IRF IR1175

ADVANCE INFORMATION
Data Sheet PD 60178A
IR1175
Synchronous Rectifier Driver
Features
n Provides constant and proper gate drive to power
MOSFETs regardless of transformer output
n Minimizes loss due to power MOSFET body
drain diode conduction
n Stand alone operation - no ties to primary side
n Schmitt trigger input with double pulse suppression allows operation in noisy environments
n High current drive capability - 2A
n High speed operation - 2MHz
Product Summary
Vdd
5Vdc
IO+/-
2A/2A
Fmax
2MHz
Max lead time
500nsec
n Adaptable to multiple topologies (such as singleended forward, double-ended forward)
Description
The IR1175 is a high speed CMOS controller designed
to drive N-channel power MOSFETs used as synchronous rectifiers in high current, high frequency forward
converters with output voltages equal or below 5VDC.
Schmitt trigger inputs with double pulse suppression
allow the controller to operate in noisy environments.
The circuit does not require any ties to the primary
side and derives its operating power directly from
the secondary. The circuit functions by anticipating
transformer output transitions, then turns the power
MOSFETs on or off before the transitions of the transformer to minimize body drain diode conduction and
reduce associated losses. Turn on/off lead time can
be adjusted to accommodate a variety of power
MOSFET sizes and circuit conditions. The IR1175 also
provides gate drive overlap/dead-time control via
external components to further minimize diode conduction by nulling effects of secondary loop and device package inductance.
Package
20 Lead Surface Mount (SSOP-20)
IR1175
ADVANCE INFORMATION
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur.
Symbol
Definition
Min.
Max.
Vdd
Supply voltage
—
7
Units
VDC
Iin
Input clamp current
—
+/- 10
mA DC
PD
Power dissipation (SSOP-20)
—
400
mW
Rth JC
Thermal resistance (SSOP-20) junction-to-case
—
28.5
°C/W
RthJA
Thermal resistance (SSOP-20) junction-to-ambient
—
90.5
°C/W
TJ
Junction temperature
—
150
°C
TS
Storage temperature
-55
150
°C
TL
Lead temperature (soldering, 10 seconds)
—
300
°C
Recommended Operating Conditions
Symbol
Max.
Units
—
5
—
VDC
Ambient temperature
-40
—
85
°C
Freq
Operating frequency
250
Rbias
Required bias resistor (+/- 1%)
Vdd
TA
Supply voltage operating range
Min.
—
Typ.
—
500
KHz
69.8
—
KW
UV
Voltage at UVSET pin
1.75
—
2.25
VDC
Xin
Maximum voltage at X1 and X2 inputs
—
—
5.6
VDC
Cd1/Cd2
Capacitance at pins DTIN1 and DTIN2
—
—
22
pF
470
—
—
KW
Cf
2
Definition
Loop filter bypass capacitor
www.irf.com
IR1175
ADVANCE INFORMATION
Dynamic Electrical Characteristics
Vdd=5V, TA = 25 oC, Rbias = 69.8K unless otherwise specified.
Symbol
Definition
Vdd
Supply voltage operating range
Iqdd
Vdd quiescent current (Vin=0 or 5V, Iout=0)
Freq
Operating frequency
Min.
Typ.
Max.
Units
4.0
—
5.5
VDC
—
3
5
mADC
100
—
2000
KHz
UVSET+
UVSET positive going threshold
1.10
—
1.4
V
UVSET-
UVSET negative going threshold
0.8
—
1.1
V
VDC
Vxth+
X1/X2 Input positive going threshold
—
1.4
—
Vxth-
X1/X2 Input negative going threshold
—
1.0
—
VDC
Tadv
Externally adjustable lead time (advance)
—
—
500
nsec
Externally adjustable dead-time for Q1 and Q2
20
—
—
nsec
Q1,Q2 output sink current (Vdd=5.0V,
—
—
2
A
—
—
2
A
—
20
—
nsec
20
—
nsec
Td
Isink
pulsed, 10 usec)
Isource
Q1,Q2 output source current (Vdd=5.0V,
pulsed, 10 usec)
tio
Input to output delay (PLL bypassed, cross coupled
mode)
tr
Gate turn-on rise time (C1=1000pf, Vdd=5V)
—
tf
Gate turn-off fall time (C1=1000pf, Vdd=5V)
—
20
—
nsec
Cross-over voltage (Vdd=5Vdc, DTIN shorted to
—
2.5
—
VDC
Vtr
DTOUT, C1=1000pf) Fig. 3
Rbias
Required bias resistor
68
—
71
KW
Vbias
Voltage at Rbias pin
—
1.25
—
VDC
-20
—
20
nsec
Ichgpump
Tjitter
Charge pump output current (at VFLTR pin)
—
50
—
mADC
Vchgpump
Charge pump output voltage (at VFLTR pin)
1.3
1.5
1.7
VDC
—
62
—
KHz/
Kvco_dc
www.irf.com
Phase-lock loop output jitter
PLL Vco DC gain
3
IR1175
ADVANCE INFORMATION
Lead Definitions and Assignments
Symbol Description
AVDD
Power - + 5 VDC to MOSFET drivers
Q1
Output - gate drive for Q1 power MOSFET
DTOUT1 Output - sets dead time for Q1 output - used with DTIN1
DTIN1
Input - sets dead time for Q1 - used with DTOUT1
RADV1
Output - sets lead time (advance) for Q1
VFLTR1
Output - PLL loop filter for Q1 output
RVCO1
Output - sets PLL center frequency for Q1 output
X1
Input - transformer input for Q1
VDD
Power - +5 Vdc for internal logic
UVSET
Input - sets UVLO+
If this pin is pulled below 1.25VDC externally, then both Q1 and Q2
outputs will be at Vss (disabled)
RBIAS
Output - connected to 249K +/- 1% resistor - sets operating current
AVSS
Ground for logic supply (AVDD)
X2
Input - transformer input for Q2
RVCO2
Output - sets PLL center frequency for Q2 output
VFLTR2
Output - PLL loop filter for Q2
RADV2
Output - sets lead time (advance) for Q2
DTIN2
Input - sets dead time for Q2 - used with DTOUT2
RBIAS 11
X2 13
RVCO2 14
VFLTR2 15
RADV2 16
DTIN1 17
DTOUT1 18
Output - gate drive for Q2 power MOSFET
VSS 19
Ground for MOSFET driver supply (VDD)
Q2
Q2 20
VSS
AVSS 12
DTOUT2 Output - sets dead time for Q2 - used with DTIN2
20 Lead SSOP
4
*VDD
Q1
DTOUT2
DTIN2
RADV1
VFLTRI
RVCO1
X1
AVDD
UVSET
1
2
3
4
5
6
7
8
9
10
IR1175
www.irf.com
ADVANCE INFORMATION
IR1175
Fig. 1 Typical application circuit when supply Vout < 5.0 VDC
Fig. 2 Typical application circuit when supply Vout = 5.0 VDC
www.irf.com
5
IR1175
ADVANCE INFORMATION
Fig. 3 Gate drive characteristics and definitions
Phase Lock Loop Design Equations:
1 - Resistor to set VCO Ceter Frequency:
W ) = 143 x [Vchgpump(VDC) / fvco(KHz)] x Kvco _ dc(KHz/m
mA)
Rvco (KW
Example (A): Choose Vchgpump = 1.5V, desired frequency (fvco) = 300KHz
Rvco = 143 x [1.5 /300] x 62 Hz/mA = 44.33 KW
2 - Small Signal gain for VCO:
mA)/(7 x Rvco(KW
W)
Kvco_ac (KHz/Volt) = 1E3 x Kvco_dc (KHz/m
Example (B): Choosing same conditions as in example A:
Kvco_ac = 1E3 x 62 / (7 x 44.33) = 199.9 KHz/volt
6
www.irf.com
ADVANCE INFORMATION
IR1175
3 - PLL Natural frequency:
ωn =2πfn(KHz)= √ Ichpump(uA) x Kvco_ac(KHz/V) / C(nF)
Choose Cf such that Cf=C/16 (Minimum value for Cf=470pF)
4 - PLL Damping factor calculations:
P = πE-3 x Rf (KOhms) x C(nF) x fn(KHz)
Typical value for P is 0.707. (Critically damped)
5 - Advance timing:
Tadv(nsec) = RADV (KOhms)*10 - 10
Where RADV is resistance from RADV1 or RADV2 to ground.
Example C: RADV=10Kohms will result in Tadv=10*10 - 10 =90 nsec .
6- Dead time calculations:
Td(nsec)=0.69*Rdt(KOhms)*Cdt(pF) + 5 (For Vdd=5 V)
Where Rdt is resistance between pins DTIN1 and DTOUT1 or DTIN2 and
DTOUT2. Cdt is capacitance from DTIN1 or DTIN2 to ground.
Example D: Rdt=10Kohms and Cdt=22pF will result in: Td=156.8 nsec
Fig. 4 PLL loop filter component definitions
www.irf.com
7
IR1175
ADVANCE INFORMATION
Fig. 5 IR1175 Block Diagram
8
www.irf.com
ADVANCE INFORMATION
IR1175
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086
IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon,
Hong Kong Tel: (852) 2803-7380
Data and specifications subject to change without notice. 1/27/2000
www.irf.com
9