
W
Linear Derating Factor
2.5
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dv/dt
TJ
Peak Diode Recovery f
14
V/ns
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
A
°C
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
10lbxin (1.1Nxm)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy e
IAR
Avalanche Currentd
EAR
Repetitive Avalanche Energy g
300
mJ
See Fig. 14, 15, 22a, 22b,
A
mJ
Thermal Resistance
Symbol
Parameter
Typ.
Max.
RθJC
Junction-to-Case kl
–––
0.40
RθJA
Junction-to-Ambient (PCB Mount) jk
–––
40
www.irf.com
Units
°C/W
1
10/7/08
IRFS/SL3107PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
ΔV(BR)DSS/ΔTJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
–––
–––
0.09
2.5
–––
–––
–––
–––
–––
1.2
–––
–––
3.0
4.0
20
250
100
-100
–––
Conditions
V VGS = 0V, ID = 250μA
V/°C Reference to 25°C, ID = 5mAd
mΩ VGS = 10V, ID = 140A g
V VDS = VGS, ID = 250μA
μA VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
230
–––
–––
–––
–––
Turn-On Delay Time
–––
Rise Time
–––
Turn-Off Delay Time
–––
Fall Time
–––
Input Capacitance
–––
Output Capacitance
–––
Reverse Transfer Capacitance
–––
Effective Output Capacitance (Energy Related) –––
Effective Output Capacitance (Time Related)h –––
–––
160
38
54
106
19
110
99
100
9370
840
580
1130
1500
–––
240
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 50V, ID = 140A
ID = 140A
VDS =38V
VGS = 10V g
ID = 140A, VDS =0V, VGS = 10V
VDD = 49V
ID = 140A
RG = 2.7Ω
VGS = 10V g
VGS = 0V
VDS = 50V
ƒ = 1.0 MHz, See Fig. 5
VGS = 0V, VDS = 0V to 60V i, See Fig. 11
VGS = 0V, VDS = 0V to 60V h
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
––– 230c
A
MOSFET symbol
ISM
(Body Diode)
Pulsed Source Current
–––
–––
A
showing the
integral reverse
VSD
trr
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
G
p-n junction diode.
TJ = 25°C, IS = 140A, VGS = 0V g
VR = 64V,
TJ = 25°C
IF = 140A
TJ = 125°C
di/dt = 100A/μs g
TJ = 25°C
TJ = 125°C
TJ = 25°C
S
––– –––
1.3
V
–––
54
–––
ns
–––
60
–––
––– 103 –––
nC
––– 132 –––
–––
3.6
–––
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.045mH
RG = 25Ω, IAS = 140A, VGS =10V. Part not recommended for use
above this value .
2
900
D
„ ISD ≤ 140A, di/dt ≤ 1380A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C
Š RθJC value shown is at time zero.
www.irf.com
IRFS/SL3107PbF
1000
1000
BOTTOM
100
4.5V
≤ 60μs PULSE WIDTH
Tj = 25°C
10
BOTTOM
≤ 60μs PULSE WIDTH
Tj = 175°C
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.5
1000
TJ = 25°C
10
VDS = 25V
≤ 60μs PULSE WIDTH
1
2.0
3.0
4.0
5.0
VGS = 10V
2.0
(Normalized)
TJ = 175°C
100
ID = 140A
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current(Α)
4.5V
100
10
0.1
6.0
1.5
1.0
0.5
7.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
16000
Ciss
8000
4000
Coss
Crss
ID= 140A
VDS = 60V
VDS = 38V
12
8
4
0
0
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
Fig 4. Normalized On-Resistance vs. Temperature
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
1
20 40 60 80 100 120 140 160 180
16
VGS = 0V,
f = 100 kHz
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
12000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
0
40
80
120
160
200
240
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFS/SL3107PbF
10000
TJ = 175°C
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
100
10
TJ = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
100μsec
100
1msec
LIMITED BY PACKAGE
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
0.1
2.5
LIMITED BY PACKAGE
ID , Drain Current (A)
200
150
100
50
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage
250
50
100
100
ID = 5mA
90
80
70
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
1400
EAS, Single Pulse Avalanche Energy (mJ)
4.0
3.0
Energy (μJ)
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
1
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
2.0
1.0
ID
21A
49A
BOTTOM 140A
1200
TOP
1000
800
600
400
200
0
0.0
0
20
40
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
80
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFS/SL3107PbF
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
τJ
0.01
0.001
R1
R1
τJ
τ1
R2
R2
Ri (°C/W)
τC
τ2
τ1
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ2
τ3
τ3
τ
τι (sec)
0.047711 0.000071
0.16314 0.000881
0.189304 0.007457
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
0.01
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
350
300
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 140A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFS/SL3107PbF
32
ID = 1.0A
ID = 1.0mA
ID = 250μA
4.0
3.5
24
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
4.5
3.0
2.5
2.0
16
IF = 90A
VR = 64V
8
TJ = 125°C
TJ = 25°C
1.5
0
1.0
-75
-50 -25
0
25
50
75
100
100 125 150 175
200
300
500
600
700
800
900
dif / dt - (A / μs)
TJ , Temperature ( °C )
Fig 16. Threshold Voltage Vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
32
800
24
600
QRR - (nC)
IRRM - (A)
400
16
IF = 135A
VR = 64V
8
100
200
300
400
500
600
700
IF = 90A
VR = 64V
200
TJ = 125°C
TJ = 25°C
0
400
TJ = 125°C
TJ = 25°C
0
800
100
900
200
300
400
500
600
700
800
900
dif / dt - (A / μs)
dif / dt - (A / μs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
800
QRR - (nC)
600
400
200
0
IF = 135A
VR = 64V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFS/SL3107PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFS/SL3107PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE AS SEMBLY LINE "C"
PART NUMBER
INT ERNAT IONAL
RECT IFIER
LOGO
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
AS S EMBLY
LOT CODE
OR
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S IT E CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFS/SL3107PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN T HE AS S EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
AS S EMBLY
LOT CODE
OR
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
P = DES IGNAT ES LEAD - FREE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = AS S EMBLY S IT E CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFS/SL3107PbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2008
10
www.irf.com