IRF GA250TD120U

PD - 50054A
GA250TD120U
"HALF-BRIDGE" IGBT DOUBLE INT-A-PAK
Ultra-FastTM Speed IGBT
Features
• Generation 4 IGBT technology
• Standard: Optimized for minimum saturation
voltage and operating frequencies up to 10kHz
• Very low conduction and switching losses
• HEXFRED™ antiparallel diodes with ultra- soft
recovery
• Industry standard package
• UL approved
VCES = 1200V
VCE(on) typ. = 2.4V
@VGE = 15V, IC = 250A
Benefits
• Increased operating efficiency
• Direct mounting to heatsink
• Performance optimized for power conversion: UPS,
SMPS, Welding
• Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
ICM
ILM
IFM
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 85°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Pulsed Collector CurrentQ
Peak Switching CurrentR
Peak Diode Forward Current
Gate-to-Emitter Voltage
RMS Isolation Voltage, Any Terminal To Case, t = 1 min
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Max.
Units
1200
250
500
500
500
±20
2500
1250
650
-40 to +150
-40 to +125
V
A
V
W
°C
Thermal / Mechanical Characteristics
Parameter
RθJC
RθJC
RθCS
www.irf.com
Thermal Resistance, Junction-to-Case - IGBT
Thermal Resistance, Junction-to-Case - Diode
Thermal Resistance, Case-to-Sink - Module
Mounting Torque, Case-to-Heatsink
Mounting Torque, Case-to-Terminal 1, 2 & 3S
Weight of Module
Typ.
Max.
—
—
0.1
—
—
400
0.10
0.20
—
4.0
3.0
—
Units
°C/W
N. m
g
1
4/24/2000
GA250TD120U
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltage 1200
Collector-to-Emitter Voltage
—
—
Gate Threshold Voltage
3.0
VGE(th)
∆VGE(th)/∆T J Temperature Coeff. of Threshold Voltage —
gfe
Forward Transconductance T
—
ICES
Collector-to-Emitter Leaking Current
—
—
VFM
Diode Forward Voltage - Maximum
—
—
IGES
Gate-to-Emitter Leakage Current
—
V(BR)CES
VCE(on)
Typ. Max. Units
Conditions
—
—
VGE = 0V, IC = 1mA
2.4 2.9
VGE = 15V, IC = 250A
2.1
—
V
VGE = 15V, IC = 250A, TJ = 125°C
—
6.0
VCE = 6V, IC = 3 mA
-11
— mV/°C VCE = 6V, IC = 3mA
323 —
S
VCE = 25V, IC = 250A
—
2.0
mA
VGE = 0V, VCE = 1200V
—
20
VGE = 0V, VCE = 1200V, TJ = 125°C
3.0 4.0
V
IF = 250A, V GE = 0V
2.9
—
IF = 250A, VGE = 0V, TJ = 125°C
—
500
nA
VGE = ±20V
Dynamic Characteristics - TJ = 125°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
Cies
Coes
Cres
trr
Irr
Q rr
di(rec)M/dt
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
Turn-Off Switching Energy
Total Switching Energy
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Diode Peak ReverseCurrent
Diode Recovery Charge
Diode Peak Rate of Fall of Recovery
During tb
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
1979 2968
VCC = 400V, VGE = 15V
334 501
nC IC = 297A
655 983
TJ = 25°C
731 —
RG1 = 15Ω, RG2 = 0Ω
227 —
ns
IC = 250A
653 —
VCC = 720V
343 —
VGE = ±15V
54
—
mJ See Fig.17 through Fig.21
54
—
108 162
44517 —
VGE = 0V
1979 —
pF
VCC = 30V
383 —
ƒ = 1 MHz
214 —
ns
IC = 250A
155 —
A
RG1= 15 Ω
16540 —
nC RG2 = 0 Ω
1970 —
A/µs VCC = 720V
di/dt=1368A/µs
Details of note Q through T are on the last page
2
www.irf.com
GA250TD120U
140
F o r b o th :
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G a te d riv e a s s p e c ifie d
LOAD CURRENT (A)
120
100
P o w e r D is s ip a tio n = 175 W
S q u a re w a v e :
80
60 % of ra ted
vo ltag e
60
I
40
Id e a l d io d e s
20
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
100
TJ = 25 °C
V
= 15V
80µs PULSE WIDTH
GE
1.5
2.0
2.5
3.0
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
100 TJ = 125 °C
TJ = 125 °C
10
1.0
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
1000
10
TJ = 25 °C
V
= 25V
80µs PULSE WIDTH
CE
1
5.0
6.0
7.0
8.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
GA250TD120U
300
4.0
V
= 15V
80 us PULSE WIDTH
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
GE
250
200
150
100
50
0
25
50
75
100
125
150
I C = 500 A
3.0
I C = 250 A
I C = 125 A
2.0
1.0
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Th erm al R e spo nse (ZthJC )
1
0.1
PDM
D = 0.5 0
t
1
t2
0.2 0
0.10
0 .05
0.0 2
0.0 1
0.01
0.0001
Notes:
1. Duty factor D = t
SING L E PU LS E
(TH ER M A L RE SP O N SE )
0.001
0.01
1
/t
2
2. Peak TJ = PDM x Z thJC + TC
0.1
1
A
10
t 1 , R ectangu la r Pulse Du ra tion (se c)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA250TD120U
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
60000
Cies
40000
Coes
20000
C
res
20
VGE, Gate-to-Emitter Voltage (V)
80000
VCC = 400V
I C = 297A
15
10
5
0
0
1
10
0
100
500
1000
1500
2000
2500
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
( ° C)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
1000
V CC = 720V
V GE = 15V
TJ = 125
25 ° C
180
I C = 250A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
200
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
160
140
120
100
80
0
10
20
30
40
RG , Gate Resistance (Ohm)
(Ω)
RG , Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
50
RG1
Ω;RG2 = 0 Ω
= 15Ω
15Ohm
G =15
VGE = 15V
VCC = 720V
IC = 500 A
IC = 250 A
100
IC = 125 A
10
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
GA250TD120U
700
=R15Ohm
G1 =15Ω;RG2 = 0 Ω
=125
150 ° C
= 720V
= 15V
VGE = 20V
T J = 125 oC
600 VCE measured at terminal(Peak Voltage)
I C , Collector Current (A)
RG
TJ
VCC
200 VGE
IC , Collector Current ( A )
Total Switching Losses (mJ)
250
150
100
50
500
400
300
200
100
SAFE OPERATING AREA
0
0
0
100
200
300
400
500
0
200
I C , Collector Current (A)
400
600
800
1000
1200
1400
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Reverse Bias SOA
25000
1000
20000
QRR - ( nC)
Q R R - (n C )
In sta n ta n e ou s F o rw a rd C u rre n t - I F (A )
I F = 50 0A
I F = 2 50 A
I F = 12 5A
T = 1 2 5 °C
15000
J
TJ = 2 5°C
100
10000
5000
VR = 7 2 0V
T J = 12 5 °C
T J = 25 °C
10
1.0
2.0
3.0
4.0
F o rw a rd V o lta ge D ro p - V FM (V )
Fig. 13 - Typical Forward Voltage Drop vs.
Instantaneous Forward Current
6
0
500
800
1100
1400
d i f /dt - (A /µs)
1700
2000
Fig. 14 - Typical Stored Charge vs. dif/dt
www.irf.com
GA250TD120U
250
400
IF = 500A
I F = 500A
I = 250 A
I F = 250A
F
200
I F = 125A
IF = 125A
200
I IR R M - ( A )
IRRM - ( A )
trr - ( ns )
t rr - (n s )
300
150
100
100
50
VR = 7 2 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
0
500
800
VR = 7 2 0 V
T J = 1 2 5 °C
T J = 2 5 °C
1100
1400
d i f /dt - (A /µs)
1700
2000
Fig. 15 - Typical Reverse Recovery vs. dif/dt
www.irf.com
0
500
800
1100
1400
1700
2000
d i f /d t - (A /µs)
Fig. 16 - Typical Recovery Current vs. dif/dt
7
GA250TD120U
90% Vge
+Vge
Vce
Ic
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
Eoff =
∫ Vce Ic dt
t1 + 5 µ S
V c e ic d t
t1
Fig. 17 - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
∫
trr
id
t
Icddt
tx
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIcd t dt
E o n = VVce
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
8
∫
t4
VVd
d idIc
d t dt
t3
t4
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
www.irf.com
GA250TD120U
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
600V
4 X IC @25°C
0 - 600V
50V
6000µ F
100 V
Figure 22. Clamped Inductive Load Test Circuit
www.irf.com
Figure 23. Pulsed Collector Current
Test Circuit
9
GA250TD120U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17
S For screws M5x0.8
T Pulse width 80µs; single shot.
Case Outline — DOUBLE INT-A-PAK
Dimensions are shown in millimeters (inches)
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 4/00
10
www.irf.com