IRF GA200NS61U

PD -94347
GA200NS61U
High Side Switch Chopper Module
Ultra-FastTM Speed IGBT
IGBT INT-A-PAK
Features
3
• Generation 4 IGBT technology
• UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• Very low conduction and switching losses
• HEXFRED™ antiparallel diodes with ultra- soft
recovery
• Industry standard package
• UL approved
VCES = 600V
4
VCE(on) typ. = 1.8V
5
1
@VGE = 15V, IC = 200A
2
Benefits
• Increased operating efficiency
• Direct mounting to heatsink
• Performance optimized for power conversion: UPS,
SMPS, Welding
• Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
ICM
ILM
IFM
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 85°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Pulsed Collector Current
Peak Switching Current‚
Peak Diode Forward Current
Gate-to-Emitter Voltage
RMS Isolation Voltage, Any Terminal To Case, t = 1 min
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Max.
Units
600
200
400
400
400
±20
2500
625
325
-40 to +150
-40 to +125
V
A
V
W
°C
Thermal / Mechanical Characteristics
Parameter
RθJC
RθJC
RθCS
www.irf.com
Thermal Resistance, Junction-to-Case - IGBT
Thermal Resistance, Junction-to-Case - Diode
Thermal Resistance, Case-to-Sink - Module
Mounting Torque, Case-to-Heatsink
Mounting Torque, Case-to-Terminal 1, 2 & 3ƒ
Weight of Module
Typ.
Max.
—
—
0.1
—
—
200
0.20
0.35
—
4.0
3.0
—
Units
°C/W
N. m
g
1
11/06/01
GA200NS61U
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Collector-to-Emitter Breakdown Voltage
Collector-to-Emitter Voltage
Min. Typ. Max. Units
Conditions
600
—
—
VGE = 0V, IC = 1mA
—
1.8 2.2
VGE = 15V, IC = 200A
—
1.9
—
V
VGE = 15V, IC = 200A, TJ = 125°C
Gate Threshold Voltage
3.0
—
6.0
IC = 1.25mA
Temperature Coeff. of Threshold Voltage —
-11
— mV/°C VCE = VGE, IC = 1.25mA
Forward Transconductance „
—
175 —
S
VCE = 25V, IC = 200A
Collector-to-Emitter Leaking Current
—
—
1.0
mA
VGE = 0V, VCE = 600V
—
—
10
VGE = 0V, VCE = 600V, TJ = 125°C
Diode Forward Voltage - Maximum
—
1.6 2.2
V
IF = 200A, VGE = 0V
—
1.7
—
IF = 200A, VGE = 0V, TJ = 125°C
Gate-to-Emitter Leakage Current
—
— 250
nA
VGE = ±20V
Dynamic Characteristics - TJ = 125°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff (1)
Ets (1)
Cies
Coes
Cres
trr
Irr
Qrr
di(rec)M/dt
2
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
Turn-Off Switching Energy
Total Switching Energy
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Diode Peak ReverseCurrent
Diode Recovery Charge
Diode Peak Rate of Fall of Recovery
During tb
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
903
125
306
342
194
366
213
12
16
28
20068
1254
261
137
96
6731
5705
Max. Units
Conditions
1355
VCC = 400V, VGE = 15V
188
nC
IC = 135A
459
TJ = 25°C
—
RG1 = 27Ω, RG2 = 0Ω,
—
ns
IC = 200A
—
VCC = 360V
—
VGE = ±15V
—
mJ Inductive load
—
39
—
VGE = 0V
—
pF
VCC = 30V
—
ƒ = 1 MHz
—
ns
IC = 200A
—
A
RG1 = 27Ω
—
µC
RG2 = 0Ω
—
A/µs VCC = 360V
di/dt=1227A/µs
www.irf.com
GA200NS61U
I C , Collector-to-Emitter Current (A)
TJ = 125 °C
100
TJ = 25 °C
10
0.5
VGE = 15V
80µs PULSE WIDTH
1.0
1.5
2.0
2.5
I C, Collector-to-Emitter Current (A)
1000
1000
TJ = 25 °C
10
3.0
3.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
80
40
0
25
50
75
100
125
150
TC , Case Temperature ( °C)
Fig. 3 - Maximum Collector Current vs. Case
Temperature
www.irf.com
7.0
8.0
9.0
Fig. 2 - Typical Transfer Characteristics
240
120
6.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 1 - Typical Output Characteristics
160
V CE = 25V
80µs PULSE WIDTH
1
5.0
VCE , Collector-to-Emitter Voltage (V)
200
TJ = 125 °C
100
VGE = 15V
80 us PULSE WIDTH
IC = 400 A
2.0
IC = 200 A
IC = 100 A
1.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4- Typical Collector-to-Emitter Voltage vs.
Junction Temperature
3
GA200NS61U
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
30000
Cies
20000
Coes
10000
Cres
0
1
10
100
20
VGE , Gate-to-Emitter Voltage (V)
40000
VCC = 400V
I C = 135A
16
12
8
4
0
0
VCE , Collector-to-Emitter Voltage (V)
200
400
600
800
1000
QG , Total Gate Charge (nC)
Fig. 5 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 6 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Thermal Response (ZthJC )
1
0.1
D = 0.50
PDM
0.20
0.10
0.05
0.02
0.01
0.01
0.0001
t
1
t2
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t / t
1 2
2. Peak TJ = PDMx Z thJC + TC
0.001
0.01
0.1
1
10
100
A
1000
t 1, Rectangular Pulse Duration (sec)
Fig. 7 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA200NS61U
1000
VCC = 360V
VGE = 15V
TJ = 125 °C
I C = 200A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
40
35
30
25
20
0
10
20
30
40
100
IC = 400 A
IC = 200 A
IC = 100 A
10
1
-60 -40 -20
50
( Ω)
RG , Gate Resistance (Ohm)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 8 - Typical Switching Losses vs. Gate
Resistance
Fig. 9 - Typical Switching Losses vs.
Junction Temperature
70
RG
Ω;RG2 = 0 Ω
R
= Ohm
G1=27
T J = 125 ° C
60 VCC = 360V
VGE = 15V
600
IC, Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
R
Ω;RG2 = 0 Ω
RG1
= Ohm
G =27
VGE = 15V
VCC = 360V
50
40
30
20
10
VGE = 20V
TJ = 125°
500
VCE measured at terminal (Peak Voltage)
400
300
200
SAFE OPERATING AREA
100
0
0
0
100
200
300
I C , Collector-to-emitter Current (A)
Fig. 10 - Typical Switching Losses vs.
Collector-to-Emitter Current
www.irf.com
400
0
100
200
300
400
500
600
700
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Reverse Bias SOA
5
GA200NS61U
160
300
IF = 400A
120
IF = 200A
IF = 400A
200
IF = 100A
IRRM - (A)
trr - (ns)
IF = 200A
IF = 100A
80
100
40
VR = 360V
VR = 360V
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
0
0
500
1000
1500
2000
500
1000
dif / dt - (A / µs)
Fig. 12 - Typical Reverse Recovery vs. dif/dt
1000
2000
Fig. 13 - Typical Recovery Current vs. dif/dt
12000
IF = 400A
10000
IF = 200A
IF = 100A
8000
Qrr - (nC)
Instantaneous Forward Current - I F ( A )
1500
dif / dt - (A / µs)
100
T J = 125°C
6000
4000
T J = 25°C
2000
VR = 360V
TJ = 125°C
TJ = 25°C
0
10
0.0
0.5
1.0
1.5
2.0
2.5
Forward Voltage Drop - V F ( V )
Fig. 14 - Typical Forward Voltage Drop vs.
Instantaneous Forward Current
6
500
1000
1500
2000
dif / dt - (A / µs)
Fig. 15 - Typical Stored Charge vs. dif/dt
www.irf.com
GA200NS61U
L3
90% Vge
Vcc
Rg2
+Vge
+Vg2
Rg1
-Vg2
Vce
DUT
Ic
L1
90% Ic
10% Vce
Ic
L
5% Ic
td(off)
tf
L2
Vcc=60% of BVces
Ls= L1+L2+L3
Vge=15V
Eoff =
∫ Vce Ic dt
t1+5µS
Vce ic dt
t1
Fig. 16a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 16b - Test Waveforms for Circuit of Fig. 16a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
∫
trr
id
Icdtdt
tx
+Vg
tx
10% Vcc
10% Irr
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
tr
td(on)
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 16c - Test Waveforms for Circuit of Fig. 16a,
Defining Eon, td(on), tr
www.irf.com
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 16d - Test Waveforms for Circuit of Fig. 16a,
Defining Erec, trr, Qrr, Irr
7
GA200NS61U
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 16e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL =
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 17. Clamped Inductive Load Test Circuit
8
Figure 18. Pulsed Collector Current
Test Circuit
www.irf.com
GA200NS61U
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
‚ See fig. 16
ƒ For screws M5x0.8
„ Pulse width 50µs; single shot.
Case Outline — INT-A-PAK
[ ]
94.70 3.728
93.70 3.689
80.30
79.70
[
3.161
3.138
NOT ES :
1. ALL DIMENSIONS ARE S HOWN IN MILLIMETERS [INCHES ].
2. CONTROLLING DIMENS ION: MILLIMETER.
]
2X 23.50
22.50
.886]
[.925
4.50
3.50
6
7
11
10
34.70
33.70
.138]
[.177
1.327]
[1.366
17.50
16.50
1
2
5
4
8
9
3X M5
8 [.314]
MAX.
42.00
41.00
1.614]
[1.654
6.80
2X Ø 6.20
8.00
6.60
0.15 [.0059] CONVEX
3.587]
[3.626
.244]
[.267
4X F AS TON TAB (110)
2.8 x 0.5 [.110 x .020]
.260]
[.315
24.00
23.00
92.10
91.10
.650]
[.689
3
30.50
29.00
.906]
[.945
8.65
7.65
1.142 ]
[1.201
2X 13.30
12.70
.301 ]
[.341
32.00
31.00
.500]
[.524
[ ]
1.260
1.220
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/01
www.irf.com
9